1
|
Cui L, Liang R, Zhang C, Zhang R, Wang H, Wang XX. Coupling polyethylene microplastics with other pollutants: Exploring their combined effects on plant health and technologies for mitigating toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176657. [PMID: 39362539 DOI: 10.1016/j.scitotenv.2024.176657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The presence of microplastics in agricultural soils has raised concerns regarding their potential impacts on ecosystem health and plant growth. The introduction of microplastics into soil can alter its physicochemical properties, leading to adverse effects on plant development. Furthermore, the adsorption capabilities of microplastics may enhance the toxicity of soil pollutants, potentially resulting in detrimental effects on plant life. Large-sized microplastics may become adhered to root surfaces, impeding stomatal function and restricting nutrient uptake. Conversely, smaller microplastics and nano-plastics may be internalized by plants, causing cellular damage and genotoxicity. In addition, the presence of microplastics in soil can indirectly affect plant growth and development by altering the soil environment. Therefore, it is essential to investigate the potential impacts of microplastics on agricultural ecosystems and develop strategies to mitigate their effects. This review describes the adsorption power between polyethylene microplastics and pollutants (heavy metals, polycyclic aromatic hydrocarbons and antibiotics) commonly found in agricultural fields and the factors affecting the adsorption process. Additionally, the direct and indirect effects of microplastics on plants are summarized. Most of the single or combined microplastic contaminants showed negative effects on plant growth, with a few beneficial effects related to the characteristics of the microplastics and environmental factors. Currently microbial action and the application of soil conditioners or plant growth promoters can alleviate the effects of microplastics on plants to a certain extent. In light of the complex nature of soil environments, future research should concentrate on mitigate and control these interactions and the impact of compound pollution on ecosystems.
Collapse
Affiliation(s)
- Linmei Cui
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Rong Liang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Hong Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Xin-Xin Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Chen G, Pan T, Gao D, Liao H, Wang J. Enhanced competitiveness of Spirodela polyrhiza in co-culture with Salvinia natans under combined exposure to polystyrene nanoplastics and polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176870. [PMID: 39414046 DOI: 10.1016/j.scitotenv.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Micro- and nanoplastics (MNPs) and polychlorinated biphenyls (PCBs) are prevalent in the environment and pose potential threats to ecosystems. However, studies on the phytotoxicity of MNPs and PCBs on primary producers are limited. This study investigated the effects of polystyrene nanoplastics (PS-NPs, 10 mg/L) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52, 0.1 mg/L), on the growth of Spirodela polyrhiza and Salvinia natans, and their impact on plant competitive ability under co-culture conditions. Laser confocal microscopy images revealed that PS-NPs accumulated on the leaf and root surfaces of both species. Combined exposure to PS-NPs and PCB-52 significantly inhibited the average specific and relative growth rates (RGR) of both species, reduced chlorophyll a and b levels, and slightly increased carotenoid content, disrupting the photosynthetic system. PCB-52 exacerbated PS-NPs accumulation on plants, leading to increased hydrogen peroxide (H2O2) and superoxide anion (O2-) production in both roots and leaves. This affects the activity of superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and the soluble protein content. The combined treatment with PS-NPs and PCB-52 induced greater ecological stress in both species than the treatment with PS-NPs alone. In addition, the combined treatment with PS-NPs and PCB-52 significantly improved the relative yield and competition balance index of S. polyrhiza, indicating that PS-NPs + PCB-52 enhanced the competitive ability of S. polyrhiza when co-cultured with S. natans. This study confirmed the effects of co-exposure to PS-NPs and PCB-52 on aquatic plant growth and species competition, contributing to better insight into the ecological impacts of MNPs and organic pollutants.
Collapse
Affiliation(s)
- Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Che TH, Qiu GK, Yu HW, Wang QY. Impacts of micro/nano plastics on the ecotoxicological effects of antibiotics in agricultural soil: A comprehensive study based on meta-analysis and machine learning prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177076. [PMID: 39454772 DOI: 10.1016/j.scitotenv.2024.177076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Micro/nano plastics (M/NPs) and antibiotics, as widely coexisting pollutants in environment, pose serious threats to soil ecosystem. The purpose of this study was to systematically evaluate the ecological effects of the co-exposure of M/NPs and antibiotics on soil organisms through the meta-analysis and machine learning prediction. Totally, 1002 data set from 38 articles were studied. The co-exposure of M/NPs significantly promoted the abundance (62.68 %) and migration level (55.22 %) of antibiotic contamination in soil, and caused serious biotoxicity to plants (-12.31 %), animals (-12.03 %), and microorganisms (35.07 %). Using 10 variables, such as risk response categories, basic physicochemical properties, exposure objects, and exposure time of M/NPs, as data sources, Random Forests (RF) and eXtreme Gradient Boosting (XGBoost) models were developed to predict the impacts of M/NPs on the ecotoxicological effects of antibiotics in agricultural soil. The effective R2 values (0.58 and 0.60, respectively) indicated that both models can be used to predict the future ecological risk of M/NPs and antibiotics coexistence in soil. Particle size (13.54 %), concentration (5.02 %), and type (11.18 %) of M/NPs were the key characteristic parameters that affected the prediction results. The findings of this study indicate that the co-exposure of M/NPs and antibiotics in soil not only exacerbates antibiotic contamination levels but also causes severe toxic effects to soil organism. Furthermore, this study provides an effective approach for ecological risk assessment of the coexistence of M/NPs and antibiotics in environment.
Collapse
Affiliation(s)
- Tian-Hao Che
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Yanbian University, Agricultural college, Yanji 133002, China
| | - Guan-Kai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong-Wen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Quan-Ying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
4
|
Wang Y, Feng Z, Ghani MI, Wang Q, Zeng L, Yang X, Zhang X, Chen C, Li S, Cao P, Chen X, Cernava T. Co-exposure to microplastics and soil pollutants significantly exacerbates toxicity to crops: Insights from a global meta and machine-learning analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176490. [PMID: 39326744 DOI: 10.1016/j.scitotenv.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Environmental contamination of microplastics (MPs) is ubiquitous worldwide, and co-contamination of arable soils with MPs and other pollutants is of increasing concern, and may lead to unexpected consequences on crop production. However, the overall implications of this combined effect, whether beneficial or detrimental, remain a subject of current debate. Here, we conducted a global meta and machine-learning analysis to evaluate the effects of co-exposure to MPs and other pollutants on crops, utilizing 3346 biological endpoints derived from 68 different studies. Overall, compared with control groups that only exposure to conventional soil contaminants, co-exposure significantly exacerbated toxicity to crops, particularly with MPs intensifying adverse effects on crop morphology, oxidative damage, and photosynthetic efficiency. Interestingly, our analysis demonstrated a significant reduction in the accumulation of pollutants in the crop due to the presence of MPs. In addition, the results revealed that potential adverse effects were primarily associated with crop species, MPs mass concentration, and exposure duration. Our study reaffirms the substantial consequences of MPs as emerging pollutants on crops within the context of integrated pollution, providing novel insights into improving sustainability in agro-ecosystems.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zerui Feng
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Muhammad Imran Ghani
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Qiran Wang
- North Alabama International College of Engineering and Technology, Guizhou University, Guiyang 550025, China
| | - Lina Zeng
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xuqin Yang
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xin Zhang
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengxi Cao
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaoyulong Chen
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Ouyang X, Ma J, Feng B, Liu Y, Yin P, Zhang X, Li P, Chen Q, Zhao Y, Weng L, Li Y. Effects of nanoplastics on the growth, transcription, and metabolism of rice (Oryza sativa L.) and synergistic effects in the presence of iron plaque and humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125246. [PMID: 39505096 DOI: 10.1016/j.envpol.2024.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Nanoplastics (NPs) can adversely affect living organisms. However, the uptake of NPs by plants and the physiological and molecular mechanisms underlying NP-mediated plant growth remain unclear, particularly in the presence of iron minerals and humic acid (HA). In this study, we investigated NP accumulation in rice (Oryza sativa L.) and the physiological effects of exposure to polystyrene NPs (0, 20, and 100 mg L-1) in the presence of iron plaque (IP) and HA. NPs were absorbed on the root surface and entered cells, and confocal laser scanning microscopy confirmed NP uptake by the roots. NP treatments decreased root superoxide dismutase (SOD) activity (28.9-44.0%) and protein contents (31.2-38.6%). IP and HA (5 and 20 mg L-1) decreased the root protein content (20.44-58.3% and 44.2-45.2%, respectively) and increased the root lignin content (22.3-27.5% and 19.2-29.6%, respectively) under NP stress. IP inhibited the NP-induced decreasing trend of SOD activity (19.2-29.5%), while HA promoted this trend (48.7-50.3%). Transcriptomic and metabolomic analysis (Control, 100NPs, and IP-100NPs-20HA) showed that NPs inhibited arginine biosynthesis, and alanine, aspartate, and glutamate metabolism and activated phenylpropanoid biosynthesis related to lignin. The coexistence of IP and HA had positive effects on the amino acid metabolism and phenylpropanoid biosynthesis induced by NPs. Regulation of genes and metabolites involved in nitrogen metabolism and secondary metabolism significantly altered the levels of protein and lignin in rice roots. These findings provide a scientific basis for understanding the environmental risk of NPs under real environmental conditions.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China; Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Bingcong Feng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ping Yin
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xiaoyu Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Li Y, Chen Y, Li P, Huang H, Xue K, Cai S, Liao X, Jin S, Zheng D. Microplastics in soil affect the growth and physiological characteristics of Chinese fir and Phoebe bournei seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124503. [PMID: 38977122 DOI: 10.1016/j.envpol.2024.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Pot experiments were conducted using Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Phoebe bournei (Hemsl.) Yang) to investigate whether soil microplastics adversely affect the nurturing and renewal of plantations. Microplastics composed of polyethylene and polypropylene with a size of 48 μm were used. The treatments included a control group (without microplastics) and groups treated with microplastic concentrations of 1% and 2% (w/w). The effects of microplastics on the growth, photosynthetic pigments in leaves, antioxidant systems, and osmotic regulation substances of the seedlings were analysed by measuring the seedling height, ground-line diameter growth, chlorophyll (chlorophyll a, chlorophyll b, and total chlorophyll) contents, antioxidant enzyme (superoxide dismutase, peroxidase, catalase) activities, and malondialdehyde, soluble sugar, and soluble protein levels. The results indicated that treatment with 1% polyethylene microplastics increased the chlorophyll a, total chlorophyll, and soluble protein contents in the leaves of both types of seedlings while inhibiting superoxide dismutase and peroxidase activities in P. bournei seedlings. Treatment with 2% polyethylene or polypropylene microplastics suppressed the chlorophyll a, chlorophyll b, and total chlorophyll contents; superoxide dismutase, peroxidase, and catalase activities; and soluble sugar and soluble protein levels in the leaves of both types of seedlings, resulting in reduced growth in terms of height and ground-line diameter. The physiological effects of polyethylene microplastics were more evident than those of polypropylene at the same concentration. The results demonstrated that microplastics can affect photosynthesis, the antioxidant system, and osmotic regulation in Chinese fir and P. bournei seedlings, thereby inhibiting their normal growth and development. Exposure to 1% (w/w) microplastics triggered stress responses in seedlings, whereas 2% (w/w) microplastics impeded seedling growth.
Collapse
Affiliation(s)
- Yuru Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yifei Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peiyao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Haifeng Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kexin Xue
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Siying Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoli Liao
- Department of Geography, Minjiang University, Fuzhou, 350108, China.
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, 350108, China.
| | - Dexiang Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Jadhav B, Medyńska-Juraszek A. Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. PLANTS (BASEL, SWITZERLAND) 2024; 13:2526. [PMID: 39274010 PMCID: PMC11397527 DOI: 10.3390/plants13172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
With the increasing amounts of microplastic (MP) deposited in soil from various agricultural activities, crop plants can become an important source of MP in food products. The last three years of studies gave enough evidence showing that plastic in the form of nanoparticles (<100 nm) can be taken up by the root system and transferred to aboveground plant parts. Furthermore, the presence of microplastic in soil affects plant growth disturbing metabolic processes in plants, thus reducing yields and crop quality. Some of the adverse effects of microplastic on plants have been already described in the meta-analysis; however, this review provides a comprehensive overview of the latest findings about possible adverse effects and risks related to wide microplastic occurrence in soil on crop production safety, including topics related to changes of pesticides behavior and plant pathogen spreading under the presence MP and possibly threaten to human health.
Collapse
Affiliation(s)
- Bhakti Jadhav
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| |
Collapse
|
9
|
Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, Shekhawat GS, Verma KK, Siddiqui MW, Seth CS. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108795. [PMID: 38878390 DOI: 10.1016/j.plaphy.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi-110007, Delhi, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore- 560064, Karnataka, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida- 201308, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak- 484887, Madhya Pradesh, India
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342005, Rajasthan, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning-530007, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
| | | |
Collapse
|
10
|
Chen L, Qiu T, Huang F, Zeng Y, Cui Y, Chen J, White JC, Fang L. Micro/nanoplastics pollution poses a potential threat to soil health. GLOBAL CHANGE BIOLOGY 2024; 30:e17470. [PMID: 39149882 DOI: 10.1111/gcb.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
11
|
Liava V, Golia EE. Effect of microplastics used in agronomic practices on agricultural soil properties and plant functions: Potential contribution to the circular economy of rural areas. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:634-650. [PMID: 38520089 DOI: 10.1177/0734242x241234234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.
Collapse
Affiliation(s)
- Vasiliki Liava
- Faculty of Agriculture, Forestry and Natural Environment, Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Evangelia E Golia
- Faculty of Agriculture, Forestry and Natural Environment, Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Wang H, Li Y, Liu L, Liu H, Su J, Xu S, Zhou Y, Zhang S, Xu C. A Study on the Growth and Physiological Toxicity Effects of the Combined Exposure of Microplastics and Cadmium on the Vicia faba L. Seedlings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:83. [PMID: 38822863 DOI: 10.1007/s00128-024-03899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.
Collapse
Affiliation(s)
- Hui Wang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
- Key Laboratory of Bioresoure and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan, 232038, Anhui, China
| | - Yaliang Li
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
- Key Laboratory of Bioresoure and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan, 232038, Anhui, China
| | - Ling Liu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China.
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Junhong Su
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Sheng Xu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Yifan Zhou
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Siyu Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Chijing Xu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
13
|
Li G, Tang Y, Lou J, Wang Y, Yin S, Li L, Iqbal B, Lozano YM, Zhao T, Du D. The promoting effects of soil microplastics on alien plant invasion depend on microplastic shape and concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172089. [PMID: 38554966 DOI: 10.1016/j.scitotenv.2024.172089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Both alien plant invasions and soil microplastic pollution have become a concerning threat for terrestrial ecosystems, with consequences on the human well-being. However, our current knowledge of microplastic effects on the successful invasion of plants remains limited, despite numerous studies demonstrating the direct and indirect impacts of microplastics on plant performance. To address this knowledge gap, we conducted a greenhouse experiment involving the mixtures of soil and low-density polyethylene (LDPE) microplastic pellets and fragments at the concentrations of 0, 0.5 % and 2.0 %. Additionally, we included Solidago decurrens (native plant) and S. canadensis (alien invasive plant) as the target plants. Each pot contained an individual of either species, after six-month cultivation, plant biomass and antioxidant enzymes, as well as soil properties including soil moisture, pH, available nutrient, and microbial biomass were measured. Our results indicated that microplastic effects on soil properties and plant growth indices depended on the Solidago species, microplastic shapes and concentrations. For example, microplastics exerted positive effects on soil moisture of the soil with native species but negative effects with invasive species, which were impacted by microplastic shapes and concentrations, respectively. Microplastics significantly impacted catalase (P < 0.05) and superoxide dismutase (P < 0.01), aboveground biomass (P < 0.01), and belowground/aboveground biomass (P < 0.01) of the native species depending on microplastic shapes, but no significant effects on those of the invasive species. Furthermore, microplastics effects on soil properties, nutrient, nutrient ratio, and plant antioxidant enzyme activities contributed to plant biomass differently among these two species. These results suggested that the microplastics exerted a more pronounced impact on native Solidago plants than the invasive ones. This implies that the alien invasive species displays greater resistance to microplastic pollution, potentially promoting their invasion. Overall, our study contributes to a better understanding of the promoting effects of microplastic pollution on plant invasion.
Collapse
Affiliation(s)
- Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yi Tang
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jiabao Lou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yanjiao Wang
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shiyu Yin
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lianghui Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yudi M Lozano
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany.
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
14
|
Gao M, Peng H, Zhao X, Xiao Z, Qiu W, Song Z. Effect of cadmium on polystyrene transport in parsley roots planted in a split-root system and assessment of the combined toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171633. [PMID: 38471591 DOI: 10.1016/j.scitotenv.2024.171633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Micro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals. Yet, the possible effects of heavy metals on MP/NP transport and toxicity within co-contaminated systems are still not well-understood. In this study, we conducted split-root experiments to explore the transport and toxicity of polystyrene (PS) particles of varying sizes in parsley seedlings, both with and without the addition of cadmium (Cd). Both the PS-NPs (100 nm) and PS-MPs (300 nm) traveled from the PS-spiked roots (Roots-1) to the non-PS-spiked roots (Roots-2), with or without Cd, possibly because of phloem transport. Furthermore, the presence of Cd reduced the accumulation and movement of PS-NP/MP in the roots, likely due to the increased positive charge (Cd2+) on the PS surface. PS-NPs/MPs in both Roots-1 and Roots-2 were observed using transmission electron microscopy (TEM). When Cd was added to either Roots-1 (PS + Cd|H) or Roots-2 (PS|Cd), there was a minor reduction in the chlorophyll a and carotenoids content in leaves with PS|H. The adverse impacts of MPs|H on both indicators were influenced by the MP concentration. However, chlorophyll b significantly increased in the PS|H, PS + Cd|H, and PS|Cd treatments. Consequently, the chlorophyll a/b ratio declined, indicating inhibition of photosynthesis. The dehydrogenase content showed a minor change in Roots-1 and Roots-2 without Cd stress, whereas it significantly decreased on the Cd-spiked side and subsequently inhibited root growth. In contrast, the marked rise in glutathione (GSH) levels within Cd-spiked roots suggested, based on Gaussian analysis, that GSH and Cd chelation were instrumental in mitigating Cd toxicity. When Cd was introduced to both Roots-1 and Roots-2 simultaneously (PS + Cd|Cd), the aforementioned index showed a notable decline.
Collapse
Affiliation(s)
- Minling Gao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Hongchang Peng
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Xuesong Zhao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Zhengzhen Xiao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
15
|
Liu X, Dong X, Wang D, Xie Z. Biodeterioration of polyethylene by Bacillus cereus and Rhodococcus equi isolated from soil. Int Microbiol 2024:10.1007/s10123-024-00509-7. [PMID: 38530479 DOI: 10.1007/s10123-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Polyethylene (PE), a non-biodegradable plastic, is widely used in agriculture as a mulch material, which causes serious plastic pollution when it is discarded. Recent studies have described the biodeterioration of PE by bacteria, but it is difficult for a single bacterial species to effectively degrade PE plastic. We isolated two strains with PE-degrading ability, Bacillus cereus (E1) and Rhodococcus equi (E3), from the soil attached to plastic waste on the south side of Mount Tai, China, using a medium with PE plastic as the only carbon source. By clear zone area analysis, we found that E1 mixed with E3 could improve the degradation of PE plastics. The mixture of E1 and E3 was incubated for 110 days in a medium containing PE and mulch film as the only carbon source, respectively. After 110 days, a decrease in pH and mass was observed. Obvious slits and depressions were observed on the surface of the PE film and the mulch films using scanning electron microscopy. The surface hydrophobicity of both films decreased, and FTIR revealed the formation of new oxidation groups on their surfaces during the degradation process and the destruction of the original CH2 long chains of PE. Besides, we found that surface of the mulch films contained more viable bacteria than the liquid medium. In conclusion, we identified two PE-degrading strains whose mixture can effectively degrade mulch film than pure PE film. Our results provide a reference for understanding PE plastic degradation pathways and their associated degradation processes.
Collapse
Affiliation(s)
- Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xusheng Dong
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
16
|
Li X, Chen X, Chen B, Zhang W, Zhu Z, Zhang B. Tire additives: Evaluation of joint toxicity, design of new derivatives and mechanism analysis of free radical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133220. [PMID: 38101020 DOI: 10.1016/j.jhazmat.2023.133220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is one of the most widely used antioxidant agents in tire additives. Its ozonation by-product 6PPD-quinone has recently been recognized as inducing acute mortality in aquatic organisms such as coho salmon. In this study, we aimed to develop an in-silico method to design environmentally friendly 6PPD derivatives and evaluate the joint toxicity of 6PPD with other commonly used tire additives on coho salmon through full factorial design-molecular docking and molecular dynamic simulation. The toxicity mentioned in this study is represented by the binding energy of chemical(s) binding to the coho salmon growth hormone. The recommended formula for tire additives with relatively low toxicity was then proposed. To further reduce the toxicity of 6PPD, 129 6PPD derivatives were designed based on the N-H bond dissociation reaction, and three of these derivatives showed improved antioxidant activity and 6PPD-106 was finally screened as the optimum alternative with lower toxicity to coho salmon. Besides, the mechanism of free radical oxidation (i.e., antioxidation and ozonation metabolic pathway) for 6PPD-106 was also analyzed and found that after ozonation, the toxicity of 6PPD-106's by-products is much lower than that of 6PPD's by-products. This study provided a molecular modelling-based examination of 6PPD, which comprehensively advanced the understanding of 6PPD's environmental behaviors and provided more environmentally friendly 6PPD alternatives with desired functional property and lower ecological risks.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyi Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Wenhui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
17
|
Guo J, Du Y, Yang L, Luo Y, Zhong G, Zhao HM, Liu J. Effects of microplastics on the environmental behaviors of the herbicide atrazine in soil: Dissipation, adsorption, and bioconcentration. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133085. [PMID: 38070269 DOI: 10.1016/j.jhazmat.2023.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
As an emerging contaminant in soil, the impact of microplastics (MPs) on the environmental behavior of other organic pollutants remains uncertain, potentially threatening the sustainability of agricultural production. In this study, the impact of two kinds of MPs on the environmental behaviors of herbicide atrazine in soil-plant system was investigated. The results showed that MPs significantly reduced the half-life 17.69 ∼ 21.86 days of atrazine in the soil, compared to the control group. Meanwhile, the introduction of MPs substantially increased atrazine adsorption. Additionally, MPs substantially enriched the diversity and functionality of soil microbiome, and the soil metabolic activity was stimulated. Regarding the crop growth, the accumulation of atrazine in maize were significantly decreased by approximately 48.4-78.5 % after exposure to MPs. In conclusion, this study reveals the impact of MPs on atrazine's environmental behaviors in soil and highlights their less effect on maize growth, providing valuable insights for managing MPs contamination in sustainable agriculture.
Collapse
Affiliation(s)
- Jiatai Guo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhang Du
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yili Luo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Pulitika A, Karamanis P, Kovačić M, Božić AL, Kušić H. An Atomic-Level Perspective on the interactions between Organic Pollutants and PET particles: A Comprehensive Computational Investigation. Chemphyschem 2024; 25:e202300854. [PMID: 38193762 DOI: 10.1002/cphc.202300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Microplastics (MPs) have recently attracted a lot of attention worldwide due to their abundance and potentially harmful effects on the environment and on human health. One of the factors of concern is their ability to adsorb and disperse other harmful organic pollutants in the environment. To properly assess the adsorption capacity of MP for organic pollutants in different environments, it is pivotal to understand the mechanisms of their interactions in detail at the atomic level. In this work, we studied interactions between polyethylene terephthalate (PET) MP and small organic pollutants containing different functional groups within the framework of density functional theory (DFT). Our computational outcomes show that organic pollutants mainly bind to the surface of a PET model via weak non-bonding interactions, mostly hydrogen bonds. The binding strength between pollutant molecules and PET particles strongly depends on the adsorption site while we have found that the particle size is of lesser importance. Specifically, carboxylic sites are able to form strong hydrogen bonds with pollutants containing hydrogen bond donor or acceptor groups. On the other hand, it is found that in such kind of systems π-π interactions play a minor role in adsorption on PET particles.
Collapse
Affiliation(s)
- Anamarija Pulitika
- University of Zagreb Faculty of Chemical Engineering and Technology, 10000, Zagreb, Croatia
| | | | - Marin Kovačić
- University of Zagreb Faculty of Chemical Engineering and Technology, 10000, Zagreb, Croatia
| | - Ana Lončarić Božić
- University of Zagreb Faculty of Chemical Engineering and Technology, 10000, Zagreb, Croatia
| | - Hrvoje Kušić
- University of Zagreb Faculty of Chemical Engineering and Technology, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Jia Y, Cheng Z, Peng Y, Yang G. Microplastics alter the equilibrium of plant-soil-microbial system: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116082. [PMID: 38335576 DOI: 10.1016/j.ecoenv.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Microplastics (MPs) are widely identified as emerging hazards causing considerable eco-toxicity in terrestrial ecosystems, but the impacts differ in different ecosystem functions among different chemical compositions, morphology, sizes, concentrations, and experiment duration. Given the close relationships and trade-offs between plant and soil systems, probing the "whole ecosystem" instead of individual functions must yield novel insights into MPs affecting terrestrial ecosystems. Here, a comprehensive meta-analysis was employed to reveal an unambiguous response of the plant-soil-microbial system to MPs. Results showed that in view of plant, soil, and microbial functions, the general response patterns of plant and soil functions to MPs were obviously opposite. For example, polyethylene (PE) and polyvinyl chloride (PVC) MPs highly increased plant functions, while posed negative effects on soil functions. Polystyrene (PS) and biodegradable (Bio) MPs decreased plant functions, while stimulating soil functions. Additionally, low-density polyethylene (LDPE), PE, PS, PVC, Bio, and granular MPs significantly decreased soil microbial functions. These results clearly revealed that MPs alter the equilibrium of the plant-soil-microbial system. More importantly, our results further revealed that MPs tended to increase ecosystem multifunctionality, e.g., LDPE and PVC MPs posed positive effects on ecosystem multifunctionality, PE, PS, and Bio MPs showed neutral effects on ecosystem multifunctionality. Linear regression analysis showed that under low MPs size (<100 µm), ecosystem multifunctionality was gradually reduced with the increased size of MPs. The response of ecosystem multifunctionality showed a concave shape pattern along the gradient of experimental duration which was lower than 70 days. More importantly, there was a threshold (i.e., 5% w/w) for the effects of MPs concentration on ecosystem multifunctionality, i.e., under low concentration (< 5% w/w), ecosystem multifunctionality was gradually increased with the increased concentration of MPs, while ecosystem multifunctionality was gradually decreased under high concentration (i.e., > 5% w/w). These findings emphasize the importance of studying the effects of MPs on plant-soil-microbial systems and help us identify ways to reduce the eco-toxicity of MPs and maintain environmental safety in view of an ecology perspective.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Zhen Cheng
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yi Peng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Guojiang Yang
- Institute of Farmland Water Conservancy and Soil-fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| |
Collapse
|
20
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
21
|
Tariq M, Iqbal B, Khan I, Khan AR, Jho EH, Salam A, Zhou H, Zhao X, Li G, Du D. Microplastic contamination in the agricultural soil-mitigation strategies, heavy metals contamination, and impact on human health: a review. PLANT CELL REPORTS 2024; 43:65. [PMID: 38341396 DOI: 10.1007/s00299-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.
Collapse
Affiliation(s)
- Muhammad Tariq
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Ismail Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huan Zhou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Zhenjiang New District Environmental Monitoring Station Co. Ltd, Zhenjiang, 212132, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
22
|
Ju H, Yang X, Tang D, Osman R, Geissen V. Pesticide bioaccumulation in radish produced from soil contaminated with microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168395. [PMID: 37981159 DOI: 10.1016/j.scitotenv.2023.168395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
The aging of microplastics (MPs) in soils may affect crop bioaccumulation of coexisting contaminants. We examined the bioaccumulation of pesticides (chlorpyrifos (CPF), difenoconazole (DIF) and their mixture) in radish (Raphanus sativus) planted in soils contaminated with MPs (low-density polyethylene or biodegradable MPs). The experiment was conducted with different contamination scenarios taking into account the use of aged MPs and pesticide mixtures. Radish root biomass was negatively affected in the scenarios with aged MPs. CPF bioaccumulation in radishes appears to be enhanced by the presence of MPs, especially aged MPs, and the pesticide mixture. The results show that food safety risks associated with the bioaccumulation of individual pesticides and their mixtures are increased in soils polluted by MPs, particularly MP after aging.
Collapse
Affiliation(s)
- Hui Ju
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands.
| | - Darrell Tang
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Rima Osman
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| |
Collapse
|
23
|
Huang P, Zhang Y, Hussain N, Lan T, Chen G, Tang X, Deng O, Yan C, Li Y, Luo L, Yang W, Gao X. A bibliometric analysis of global research hotspots and progress on microplastics in soil‒plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122890. [PMID: 37944892 DOI: 10.1016/j.envpol.2023.122890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Plastic pollution has become a global and persistent challenge, posing threats to ecosystems and organisms. In recent years, there has been a rapid increase in scientific research focused on understanding microplastics in the soil‒plant system. This surge is primarily driven by the direct impact of microplastics on agricultural productivity and their association with human activities. In this study, we conducted a comprehensive bibliometric analysis to provide an overview of the current research on microplastics in soil‒plant systems. We systematically analysed 192 articles and observed a significant rise in research interests since 2017. Notably, China has emerged as a leading contributor in terms of published papers, closely followed by Germany and the Netherlands. Through co-authorship network analysis, we identified 634 different institutions that participated in publishing papers in this field, with the Chinese Academy of Sciences having the most collaborations. In the co-occurrence keyword network, we identified four clusters focusing on the diversity of microplastics within the agroecosystem, transportation, and quantification of microplastics in soil, analysis of plastic contamination type and impact, and investigation of microplastic phytotoxicity. Furthermore, we identified ten research priorities, categorized into the effects of microplastics in "soil" and "plant". The research hotspots were found to be the effect of microplastics on soil physicochemical properties and the synergistic phytotoxicity of microplastics with other pollutants. Overall, this bibliometric analysis holds significant value, serving as an important reference point and offering valuable suggestions for future researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Pengxinyue Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 211 Huimin Rd., Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaorui Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 211 Huimin Rd., Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| |
Collapse
|
24
|
Zhang Y, Song M, Zhu Y, Li H, Zhang Y, Wang G, Chen X, Zhang W, Wang H, Wang Y, Shao R, Guo J, Yang Q. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168219. [PMID: 37924875 DOI: 10.1016/j.scitotenv.2023.168219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The effect of microplastics (MPs) on plant growth has received increasing attention. However, whether soil texture and MPs size influence the toxicological effects of MPs on plants is unknown. To address this knowledge gap, two soils with different physical structures (lime concretion black and silty loam soils) were selected to explore the potential toxicity of MPs of different particle sizes to maize growth. The results showed that, in both soils, the harm caused by small MPs on maize growth was greater than that caused by large MPs. Low MPs concentrations had no significant effect on maize growth between two soil types; however, when exposed to a concentration of 1 % large MPs, the dry biomass of maize was promoted in lime concretion black soil but inhibited in silty loam soil. All MPs-exposed treatments resulted in a high level of superoxide anions in maize roots, resulting in an increase in the root aerenchyma area and reducing the metabolic activity of maize roots. Metabolomics showed that MPs exposure affected multiple amino acid metabolic pathways, including phenylalanine and tyrosine metabolism, and inhibited lignin biosynthesis in roots. This study provides a theoretical basis for a more comprehensive assessment of the effect of MPs pollution on agricultural production.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Miaomiao Song
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yiming Zhu
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Huan Li
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinglei Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaofeng Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinping Chen
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Wushuai Zhang
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Hao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongchao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China..
| | - Qinghua Yang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
25
|
Ali N, Liu W, Zeb A, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J. Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: Current progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167785. [PMID: 37852500 DOI: 10.1016/j.scitotenv.2023.167785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MPs) are small plastic debris (<5 mm) that result from the fragmentation of plastic due to physical and physiochemical processes. MPs are emerging pollutants that pose a significant threat to the environment and human health, primarily due to their pervasive presence and potential bioaccumulation within the food web. Despite their importance, there is a lack of comprehensive studies on the fate, toxicity, and aging behavior of MPs. Therefore, this review aims to address this gap by providing a cohesive understanding of several key aspects. Firstly, it summarizes the sources and fate of MPs, highlighting their ubiquitous presence and the potential pathways through which they enter ecosystems. Secondly, it evaluates the aging process of MPs and the factors influencing it, including the morphological and physiological changes observed in crops and the release of pollutants from aged MPs, which can have detrimental effects on the environment and human health. Furthermore, the impacts of aging MPs on various processes are discussed, such as the mobilization of other pollutants in the environment. The influence of aged MPs on the soil environment, particularly their effect on heavy metal adsorption, is examined. Finally, the review explores strategies for the prevention technologies and remediation of MPs, highlighting the importance of developing effective approaches to tackle this issue. Overall, this review aims to contribute to our understanding of MPs, their aging process, and their impacts on the environment and human health. It underscores the urgency of addressing the issue of MPs and promoting research and remediation efforts to mitigate their adverse effects.
Collapse
Affiliation(s)
- Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
26
|
Gao M, Bai L, Xiao L, Peng H, Chen Q, Qiu W, Song Z. Micro (nano)plastics and phthalate esters drive endophytic bacteria alteration and inhibit wheat root growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167734. [PMID: 37827310 DOI: 10.1016/j.scitotenv.2023.167734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Endophytes play an important role in plant growth and stress tolerance, but limited information is available on the complex effects of micro (nano)plastics and phthalate esters (PAEs) on endophytes in terrestrial plants. To better elucidate the ecological response of endophytic bacteria on exogenous pollutants, a hydroponic experiment was conducted to examine the combined impact of polystyrene (PS) and PAEs on endophyte community structure, diversity, and wheat growth. The findings revealed that wheat roots were capable of absorbing and accumulating PS nanoparticles (PS-NPs, 0.1 μm), whereas PS microparticles (PS-MPs, 1 and 10 μm) merely adhered to the root surface. The addition of PAEs resulted in a stronger accumulation of fluorescent signal from PS-NPs in the roots. The dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) were identified in wheat roots, and they could be metabolized to form minobutyl phthalate and phthalic acid, and mono-(2-ethylhexyl) phthalate, respectively. Compared to single PAEs, the concentration of PAEs and their metabolites in the roots treated with PS-NPs showed a great increase, while they exhibited a significant decline in the presence of PS-MPs. Principal coordinate analysis and permutational multivariate analysis of variance demonstrated that PS size were the major factor that induced oxidative damage, and altered the endogenous homeostasis of wheat roots. The increase in PS size positively promoted the relative abundance of dominant endophytes. Specifically, Proteobacteria. Proteobacteria were the most important in the symbiosis survival, which had a great impact on the microbial community and diversity. Therefore, PS and PAEs could affect the endophytes directly and indirectly. Structural equation modeling further implied that these endophytic bacteria, along with antioxidant enzymes such as superoxide dismutase which were regulated by non-enzymatic mechanisms, promoted root biomass increase. These results indicated a synergistic resistance mechanism between antioxidant enzymes and endophytic bacteria in response to environmental stress.
Collapse
Affiliation(s)
- Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Linsen Bai
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Ling Xiao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Qiaoting Chen
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
27
|
Li X, Zhang Y, Wang J, Zeng G, Tong X, Ullah S, Liu J, Zhou R, Lian J, Guo X, Tang Z. Revealing the metabolomics and biometrics underlying phytotoxicity mechanisms for polystyrene nanoplastics and dibutyl phthalate in dandelion (Taraxacum officinale). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167071. [PMID: 37714347 DOI: 10.1016/j.scitotenv.2023.167071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Micro/nanoplastics (M/NPs) and phthalates (PAEs) are emerging pollutants. Polystyrene (PS) MPs and dibutyl phthalate (DBP) are typical MPs and PAEs in the environment. However, how dandelion plants respond to the combined contamination of MPs and PAEs remains unclear. In this study, we evaluated the individual and combined effects of PS NPs (10 mg L-1) and DBP (50 mg L-1) on dandelion (Taraxacum officinale) seedlings. The results showed that compared to control and individual-treated plants, coexposure to PS NPs and DBP significantly affected plant growth, induced oxidative stress, and altered enzymatic and nonenzymatic antioxidant levels of dandelion. Similarly, photosynthetic attributes and chlorophyll fluorescence kinetic parameters were significantly affected by coexposure. Scanning electron microscopy (SEM) results showed that PS particles had accumulated in the root cortex of the dandelion. Metabolic analysis of dandelion showed that single and combined exposures caused the plant's metabolic pathways to be profoundly reprogrammed. As a consequence, the synthesis and energy metabolism of carbohydrates, amino acids, and organic acids were affected because galactose metabolism, the citric acid cycle, and alanine, aspartic acid and glutamic acid metabolism pathways were significantly altered. These results provide a new perspective on the phytotoxicity and environmental risk assessment of MPs and PAEs in individual or coexposures.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jianxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guangnian Zeng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, China
| | - Ranran Zhou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
28
|
Chen X, Zhu Y, Chen F, Li Z, Zhang X, Wang G, Ji J, Guan C. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167305. [PMID: 37742959 DOI: 10.1016/j.scitotenv.2023.167305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial environments and laccase was considered as an effective enzyme in PAHs bioremediation. However, laccase-assisted phytoremediation of PAHs-contaminated soil has not been reported. Moreover, the overuse of plastic films in agriculture greatly increased the risk of co-existence of PAHs and microplastics in soil. Microplastics can adsorb hydrophobic organics, thus altering the bioavailability of PAHs and ultimately affecting the removal of PAHs from soil. Therefore, this study aimed to evaluate the efficiency of laccase-assisted maize (Zea mays L.) in the remediation of phenanthrene (PHE)-contaminated soil and investigate the effect of microplastics on this remediation process. The results showed that the combined application of laccase and maize achieved a removal efficiency of 83.47 % for soil PHE, and laccase significantly reduced the accumulation of PHE in maize. However, microplastics significantly inhibited the removal of soil PHE (10.88 %) and reduced the translocation factor of PHE in maize (87.72 %), in comparison with PHE + L treatment. Moreover, microplastics reduced the laccase activity and the relative abundance of some PAHs-degrading bacteria in soil. This study provided an idea for evaluating the feasibility of the laccase-assisted plants in the remediation of PAHs-contaminated soil, paving the way for reducing the risk of secondary pollution in the process of phytoremediation.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
29
|
Surendran D, Varghese GK, Zafiu C. Characterization and source apportionment of microplastics in Indian composts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:5. [PMID: 38044370 DOI: 10.1007/s10661-023-12177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MP), small plastic particles under 5 mm, are pollutants known to carry heavy metals in ecosystems. Composts are a significant source of soil microplastics. This study examined MSW composts from Kochi and Kozhikode in India for microplastic concentrations and heavy metals' accumulation thereon. Microplastics were isolated using zinc chloride density separation, with Fenton's reagent used for organic matter oxidation. Resin types were identified using FTIR analysis that showed the presence of PE, PP, PS, nylon, PET, and allyl alcohol copolymer. In Kozhikode's compost, the average concentration of microplastics was 840 ± 30 items/kg, while Kochi had 1600 ± 111 items/kg, mainly polyethylene films. PE was the most prevalent resin, comprising 58.3% in Kozhikode and 73.37% in Kochi. Heavy metal analysis of MP showed significant concentrations of lead, cadmium, zinc, copper, and manganese adsorbed on the surface of microplastics. The concentrations of heavy metals in the MP before Fenton oxidation ranged from 1.02 to 2.02 times the corresponding concentrations in compost for Kozhikode and 1.23 to 2.85 times for Kochi. Source apportionment studies revealed that 64% of microplastics in Kozhikode and 77% in Kochi originated from single-use plastics. Ecological risk indices, PLI and PHI, showed that composts from both locations fall under hazard level V. The study revealed that compost from unsegregated MSW can act as a significant source of microplastics and heavy metals in the soil environment, with single-use plastics contributing major share of the issue.
Collapse
Affiliation(s)
| | | | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
30
|
Chen X, Zheng X, Fu W, Liu A, Wang W, Wang G, Ji J, Guan C. Microplastics reduced bioavailability and altered toxicity of phenanthrene to maize (Zea mays L.) through modulating rhizosphere microbial community and maize growth. CHEMOSPHERE 2023; 345:140444. [PMID: 37839745 DOI: 10.1016/j.chemosphere.2023.140444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Due to its large specific surface area and great hydrophobicity, microplastics can adsorb polycyclic aromatic hydrocarbons (PAHs), affecting the bioavailability and the toxicity of PAHs to plants. This study aimed to evaluate the effects of D550 and D250 (with diameters of 550 μm and 250 μm) microplastics on phenanthrene (PHE) removal from soil and PHE accumulation in maize (Zea mays L.). Moreover, the effects of microplastics on rhizosphere microbial community of maize grown in PHE-contaminated soil would also be determined. The results showed that D550 and D250 microplastics decreased the removal of PHE from soil by 6.5% and 2.7% and significantly reduced the accumulation of PHE in maize leaves by 64.9% and 88.5%. Interestingly, D550 microplastics promoted the growth of maize and enhanced the activities of soil protease and alkaline phosphatase, while D250 microplastics significantly inhibited the growth of maize and decreased the activities of soil invertase, alkaline phosphatase and catalase, in comparison with PHE treatment. In addition, microplastics changed the rhizosphere soil microbial community and reduced the relative abundance of PAHs degrading bacteria (Pseudomonas, Massilia, Proteobacteria), which might further inhibit the removal of PHE from soil. This study provided a new perspective for evaluating the role of microplastics on the bioavailability of PHE to plants and revealing the combined toxicity of microplastics and PHE to soil microcosm and plant growth.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
31
|
Zantis LJ, Rombach A, Adamczyk S, Velmala SM, Adamczyk B, Vijver MG, Peijnenburg W, Bosker T. Species-dependent responses of crop plants to polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122243. [PMID: 37482341 DOI: 10.1016/j.envpol.2023.122243] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Only recently there has been a strong focus on the impacts of microplastics on terrestrial crop plants. This study aims to examine and compare the effects of microplastics on two monocotyledonous (barley, Hordeum vulgare and wheat, Triticum aestivum), and two dicotyledonous (carrot, Daucus carota and lettuce, Lactuca sativa) plant species through two complimentary experiments. First, we investigated the effects of low, medium, and high (103, 105, 107 particles per mL) concentrations of 500 nm polystyrene microplastics (PS-MPs) on seed germination and early development. We found species-dependent effects on the early development, with microplastics only significantly affecting lettuce and carrot. When acutely exposed during germination, PS-MPs significantly delayed the germination of lettuce by 24%, as well as promoted the shoot growth of carrot by 71% and decreased its biomass by 26%. No effect was recorded on monocot species. Secondly, we performed a chronic (21 d) hydroponic experiment on lettuce and wheat. We observed that PS-MPs significantly reduced the shoot growth of lettuce by up to 35% and increased its biomass by up to 64%, while no record was reported on wheat. In addition, stress level indicators and defence mechanisms were significantly up-regulated in both lettuce and wheat seedlings. Overall, this study shows that PS-MPs affect plant development: impacts were recorded on both germination and growth for dicots, and responses identified by biochemical markers of stress were increased in both lettuce and wheat. This highlights species-dependent effects as the four crops were grown under identical conditions to allow direct comparison. For future research, our study emphasizes the need to focus on crop specific effects, while also working towards knowledge of plastic-induced impacts at environmentally relevant conditions.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands.
| | - Annebelle Rombach
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands.
| | - Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| |
Collapse
|
32
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
33
|
Li Y, Feng H, Xian S, Wang J, Zheng X, Song X. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108065. [PMID: 37797385 DOI: 10.1016/j.plaphy.2023.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 μg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hongyu Feng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Shutong Xian
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Jiawei Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Xuebo Zheng
- Institute of Tobacco Research of CAAS, Qingdao, 266101, China.
| | - Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
34
|
Li X, Ullah S, Chen N, Tong X, Yang N, Liu J, Guo X, Tang Z. Phytotoxicity assessment of dandelion exposed to microplastics using membership function value and integrated biological response index. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121933. [PMID: 37277069 DOI: 10.1016/j.envpol.2023.121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Microplastic (MP) pollution is a critical environmental issue. Dandelions could be used as a biomonitor of environmental pollution. However, the ecotoxicology of MPs in dandelions remains unclear. Therefore, the toxic effects of polyethylene (PE), polystyrene (PS), and polypropylene (PP) at concentrations of 0, 10, 100, and 1000 mg L-1 on the germination and early seedling growth of dandelion were investigated. PS and PP inhibited seed germination and decreased root length and biomass while promoting membrane lipid peroxidation, increasing O2•-, H2O2, SP, and proline contents, and enhancing the activities of SOD, POD, and CAT. Principal component analysis (PCA) and membership function value (MFV) analysis indicated that PS and PP could be more harmful than PE in dandelion, especially at 1000 mg L-1. In addition, according to the integrated biological response (IBRv2) index analysis, O2•-, CAT, and proline were sensitive biomarkers of dandelion contamination by MPs. Here we provide evidence that dandelion has the potential to be a biomonitor to assess the phytotoxicity of MPs pollution, especially PS with high toxicity. Meanwhile, we believe that if dandelion is to be used as a biomonitor for MPs, attention should also be paid to the practical safety of dandelion.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
35
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
36
|
Han Z, Osman R, Liu Y, Wei Z, Wang L, Xu M. Analyzing the impacts of cadmium alone and in co-existence with polypropylene microplastics on wheat growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1240472. [PMID: 37636097 PMCID: PMC10449543 DOI: 10.3389/fpls.2023.1240472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Heavy metals typically coexist with microplastics (MPs) in terrestrial ecosystems. Yet, little is known about how the co-existence of heavy metals and MPs affect crops. Therefore, this study aimed to evaluate the impact of cadmium (Cd; 40 mg/L) alone and its co-existence with polypropylene (PP)-MPs (50 and 100 µm) on seed germination, root and shoot growth, seedling dry weight (DW), and antioxidant enzyme activities of wheat. The study demonstrated that the germination rate of wheat did not vary significantly across treatment groups. Yet, the inhibitory impact on wheat seed germination was strengthened under the co-existence of Cd and PP-MPs, as the effect of a single treatment on seed germination was non-significant. The germination index and mean germination time of wheat seeds were not affected by single or combined toxicity of Cd and PP-MPs. In contrast, Cd and PP-MPs showed synergistic effects on germination energy. Wheat root and shoot length were impeded by Cd alone and in combination with PP-MPs treatments. The DW of wheat seedlings showed significant change across treatment groups until the third day, but on the seventh day, marginal differences were observed. For example, on third day, the DW of the Cd treatment group increased by 6.9% compared to CK, whereas the DW of the 100 µm PP-MPs+Cd treatment group decreased by 8.4% compared to CK. The co-occurrence of Cd and PP-MPs indicated that 50 μm PP-MPs+Cd had an antagonistic impact on wheat seedling growth, whereas 100 μm PP-MPs+Cd had a synergistic impact due to the larger size of PP-MPs. The antioxidant enzyme system of wheat seeds and seedlings increased under single Cd pollution, while the activities of superoxide dismutase, catalase, and peroxidase were decreased under combined pollution. Our study found that Cd adversely affects wheat germination and growth, while the co-existence of Cd and PP-MPs have antagonistic and synergistic effects depending on the size of the PP-MPs.
Collapse
Affiliation(s)
- Zhiwei Han
- Miami College, Henan University, Kaifeng, China
| | - Raheel Osman
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
| | - Yi Liu
- Miami College, Henan University, Kaifeng, China
| | | | - Lin Wang
- Miami College, Henan University, Kaifeng, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
| | - Ming Xu
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai, China
| |
Collapse
|
37
|
Hu J, Chen J, Wang W, Zhu L. Mechanism of growth inhibition mediated by disorder of chlorophyll metabolism in rice (Oryza sativa) under the stress of three polycyclic aromatic hydrocarbons. CHEMOSPHERE 2023; 329:138554. [PMID: 37037159 DOI: 10.1016/j.chemosphere.2023.138554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Photosynthesis mediated by chlorophyll metabolism is the basis for plant growth, and also the important regulatory mechanism of carbon pool in cropland ecosystems. Soil organic pollutants induced growth inhibition in crop plants, herein, we conducted an in-depth investigation on the effects of three representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) on rice (Oryza sativa) growth and photosynthesis. PAHs were absorbed via root uptake and accumulated in leaves, causing the swelling of thylakoids and the increase of osmiophilic granules in chloroplasts. The actual quantum efficiency of PSII was significantly decreased under the stress of PHE, PYR, and BaP by 29.9%, 11.9%, and 24.1% respectively, indicating the inhibition in photon absorption and transfer, which was consistent with the decrease of chlorophyll a (22.3%-32.2% compared to the control) in rice leaves. Twenty-two encoding genes involved in chlorophyll metabolism were determined and the results indicated that the expression of chlorophyll synthetases was downregulated by over 50% whereas the degradation process was promoted. Consequently, the production of carbohydrates and the carbon fixation were inhibited, which revealed by the downregulation of intermediate metabolites in Calvin cycle and the declined carboxylation rate. The disturbed photosynthesis resulted in the decrease of the biomasses of both roots (21.0%-42.7%) and leaves (6.4%-22.1%) under the tested PAH stresses. The findings of this study implied that the photosynthetic inhibition was possibly attributed to the disorder of chlorophyll metabolism, thus providing novel insights into the mechanism of growth inhibition induced by organic pollutants and theoretical basis for the estimation of cropland carbon sequestration potential.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
38
|
Yan S, Zhang S, Xu B, Yan P, Wang J, Wang H, Aurangzeib M. Microplastics change the leaching of nitrogen and potassium in Mollisols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163121. [PMID: 37001667 DOI: 10.1016/j.scitotenv.2023.163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Nowadays, the dynamics of nutrients leaching from the soils and their driving mechanism have been focused on, however, it is still unclear how microplastics (MPs) influence the nutrients' leaching in soils. In this study, five concentrations (w/w, 0.0 %, 0.5 %, 1 %, 2 %, 3 %) and three sizes of MPs of polyethylene (PE) (0.15-0.36 mm, 0.36-0.60 mm and 0.60-1.00 mm) influencing the leaching of NO3--N and water-soluble potassium (WSK) was simulated by a column method in Mollisols, and both the pre-fertilization and post-fertilization were considered. The results showed that, before KNO3 addition, there was a negative power function relationship between the NO3--N concentration and the leaching solution volume/leaching time. The amount and concentration of NO3--N leaching was higher in the early leaching stage. Compared with the CK, PE0.5% significantly reduced the leaching amount of WSK, while increased the leaching amount of NO3--N but not significantly. The leaching amount of WSK decreased with the increasing size of PEMP when the PEMP concentration was the same, while NO3--N was opposite. PE0.60-1.00 increased the leaching amount of NO3--N, while reduced the leaching amount of WSK. After KNO3 addition, compared with CK, PE1% significantly reduced the leaching amount of NO3--N, and PE1% had the lowest leaching amount of WSK. However, when the PEMP concentration in the soil reached a certain threshold (w/w, >1 %), the leaching amount of NO3--N and WSK increased gradually with PEMP increasing. PE0.60-1.00 reduced the leaching amount of NO3--N and WSK most obviously. In general, low concentrations (w/w, <1 %) and large sizes (0.60-1.00 mm) of PEMP promoted NO3--N leaching and inhibited the WSK leaching from the soil before the addition of KNO3, however, they both inhibited the leaching of NO3--N and WSK from the soil after addition of KNO3.
Collapse
Affiliation(s)
- Sihua Yan
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China
| | - Shaoliang Zhang
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China.
| | - Bing Xu
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China
| | - Pengke Yan
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China
| | - Jiuqi Wang
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China
| | - Hao Wang
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China
| | - Muhammad Aurangzeib
- Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, PR China
| |
Collapse
|
39
|
Kim D, Kim H, An YJ. Species sensitivity distributions of micro- and nanoplastics in soil based on particle characteristics. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131229. [PMID: 36958161 DOI: 10.1016/j.jhazmat.2023.131229] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Micro- and nanoplastics are released into the soil through various anthropogenic activities; however, research on ecological risk assessment (ERA) of soil microplastics is limited. In this study, the species sensitivity distributions (SSDs) of representative groups of soil biota were analyzed to determine their sensitivity to microplastic properties. A total of 411 datasets from apical endpoint data within 74 studies were classified and utilized in SSD estimation. The hazardous concentrations for 5% of species for microplastics was 88.18 (40.71-191.00) mg/kg soil. It has been established that small-sized microplastics are more toxic to soil organisms than larger microplastics. Most microplastics were spherical and polystyrene, exhibiting the most adverse effects among all the microplastic types assessed herein. The results suggest that physical characteristics of microplastics are important toxicity determinants in soil ecosystems. Given the potential for adverse environmental effects, further effective management strategies should urgently be employed in these areas. This study provided an integrated perspective of microplastic ecotoxicity in soil. In addition, SSDs were estimated using larger datasets and for more species than in previous studies. This is the first study to consider microplastic properties for estimating SSD.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
40
|
Li Y, Gu P, Zhang W, Sun H, Wang J, Wang L, Li B, Wang L. Effects of biodegradable and non-biodegradable microplastics on bacterial community and PAHs natural attenuation in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131001. [PMID: 36801717 DOI: 10.1016/j.jhazmat.2023.131001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as in situ straw incineration and the widespread use of agricultural film led to the accumulation of polycyclic aromatic hydrocarbons (PAHs) and microplastics (MPs) in agricultural soils. In this study, four biodegradable MPs (BPs), including polylactic acid (PLA), polybutylene succinate (PBS), poly-β-hydroxybutyric acid (PHB) and poly (butylene adipate-co-terephthalate) (PBAT) and non-biodegradable low-density polyethylene (LDPE) were selected as representative MPs. The soil microcosm incubation experiment was conducted to analyze MPs effects on PAHs decay. MPs did not influence PAHs decay significantly on day 15 but showed different effects on day 30. BPs reduced PAHs decay rate from 82.4% to 75.0%- 80.2% with the order of PLA < PHB < PBS < PBAT while LDPE increased it to 87.2%. MPs altered beta diversity and impacted the functions to different extents, interfering in PAHs biodegradation. The abundance of most PAHs-degrading genes was increased by LDPE and decreased by BPs. Meanwhile, PAHs speciation was influenced with bioavailable fraction elevated by LDPE, PLA and PBAT. The facilitating effect of LDPE on 30-d PAHs decay can be attributed to the enhancement of PAHs-degrading genes and PAHs bioavailability, while the inhibitory effects of BPs were mainly due to the response of the soil bacterial community.
Collapse
Affiliation(s)
- Yuting Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Peng Gu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wen Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Leilei Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Bing Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Tang X, Chen M, Li M, Liu H, Tang H, Yang Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161918. [PMID: 36736408 DOI: 10.1016/j.scitotenv.2023.161918] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
42
|
Shang Q, Chi J. Impact of biochar coexistence with polar/nonpolar microplastics on phenanthrene sorption in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130761. [PMID: 36638674 DOI: 10.1016/j.jhazmat.2023.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics and biochar normally coexist in soil. In this study, two microplastics of different polarities (nonpolar polyethylene (PE) and polar polybutylene adipate-co-terephthalate (PBAT)) and two wheat straw biochars produced at 400 (W4) and 700 °C (W7) were selected to investigate the sorption behaviors of phenanthrene in soil where microplastics and biochar coexisted. The results showed that the presence of PE more significantly weakened the adhesion of soil particles onto biochar than the presence of PBAT. Meanwhile, the presence of biochar enhanced the soil particle attachment on the microplastic surface. As a result, the sorption behavior of phenanthrene was significantly different in soil where biochar coexisted with microplastics of different polarities. The Koc values of PE-biochar-soil mixtures at Ce= 0.005 Cs were up to 42 % lower than those of PBAT-biochar-soil mixtures, which is related to lower micropore area of particles isolated from the former. However, at Ce = 0.05 Cs and 0.5 Cs, the Koc values of PE-biochar-soil mixtures were up to 1.4 times higher than those of PBAT-biochar-soil mixtures because of a more significant reduction in biochar surface polarity when it coexisted with nonpolar PE.
Collapse
Affiliation(s)
- Qiongqiong Shang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
43
|
Lu S, Huo Z, Niu T, Zhu W, Wang J, Wu D, He C, Wang Y, Zou L, Sheng L. Molecular mechanisms of toxicity and detoxification in rice (Oryza sativa L.) exposed to polystyrene nanoplastics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107605. [PMID: 37119549 DOI: 10.1016/j.plaphy.2023.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 05/01/2023]
Abstract
Nanoplastics (NPs) are an emerging threat to higher plants in terrestrial ecosystems. However, the molecular of NP-related phytotoxicity remains unclear. In the present study, rice seedlings were exposed to polystyrene (PS, 50 nm) NPs at 0, 50, 100, and 200 mg/L under hydroponic conditions to investigate the induced physiological indices and transcriptional mechanisms. We found that 50, 100, and 200 mg/L PS significantly reduced root (53.05%, 49.61%, and 57.58%, respectively) and shoot (54.63%, 61.56%, and 62.64%, respectively) biomass as compared with the control seedlings. The activities of antioxidant enzymes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), were significantly activated in all PS treatment groups, indicating that PS inhibited plant growth and induced oxidative stress. Transcriptome analyses showed that PS modulated the expression of the genes involved in cell detoxification, active oxygen metabolism, mitogen-activated protein kinase (MAPK), and plant hormone transduction pathways. Our study provides new insights into phytotoxicity by demonstrating the potential underlying toxicity of PS NPs in higher plants.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Zhongqi Huo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Tingting Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Weize Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Yong Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lifang Zou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| |
Collapse
|
44
|
Tourinho PS, Loureiro S, Pavlaki MD, Mocová KA, Ribeiro F. A Systematic Review of Nano- and Microplastic (NMP) Influence on the Bioaccumulation of Environmental Contaminants: Part I-Soil Organisms. TOXICS 2023; 11:154. [PMID: 36851029 PMCID: PMC9958926 DOI: 10.3390/toxics11020154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nano- and microplastics (NMPs) are a group of contaminants that cause concern due to their abundance in the environment, high persistence, and interaction with other contaminants. This review aims to understand the role of NMP in the bioaccumulation of environmental contaminants. For that, a comprehensive literature search was conducted to identify publications that compared the uptake of contaminants in the presence and absence of NMP. In this part I, twenty-eight publications of the terrestrial compartment were analyzed. Two main taxonomic groups were studied, namely, earthworms and terrestrial plants. In earthworms, most studies observed an increase in the bioaccumulation of the contaminants, while in plants, most studies observed a decrease in the bioaccumulation. Changes in bioavailable fractions of contaminants due to NMP presence was the main reason pointed out by the authors for their outcomes. Moreover, biological aspects were also found to be important in defining how NMPs affect bioaccumulation. Dermal damage and changes in contaminant-degrading bacteria in the gut of earthworms caused an increase in bioaccumulation, and root pore blockage was a common reason for the decrease in the bioaccumulation of contaminants in plants. Nevertheless, such effects were mainly observed at high, unrealistic NMP concentrations. Finally, knowledge gaps were identified, and the limitations of this systematic review were presented.
Collapse
Affiliation(s)
- Paula S. Tourinho
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria D. Pavlaki
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Klará Anna Mocová
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Fabianne Ribeiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Biba R, Cvjetko P, Jakopčić M, Komazec B, Tkalec M, Dimitrov N, Begović T, Balen B. Phytotoxic Effects of Polystyrene and Polymethyl Methacrylate Microplastics on Allium cepa Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:747. [PMID: 36840096 PMCID: PMC9959832 DOI: 10.3390/plants12040747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plastic contamination has become one of the most pressing environmental issues due to rapidly increasing production of disposable plastic products, their fragmentation into smaller pieces, and long persistence in the environment, which affects all living organisms, including plants. In this study, Allium cepa roots were exposed to 0.01, 0.1, and 1 g L-1 of commercial polystyrene (PS-MPs) and polymethyl methacrylate microparticles (PMMA-MPs) for 72 h. Dynamic light scattering (DLS) analyses showed high stability of both types of MPs in ultrapure water used for A. cepa treatment. Morphometric analysis revealed no significant change in root length compared to control. Pyrolysis hyphenated to gas chromatography and mass spectrometry (Py-GC-MS) has proven PS-MPs uptake by onion roots in all treatments, while PMMA-MPs were recorded only upon exposure to the highest concentration. Neither MPs induced any (cyto)toxic effect on root growth and PMMA-MPs even had a stimulating effect on root growth. ROS production as well as lipid and protein oxidation were somewhat higher in PS-MP treatments compared to the corresponding concentrations of PMMA-MP, while neither of the applied MPs induced significant damage to the DNA molecule assayed with a Comet test. Significantly elevated activity of H2O2 scavenging enzymes, catalase, and peroxidases was measured after exposure to both types of MPs. Obtained results suggest that onion roots take up PS-MPs more readily in comparison to PMMA-MPs, while both types of MPs induce a successful activation of antioxidant machinery in root cells that prevented the occurrence of toxic effects.
Collapse
Affiliation(s)
- Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mihaela Jakopčić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Bruno Komazec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nino Dimitrov
- Croatian Institute for Public Health, Rockefellerova 7, 10000 Zagreb, Croatia
| | - Tajana Begović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
46
|
Yang J, Song K, Tu C, Li L, Feng Y, Li R, Xu H, Luo Y. Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159774. [PMID: 36334659 DOI: 10.1016/j.scitotenv.2022.159774] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Agricultural plastic-film residues have been considered as one of the important sources of microplastics in the agroecosystem. However, limited researches were conducted on the accumulation of microplastics in long-term film-mulched paddy soil. This study aims to investigate the distribution and the weathering characteristics of filmy microplastics in a mulched paddy field (non-mulch, four years of mulched, and ten years of continuous mulched soil were investigated) in Southwest China. More than 50 % of the microplastics in the mulched soil were 1-3 mm, whereas the largest percentage of the microplastics in the non-mulched soil was <1 mm (55.3 %). Microplastic compositions in this field mainly consist of polyester (PES) and polyethylene (PE) (82.1 %). The abundance of microplastics increases with the film mulching time, which were 76.2 ± 18.4, 118.6 ± 44.8, and 159.6 ± 23.5 items kg-1 in soil with non-mulching, four years of mulching, and ten years of continuous mulching, respectively. The filmy microplastics accumulated annually in the plough layer is estimated at 18.1 million items ha-1. Weathering characteristics of filmy microplastics extracted from paddy soil were characterized using FTIR, SEM-EDS, AFM, and contact angle meter. The vinyl, carbonyl, and hydroxyl indices calculated from FTIR results showed that the degradation degree of microplastics incereased as mulching time rose; compared with commercial PE films, the oxygen-containing functional groups of soil-extracted PE films were increased. This study revealed the status of microplastic pollution in paddy soil with long-term mulching. It provided primary data and a scientific basis for further study on environmental behavior and ecological impacts of microplastics in agricultural soils.
Collapse
Affiliation(s)
- Jie Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifu Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianzhen Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yudong Feng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Northwest Institute of Eco-Environments and Resources, Chinese Academy of Sciences, Lanzhou 730000,China
| | - Hua Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Yu J, Gu W, Chen L, Wu B. Comparison of metabolome profiles in zebrafish (Danio rerio) intestine induced by polystyrene microplastics with different sizes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22760-22771. [PMID: 36306068 DOI: 10.1007/s11356-022-23827-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are widespread in aquatic environments. They could induce intestinal toxicity in the fish. However, research on the metabolic toxicity of polystyrene microplastics (PS-MPs) with different particle sizes to the zebrafish intestine is still limited. Here, metabolomics using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was applied to characterize the metabolic disorders in zebrafish intestine after exposure to 500 μg/L PS-MPs with different sizes (100 nm, 5 μm, and 200 μm) for 21 days. Results showed that the 100 nm PS-MPs group increased glutathione content. A total of 35, 165, and 87 metabolites were significantly altered in zebrafish intestines of 100 nm, 5 μm, and 200 μm groups under positive ion mode, respectively. In comparison, 31, 115, and 45 metabolites were changed in the 100 nm, 5 μm, and 200 μm groups under negative ion mode, respectively. Metabolic pathway analysis indicated that carbohydrate metabolism, amino acid metabolism, and nucleotide metabolism were changed in all three groups. The greatest changes were found in the 5 μm group. Moreover, treatment with micro-sized PS-MP groups specifically changed lipid metabolism, which might be related to pathogenic bacteria (Streptococcus and Moraxella). In the 100 nm PS-MP group, S-adenosyl-L-methionine (SAM) was found to be markedly related to the intestinal microbiota. SAM level was significantly increased, which might account for the elevated glutathione content. To sum up, the mechanisms of nano-sized MPs (oxidative stress) and micro-sized MPs (lipid metabolism disorder) were distinct. This study provides novel insight into the toxicity mechanism of MPs in the zebrafish intestine.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
48
|
Gan Q, Cui J, Jin B. Environmental microplastics: Classification, sources, fates, and effects on plants. CHEMOSPHERE 2023; 313:137559. [PMID: 36528162 DOI: 10.1016/j.chemosphere.2022.137559] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution has become a global concern due to the generation of extensive plastic waste and products (370 million metric tons in 2020) that are difficult to biodegrade. Therefore, MPs have attracted a great deal of research attention, and many new findings regarding MPs (over 9000 papers published in the last 3 years) have been reported. MPs generally exert adverse effects on plants. As MPs accumulate in agricultural ecosystems, many studies have sought to understand the sources and fates of MPs and their effects on various plants. However, there have been few reviews of the properties of MPs, their effects on plants, and their interactions with other factors (e.g., drought, heat, ultraviolet light, plant hormones, heavy metals, and other pollutants) remain poorly understood. In this review, we performed scientometrics analyses of research papers (January 1, 2019, to September 30, 2022) in this field. We focused on the recent progress in the classification of MPs and their sources, circulation, and deposition in agricultural ecosystems. We review MP uptake and transport in plants, as well as factors (size, type, and environmental factors) that affect MP uptake, the positive and negative effects of MPs on plants, and the mechanisms of MP impacts on plants. We discuss current issues and future perspectives concerning research into plant interactions with MPs, along with some promising methods to manage the MP issue.
Collapse
Affiliation(s)
- Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
49
|
Tian L, Ma LY, Chen X, Ge J, Ma Y, Ji R, Yu X. Insights into the accumulation, distribution and toxicity of pyrene associated with microplastics in rice (Oryza sativa L.) seedlings. CHEMOSPHERE 2023; 311:136988. [PMID: 36306968 DOI: 10.1016/j.chemosphere.2022.136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic and polycyclic aromatic hydrocarbons (PAHs) can be introduced into agroecosystems through various agricultural activities and may threaten food safety and human health. However, little research has focused on the behavior of microplastics-associated PAHs and their toxicity effects in agroecosystems, especially in crops. In the present study, we investigated the accumulation, distribution and toxicity of pyrene associated with polyethylene (PE) microplastics in rice (Oryza sativa L.). With quantitative analysis using 14C isotope labelling, the total accumulation efficiency of 14C-pyrene in rice seedlings was 22.4 ± 1.2% and 14.5 ± 0.3% when exposed to freely dissolved pyrene and PE-associated pyrene, respectively. The translocation of 14C-pyrene was significantly decreased by microplastics adsorption even when the amount of pyrene in the rice roots had no significant difference. Subcellular distribution of 14C-pyrene in rice suggested that PE microplastics-associated pyrene located more on cell walls than free dissolved pyrene. Furthermore, results showed free pyrene, but not PE-associated pyrene, significantly decreased the length and biomass of rice roots as well as increased the activities of antioxidant enzymes (superoxide dismutase and catalase). It indicated that the association with microplastics alleviated the phytotoxicity of pyrene in rice seedlings. These findings shed new light on the environmental behavior and effects of PAHs associated with microplastics in crops and will be helpful to its comprehensive risks assessment.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Li Ya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Xiaolong Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Yini Ma
- College of Ecology and Environment, Hainan University, Renmin Avenue 58, 570028, Haikou, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023, Nanjing, China
| | - Xiangyang Yu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China.
| |
Collapse
|
50
|
Yan G, Sun Y, Yang L, Zhang Y, Zhang W. Polystyrene microplastics protect lettuce ( Lactuca sativa) from the hazardous effects of Cu(OH) 2 nanopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:1087754. [PMID: 36570908 PMCID: PMC9772688 DOI: 10.3389/fpls.2022.1087754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Copper-based nanopesticides are released into the environment during foliar spray application, and they could, on their own or in combination with microplastics (MPs), pose threats to environmental safety and human health. In this study, Cu(OH)2 nanowires greatly decreased the vigor of lettuce seeds (p< 0.01) and the root length of lettuce seedlings (p< 0.01) and significantly altered the lettuce antioxidant defence system and MDA content (p< 0.05). Released Cu2+ played a critical role in the toxicity mechanism of Cu(OH)2 nanowires in lettuce seedlings, as evidenced by the substantial accumulation of Cu in the seedling roots (p< 0.01) rather than in the leaves. Polystyrene (PS) MPs (1 mg/L) stimulated lettuce seedling growth, as shown by the (highly) significant increase in root and leaf length and in the seed vigor index (p< 0.01 or 0.05). Notably, PS MPs (1 mg/L) neutralized the hazardous effects of 1 mg/L Cu(OH)2 nanowire treatment on lettuce growth, as reflected by the vitality and root length of the seedlings returning to normal levels. The PS MPs (1 mg/L) absorbed on middle root surfaces and strongly hindered Cu accumulation in lettuce roots, which was the predominant mechanism by which PS MPs suppressed the hazardous effects of the Cu(OH)2 nanowires. This study strengthens the understanding of the toxicity and toxicity mechanisms of Cu(OH)2 nanowires with or without PS MPs in the environment.
Collapse
Affiliation(s)
- Guanjie Yan
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - YongHao Sun
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Liting Yang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Weicheng Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| |
Collapse
|