1
|
de Sousa Pinto M, Fontoura LGO, da Rosa Borges I, Vieira de Melo Bisneto A, Rosa de Oliveira G, Carneiro LC, Chen Chen L, Vieira de Moraes Filho A. Evaluation of infliximab-induced genotoxicity and possible action on BCL-2 and P53 genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:752-761. [PMID: 38922576 DOI: 10.1080/15287394.2024.2368619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Although the last pandemic created an urgency for development of vaccines, there was a continuous and concerted effort to search for therapeutic medications among existing drugs with different indications. One of the medications of interest that underwent this change was infliximab (IFM). This drug is used as an anti-inflammatory, predominantly in patients with Crohn 's disease, colitis ulcerative, and rheumatoid arthritis. In addition to these patients, individuals infected with Coronavirus Disease (COVID-19) were administered this chimeric monoclonal antibody (IMF) to act as an immunomodulator for patients in the absence of comprehensive research. Consequently, the present study aimed to examine the genotoxic effects attributed to IFM treatment employing different assays in vivo using mouse Mus musculus. Therefore, IFM was found to induce genotoxic effects as evidenced by the comet assay but did not demonstrate genotoxic potential utilizing mouse bone marrow MN test. The results of evaluating the expression of the P53 and BCL-2 genes using RT-qPCR showed stimulation of expression of these genes at 24 hr followed by a decline at 48 hr. Although the comet assay provided positive results, it is noteworthy that based upon negative findings in the micronucleus test, the data did not demonstrate significant changes in the genetic material that might affect the therapeutic use of IFM. The stimulation of expression of P53 and BCL-2 genes at 24 hr followed by a decline at 48 hr suggest a transient, if any, effect on genetic material. However, there is still a need for more research to more comprehensively understand the genotoxic profile of this medication.
Collapse
Affiliation(s)
- Murillo de Sousa Pinto
- Faculty of Pharmacy, Graduate Program in Health Assistance and Evaluation, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences, Alfredo Nasser University Center, Goiânia, Goiás, Brazil
| | | | | | - Abel Vieira de Melo Bisneto
- Institute of Biological Sciences, Department of Genetics, Laboratory of Radiobiology and Mutagenesis, Federal University of Goiás, Goiânia, Brazil
| | | | - Lílian Carla Carneiro
- Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lee Chen Chen
- Institute of Biological Sciences, Department of Genetics, Laboratory of Radiobiology and Mutagenesis, Federal University of Goiás, Goiânia, Brazil
| | - Aroldo Vieira de Moraes Filho
- Faculty of Pharmacy, Graduate Program in Health Assistance and Evaluation, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences, Alfredo Nasser University Center, Goiânia, Goiás, Brazil
| |
Collapse
|
2
|
Tarafdar A, Xie J, Gowen A, O'Higgins AC, Xu JL. Advanced optical photothermal infrared spectroscopy for comprehensive characterization of microplastics from intravenous fluid delivery systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172648. [PMID: 38649036 DOI: 10.1016/j.scitotenv.2024.172648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Growing attention is being directed towards exploring the potential harmful effects of microplastic (MP) particles on human health. Previous reports on human exposure to MPs have primarily focused on inhalation, ingestion, transdermal routes, and, potentially, transplacental transfer. The intravenous transfer of MP particles in routine healthcare settings has received limited exploration in existing literature. Standard hospital IV system set up with 0.9 % NaCl in a laminar flow hood with MP contamination precautions. Various volumes of 0.9 % NaCl passed through the system, some with a volumetric pump. Fluid filtered with Anodisc filters washed with isopropyl alcohol. The IV cannula was immersed in Mili-Q water for 72 h to simulate vein conditions. Subsequently, the water was filtered and washed. Optical photothermal infrared (O-PTIR) microspectroscopy is used to examine filters for MP particles. All filters examined from the IV infusion system contained MP particles, including MPs from the polymer materials used in the manufacture of the IV delivery systems (polydimethylsiloxane, polypropylene, polystyrene, and polyvinyl chloride) and MP particles arising from plastic resin additives (epoxy resin, polyamide resin, and polysiloxane-containing MPs). The geometric mean from the extrapolated result data indicated that approximately 0.90 MP particles per mL of 0.9 % NaCl solution can be administered through a conventional IV infusion system in the absence of a volumetric pump. However, with the implementation of a pump, this value may increase to 1.57 particles per mL. Notably, over 72 h, a single cannula was found to release approximately 558 MP particles including polydimethylsiloxane, polysiloxane-containing MPs, polyamide resin, and epoxy resin. Routine IV infusion systems release microplastics. MP particles are also released around IV cannulas, suggesting transfer into the circulatory system during standard IV procedures.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amy C O'Higgins
- UCD Centre for Human Reproduction, The Coombe Hospital, Cork Street, Dublin 8, Ireland.
| | - Jun-Li Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Johnson MTJ, Arif I, Marchetti F, Munshi-South J, Ness RW, Szulkin M, Verrelli BC, Yauk CL, Anstett DN, Booth W, Caizergues AE, Carlen EJ, Dant A, González J, Lagos CG, Oman M, Phifer-Rixey M, Rennison DJ, Rosenberg MS, Winchell KM. Effects of urban-induced mutations on ecology, evolution and health. Nat Ecol Evol 2024; 8:1074-1086. [PMID: 38641700 DOI: 10.1038/s41559-024-02401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.
Collapse
Affiliation(s)
- Marc T J Johnson
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Irtaqa Arif
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jason Munshi-South
- Department of Biology and Louis Calder Center, Fordham University, Armonk, NY, USA
| | - Rob W Ness
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Marta Szulkin
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel N Anstett
- Department of Plant Biology, Department of Entomology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Aude E Caizergues
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elizabeth J Carlen
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony Dant
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - César González Lagos
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Madeleine Oman
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Diana J Rennison
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael S Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
4
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
5
|
Kauts S, Mishra Y, Singh MP. Impact of Polyethylene Terephthalate Microplastics on Drosophila melanogaster Biological Profiles and Heat Shock Protein Levels. BIOLOGY 2024; 13:293. [PMID: 38785774 PMCID: PMC11118830 DOI: 10.3390/biology13050293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Microplastics and nanoplastics are abundant in the environment. Further research is necessary to examine the consequences of microplastic contamination on living species, given its widespread presence. In our research, we determined the toxic effects of PET microplastics on Drosophila melanogaster at the cellular and genetic levels. Our study revealed severe cytotoxicity in the midgut of larvae and the induction of oxidative stress after 24 and 48 h of treatment, as indicated by the total protein, Cu-Zn SOD, CAT, and MDA contents. For the first time, cell damage in the reproductive parts of the ovaries of female flies, as well as in the accessory glands and testes of male flies, has been observed. Furthermore, a decline in reproductive health was noted, resulting in decreased fertility among the flies. By analyzing stress-related genes such as hsp83, hsp70, hsp60, and hsp26, we detected elevated expression of hsp83 and hsp70. Our study identified hsp83 as a specific biomarker for detecting early redox changes in cells caused by PET microplastics in all the treated groups, helping to elucidate the primary defense mechanism against PET microplastic toxicity. This study offers foundational insights into the emerging environmental threats posed by microplastics, revealing discernible alterations at the genetic level.
Collapse
Affiliation(s)
- Simran Kauts
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 14411, India; (S.K.); (Y.M.)
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 14411, India; (S.K.); (Y.M.)
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
- Centre of Genomics and Bioinformatics (CGB), Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
6
|
Alaraby M, Abass D, Farre M, Hernández A, Marcos R. Are bioplastics safe? Hazardous effects of polylactic acid (PLA) nanoplastics in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170592. [PMID: 38354814 DOI: 10.1016/j.scitotenv.2024.170592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The expanded uses of bioplastics require understanding the potential health risks associated with their exposure. To address this issue, Drosophila melanogaster as a versatile terrestrial in vivo model was employed, and polylactic acid nanoplastics (PLA-NPLs), as a proxy for bioplastics, were tested as a material model. Effects were determined in larvae exposed for 4 days to different concentrations (25, 100, and 400 μg/mL) of 463.9 ± 129.4 nm PLA-NPLs. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) approaches permitted the detection of PLA-NPLs in the midgut lumen of Drosophila larvae, interacting with symbiotic bacteria. Enzymatic vacuoles were observed as carriers, collecting PLA-NPLs and enabling the crossing of the peritrophic membrane, finally internalizing into enterocytes. Although no toxic effects were observed in egg-to-adult survival, cell uptake of PLA-NPLs causes cytological disturbances and the formation of large vacuoles. The translocation across the intestinal barrier was demonstrated by their presence in the hemolymph. PLA-NPL exposure triggered intestinal damage, oxidative stress, DNA damage, and inflammation responses, as evaluated via a wide set of marker genes. Collectively, these structural and molecular interferences caused by PLA-NPLs generated high levels of oxidative stress and DNA damage in the hemocytes of Drosophila larvae. The observed effects point out the need for further studies aiming to deepen the health risks of bioplastics before adopting their uses as a safe plastic alternative.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt.
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt
| | - Marinella Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
7
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
8
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
9
|
Ang L, Hernández-Rodríguez E, Cyriaque V, Yin X. COVID-19's environmental impacts: Challenges and implications for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165581. [PMID: 37482347 DOI: 10.1016/j.scitotenv.2023.165581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Strict measures have curbed the spread of COVID-19, but waste generation and movement limitations have had an unintended impact on the environment over the past 3 years (2020-2022). Many studies have summarized the observed and potential environmental impacts associated with COVID-19, however, only a few have quantified and compared the effects of these unintended environmental impacts; moreover, whether COVID-19 policy stringency had the same effects on the main environmental topic (i.e., CO2 emissions) across the 3 years remains unclear. To answer these questions, we conducted a systematic review of the recent literature and analyzed the main findings. We found that the positive environmental effects of COVID-19 have received more attention than the negative ones (50.6 % versus 35.7 %), especially in emissions reduction (34 % of total literature). Medical waste (14.5 %) received the highest attention among the negative impacts. Although global emission reduction, especially in terms of CO2, has received significant attention, the positive impacts were temporary and only detected in 2020. Strict COVID-19 policies had a more profound and significant effect on CO2 emissions in the aviation sector than in the power and industry sectors. For example, compared with 2019, international aviation related CO2 emissions dropped by 59 %, 49 %, and 25 % in 2020, 2021, and 2022, respectively, while industry related ones dropped by only 3.16 % in 2020. According to our developed evaluation matrix, medical wastes and their associated effects, including the persistent pollution caused by antibiotic resistance genes, heavy metals and microplastics, are the main challenges post the pandemic, especially in China and India, which may counteract the temporary environmental benefits of COVID-19. Overall, the presented results demonstrate methods to quantify the environmental effects of COVID-19 and provide directions for policymakers to develop measures to address the associated environmental issues in the post-COVID-19 world.
Collapse
Affiliation(s)
- Leeping Ang
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| | - Enrique Hernández-Rodríguez
- Institut de Recherche sur les Forets, Université du Quebec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Valentine Cyriaque
- Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Québec G1K 9A9, Canada
| | - Xiangbo Yin
- Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Québec G1K 9A9, Canada.
| |
Collapse
|
10
|
De Marco G, Eliso MC, Oliveri Conti G, Galati M, Billè B, Maisano M, Ferrante M, Cappello T. Short-term exposure to polystyrene microplastics hampers the cellular function of gills in the Mediterranean mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106736. [PMID: 37913686 DOI: 10.1016/j.aquatox.2023.106736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 μm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
11
|
Silva MG, Oliveira MM, Peixoto F. Assessing micro and nanoplastics toxicity using rodent models: Investigating potential mitochondrial implications. Toxicology 2023; 499:153656. [PMID: 37879514 DOI: 10.1016/j.tox.2023.153656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Mitochondria's role as a central hub in cellular metabolism and signaling cascades is well established in the scientific community, being a classic marker of organisms' response to toxicant exposure. Nonetheless, little is known concerning the effects of emerging contaminants, such as microplastics, on mitochondrial metabolism. Micro- and nanoplastics present one of the major problems faced by modern societies. What was once an environmental problem is now recognized as an one-health issue, but little is known concerning microplastic impact on human health. Indeed, only recently, human exposure to microplastics was acknowledged by the World Health Organization, resulting in a growing interest in this research topic. Nonetheless, the mechanisms behind micro- and nanoplastics toxicity are yet to be understood. Animal models, nowadays, are the most appropriate approach to uncovering this knowledge gap. In the present review article, we explore investigations from the last two years using rodent models and reach to find the molecular mechanism behind micro- and nanoplastics toxicity and if mitochondria can act as a target. Although no research article has addressed the effects of mitochondria yet, reports have highlighted molecular and biochemical alterations that could be linked to mitochondrial function. Furthermore, certain studies described the effects of disruptions in mitochondrial metabolism, such as oxidative stress. Micro- and nanoplastics may, directly and indirectly, affect this vital organelle. Investigations concerning this topic should be encouraged once they can bring us closer to understanding the mechanisms underlying these particles' harmful effects on human health.
Collapse
Affiliation(s)
- Mónica G Silva
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Maria Manuel Oliveira
- Chemistry Research Centre (CQ-VR), Chemistry Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Chemistry Research Centre (CQ-VR), Biology and Environment Department University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Beauchamp JD, Mayhew CA. Revisiting the rationale of mandatory masking. J Breath Res 2023; 17:042001. [PMID: 37548323 DOI: 10.1088/1752-7163/acdf12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
In this perspective, we review the evidence for the efficacy of face masks to reduce the transmission of respiratory viruses, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and consider the value of mandating universal mask wearing against the widespread negative impacts that have been associated with such measures. Before the SARS-CoV-2 pandemic, it was considered that there was little to no benefit in healthy people wearing masks as prophylaxis against becoming infected or as unwitting vectors of viral transmission. This accepted policy was hastily reversed early on in the pandemic, when districts and countries throughout the world imposed stringent masking mandates. Now, more than three years since the start of the pandemic, the amassed studies that have investigated the use of masks to reduce transmission of SARS-CoV-2 (or other pathogens) have led to conclusions that are largely inconsistent and contradictory. There is no statistically significant or unambiguous scientific evidence to justify mandatory masking for general, healthy populations with the intention of lessening the viral spread. Even if mask wearing could potentially reduce the transmission of SARS-CoV-2 in individual cases, this needs to be balanced against the physical, psychological and social harms associated with forced mask wearing, not to mention the negative impact of innumerable disposed masks entering our fragile environment. Given the lack of unequivocal scientific proof that masks have any effect on reducing transmission, together with the evident harms to people and the environment through the use of masks, it is our opinion that the mandatory use of face masks in the general population is unjustifiable and must be abandoned in future pandemic countermeasures policies.
Collapse
Affiliation(s)
- Jonathan D Beauchamp
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
| | - Chris A Mayhew
- Institute for Breath Research, Leopold-Franzens-Universität, Innsbruck, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Bilal M, Taj M, Ul Hassan H, Yaqub A, Shah MIA, Sohail M, Rafiq N, Atique U, Abbas M, Sultana S, Abdali U, Arai T. First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan. TOXICS 2023; 11:612. [PMID: 37505577 PMCID: PMC10383900 DOI: 10.3390/toxics11070612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) are an emerging environmental health concern due to their widespread occurrence in food sources such as fish, meat, chicken, honey, sugar, salt, tea and drinking water, thereby posing possible risks to human health. This study aimed to observe the existence of MPs in the crop and gizzard of the farm chicken, a significant food source in Pakistan. Twenty-four chicken samples were taken from eight poultry farms across Punjab, Pakistan. A total of 1227 MP particles were found from 24 samples (crop and gizzards) originating from the 8 poultry farms. In all, 429 MP particles were found in 24 chicken crops, with a mean of 17.8 ± 12.1 MPs/crop. In contrast, 798 MP particles were found in 24 chicken gizzards, with a mean of 33.25 ± 17.8 MPs/gizzard. Comparatively larger particles, ranging between 300-500 µm, were more abundant (63%) than other considered sizes (300-150 µm [21%] and 150-50 µm [16%]). Additionally, fragments were the dominant type of shape in both sample types (crop [64%] and gizzard [53%]). The predominant colours of particles extracted from gizzards and crops were yellow (32%) and red (32%), respectively. Chemical characterisation of these particles detected four types of polymers: polyvinyl chloride (PVC) at 51.2%, followed by low-density polyethylene (LDPE) at 30.7%, polystyrene (PS) at 13.6% and polypropylene homopolymer (PPH) at 4.5%. In conclusion, we provide evidence for MPs in the gizzards and crops of farmed chickens which may originate from contaminated poultry feed. Only a few studies have been reported globally to assess MPs ingestion in chickens. The current study is the first report from Pakistan. It could be a valuable addition to support MPs literature to establish a relationship between MPs contamination and intake through the food chain.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan
| | - Madiha Taj
- Department of Environmental Sciences, Government Degree College Gulabad, Adenzai 24461, Pakistan
| | - Habib Ul Hassan
- Department of Zoology (MRCC), University of Karachi, Karachi 75270, Pakistan
- Fisheries Development Board, Ministry of National Food Security and Research, Government of Pakistan, Islamabad 44000, Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan
| | | | - Muhammad Sohail
- Department of Biology, Government Postgraduate College Sahiwal, Sahiwal 40210, Pakistan
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Usman Atique
- Department of Bioscience and Biotechnology, College of Biological Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mohammad Abbas
- Department of Zoology, Quaid-i- Azam University, Islamabad, Islamabad 44000, Pakistan
| | - Saira Sultana
- Dr. A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi 75270, Pakistan
| | - Umaiya Abdali
- Dr. A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi 75270, Pakistan
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Gadong BE 1410, Brunei
| |
Collapse
|
14
|
Kreutz J, Heitmann J, Schäfer AC, Aldudak S, Schieffer B, Schieffer E. Environmental factors and their impact on the COVID-19 pandemic. Herz 2023:10.1007/s00059-023-05178-2. [PMID: 37097475 PMCID: PMC10127158 DOI: 10.1007/s00059-023-05178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/26/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in numerous cases of illness and death worldwide. Research has shown that there are associations between transmission, as well as the severity of SARS-CoV‑2 (severe acute respiratory syndrome coronavirus 2) infections, and various environmental factors. For example, air pollution with particulate matter is thought to play a crucial role, and both climatic and geographical aspects must be considered. Furthermore, environmental conditions such as industry and urban lifestyle have a significant impact on air quality and thus on health aspects of the population. In this regard, other factors such as chemicals, microplastics, and diet also critically impact health, including respiratory and cardiovascular diseases. Overall, the COVID-19 pandemic has highlighted how closely health and the environment are linked. This review discusses the impact of environmental factors on the COVID-19 pandemic.
Collapse
Affiliation(s)
- Julian Kreutz
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany.
| | - Juliane Heitmann
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Ann-Christin Schäfer
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| |
Collapse
|
15
|
Periyasamy AP. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. TOXICS 2023; 11:toxics11050406. [PMID: 37235219 DOI: 10.3390/toxics11050406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
The growing worldwide population is directly responsible for the increased production and consumption of textile products. One of the key reasons for the generation of microfibers is the use of textiles and garment materials, which is expected to increase. The textile industry is responsible for the invisible pollution that is created by textile microfibers, which have been detected in marine sediments and organisms. The present review paper demonstrates that the microfibers discharged from functionalized textiles exhibit non-biodegradable characteristics and that a considerable proportion of them possess toxic properties. This is primarily attributed to the impact of textiles' material functionalization on their biodegradability. The potential for these microfibers, which are released from textiles that contain a variety of dyes, toxic chemicals, and nanomaterials, to pose a variety of health risks to both humans and other living organisms is discussed in this paper. In addition, this paper covers a wide variety of preventative and minimizing measures for reduction, which are discussed in terms of several phases ranging from sustainable production through the consumer, end of life, domestic washing, and wastewater treatment phases.
Collapse
Affiliation(s)
- Aravin Prince Periyasamy
- Textile and Nonwoven Materials, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
16
|
Rai PK, Sonne C, Song H, Kim KH. Plastic wastes in the time of COVID-19: Their environmental hazards and implications for sustainable energy resilience and circular bio-economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159880. [PMID: 36328266 PMCID: PMC9618453 DOI: 10.1016/j.scitotenv.2022.159880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/06/2023]
Abstract
The global scope of pollution from plastic waste is a well-known phenomenon associated with trade, mass consumption, and disposal of plastic products (e.g., personal protective equipment (PPE), viral test kits, and vacuum-packaged food). Recently, the scale of the problem has been exacerbated by increases in indoor livelihood activities during lockdowns imposed in response to the coronavirus disease 2019 (COVID-19) pandemic. The present study describes the effects of increased plastic waste on environmental footprint and human health. Further, the technological/regulatory options and life cycle assessment (LCA) approach for sustainable plastic waste management are critically dealt in terms of their implications on energy resilience and circular economy. The abrupt increase in health-care waste during pandemic has been worsening environmental quality to undermine the sustainability in general. In addition, weathered plastic particles from PPE along with microplastics (MPs) and nanoplastics (NPs) can all adsorb chemical and microbial contaminants to pose a risk to ecosystems, biota, occupational safety, and human health. PPE-derived plastic pollution during the pandemic also jeopardizes sustainable development goals, energy resilience, and climate control measures. However, it is revealed that the pandemic can be regarded as an opportunity for explicit LCA to better address the problems associated with environmental footprints of plastic waste and to focus on sustainable management technologies such as circular bio-economies, biorefineries, and thermal gasification. Future researches in the energy-efficient clean technologies and circular bio-economies (or biorefineries) in concert with a "nexus" framework are expected to help reduce plastic waste into desirable directions.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - C Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - H Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
17
|
Xuan L, Xiao L, Huang R. The geno-toxicological impacts of microplastic (MP) exposure on health: mechanistic pathways and research trends from a Chinese perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:26-36. [PMID: 36337004 DOI: 10.1039/d2em00301e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to their large-scale manufacture and widespread application, global concern regarding microplastics (MPs) has been increasing rapidly over the past decade, in particular their potential genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to accumulation of reactive oxygen species (ROS), DNA damage, cell death, inflammation or genetic regulation which in turn can have consequences for health, such as the induction of carcinogenesis. In this review, we presented a comprehensive landscape of the effects of MPs on genotoxicity including the molecular mechanisms. Followed by the MP research trend analysis from a global viewpoint including the comparative research between China and USA and point out that scientists should continue to substantially contribute to the field of MPs through more extensive academic investigation, global cooperation, and the development of novel control methods. Challenges are also discussed. Overall, this review provides insights into the genotoxic effects of MPs on human health and related research trends in this field.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
18
|
Angnunavuri PN, Attiogbe F, Mensah B. Particulate plastics in drinking water and potential human health effects: Current knowledge for management of freshwater plastic materials in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120714. [PMID: 36423889 DOI: 10.1016/j.envpol.2022.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Plastic materials have contributed to the release of environmentally relevant particulate plastics which can be found almost everywhere and may be present in drinking water. Human exposure to these materials is diverse and our understanding of their internalization in the human body is incipient. This review discusses the state of knowledge of particulate plastics exposure in drinking water and the potential risks of adverse health in the human body. Particulate plastics have problematized water systems worldwide, and about 4,000,000 fine plastics may be ingested from drinking water annually by an individual. Testing methods for these materials in environmental media are presently inconsistent and standard protocols do not exist. Their potential ecotoxicological consequences are recognised to be linked to their physicochemical diversity, biological transpositions, and cytological tolerance in living organisms. It is observed that toxicological endpoints are varied and lack properly defined modes of action. In particular, fine particulate plastics have been observed to translocate into body tissues and cells where they are capable of provoking endocrine disruption, genetic mutations, and cancer responses. We propose a reclassification of particulate plastics to cater for their biological deposition and attributable risks of adverse health. Environmental management of particulate plastics in many developing countries is weak and their potential releases into drinking water have received limited research. Given that large populations are exposed to fresh surface water and plastic packaged drinking water worldwide, and that the risk assessment pathways are unvalidated at the moment, we argue for developing countries to increase their capacity for the environmental monitoring and circular management of plastic materials. Large-scale epidemiological cohort studies and surrogate assessment pathways are also recommended to provide a better understanding of the hazard characterization of particulate plastics exposure.
Collapse
Affiliation(s)
- Prosper Naah Angnunavuri
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana.
| | - Francis Attiogbe
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Bismark Mensah
- School of Engineering, Department of Materials Engineering, University of Ghana, Legon, Ghana
| |
Collapse
|
19
|
Li H, Yang Z, Jiang F, Li L, Li Y, Zhang M, Qi Z, Ma R, Zhang Y, Fang J, Chen X, Geng Y, Cao Z, Pan G, Yan L, Sun W. Detection of microplastics in domestic and fetal pigs' lung tissue in natural environment: A preliminary study. ENVIRONMENTAL RESEARCH 2023; 216:114623. [PMID: 36273596 DOI: 10.1016/j.envres.2022.114623] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment. However, it is unclear whether MPs are present in mammalian lungs through inhalation, and if so, could be possibly found in fetal tissues. In this study, we aim to determine the presence and characteristics of particles in domestic and fetal pig lung tissue in the natural environment. Specimens from the lungs of domestic pigs (n = 10) and fetal pigs that already died in matrix during vaginal birth from the non-contaminated area (n = 10) were obtained from farmers' nearby sludge treatment plant. These specimens were compressed between two glass microscope slides, which were examined under polarized light microscopy. In addition, Agilent 8700 LDIR Chemical imaging system (LDIR) was used to determine the quantitative and qualitative characteristics of MPs. According to the polarized light microscope survey of domestic pig lungs, we observed an average of 12 particles/g, which was more than the 6 particles/g observed in fetal pig lungs, which ranged in size from 115.14 μm to 1370.43 μm. All the observed MP particles were fiber in shape. LDIR indicated an average of 180 particles/g of domestic pig lungs, ranging in size from 20.34 μm to 916.36 μm, which was twice as many MPs observed in fetal pig lungs. Furthermore, the compositions of MPs were different between them. LDIR indicated that polyamide (PA) was the most common polymer identified in domestic pig lungs (46.11%), while polycarbonate (PC) was the most common polymer in fetal pig lungs (32.99%). These findings confirmed the presence of MPs in the lung tissue of both domestic and fetal pigs in the natural environment, but the main characteristics differed. This fact indicated the increasing risk of MPs to human respiratory tract is increasing. Further research should be conducted to entirely estimate the specific exposure level on humans and offspring.
Collapse
Affiliation(s)
- Han Li
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Zuosen Yang
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Feng Jiang
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Liang Li
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yansheng Li
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Minmin Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhenzhen Qi
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Ruixue Ma
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yuanyuan Zhang
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Jing Fang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xi Chen
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Yihang Geng
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhongbo Cao
- Institute of Preventive Medicine, China Medical University, 110122, China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, No. 242 Shayang Road, Heping District, Shenyang, 110005, China
| | - Guowei Pan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Lingjun Yan
- Institute of Preventive Medicine, China Medical University, 110122, China
| | - Wei Sun
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, 110122, China
| |
Collapse
|
20
|
Burgos-Aceves MA, Faggio C, Betancourt-Lozano M, González-Mille DJ, Ilizaliturri-Hernández CA. Ecotoxicological perspectives of microplastic pollution in amphibians. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:405-421. [PMID: 36351281 DOI: 10.1080/10937404.2022.2140372] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are contaminants widely distributed in the environment and biota. Previously, most studies focused on identifying and characterizing microplastics in the marine environment, while their impact on freshwater ecosystems remains to be determined. This review summarizes recent findings regarding MPs physiological, immunological, and genetic effects on amphibians based upon the biological relevance of this species as indicators of freshwater pollution. Data demonstrated that MPs contamination may potentially alter various physiological processes in aquatic animals, mainly in the embryonic stages. It is worthwhile noting that adverse effects might be enhanced in synergy with other pollutants. However, amphibians might counteract the effect of MPs and other pollutants through microbiota present both in the intestine and on the skin. In addition, amphibian microbial composition might also be altered by MPs themselves in a manner that leads to unpredicted health consequences in amphibians.
Collapse
Affiliation(s)
- Mario A Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, Messina, Italy
| | | | - Donají J González-Mille
- Programa Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACyT). Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
21
|
Ji J, Zhao T, Li F. Remediation technology towards zero plastic pollution: Recent advance and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120166. [PMID: 36116565 DOI: 10.1016/j.envpol.2022.120166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of plastic wastes exceeds efforts to eliminate plastic pollution owing to the outbreak of COVID-19 in 2020 and then aggravates inherent environmental threats to the ecosystem. The paper provided a short introduction relating to the hazards of plastic wastes on environment and a detailed statement about plastic toxicity on human. The article stated on plastic how to enter the body and cause harm for us step by step. Given the toxicity and harm of plastic wastes on human, the degradation of plastic wastes via the physical, chemical and biotic methodologies is looked back. The advanced physical techniques are introduced briefly at firstly. Additionally, evaluate on chemical method for plastic decomposition and review on biotic degradation of plastic. The reactive oxygen species and the enzymes play a crucial role in chemical and biotic degradation processes, respectively. The reactive oxygen species are derived from the activated state of oxides, and the enzymes that aid the microorganism to ingest plastic through its metabolic mechanism are secreted by the microorganism. Subsequently, the potential possibility of upcycling plastic is analyzed from two aspects of the technology and application. The innovative technology utilizes sunlight as driver-power of plastic upcycling. And the carbon capture, utilization and sequestration and the growth substrate provided the novel guided directions for plastic recycle. Lastly, the three suggestions on plastic waste management are expected to establish an economy and efficient plastic sorting system, and two engineering solutions on plastic recycle are to make a contribution for sustainable upcycling of plastic.
Collapse
Affiliation(s)
- Jianghao Ji
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
22
|
Abstract
Plastic waste pollution is one of the biggest problems in the world today. The amount of plastic in the environment continues to increase, and human exposure to microplastic (MP) has become a reality. This subject has attracted the attention of the whole world. The MP problem has also been noticed by the scientific community. The term microplastic is mostly used to define synthetic material with a high polymer content that can have a size range from 0.1 to 5000 µm. This paper aims to characterize the routes of exposure to MP, define its pollution sources, and identify food types contaminated with plastics. This review addresses the current state of knowledge on this type of particles, with particular emphasis on their influence on human health. Adverse effects of MP depend on routes and sources of exposure. The most common route of exposure is believed to be the gastrointestinal tract. Sources of MP include fish, shellfish, water as well as tea, beer, wine, energy drinks, soft drinks, milk, salt, sugar, honey, poultry meat, fruits, and vegetables. Studies have shown that particles of PET, PE, PP, PS, PVC, PA, and PC are the most frequently found in food.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
23
|
Sun T, Ji C, Li F, Shan X, Wu H. The legacy effect of microplastics on aquatic animals in the depuration phase: Kinetic characteristics and recovery potential. ENVIRONMENT INTERNATIONAL 2022; 168:107467. [PMID: 35985106 DOI: 10.1016/j.envint.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of microplastics (MPs) in global aquatic environments has received considerable attention. Currently, concerns have been raised regarding reports that the adverse effect of MPs on aquatic animals in the exposure phase may not be (completely) reversed in the depuration phase. In order to provide insights into the legacy effect of MPs from the depuration phase, this study evaluated the kinetic characteristics and recovery potential of aquatic animals after the exposure to MPs. More specifically, a total of 68 depuration kinetic curves were highly fitted to estimate the retention time of MPs. It was shown that the retention time ranged from 1.26 to 3.01 days, corresponding to the egestion of 90 % to 99 % of ingested MPs. The retention time decreased with the increased retention rate. Furthermore, variables potentially affecting the retention time were ranked by the decision tree-based eXtreme Gradient Boosting (XGBoost) algorithm, suggesting that the particle size and tested species were of great importance for explaining the difference in retention time of MPs. Moreover, a biomarker profile was recompiled to determine the toxic changes. Results indicated that the MPs-induced toxicity significantly reduced in the depuration phase, evidenced by the recovery of energy reserves and metabolism, hepatotoxicity, immunotoxicity, hematological parameters, neurotoxicity and oxidative stress. However, the continuous detoxification and remarkable genotoxicity implied that the toxicity was not completely alleviated. In addition, the current knowledge gaps are also highlighted, with recommendations proposed for future research.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
24
|
Wu J, Zhao X, Gao L, Li Y, Wang D. Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10307. [PMID: 36011942 PMCID: PMC9407957 DOI: 10.3390/ijerph191610307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) in the water environment pose a potential threat to aquatic organisms. The Species Sensitivity Distribution (SSD) method was used to assess the ecological risks of microplastics on aquatic organisms in this study. However, the limited toxicity data of aquatic organisms made it impossible to derive water quality criteria (WQC) for MPs and difficult to implement an accurately ecological risk assessment. To solve the data gaps, the USEPA established the interspecies correlation estimation (ICE) model, which could predict toxicity data to a wider range of aquatic organisms and could also be utilized to develop SSD and HC5 (hazardous concentration, 5th percentile). Herein, we collected the acute toxicity data of 11 aquatic species from 10 families in 5 phyla to fit the metrical-based SSDs, meanwhile generating the ICE-based-SSDs using three surrogate species (Oncorhynchus mykiss, Hyalella Azteca, and Daphnia magna), and finally compared the above SSDs, as well as the corresponding HC5. The results showed that the measured HC5 for acute MPs toxicity data was 112.3 μg/L, and ICE-based HC5 was 167.2 μg/L, which indicated there were no significant differences between HC5 derived from measured acute and ICE-based predicted values thus the ICE model was verified as a valid approach for generating SSDs with limited toxicity data and deriving WQC for MPs.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Xiaohui Zhao
- Department of Water Ecology and Environment, Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Lin Gao
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Yan Li
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Dan Wang
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| |
Collapse
|
25
|
Kuppusamy PP, Bhatia A, Verma A, Shah NR, Pratyush P, Shanmugarajan V, Kim SC, Poongavanam G, Duraisamy S. Accumulation of biomedical waste during the COVID-19 pandemic: concerns and strategies for effective treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55528-55540. [PMID: 35697985 PMCID: PMC9191757 DOI: 10.1007/s11356-022-21086-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
This study deals with the pollution impact of biomedical waste (BMW) generation due to the COVID-19 pandemic at both the global and national levels. This discussion is important in light of clear scientific evidence that, apart from the airborne transmission of the disease, the virus also survives on different surfaces and poses the risk of infection. Moreover, an investigation is conducted on BMW generation in tons/day in India during the COVID-19 period, with implications for future projection. Additionally, a pioneering study was conducted to estimate the usage of facemasks during the COVID-19 pandemic in India. This paper also provides a feasible solution, by adopting a modern perspective, towards managing BMW generated in the context of SARS-CoV-2 at isolation wards and crematoriums. Strategical approaches have been suggested for segregating and safely disposing BMW. The latest availability of disposal facilities is discussed based on source data provided by the Central Pollution Control Board (CPCB), India. Among the many disposal methods, incineration technologies are examined in depth. The impact of existing incineration technology on the environment and human health has been extensively studied. This study suggests strategies for controlling BMW generation during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Pon Pavithiran Kuppusamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Arpit Bhatia
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Anmol Verma
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Nehal Ratnesh Shah
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Prakash Pratyush
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Vigneswaran Shanmugarajan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Chennai, 602105, India
| | - Sung Chul Kim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
| | - GaneshKumar Poongavanam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea.
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| | - Sakthivadivel Duraisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
26
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
27
|
Gündogdu S, Rathod N, Hassoun A, Jamroz E, Kulawik P, Gokbulut C, Aït-Kaddour A, Özogul F. The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps. Crit Rev Food Sci Nutr 2022; 63:6445-6463. [PMID: 35152807 DOI: 10.1080/10408398.2022.2033684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contamination of the food and especially marine environment with nano/micro-plastic particles has raised serious concern in recent years. Environmental pollution and the resulting seafood contamination with microplastic (MP) pose a potential threat to consumers. The absorption rate of the MP by fish is generally considered low, although the bioavailability depends on the physical and chemical properties of the consumed MP. The available safety studies are inconclusive, although there is an indication that prolonged exposure to high levels of orally administered MP can be hazardous for consumers. This review details novel findings about the occurrence of MP, along with its physical and chemical properties, in the marine environment and seafood. The effect of processing on the content of MP in the final product is also reviewed. Additionally, recent findings regarding the impact of exposure of MP on human health are discussed. Finally, gaps in current knowledge are underlined, and the possibilities for future research are indicated in the review. There is an urgent need for further research on the absorption and bioavailability of consumed MP and in vivo studies on chronic exposure. Policymakers should also consider the implementation of novel legislation related to MP presence in food.
Collapse
Affiliation(s)
- Sedat Gündogdu
- Department of Basic Sciences, Cukurova University Faculty of Fisheries, Adana, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Dapoli, Maharashtra State, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Ewelina Jamroz
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Karakow, Poland
| | - Piotr Kulawik
- Department of Pharmacology and Toxicology, University of Adnan Menderes, Isikli Koyu, Aydin, Turkey
| | - Cengiz Gokbulut
- Faculty of Medicine, Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey
| | | | - Fatih Özogul
- Department of Seafood Processing Technology, Cukurova University Faculty of Fisheries, Adana, Turkey
| |
Collapse
|