1
|
Batt AL, Brunelle LD, Quinete NS, Stebel EK, Ng B, Gardinali P, Chao A, Huba AK, Glassmeyer ST, Alvarez DA, Kolpin DW, Furlong ET, Mills MA. Investigating the chemical space coverage of multiple chromatographic and ionization methods using non-targeted analysis on surface and drinking water collected using passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176922. [PMID: 39426538 DOI: 10.1016/j.scitotenv.2024.176922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Multiple non-targeted analysis tools were used to look for a broad range of possible chemical contaminants present in surface and drinking water using liquid chromatography separation and high-resolution mass spectrometry detection, including both quadrupole time of flight (Q-ToF) and Orbitrap instruments. Two chromatographic techniques were evaluated on an LC-Q-ToF with electrospray ionization in both positive and negative modes: (1) the traditionally used reverse phase C18 and (2) the hydrophilic interaction liquid chromatography (HILIC) aimed to capture more polar contaminants that may be present in water. Multiple ionization modes were evaluated with an LC-Orbitrap, including electrospray (ESI) and atmospheric pressure chemical ionization (APCI), also in both positive and negative modes. A suspect screening library of over 1300 possible environmental contaminants, including pesticides, pharmaceuticals, personal care products, illicit drugs/drugs of abuse, and various anthropogenic markers was made with experimentally collected data with the LC-Q-ToF with both column types, with 227 chemicals being retained by the HILIC column. The non-targeted methods using multiple chromatographic and ionization modes were applied to environmental water samples collected with polar organic chemical integrative samplers (POCIS), including surface water upstream and downstream from wastewater effluent discharge, and the downstream drinking water intake and treated drinking water for three distinct sampling events. For the LC-Q-ToF, 442 chemical features were detected on the C18 column and 91 with the HILIC column in the POCIS extracts, while 556 features were found on the Orbitrap workflow by ESI and 131 features detected by APCI. Over 100 chemicals were tentatively identified by suspect screening and database searching. The comprehensive and systematic evaluation of these methods serve as a step in characterizing the chemical space covered when utilizing different chromatography and ionization methods, or different instrument workflows on complex environmental mixtures.
Collapse
Affiliation(s)
- Angela L Batt
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States.
| | - Laura D Brunelle
- Oak Ridge Institute for Science and Education (ORISE) Participant at the U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, United States
| | - Natalia S Quinete
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Eva K Stebel
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - Brian Ng
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Piero Gardinali
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27709, United States
| | - Anna K Huba
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA 52240, United States
| | - Edward T Furlong
- U.S. Geological Survey, Strategic Laboratory Services Branch, Laboratory Analytical Services Division, Denver, CO 80225, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| |
Collapse
|
2
|
Ateia M, Buren JV, Barrett W, Martin T, Back GG. Sunrise of PFAS Replacements: A Perspective on Fluorine-Free Foams. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:7986-7996. [PMID: 37476647 PMCID: PMC10354943 DOI: 10.1021/acssuschemeng.3c01124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
One type of firefighting foam, referred to as aqueous filmforming foams (AFFF), is known to contain per- and polyfluoroalkyl substances (PFAS). The concerns raised with PFAS, and their potential environmental and health impacts, have led to a surge in research on fluorine-free alternatives both in the United States and globally. Particularly, in January 2023, a new military specification (MIL-PRF-32725) for fluorine-free foam was released in accordance with Congressional requirements for the U.S. Department of Defense. This paper provides a critical analysis of the present state of the various fluorine-free options that have been developed to date. A nuanced perspective of the challenges and opportunities of more sustainable replacements is explored by examining the performance, cost, and regulatory considerations associated with these fluorine-free alternatives. Ultimately, this evaluation shows that the transition to fluorine-free replacements is likely to be complex and multifaceted, requiring careful consideration of the trade-offs involved. Yet, the ongoing work will provide valuable insights for future research on alternatives to AFFF and enhancing the safety and sustainability of fire suppression systems.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jean Van Buren
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - William Barrett
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - Todd Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio 45204, United States
| | - Gerard G Back
- Jensen Hughes, Inc., Halethorpe, Maryland 21227, United States
| |
Collapse
|
3
|
Wang D, Zheng Y, Deng Q, Liu X. Water-Soluble Synthetic Polymers: Their Environmental Emission Relevant Usage, Transport and Transformation, Persistence, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6387-6402. [PMID: 37052478 DOI: 10.1021/acs.est.2c09178] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Water-soluble synthetic polymers (WSPs) are distinct from insoluble plastic particles, which are both critical components of synthetic polymers. In the history of human-made macromolecules, WSPs have consistently portrayed a crucial role and served as the ingredients of a variety of products (e.g., flocculants, thickeners, solubilizers, surfactants, etc.) commonly used in human society. However, the environmental exposures and risks of WSPs with different functions remain poorly understood. This paper provides a critical review of the usage, environmental fate, environmental persistence, and biological consequences of multiple types of WSPs in commercial and industrial production. Investigations have identified a wide market of applications and potential environmental threats of various types of WSPs, but we still lack the suitable assessment tools. The effects of physicochemical properties and environmental factors on the environmental distribution as well as the transport and transformation of WSPs are further summarized. Evidence regarding the degradation of WSPs, including mechanical, thermal, hydrolytic, photoinduced, and biological degradation is summarized, and their environmental persistence is discussed. The toxicity data show that some WSPs can cause adverse effects on aquatic species and microbial communities through intrinsic toxicity and physical hazards. This review may serve as a guide for environmental risk assessment to help develop a sustainable path for WSP management.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P. R. China
| |
Collapse
|
4
|
Marín-Sáez J, López-Ruiz R, Romero-Gonzalez R, Garrido Frenich A, Zamora Rico I. Looking beyond the Active Substance: Comprehensive Dissipation Study of Myclobutanil-Based Plant Protection Products in Tomatoes and Grapes Using Chromatographic Techniques Coupled to High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6385-6396. [PMID: 35594365 DOI: 10.1021/acs.jafc.2c01767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A comprehensive evaluation of the dissipation of a myclobutanil plant protection product was performed in tomato and grape samples. Different temperature conditions (3 and 22 °C) were evaluated. A biphasic kinetic model provided a suitable adjustment (R2 > 0.95), with persistence (residual level, RL50) lower than 24 days in all cases. Solid-liquid extraction and ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) were used for metabolites' elucidation, identifying six myclobutanil metabolites, four out of them described for the first time and one of them confirmed using 1H, 13C, (1H-1H)-COSY, (1H-13C)-HMQC, and (1H-13C)-HMBC nuclear magnetic resonance (NMR). Their degradation curves were also evaluated, increasing their concentrations when the myclobutanil concentration decreases. Additionally, coformulants present in the commercial formulation were monitored employing headspace solid-phase microextraction method (HS-SPME)-gas chromatography coupled to HRMS (GC-Q-Orbitrap-HRMS). Seven coformulants were quantified in tomato samples. Their dissipation curves were studied, and it was observed that they were almost degraded 12 days after application.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Department of Chemistry and Physics, Analytical Chemistry Area, University of Almería Research Centre for Agricultural Food Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Rosalía López-Ruiz
- Department of Chemistry and Physics, Analytical Chemistry Area, University of Almería Research Centre for Agricultural Food Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Roberto Romero-Gonzalez
- Department of Chemistry and Physics, Analytical Chemistry Area, University of Almería Research Centre for Agricultural Food Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Antonia Garrido Frenich
- Department of Chemistry and Physics, Analytical Chemistry Area, University of Almería Research Centre for Agricultural Food Biotechnology (BITAL), Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Ismael Zamora Rico
- Lead Molecular Design, Calle Valles, 96, E-08172 Sant Cugat Del Valles, Barcelona, Spain
| |
Collapse
|
5
|
Ultrasound-assisted sample preparation for simultaneous extraction of anionic, cationic and non-ionic surfactants in sediment. Talanta 2022; 241:123220. [DOI: 10.1016/j.talanta.2022.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/23/2022]
|
6
|
Schinkel L, Lara-Martín PA, Giger W, Hollender J, Berg M. Synthetic surfactants in Swiss sewage sludges: Analytical challenges, concentrations and per capita loads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151361. [PMID: 34808174 DOI: 10.1016/j.scitotenv.2021.151361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Surfactants are high-production-volume chemicals that are among the most abundant organic pollutants in municipal wastewater. In this study, sewage sludge samples of 36 Swiss wastewater treatment plants (WWTPs), serving 32% of the country's population, were analyzed for major surfactant classes by liquid chromatography mass spectrometry (LC-MS). The analyses required a variety of complementary approaches due to different analytical challenges, including matrix effects (which can affect adduct ion formation) and the lack of reference standards. The most abundant contaminants were linear alkylbenzene sulfonates (LAS; weighted mean [WM] concentration of 3700 μg g-1 dry weight), followed by secondary alkane sulfonates (SAS; 190 μg g-1). Alcohol polyethoxylates (AEO; 8.3 μg g-1), nonylphenol polyethoxylates (NPEO; 16 μg g-1), nonylphenol (NP; 3.1 μg g-1), nonylphenol ethoxy carboxylates (NPEC; 0.35 μg g-1) and tert-octylphenol (tert-OP, 1.8 μg g-1) were present at much lower concentrations. This concentration pattern agrees with the production volumes of the surfactants and their fates in WWTPs. Branched AEO homologues dominated over linear homologues, probably due to higher persistence. Sludge concentrations of LAS, SAS, and NP were positively correlated with the residence time in the anaerobic digester. Derivation of the per capita loads successfully revealed potential industrial/commercial emission sources. Comparison of recent versus historic data showed a decrease in NPEO and NP levels by one or two orders of magnitude since their ban in the 1980s. By contrast, LAS still exhibit similar concentrations compared to 30 years ago.
Collapse
Affiliation(s)
- Lena Schinkel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real 11510, Spain
| | - Walter Giger
- Giger Research Consulting, 8049 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
7
|
Athullya MK, Dineep D, Mathew ML, Aravindakumar CT, Aravind UK. Identification of micropollutants from graywater of different complexity and remediation using multilayered membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4206-4218. [PMID: 34405325 DOI: 10.1007/s11356-021-15516-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Graywater reuse is one of the important concepts in attaining water sustainability. A major challenge in this area is to realize various components present in graywater. The present study involves the identification of the chemical components of graywater collected from three different environments and to investigate the efficiency of removal of some of these chemical components using ultrafiltration membranes (polyelectrolyte multilayer (PEM) membranes). The chemical components were analyzed using liquid chromatography connected with quadrupole time-of-flight (UPLC-Q-ToF-MS). A number of micropollutants including surfactants and certain contaminants of emerging concern (CECs) were identified from these samples. Out of 16 compounds identified, 13 were surfactants and the remaining were caffeine, oxybenzone, and benzophenone. These surfactants are mostly the ingredients of various detergents. Low-pressure filtration studies of the collected samples were carried out utilizing chitosan/polyacrylic acid (CHI/PAA) multilayer membranes. A 5.5 bilayer membrane showed more than 95% rejection of the identified compounds in the selected samples and significant improvement in the water quality parameters. This demonstrates that the membrane used in this work is effective in the removal of various chemicals from graywater as well as enhancing the water quality.
Collapse
Affiliation(s)
- Manappillil K Athullya
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Devadasan Dineep
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Mary L Mathew
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
| |
Collapse
|
8
|
McLaughlin MC, McDevitt B, Miller H, Amundson KK, Wilkins MJ, Warner NR, Blotevogel J, Borch T. Constructed wetlands for polishing oil and gas produced water releases. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1961-1976. [PMID: 34723304 DOI: 10.1039/d1em00311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment.
Collapse
Affiliation(s)
- Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Bonnie McDevitt
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16801, USA
| | - Hannah Miller
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
| | - Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16801, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO, 80523, USA.
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
9
|
Wiest L, Giroud B, Assoumani A, Lestremau F, Vulliet E. A multi-family offline SPE LC-MS/MS analytical method for anionic, cationic and non-ionic surfactants quantification in surface water. Talanta 2021; 232:122441. [PMID: 34074426 DOI: 10.1016/j.talanta.2021.122441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/22/2023]
Abstract
Of the large number of emerging pollutants discharged from wastewaters into surface waters, surfactants are among those with the highest concentrations. However, few monitoring in river waters of these substances have already been performed and only on a few families, mostly anionic. This work aimed to develop a multi-family analytical strategy suitable for the quantification of low concentrations of surfactant in surface waters. Twelve families of surfactants, anionic, cationic and non-ionic were selected. Their quantification by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and their extraction by SPE were optimized by comparing different retention mechanisms. The best performances were obtained with a C18 grafted silica LC column and a hydrophilic-lipophilic balanced (HLB) polymeric SPE cartridge. The final analytical method was validated and applied for the quantification of surfactants in 36 river water samples. Method limits of quantification (LQ), intra and inter days precision and trueness were evaluated. With LQ between 15 and 485 ng/L, and trueness over 80%, this method was suitable for monitoring surfactants in surface water. Application on French river water samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations from 24 ng/L for octylphenol ethoxylates (OPEO), up to 4.6 μg/L regarding linear alkylbenzene sulfonates (LAS).
Collapse
Affiliation(s)
- Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France.
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Azziz Assoumani
- INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, F-60550, Verneuil-en-halatte, France
| | - François Lestremau
- INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, F-60550, Verneuil-en-halatte, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| |
Collapse
|
10
|
Sasi S, Rayaroth MP, Aravindakumar CT, Aravind UK. Alcohol ethoxysulfates (AES) in environmental matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34167-34186. [PMID: 33970421 DOI: 10.1007/s11356-021-14003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Extensive use of surfactants in numerous fields resulted in their discharge into various environmental compartments including soil, sediment, and water. Alcohol ethoxysulfates (AES) together with alcohol ethoxylates (AE), alkyl sulfates (AS), and linear alkyl benzene sulfonates (LAS) find wide variety of applications in consumer products including both domestic and industrial applications. Consequently, all these surfactants pose several concerns to both aquatic and human health. In the context of environmental impacts, AES has almost equal importance as that of LAS though the literature on this topic is only emerging. This review provides a detailed overview on the various aspects of the anionic surfactant, AES, such as toxicity of AES, its fate in the ecosystem, technical advancements in the area of identification and quantification, its occurrence and distribution in different environmental compartments spanning across the world, and finally a remark of its potential removal strategy from the environment.
Collapse
Affiliation(s)
- Subha Sasi
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Manoj P Rayaroth
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
| |
Collapse
|
11
|
Liu L, Aljathelah NM, Hassan H, Giraldes BW, Leitão A, Bayen S. Targeted and suspect screening of contaminants in coastal water and sediment samples in Qatar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145043. [PMID: 33609843 DOI: 10.1016/j.scitotenv.2021.145043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In recent years, high resolution mass spectrometry (HRMS) combined with separation techniques has allowed comprehensive analysis of contaminants of emerging concern (CECs) as well as their metabolites and transformation products in various environmental samples via retrospective screening. However, to date, only a few suspect or non-targeted studies on the occurrence of CECs in marine aquatic system are reported. In this study, two methods, based on direct injection for seawater, or ultrasound-assisted extraction for sediments, followed by LC-Q-TOF-MS analysis were developed and applied for the simultaneous targeted and screening of contaminants in coastal samples (seawater, particulates and sediment) from Qatar collected in 2017-2018. Among the twenty-one target analytes (pesticides, PPCPs and a plasticizer), two compounds only were detected in seawater. Caffeine was detected in seawater samples at all sampling sites, and cotinine was detected in seawater samples collected in Umm Bab in 2018 and seawaters receiving stormwater. Traces of trimethoprim and carbamazepine were detected in sediment samples collected at four sites in 2017. These results suggest some inputs of domestic wastewater in the coastal waters in Qatar. In total, twelve molecular features were tentatively identified from suspect screening at concentration levels significantly higher than that in procedure blanks. The presence of four plasticizers and one pesticide were further confirmed using reference standards: diethyl phthalate (DEP), dibutyl phthalate (DBP), and tributyl phosphate (TBP) in seawater samples; bis(2-ethylhexyl) phthalate (DEHP) in sediment and particulate samples; and dinoterb in seawater after storm event and particulate samples. Overall, this study demonstrated the potential of high resolution LC-Q-TOF-MS/MS for combined targeted and non-targeted analyses of trace contaminants in marine systems over a broad range of log P values.
Collapse
Affiliation(s)
- Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | | | - Hassan Hassan
- Environmental Science Center, Qatar University, Qatar
| | | | | | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Canada.
| |
Collapse
|
12
|
Sitterley KA, Silverstein J, Rosenblum J, Linden KG. Aerobic biological degradation of organic matter and fracturing fluid additives in high salinity hydraulic fracturing wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143622. [PMID: 33229099 DOI: 10.1016/j.scitotenv.2020.143622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Reuse of hydraulic fracturing wastewaters depends on effective tailored treatment to prepare the water for the intended end use. Aerobic biological treatment of hydraulic fracturing produced water was examined to degrade dissolved organic carbon (DOC) and polyethylene glycols (PEGs). Biological treatment experiments of three produced water samples with DOC concentrations ranging from 22 to 420 mg/L and total dissolved solids (TDS) levels ranging from 26 to 157 g/L were conducted in 48-240 h batches. Samples were not pretreated to remove suspended solids and were inoculated with activated sludge and acclimated over several weeks. Results show that between 50% and 80% of DOC was removed in 12-24 h but a sizeable portion, on a mass basis, remained in the samples with higher DOC concentrations. PEGs were also shown to readily biodegrade into singly- and doubly-carboxylated metabolites, but were not shown to degrade past that point, leading to accumulation of PEG-dicarboxylates (PEG-diCs) in the batch reactors. Possible explanations include residence times that were too long, resulting in starved microbial populations (and thus, a stopping of PEG degradation) or the presence of other ethoxylated additives that degraded into PEGs and PEG-diCs and fed this accumulation. This work demonstrates that a well-acclimated microbial culture is capable of degrading a large portion of DOC in hydraulic fracturing wastewaters across a wide spectrum of TDS concentrations, indicating that biological treatment is a viable option for enabling reuse of produced water.
Collapse
Affiliation(s)
- Kurban A Sitterley
- University of Colorado Boulder, Department of Civil, Architectural, and Environmental Engineering, 80309, United States of America
| | - JoAnn Silverstein
- University of Colorado Boulder, Department of Civil, Architectural, and Environmental Engineering, 80309, United States of America
| | - James Rosenblum
- University of Colorado Boulder, Department of Civil, Architectural, and Environmental Engineering, 80309, United States of America
| | - Karl G Linden
- University of Colorado Boulder, Department of Civil, Architectural, and Environmental Engineering, 80309, United States of America.
| |
Collapse
|
13
|
Mairinger T, Loos M, Hollender J. Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. WATER RESEARCH 2021; 190:116745. [PMID: 33360422 DOI: 10.1016/j.watres.2020.116745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Synthetic water-soluble polymeric materials are widely employed in e.g. cleaning detergents, personal care products, paints or textiles. Accordingly, these compounds reach sewage treatment plants and may enter receiving waters and the aquatic environment. Characteristically, these molecules show a polydisperse molecular weight distribution, comprising multiple repeating units, i.e. a homologous series (HS). Their analysis in environmentally relevant samples has received some attention over the last two decades, however, the majority of previous studies focused on surfactants and a molecular weight range <1000 Da. To capture a wider range on the mass versus polarity plane and extend towards less polar contaminants, a workflow was established using three different ionization strategies, namely conventional electrospray ionization, atmospheric pressure photoionization and atmospheric pressure chemical ionization. The data evaluation consisted of suspect screening of ca. 1200 suspect entries and a non-target screening of HS with pre-defined accurate mass differences using ca. 400 molecular formulas of repeating units of HS as input and repeating retention time shifts as HS indicator. To study the fate of these water-soluble polymeric substances in the wastewater treatment process, the different stages, i.e. after primary and secondary clarifier, and after ozonation followed by sand filtration, were sampled at a Swiss wastewater treatment plant. Remaining with two different ionization interfaces, ESI and APPI, in both polarities, a non-targeted screening approach led to a total number of 146 HS (each with a minimum number of 4 members), with a molecular mass of up to 1200 detected in the final effluent. Of the 146 HS, ca 15% could be associated with suspect hits and approximately 25% with transformation products of suspects. Tentative characterization or probable chemical structure could be assigned to almost half of the findings. In positive ionization mode various sugar derivatives with differing side chains, for negative mode structures with sulfonic acids, could be characterized. The number of detected HS decreased significantly over the three treatment stages. For HS detectable also in the biological and oxidative treatment stages, a change in HS distribution towards to lower mass range was often observed.
Collapse
Affiliation(s)
- Teresa Mairinger
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | | | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Espeso MB, Corada-Fernández C, García-Delgado M, Candela L, González-Mazo E, Lara-Martín PA, Jiménez-Martínez J. Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116021. [PMID: 33221085 DOI: 10.1016/j.envpol.2020.116021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/13/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Surfactants, after use, enter the environment through diffuse and point sources such as irrigation with treated and non-treated waste water and urban and industrial wastewater discharges. For the group of non-ionic synthetic surfactant alcohol ethoxylates (AEOs), most of the available information is restricted to the levels and fate in aquatic systems, whereas current knowledge of their behavior in soils is very limited. Here we characterize the behavior of different homologs (C12-C18) and ethoxymers (EO3, EO6, and EO8) of the AEOs through batch experiments and under unsaturated flow conditions during infiltration experiments. Experiments used two different agricultural soils from a region irrigated with reclaimed water (Guadalete River basin, SW Spain). In parallel, water flow and chemical transport were modelled using the HYDRUS-1D software package, calibrated using the infiltration experimental data. Estimates of water flow and reactive transport of all surfactants were in good agreement between infiltration experiments and simulations. The sorption process followed a Freundlich isotherm for most of the target compounds. A systematic comparison between sorption data obtained from batch and infiltration experiments revealed that the sorption coefficient (Kd) was generally lower in infiltration experiments, performed under environmental flow conditions, than in batch experiments in the absence of flow, whereas the exponent (β) did not show significant differences. For the low clay and organic carbon content of the soils used, no clear dependence of Kd on them was observed. Our work thus highlights the need to use reactive transport parameterization inferred under realistic conditions to assess the risk associated with alcohol ethoxylates in subsurface environments.
Collapse
Affiliation(s)
- M Botella Espeso
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zürich, Switzerland
| | - C Corada-Fernández
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI•MAR), Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - M García-Delgado
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI•MAR), Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - L Candela
- IMDEA Water, Avenida Punto Com 2, Parque Científico Tecnológico Universidad de Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - E González-Mazo
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI•MAR), Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - P A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI•MAR), Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - J Jiménez-Martínez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zürich, Switzerland; Department of Water Resources and Drinking Water, Eawag, 8600, Dübendorf, Switzerland.
| |
Collapse
|
15
|
Beckers LM, Brack W, Dann JP, Krauss M, Müller E, Schulze T. Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138388. [PMID: 32335446 DOI: 10.1016/j.scitotenv.2020.138388] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
The pollution of aquatic ecosystems with complex and largely unknown mixtures of organic micropollutants is not sufficiently addressed with current monitoring strategies based on target screening methods. In this study, we implemented an open-source workflow based on non-target screening to unravel longitudinal pollution patterns of organic micropollutants along a river course. The 47 km long Holtemme River, a tributary of the Bode River (both Saxony-Anhalt, Germany), was used as a case study. Sixteen grab samples were taken along the river and analyzed by liquid chromatography coupled to high-resolution mass spectrometry. We applied a cluster analysis specifically designed for longitudinal data sets to identify spatial pollutant patterns and prioritize peaks for compound identification. Three main pollution patterns were identified representing pollutants entering a) from wastewater treatment plants, b) at the confluence with the Bode River and c) from diffuse and random inputs via small point sources and groundwater input. By further sub-clustering of the main patterns, source-related fingerprints were revealed. The main patterns were characterized by specific isotopologue signatures and the abundance of peaks in homologue series representing the major (pollution) sources. Furthermore, we identified 25 out of 38 representative compounds for the patterns by structure elucidation. The workflow represents an important contribution to the ongoing attempts to understand, monitor, prioritize and manage complex environmental mixtures and may be applied to other settings.
Collapse
Affiliation(s)
- Liza-Marie Beckers
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany.
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Janek Paul Dann
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany
| | - Erik Müller
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany
| |
Collapse
|
16
|
Sitterley KA, Linden KG, Ferrer I, Thurman EM. Desalting and Concentration of Common Hydraulic Fracturing Fluid Additives and their Metabolites with Solid-Phase Extraction. J Chromatogr A 2020; 1622:461094. [DOI: 10.1016/j.chroma.2020.461094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/17/2023]
|
17
|
Freeling F, Alygizakis NA, von der Ohe PC, Slobodnik J, Oswald P, Aalizadeh R, Cirka L, Thomaidis NS, Scheurer M. Occurrence and potential environmental risk of surfactants and their transformation products discharged by wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:475-487. [PMID: 31121398 DOI: 10.1016/j.scitotenv.2019.04.445] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 05/25/2023]
Abstract
Seven-day composite effluent samples from a German monitoring campaign including 33 conventional wastewater treatment plants (WWTP) were analyzed for linear alkylbenzene sulfonates (LAS) and alkyl ethoxysulfates (AES) and were screened by wide-scope suspect screening for 1564 surfactants and their transformation products (TPs) by UHPLC-ESI-QTOF-MS. Corresponding seven-day composite influent samples of selected WWTPs showed high influent concentrations as well as very high removal rates for LAS and AES. However, average total LAS and AES effluent concentrations were still 14.4 μg/L and 0.57 μg/L, respectively. The LAS-byproducts di-alkyl tetralin sulfonates (DATSs), the TPs sulfophenyl alkyl carboxylic acids (SPACs) and sulfo-tetralin alkyl carboxylic acids (STACs) reached maximum effluent concentrations of 19 μg/L, 17 μg/L and 5.3 μg/L, respectively. In many cases the sum of the concentration of all LAS-related byproducts and TPs surpassed the concentration of the precursors. High concentrations of up to 7.4 μg/L were found for 41 polyethylenoglycol homologs. Quantified surfactants and their TPs and by-products together accounted for concentrations up to 82 μg/L in WWTP effluents. To determine the risk of individual surfactants and their mixtures, single homologs were grouped by a "weighted carbon number approach" to derive normalized Predicted No-Effect Concentrations (PNEC), based on experimental ecotoxicity data from existing risk assessments, complemented by suitable Quantitative Structure-Activity Relationships (QSAR) predictions. Predicted Environmental Concentrations (PEC) were derived by dividing effluent concentrations of surfactants by local dilution factors. Risks for all analyzed surfactants were below the commonly accepted PEC/PNEC ratio of 1 for single compounds, while contributions to mixture toxicity effects from background levels of LAS and DATS cannot be excluded. Maximum LAS concentrations exceeded half of its PNEC, which may trigger country-wide screening to investigate potential environmental risks.
Collapse
Affiliation(s)
- Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Nikiforos A Alygizakis
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Peter C von der Ohe
- Federal Environment Agency, Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | | | - Peter Oswald
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Lubos Cirka
- Slovak University of Technology, Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation and Mathematics, Radlinskeho 9, 81237 Bratislava, Slovak Republic
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
18
|
García RA, Chiaia-Hernández AC, Lara-Martin PA, Loos M, Hollender J, Oetjen K, Higgins CP, Field JA. Suspect Screening of Hydrocarbon Surfactants in AFFFs and AFFF-Contaminated Groundwater by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8068-8077. [PMID: 31269393 DOI: 10.1021/acs.est.9b01895] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aqueous film-forming foams (AFFFs) are proprietary mixtures containing hydrocarbon surfactants and per- and polyfluoroalkyl substances (PFASs) that are used to extinguish hydrocarbon-based fuel fires. There is limited information on hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater even though hydrocarbon surfactants are more abundant (5-10% w/w) than PFASs (0.9-1.5% w/w) in AFFFs. Eight commercial AFFFs manufactured between 1988 and 2012 and 10 AFFF-contaminated groundwaters collected from near source zones of fire-fighter training areas were analyzed for suspect hydrocarbon surfactants by liquid chromatography quadrupole time-of-flight mass spectrometry. A suspect list and a homologous series detection computational tool, enviMass, were combined to screen for hydrocarbon surfactants. Nine classes of hydrocarbon surfactants were detected in AFFFs including octylphenol polyethoxylates, linear alcohol ethoxylates, ethoxylated cocoamines, alkyl ether sulfates, alkyl amido dipropionates, linear alkyl benzenesulfonates, alkyl sulfates, and polyethylene glycols. Of those, six were also found in groundwater along with diethanolamines and alkyl amido betaines, which were not found in the eight archived AFFFs. This indicates that although aerobically biodegradable, hydrocarbon surfactants likely persist in groundwater due to anaerobic aquifer conditions. To the best of our knowledge, this is the first screening for hydrocarbon surfactants in AFFFs and in AFFF-contaminated groundwater.
Collapse
Affiliation(s)
| | - Aurea C Chiaia-Hernández
- Institute of Geography and Oeschger Center for Climate Change Research , University of Bern , Bern , Switzerland
| | - Pablo A Lara-Martin
- Department of Physical Chemistry , University of Cadiz, Faculty of Marine and Environmental Sciences , Campus Rio San Pedro, CEI-MAR, Puerto Real , 11510 Cadiz , Spain
| | | | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology , Eawag , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP) , ETH Zurich , 8092 Zurich , Switzerland
| | - Karl Oetjen
- Department of Civil and Environmental Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | | |
Collapse
|
19
|
Bamberger M, Nell M, Ahmed AH, Santoro R, Ingraffea AR, Kennedy RF, Nagel SC, Helbling DE, Oswald RE. Surface water and groundwater analysis using aryl hydrocarbon and endocrine receptor biological assays and liquid chromatography-high resolution mass spectrometry in Susquehanna County, PA. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:988-998. [PMID: 31093631 PMCID: PMC6800239 DOI: 10.1039/c9em00112c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The contamination of surface water and ground water by human activities, such as fossil fuel extraction and agriculture, can be difficult to assess due to incomplete knowledge of the chemicals and chemistry involved. This is particularly true for the potential contamination of drinking water by nearby extraction of oil and/or gas from wells completed by hydraulic fracturing. A case that has attracted considerable attention is unconventional natural gas extraction in Susquehanna County, Pennsylvania, particularly around Dimock, Pennsylvania. We analyzed surface water and groundwater samples collected throughout Susquehanna County with complementary biological assays and high-resolution mass spectrometry. We found that Ah receptor activity was associated with proximity to impaired gas wells. We also identified certain chemicals, including disclosed hydraulic fracturing fluid additives, in samples that were either in close proximity to impaired gas wells or that exhibited a biological effect. In addition to correlations with drilling activity, the biological assays and high-resolution mass spectrometry detected substances that arose from other anthropogenic sources. Our complementary approach provides a more comprehensive picture of water quality by considering both biological effects and a broad screening for chemical contaminants.
Collapse
|
20
|
Nell M, Helbling DE. Exploring matrix effects and quantifying organic additives in hydraulic fracturing associated fluids using liquid chromatography electrospray ionization mass spectrometry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:195-205. [PMID: 29790879 DOI: 10.1039/c8em00135a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydraulic fracturing (HF) operations utilize millions of gallons of water amended with chemical additives including biocides, corrosion inhibitors, and surfactants. Fluids injected into the subsurface return to the surface as wastewaters, which contain a complex mixture of additives, transformation products, and geogenic chemical constituents. Quantitative analytical methods are needed to evaluate wastewater disposal alternatives or to conduct adequate exposure assessments. However, our narrow understanding of how matrix effects change the ionization efficiency of target analytes limits the quantitative analysis of polar to semi-polar HF additives by means of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). To address this limitation, we explored the ways in which matrix chemistry influences the ionization of seventeen priority HF additives with a modified standard addition approach. We then used the data to quantify HF additives in HF-associated fluids. Our results demonstrate that HF additives generally exhibit suppressed ionization in HF-associated fluids, though HF additives that predominantly form sodiated adducts exhibit significantly enhanced ionization in produced water samples, which is largely the result of adduct shifting. In a preliminary screening, we identified glutaraldehyde and 2-butoxyethanol along with homologues of benzalkonium chloride (ADBAC), polyethylene glycol (PEG), and polypropylene glycol (PPG) in HF-associated fluids. We then used matrix recovery factors to provide the first quantitative measurements of individual homologues of ADBAC, PEG, and PPG in HF-associated fluids ranging from mg L-1 levels in hydraulic fracturing fluid to low μg L-1 levels in PW samples. Our approach is generalizable across sample types and shale formations and yields important data to evaluate wastewater disposal alternatives or implement exposure assessments.
Collapse
Affiliation(s)
- Marika Nell
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|
21
|
Egea-Corbacho A, Gutiérrez S, Quiroga JM. Removal of emerging contaminants from wastewater through pilot plants using intermittent sand/coke filters for its subsequent reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1232-1240. [PMID: 30235609 DOI: 10.1016/j.scitotenv.2018.07.399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 05/27/2023]
Abstract
Effluents from wastewater treatment plants (WWTPs) are widely recognized as the main source of emerging contaminants (stimulants and antibiotics). In this study, intermittent sand and/or coke filters were installed as a tertiary treatment at the outlet of a secondary settling tank at the WWTP in Medina Sidonia, Spain. Regular sampling followed by solid-phase extraction (SPE) and analysis by liquid chromatography-mass spectrometry (UPLC-MS) showed the complete removal of the concentrations of the emerging contaminants (caffeine, theobromine, theophylline, amoxicillin and penicillin G). Moreover, optimal filtration conditions for the reuse of treated water were presented.
Collapse
Affiliation(s)
- Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain.
| | | | - José María Quiroga
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Li X, Doherty AC, Brownawell B, Lara-Martin PA. Distribution and diagenetic fate of synthetic surfactants and their metabolites in sewage-impacted estuarine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:209-218. [PMID: 29980039 DOI: 10.1016/j.envpol.2018.06.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 05/24/2023]
Abstract
UNLABELLED Surfactants are high production volume chemicals used in numerous domestic and industrial applications and, after use, the most abundant organic contaminants in wastewater. Their discharge might jeopardize the receiving aquatic ecosystems, including sediments, where they tend to accumulate. This is the first comprehensive study on their distribution and fate in this environmental compartment as we performed simultaneous analysis of the three main classes of surfactants (anionic: LAS; nonionic: NPEO and AEO; cationic: DTDMAC, DADMAC, BAC, and ATMAC) and some of their transformation products (SPC, NP, NPEC, and PEG). To account for spatial and time trends, surface sediments and dated cores were collected from Jamaica Bay, a heavily sewage-impacted estuary in New York City. The concentrations of surfactants in surface sediments were between 18 and > 200 μg g-1 and showed slight variation (<10%) over different sampling years (1998, 2003 and 2008). Cationic surfactants were found at the highest concentrations, with DTDMAC accounting for between 52 and 90% of the total sum of target compounds. Vertical concentration profiles in dated cores from the most contaminated station, in the vicinity of the biggest local sewage treatment plant (STP), indicated two sub-surface surfactant peaks in the mid-1960s (469 μg g-1) and late 1980s (572 μg g-1) coinciding with known STP upgrades. This trend was observed for most target compounds, except for DADMAC, C22ATMAC, and PEG, which showed a continuous increase towards the top of the cores. In-situ degradation was studied by comparing sediment core samples taken 12 years apart (1996 and 2008) and revealed a net decrease in PEG and specific surfactants (BAC, ATMAC, NPEO, and AEO) accompanied by growing concentrations of metabolites (SPC, NP, and NPEC). DTDMAC, DADMAC, and LAS, however, remained stable over this period, suggesting recalcitrant behavior under the anaerobic conditions in Jamaica Bay sediments. MAIN FINDING Chronology of major synthetic surfactants are illustrated in the dated sediment cores, as well as their different diagenetic fates.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Marine Environmental Science, College of Oceanography & Earth Science, Xiamen University, 361005, China.
| | - Anne Cooper Doherty
- California Department of Toxic Substances Control, 1001 I Street, Sacramento, CA, 95814, United States
| | - Bruce Brownawell
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Pablo A Lara-Martin
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, CEI-MAR, Puerto Real, 11510, Spain
| |
Collapse
|
23
|
Sasi S, Rayaroth MP, Aravindakumar CT, Aravind UK. Identification of surfactants and its correlation with physicochemical parameters at the confluence region of Vembanad Lake in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20527-20539. [PMID: 29116531 DOI: 10.1007/s11356-017-0563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The present study describes the monitoring of some of the major classes of surfactants in water. The separation, identification, and the quantitative estimation of the compounds were achieved using LC-Q-ToF-MS. The analyses revealed the presence of variety of surfactants including linear alkylbenzene sulfonate (LAS), alcohol ethoxysulfates (AES), and alcohol ethoxylates (AE). Further, emphasis was given to AES as they are one of the most produced and consumed surfactants in the world. And as far as India is concerned, the present study is one of the most significant attempt regarding the identification and quantification of AES. The data obtained during the analysis revealed that the average concentration of AES C12Ex varied from 0.7 to 13.6 μg L-1 while that of C14Ex ranged between 1.3 and 10.4 μg L-1. The risk assessment revealed that higher chain AES are capable of posing medium level risk to the aquatic compartment. In addition, the study also included the physicochemical analysis of water from the selected area. Water was found to be acidic in nature and the salinity, TDS, and EC values were found to be high during the pre-monsoon season. The order of the levels of anionic constituents was of Cl->SO42-SO42->F->NO32- ≅ PO42- while that of cations were Na+ > Mg2+ > K+ > Ca2+. Results of correlation analysis showed that statistically negative correlation exists between AES homologs and pH while slight positive correlations were found between AES and other parameters including TDS and EC. The suitability of this water for domestic and agricultural purposes has been examined on the ground of basic quality indices such as the water quality index (WQI) and sodium adsorption ratio (SAR). The WQI measurements also revealed that the water quality of the region falls under the "very poor" category especially during the pre-monsoon season. The study could explore the cumulative share of these canals in the quality impairment of the receiving Vembanad Lake.
Collapse
Affiliation(s)
- Subha Sasi
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Manoj P Rayaroth
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Usha K Aravind
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
- Centre for Environment Education and Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
24
|
Gago-Ferrero P, Krettek A, Fischer S, Wiberg K, Ahrens L. Suspect Screening and Regulatory Databases: A Powerful Combination To Identify Emerging Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6881-6894. [PMID: 29782800 DOI: 10.1021/acs.est.7b06598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study demonstrates that regulatory databases combined with the latest advances in high resolution mass spectrometry (HRMS) can be efficiently used to prioritize and identify new, potentially hazardous pollutants being discharged into the aquatic environment. Of the approximately 23000 chemicals registered in the database of the National Swedish Product Register, 160 potential organic micropollutants were prioritized through quantitative knowledge of market availability, quantity used, extent of use on the market, and predicted compartment-specific environmental exposure during usage. Advanced liquid chromatography (LC)-HRMS-based suspect screening strategies were used to search for the selected compounds in 24 h composite samples collected from the effluent of three major wastewater treatment plants (WWTPs) in Sweden. In total, 36 tentative identifications were successfully achieved, mostly for substances not previously considered by environmental scientists. Of these substances, 23 were further confirmed with reference standards, showing the efficiency of combining a systematic prioritization strategy based on a regulatory database and a suspect-screening approach. These findings show that close collaboration between scientists and regulatory authorities is a promising way forward for enhancing identification rates of emerging pollutants and expanding knowledge on the occurrence of potentially hazardous substances in the environment.
Collapse
Affiliation(s)
- Pablo Gago-Ferrero
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Agnes Krettek
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
- Institute of Soil Science and Land Evaluation, Soil Chemistry and Pedology , University of Hohenheim , Emil-Wolff-Straße 27 , 70599 Stuttgart , Germany
| | - Stellan Fischer
- The Swedish Chemicals Agency (KemI) , SE-172 67 Stockholm , Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| |
Collapse
|
25
|
Kiss A, Bergé A, Domenjoud B, Gonzalez-Ospina A, Vulliet E. Chemometric and high-resolution mass spectrometry tools for the characterization and comparison of raw and treated wastewater samples of a pilot plant on the SIPIBEL site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9230-9242. [PMID: 29170926 DOI: 10.1007/s11356-017-0748-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Due to its key role in the contamination of natural resources, the assessment of raw and treated wastewater effluents is a current major concern and urges comprehensive analytical methods capable of selectively capturing the chemodiversity of these samples. In this context, the overall objective of this work can be summarized as (i) the assessment of the performance of secondary and tertiary (advanced oxidation) wastewater treatments through multivariate analysis followed by (ii) the comprehensive characterization of wastewater samples based on their spectral fingerprints and a combination of suspect and non-target screening approaches. Several compounds, belonging to different sources of contamination were annotated and/or partially identified: pharmaceuticals, metabolites and transformation compounds, human activity markers, surfactants, and polyethoxy compounds. These results highlight the contribution of filtering and screening tools such as monoisotopic exact mass, mass defect, MS/MS data-dependent acquisitions, isotopic pattern and retention time to the selection, and the identification of environmental contaminants and their metabolites/degradation products. This paper completes the target study conducted in the SIPIBEL site and offers an alternative for the assessment of treatment processes by broadening the spectrum to a larger number of compounds and the correlations between them.
Collapse
Affiliation(s)
- Agneta Kiss
- University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Alexandre Bergé
- University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Bruno Domenjoud
- Degremont, Direction Technique Innovation, 183 avenue du 18 juin 1940, 92500, Rueil-Malmaison, France
| | - Adriana Gonzalez-Ospina
- Degremont, Direction Technique Innovation, 183 avenue du 18 juin 1940, 92500, Rueil-Malmaison, France
| | - Emmanuelle Vulliet
- University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
26
|
Bergé A, Wiest L, Baudot R, Giroud B, Vulliet E. Occurrence of multi-class surfactants in urban wastewater: contribution of a healthcare facility to the pollution transported into the sewerage system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9219-9229. [PMID: 29063400 DOI: 10.1007/s11356-017-0470-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/10/2017] [Indexed: 05/15/2023]
Abstract
Healthcare facility discharges, by their nature, are often considered as non-domestic effluent, which can provide significant pollution comparatively to other domestic sources. In this context, a total of 12 monthly sampling campaigns were collected from a healthcare facility as well as the output of a sewerage system of Site Pilote de Bellecombe (SIPIBEL) observatory. This study focuses more specifically on 12 surfactants and biocides: four anionics, four cationic, two non-ionic, one zwitterionic, and one dispersive agent, among the most commonly used commercial surfactants. Particular attention was also provided to routine wastewater quality parameters. Both effluents were heavily contaminated by most anionic surfactants; they displayed median concentrations up to 1 to 2 mg/L for linear alkylbenzene sulfonates and between 10 and 100 μg/L for other sodium sulfate congeners (lauryl and laureth). Overall, for the majority of surfactants, the healthcare facility contribution to the total flux reaching the wastewater treatment plant ranges between 5 and 9%.
Collapse
Affiliation(s)
- Alexandre Bergé
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Robert Baudot
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
27
|
Moschet C, Anumol T, Lew BM, Bennett DH, Young TM. Household Dust as a Repository of Chemical Accumulation: New Insights from a Comprehensive High-Resolution Mass Spectrometric Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2878-2887. [PMID: 29437387 PMCID: PMC7239036 DOI: 10.1021/acs.est.7b05767] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical exposure in household dust poses potential risks to human health but has been studied incompletely thus far. Most analytical studies have focused on one or several compound classes, with analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). However, a comprehensive investigation of individual dust samples is missing. The present study comprehensively characterizes chemicals in dust by applying a combination of target, suspect, and nontarget screening approaches using both LC and GC with quadrupole time-of-flight (Q/TOF) MS. First, the extraction method was optimized to streamline detection of LC-Q/TOF and GC-Q/TOF amenable compounds and was successfully validated with over 100 target compounds. Nontarget screening with GC-Q/TOF was done by spectral deconvolution followed by a library search. Suspect screening by LC-Q/TOF was carried out with an accurate mass spectral library. Finally, LC-Q/TOF nontarget screening was carried out by extracting molecular features, acquiring tandem mass spectrometric (MS/MS) spectra, and performing compound identification by use of in silico fragmentation software tools. In total, 271 chemicals could be detected in 38 dust samples, 163 of which could be unambiguously confirmed by a reference standard. Many of them, such as the plastic leachable 7,9-di- tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (CAS 82304-66-3) and three organofluorine compounds, are of emerging concern and their presence in dust has been underestimated. Advantages and drawbacks of the different approaches and analytical instruments are critically discussed.
Collapse
Affiliation(s)
- Cristoph Moschet
- University of California Davis, Department of Civil and Environmental Engineering, Davis, CA
| | | | - Bonny M. Lew
- University of California Davis, Department of Civil and Environmental Engineering, Davis, CA
| | - Deborah H. Bennett
- University of California Davis, Department of Public Health Sciences and Center for Health and the Environment, Davis, CA
| | - Thomas M. Young
- University of California Davis, Department of Civil and Environmental Engineering, Davis, CA
- Corresponding Author: Tel: +1 (530) 754-9399;
| |
Collapse
|
28
|
Deeb AA, Stephan S, Schmitz OJ, Schmidt TC. Suspect screening of micropollutants and their transformation products in advanced wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1247-1253. [PMID: 28605842 DOI: 10.1016/j.scitotenv.2017.05.271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Transformation products (TPs) of organic micropollutants are still rarely considered in monitoring of wastewater and aquatic environments. For example, occurrence data of ozonated TPs in full-scale wastewater systems is largely lacking. In this study, the efficiency of a suspect screening strategy including 245 previously reported compounds and their TPs was evaluated for assessing the occurrence of different compound classes and their ozonated TPs in wastewater samples collected at different steps of an advanced treatment process including ozonation. After applying blank subtraction and filtering by mass accuracy (5ppm tolerance), peak height (minimum 1000 counts) and isotopic pattern score (≥80%) 189 of the 245 compounds were detected. A decrease in relative concentration levels was observed for parent compounds in wastewater after ozonation and after a subsequent biological treatment process, while formation of tentative TPs after ozonation accompanied by subsequent degradation in a following biological treatment step was found. Plausibility of structural assignments for tentatively identified TPs could be successfully tested by using relative retention time information as comparison criteria. Overall, the screening approach was fast and successful and can be expanded to other compound classes and TPs where reference standards are not readily available.
Collapse
Affiliation(s)
- Ahmad A Deeb
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Susanne Stephan
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
29
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
30
|
Barra Caracciolo A, Cardoni M, Pescatore T, Patrolecco L. Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:94-103. [PMID: 28411499 DOI: 10.1016/j.envpol.2017.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component of most commercial products used for soil conditioning in the excavation industry, in particular as lubricants for mechanized tunnelling. Its use during the excavation processes can result in either the subsequent possible re-use of the huge amount of soil debris as by-products (e.g. land covering) or its discharge as waste. Currently, there are neither SLES soil threshold limits in European legislation, nor comprehensive studies on the environmental risk for soil ecosystems in these exposure scenarios. In this context, the present paper reviews the available data on the intrinsic characteristics of persistence and the ecotoxicological effects of the anionic surfactant SLES. Although SLES is generally reported to be biodegradable in standard tests, with degradation rates between 7 h and 30 days, depending on the initial conditions, data on its biodegradation in environmental studies are quite scarce. Consequently, assessing SLES biodegradation rates in field conditions is crucial for evaluating if in residual concentrations (typically in the range 40-500 mg/kg in excavated soils) it can or not be a potential hazard for terrestrial and water organisms. Laboratory ecotoxicological tests pointed out detrimental effects of SLES for aquatic organisms, while data on the terrestrial species are rather poor so far and further studies at the expected environmental concentrations are necessary. Finally, the review reports the main analytical methods available for detecting anionic surfactants in solid matrices and the future research needed to improve knowledge on the possible environmental risks posed by the use of SLES in foaming agents for mechanized tunnelling.
Collapse
Affiliation(s)
- Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Martina Cardoni
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Tanita Pescatore
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Luisa Patrolecco
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
31
|
Budnik I, Zembrzuska J, Lukaszewski Z. Bacterial strains isolated from river water having the ability to split alcohol ethoxylates by central fission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14231-14239. [PMID: 27053052 PMCID: PMC4943993 DOI: 10.1007/s11356-016-6566-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
Alcohol ethoxylates (AE) are a major component of the surfactant stream discharged into surface water. The "central fission" of AE with the formation of poly(ethylene glycols) (PEG) is considered to be the dominant biodegradation pathway. However, information as to which bacterial strains are able to perform this reaction is very limited. The aim of this work was to establish whether such an ability is unique or common, and which bacterial strains are able to split AE used as a sole source of organic carbon. Four bacterial strains were isolated from river water and were identified on the basis of phylogenetic trees as Enterobacter strain Z2, Enterobacter strain Z3, Citrobacter freundii strain Z4, and Stenotrophomonas strain Z5. Sterilized river water and "artificial sewage" were used for augmentation of the isolated bacteria. The test was performed in bottles filled with a mineral salt medium spiked with surfactant C12E10 (10 mg L(-1)) and an inoculating suspension of the investigated bacterial strain. Sequential extraction of the tested samples by ethyl acetate and chloroform was used for separation of PEG from the water matrix. LC-MS was used for PEG determination on the basis of single-ion chromatograms. All four selected and investigated bacterial strains exhibit the ability to split fatty alcohol ethoxylates with the production of PEG, which is evidence that this property is a common one rather than specific to certain bacterial strains. However, this ability increases in the sequence: Stenotrophomonas strain Z5 < Enterobacter strain Z2 < Enterobacter strain Z3 = Citrobacter freundii strain Z4. Graphical Abstract Biodegradation by central fission of alcohol ethoxylates by bacterial strains isolated from river water.
Collapse
Affiliation(s)
- Irena Budnik
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland.
- Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965, Poznan, Poland.
| | - Zenon Lukaszewski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland
| |
Collapse
|
32
|
Alexandre B, Barbara G, Laure W, Bruno D, Adriana GO, Emmanuelle V. Development of a multiple-class analytical method based on the use of synthetic matrices for the simultaneous determination of commonly used commercial surfactants in wastewater by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2016; 1450:64-75. [DOI: 10.1016/j.chroma.2016.04.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022]
|
33
|
Traverso-Soto JM, Rojas-Ojeda P, Sanz JL, González-Mazo E, Lara-Martín PA. Anaerobic degradation of alcohol ethoxylates and polyethylene glycols in marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:118-124. [PMID: 26657255 DOI: 10.1016/j.scitotenv.2015.11.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
This research is focused on alcohol polyethoxylates (AEOs), nonionic surfactants used in a wide variety of products such as household cleaners and detergents. Our main objective in this work was to study the anaerobic degradation of these compounds and their main aerobic degradation products and precursors (polyethylene glycols, PEGs, which are also used for many other applications) in marine sediments, providing the first data available on this topic. First, we observed that average AEO sediment-water partition coefficients (Kd) increased towards those homologs having longer alkyl chains (from 257 L/kg for C12 to 5772 L/kg for C18),which were less susceptible to undergo biodegradation. Overall, AEO and PEG removal percentages reached up to 99.7 and 93%, respectively, after 169 days of incubation using anaerobic conditions in sediments ([O2] = 0 ppm, Eh = -170 to -380 mV and T = 30 °C). Average half-life was estimated to be in a range from 10 to 15 days for AEO homologs (C12AEO8-C18AEO8), and 18 days for PEGEO8.Methanogenic activity proved to be intense during the experiment, confirming the occurrence of anaerobic conditions. This is the first study showing that AEOs and PEGs can be degraded in absence of oxygen in marine sediments, so this new information should be taken into account for future environmental risk assessments on these chemicals.
Collapse
Affiliation(s)
- Juan M Traverso-Soto
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz, 11510, Spain
| | - Patricia Rojas-Ojeda
- Unidad de Microbiología Aplicada, Centro de Biología Molecular, Universidad Autónoma de Madrid, Crta. De Colmenar km 15, 28049, Madrid, Spain
| | - José Luis Sanz
- Unidad de Microbiología Aplicada, Centro de Biología Molecular, Universidad Autónoma de Madrid, Crta. De Colmenar km 15, 28049, Madrid, Spain
| | - Eduardo González-Mazo
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz, 11510, Spain
| | - Pablo A Lara-Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz, 11510, Spain.
| |
Collapse
|
34
|
Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12333-41. [PMID: 26418421 DOI: 10.1021/acs.est.5b03454] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An integrated workflow based on liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer (LC-QTOF-MS) was developed and applied to detect and identify suspect and unknown contaminants in Greek wastewater. Tentative identifications were initially based on mass accuracy, isotopic pattern, plausibility of the chromatographic retention time and MS/MS spectral interpretation (comparison with spectral libraries, in silico fragmentation). Moreover, new specific strategies for the identification of metabolites were applied to obtain extra confidence including the comparison of diurnal and/or weekly concentration trends of the metabolite and parent compounds and the complementary use of HILIC. Thirteen of 284 predicted and literature metabolites of selected pharmaceuticals and nicotine were tentatively identified in influent samples from Athens and seven were finally confirmed with reference standards. Thirty four nontarget compounds were tentatively identified, four were also confirmed. The sulfonated surfactant diglycol ether sulfate was identified along with others in the homologous series (SO4C2H4(OC2H4)xOH), which have not been previously reported in wastewater. As many surfactants were originally found as nontargets, these compounds were studied in detail through retrospective analysis.
Collapse
Affiliation(s)
- Pablo Gago-Ferrero
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens , Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Emma L Schymanski
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Anna A Bletsou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens , Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens , Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092, Zürich, Switzerland
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens , Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
35
|
Advances in liquid chromatography–high-resolution mass spectrometry for quantitative and qualitative environmental analysis. Anal Bioanal Chem 2015; 407:6289-99. [DOI: 10.1007/s00216-015-8852-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/30/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
36
|
Mullin CA, Chen J, Fine JD, Frazier MT, Frazier JL. The formulation makes the honey bee poison. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:27-35. [PMID: 25987217 DOI: 10.1016/j.pestbp.2014.12.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 05/14/2023]
Abstract
Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'.
Collapse
Affiliation(s)
- Christopher A Mullin
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jing Chen
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Julia D Fine
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maryann T Frazier
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - James L Frazier
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Leendert V, Van Langenhove H, Demeestere K. Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Traverso-Soto JM, Lara-Martín PA, González-Mazo E, León VM. Distribution of anionic and nonionic surfactants in a sewage-impacted Mediterranean coastal lagoon: inputs and seasonal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 503-504:87-96. [PMID: 25046983 DOI: 10.1016/j.scitotenv.2014.06.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
In this work we have monitored the seasonal inputs, occurrence and distribution of the world's most widely used surfactants (linear alkylbenzene sulfonates, LAS, nonylphenol polyethoxylates, NPEOs, and alcohol polyethoxylates, AEOs) in Mar Menor lagoon (SE Spain) and its main tributary (El Albujón) for the first time. Concentration of target compounds was determined in both surface waters and sediments after solid phase extraction and pressurized liquid extraction, respectively, followed by liquid chromatography-mass spectrometry (LC-MS). There were significant differences in surfactant fluxes from El Albujón towards Mar Menor depending on the season and the day of the week, with maximum estimated annual inputs being detected for LAS (406 kg) and their metabolites, sulfophenyl carboxylic acids (482 kg). Average concentrations of surfactants in the lagoon were between 44 and 1665 μg/kg in sediment, and between 0.3 and 63 μg/L in water. These levels were significantly higher for samples collected near the shore than for those measured inside the lagoon itself. Overall, the occurrence and distribution of surfactants in the system could be explained due to a combination of different sources (surface and groundwater inputs, treated and untreated wastewater effluents, towns, ports, etc.) and simultaneous in-situ physicochemical and biological processes, with an special emphasis on degradation during warmer months.
Collapse
Affiliation(s)
- Juan M Traverso-Soto
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain
| | - Pablo A Lara-Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain.
| | - Eduardo González-Mazo
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain
| | - Víctor M León
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar 30740, Murcia, Spain
| |
Collapse
|
39
|
Lara-Martín PA, González-Mazo E, Petrovic M, Barceló D, Brownawell BJ. Occurrence, distribution and partitioning of nonionic surfactants and pharmaceuticals in the urbanized Long Island Sound Estuary (NY). MARINE POLLUTION BULLETIN 2014; 85:710-9. [PMID: 24467856 DOI: 10.1016/j.marpolbul.2014.01.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 12/28/2013] [Accepted: 01/07/2014] [Indexed: 05/11/2023]
Abstract
This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4-4.5 μg L(-1)) and pharmaceuticals (0.1-0.3 μg L(-1)) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g(-1), whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g(-1)) were measured nearest NYC, sharply decreasing with distance from major sewage inputs.
Collapse
Affiliation(s)
- Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real 11510, Spain; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook 11794-5000, NY, United States.
| | - Eduardo González-Mazo
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real 11510, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Girona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Girona, Spain; Water and Soil Quality Research group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Bruce J Brownawell
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook 11794-5000, NY, United States
| |
Collapse
|
40
|
Traverso-Soto JM, Brownawell BJ, González-Mazo E, Lara-Martín PA. Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: field samplings vs laboratory experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:671-678. [PMID: 24887194 DOI: 10.1016/j.scitotenv.2014.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/03/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Nowadays, alcohol ethoxylates (AEOs) constitute the most important group of non-ionic surfactants, used in a wide range of applications such as household cleaners and detergents. Significant amounts of these compounds and their degradation products (polyethylene glycols, PEGs, which are also used for many other applications) reach aquatic environments, and are eliminated from the water column by degradation and sorption processes. This work deals with the environmental distribution of AEOs and PEGs in the Long Island Sound Estuary, a setting impacted by sewage discharges from New York City (NYC). The distribution of target compounds in seawater was influenced by tides, consistent with salinity differences, and concentrations in suspended solid samples ranged from 1.5 to 20.5 μg/g. The more hydrophobic AEOs were mostly attached to the particulate matter whereas the more polar PEGs were predominant in the dissolved form. Later, the sorption of these chemicals was characterized in the laboratory. Experimental and environmental sorption coefficients for AEOs and PEGs showed average values from 3607 to 164,994 L/kg and from 74 to 32,862 L/kg, respectively. The sorption data were fitted to a Freundlich isotherm model with parameters n and log KF between 0.8-1.2 and 1.46-4.39 L/kg, respectively. AEO and PEG sorptions on marine sediment were also found to be mostly not affected by changes in salinity.
Collapse
Affiliation(s)
- Juan M Traverso-Soto
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain
| | - Bruce J Brownawell
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States
| | - Eduardo González-Mazo
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain
| | - Pablo A Lara-Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain.
| |
Collapse
|
41
|
Álvarez-Muñoz D, Al-Salhi R, Abdul-Sada A, González-Mazo E, Hill EM. Global metabolite profiling reveals transformation pathways and novel metabolomic responses in Solea senegalensis after exposure to a non-ionic surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5203-5210. [PMID: 24684439 DOI: 10.1021/es501276g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Alcohol polyethoxylate (AEO) surfactants are widely used in household and industrial products, but the health effects arising from short-term exposure to sublethal concentrations are unknown. A metabolomic approach was used to investigate the biotransformation and effects of exposure to sublethal concentrations of hexaethylene glycol monododecylether (C12EO6) in juvenile sole, Solea senegalensis. After 5 days, C12EO6 was rapidly metabolized in the sole by oxidation, glucuronidation, and ethoxylate chain shortening. C12EO6 exposure at either 146 or 553 μg L(-1) resulted in significant metabolite disruption in liver and blood samples, including an apparent fold increase of >10(6) in the circulating levels of C24 bile acids and C27 bile alcohols, disturbance of glucocorticoid and lipid metabolism, and a 470-fold decrease in levels of the fatty acid transport molecule palmitoyl carnitine. Depuration resulted in rapid elimination of the surfactant and normalization of metabolites toward pre-exposure levels. Our findings show for the first time the ability of metabolomic analyses to discern effects of this AEO on metabolite homeostasis at exposure levels below its no effect concentrations for survival and reproduction in juvenile fish. The pronounced alteration in levels of liver metabolites, phospholipids, and glucocorticoids in S. senegalensis in response to surfactant exposure may indicate that this contaminant could potentially impact a number of health end points in fish.
Collapse
Affiliation(s)
- Diana Álvarez-Muñoz
- School of Life Sciences, University of Sussex , Brighton BN1 9QJ, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E. Occurrence of surfactants in wastewater: hourly and seasonal variations in urban and industrial wastewaters from Seville (Southern Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:977-84. [PMID: 24091121 DOI: 10.1016/j.scitotenv.2013.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 05/22/2023]
Abstract
Surfactants are daily discharged to the environment from urban and industrial activities. The assessment of the risk derived from the presence of these compounds in the environment requires a deep knowledge about their sources and their distribution in wastewater treatment plants (WWTPs). However, in spite of several studies reporting their presence in WWTPs, only a small number is focused on their different sources. In this work, the distribution of anionic (linear alkylbenzene sulfonates) and non-ionic (nonylphenol ethoxylates) surfactants in WWTPs and in urban and industrial wastewater collection systems has been investigated. Seasonal and daily variability was also assessed. Concentrations of linear alkylbenzene sulfonates in influent and effluent wastewaters ranged from 1155 to 9200 μg L(-1), and from below limit of detection to 770 μg L(-1), respectively, whereas the concentrations of nonylphenol ethoxylates were significantly lower. Linear alkylbenzene sulfonates were efficiently removed (>96%), while mean removal rates of nonylphenol ethoxylates were significantly lower (<20%). Studies carried out in different seasons revealed seasonal discharge patterns from both urban and industrial activities. The analysis of wastewater collection systems showed a major contribution of linear alkylbenzene sulfonates from urban areas while, in the case of nonylphenol ethoxylates, their major contribution came from industrial activities. In all cases the discharge patterns of surfactants were related with the water consumption.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | | | | | | | | |
Collapse
|
43
|
Schymanski EL, Singer HP, Longrée P, Loos M, Ruff M, Stravs MA, Ripollés Vidal C, Hollender J. Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1811-8. [PMID: 24417318 DOI: 10.1021/es4044374] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater effluents contain a multitude of organic contaminants and transformation products, which cannot be captured by target analysis alone. High accuracy, high resolution mass spectrometric data were explored with novel untargeted data processing approaches (enviMass, nontarget, and RMassBank) to complement an extensive target analysis in initial "all in one" measurements. On average 1.2% of the detected peaks from 10 Swiss wastewater treatment plant samples were assigned to target compounds, with 376 reference standards available. Corrosion inhibitors, artificial sweeteners, and pharmaceuticals exhibited the highest concentrations. After blank and noise subtraction, 70% of the peaks remained and were grouped into components; 20% of these components had adduct and/or isotope information available. An intensity-based prioritization revealed that only 4 targets were among the top 30 most intense peaks (negative mode), while 15 of these peaks contained sulfur. Of the 26 nontarget peaks, 7 were tentatively identified via suspect screening for sulfur-containing surfactants and one peak was identified and confirmed as 1,3-benzothiazole-2-sulfonate, an oxidation product of a vulcanization accelerator. High accuracy, high resolution data combined with tailor-made nontarget processing methods (all available online) provided vital information for the identification of a wider range of heteroatom-containing compounds in the environment.
Collapse
Affiliation(s)
- Emma L Schymanski
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kulapina EG, Chernova RK, Makarova NM, Pogorelova ES. Methods for determining synthetic surfactants. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s2079978013030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Multi-residue method for the analysis of commonly used commercial surfactants, homologues and ethoxymers, in marine sediments by liquid chromatography-electrospray mass spectrometry. Microchem J 2013. [DOI: 10.1016/j.microc.2013.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Li M, Liu X, Dong F, Xu J, Kong Z, Li Y, Zheng Y. Simultaneous determination of cyflumetofen and its main metabolite residues in samples of plant and animal origin using multi-walled carbon nanotubes in dispersive solid-phase extraction and ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2013; 1300:95-103. [DOI: 10.1016/j.chroma.2013.05.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
47
|
Analysis of alcohol polyethoxylates and polyethylene glycols in marine sediments. Talanta 2013; 110:171-9. [DOI: 10.1016/j.talanta.2013.02.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
|
48
|
Baena-Nogueras RM, González-Mazo E, Lara-Martín PA. Determination and occurrence of secondary alkane sulfonates (SAS) in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:151-157. [PMID: 23421983 DOI: 10.1016/j.envpol.2013.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
A new methodology has been developed for the determination of secondary alkane sulfonates (SAS), an anionic surfactant, in environmental matrices. Sediment and sludge samples were extracted using pressurized liquid extraction and sonication, whereas wastewater and surface water samples were processed using solid-phase extraction. Extraction recoveries were acceptable for both aqueous (78-120%) and solid samples (83-100%). Determination of SAS was carried out by high or ultra performance liquid chromatography - mass spectrometry using ion trap and time-of-flight detectors. The methodology was applied to samples from Guadalete River (SW Spain), where SAS concentrations below 1 μg L(-1) were measured in surface water, and from 72 to 9737 μg kg(-1) in sediments. Differential partitioning was observed for SAS homologues as those having a longer hydrocarbon chain which preferentially sorbed onto particulate matter. A preliminary environmental risk assessment also showed that SAS measured levels were not harmful to the aquatic community in the sampling area.
Collapse
Affiliation(s)
- Rosa María Baena-Nogueras
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar, Campus de Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | | | | |
Collapse
|
49
|
Peysson W, Vulliet E. Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-of-flight-mass spectrometry. J Chromatogr A 2013; 1290:46-61. [PMID: 23582856 DOI: 10.1016/j.chroma.2013.03.057] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022]
Abstract
The aim of this study was to develop an analytical method for the analysis of a wide range of hormonal steroids and pharmaceutical compounds in sewage sludge. Thus, 136 substances were selected, including 119 pharmaceuticals and 17 hormonal steroids. An innovative sample preparation procedure based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) method was developed. The analysis was then performed using liquid chromatography coupled with time-of-flight mass spectrometry. This analytical procedure was validated by evaluating the specificity, quadratic curve fitting, recovery, reproducibility and limits of detection and quantification. The method allows the analysis of the majority of the target compounds with limits of detection ranging from 1 ng/g to 2500 ng/g, depending on the nature of the substance. The protocol was then successfully applied to various types of sludge (limed, digested, dried, liquid and composted) collected in several sewage works in France. Among the target compounds, 34 were quantified at levels up to 6000 ng/g. Among the most commonly detected pharmaceuticals were the antiemetic domperidone (mean concentration 769 ng/g) and the antiepileptic lamotrigine (mean concentration 31 ng/g) whose presence had, to our knowledge, never been shown in sludge.
Collapse
Affiliation(s)
- William Peysson
- Université de Lyon, Institut des Sciences Analytiques, UMR5280 CNRS (Equipe TRACES), Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| | | |
Collapse
|
50
|
Zedda M, Zwiener C. Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for compound libraries and computer tools. Anal Bioanal Chem 2012; 403:2493-502. [PMID: 22476785 DOI: 10.1007/s00216-012-5893-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
This review focuses on the possibilities and limits of nontarget screening of emerging contaminants, with emphasis on recent applications and developments in data evaluation and compound identification by liquid chromatography-high-resolution mass spectrometry (HRMS). The general workflow includes determination of the elemental composition from accurate mass, a further search for the molecular formula in compound libraries or general chemical databases, and a ranking of the proposed structures using further information, e.g., from mass spectrometry (MS) fragmentation and retention times. The success of nontarget screening is in some way limited to the preselection of relevant compounds from a large data set. Recently developed approaches show that statistical analysis in combination with suspect and nontarget screening are useful methods to preselect relevant compounds. Currently, the unequivocal identification of unknowns still requires information from an authentic standard which has to be measured or is already available in user-defined MS/MS reference databases or libraries containing HRMS spectral information and retention times. In this context, we discuss the advantages and future needs of publicly available MS and MS/MS reference databases and libraries which have mostly been created for the metabolomic field. A big step forward has been achieved with computer-based tools when no MS library or MS database entry is found for a compound. The numerous search results from a large chemical database can be condensed to only a few by in silico fragmentation. This has been demonstrated for selected compounds and metabolites in recent publications. Still, only very few compounds have been identified or tentatively identified in environmental samples by nontarget screening. The availability of comprehensive MS libraries with a focus on environmental contaminants would tremendously improve the situation.
Collapse
Affiliation(s)
- Marco Zedda
- Environmental Analytical Chemistry, Center for Applied Geoscience (ZAG), Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|