1
|
Tomino T, Itoh S, Toshima T, Yoshiya S, Bekki Y, Iseda N, Izumi T, Tsutsui Y, Toshida K, Yoshizumi T. Clinical validation of preoperative serum markers for liver fibrosis in living donor liver transplantation recipients. Surg Today 2024:10.1007/s00595-024-02941-8. [PMID: 39317845 DOI: 10.1007/s00595-024-02941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE To validate the reliability of fibrosis markers as predictors of graft survival in living donor liver transplantation (LDLT) recipients. METHODS We reviewed data retrospectively, from 163 patients who underwent adult LDLT with preoperative measurements of type IV collagen (CIV), Mac-2 binding protein glycosylation isomer (M2BPGi), and hyaluronic acid (HA). Patients were divided into high and low groups for each biomarker, based on optimal cutoff values, and graft loss within 6 months was evaluated in each group. RESULTS The high CIV level group showed significantly lower 6-month graft survival rates and significantly higher rates of postoperative sepsis and sepsis from pneumonia. However, the groups with high and low M2BPGi levels and those with high and low HA levels did not show significant differences in 6-month graft survival rates or rates of postoperative sepsis. Multivariate analysis revealed that a CIV level ≥ 590 was a significant predictor of graft loss within 6 months, postoperative sepsis, and sepsis from pneumonia. CONCLUSION Unlike other fibrosis markers, preoperative CIV levels can predict graft survival, postoperative sepsis, and sepsis from pneumonia after LDLT.
Collapse
Affiliation(s)
- Takahiro Tomino
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takuma Izumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuriko Tsutsui
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Markovic J, Li R, Khanal R, Peng Q, Möbus S, Yuan Q, Engel B, Taubert R, Vondran FWR, Bantel H, Singh MK, Cantz T, Büning H, Wedemeyer H, Ott M, Balakrishnan A, Sharma AD. Identification and functional validation of miR-190b-5p and miR-296-3p as novel therapeutic attenuators of liver fibrosis. J Hepatol 2024:S0168-8278(24)02492-9. [PMID: 39218230 DOI: 10.1016/j.jhep.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Liver fibrosis and its end-stage form cirrhosis contribute to millions of deaths annually. The lack of robust antifibrotic molecules is in part attributed to the absence of any functional screens to identify molecular regulators using patient-derived primary human hepatic myofibroblasts, which are key drivers of fibrosis. METHODS Here, to identify robust regulators of fibrosis, we performed functional microRNA screenings in primary human hepatic myofibroblasts followed by in vivo validation in three independent mouse models of fibrosis (toxin, cholestasis and MASH). RESULTS We identified miR-190b-5p and miR-296-3p as robust antifibrotic miRNAs that suppress liver fibrosis. Notably, the expression of miR-190b-5p and miR-296-3p was found to be significantly reduced in human livers with fibrosis. Mechanistically, we discovered hyaluronan synthase 2 (HAS2) and integrin alpha-6 (ITGA6) as novel targets of miR-190b-5p and miR-296-3p, respectively. Furthermore, we demonstrated that the antifibrotic properties of miR-190b-5p and miR-296-3p are, at least in part, dependent on HAS2 and ITGA6. Finally, we showed the antifibrotic function of both miRNAs in a human liver bud model, which mimics multiple features of the human liver. CONCLUSIONS Collectively, in our study we discovered miR-190b-5p and miR-296-3p as two novel antifibrotic miRNAs, and that HAS2 and ITGA6 contribute to miR-190b-5p- and miR-296-3p-mediated inhibition of liver fibrosis. These results provide a foundation for future research to explore the clinical utility of miR-190b-5p and miR-296-3p in fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis and cirrhosis contribute to millions of deaths worldwide and remain unmet medical needs. In this study, we discovered two microRNAs, miR-190b-5p and miR-296-3p, which suppress liver fibrosis in preclinical mouse models and a human liver bud model. Our promising results encourage further studies that aim to develop both miRNAs for the treatment of liver fibrosis in patients.
Collapse
Affiliation(s)
- Jovana Markovic
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruomeng Li
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qi Peng
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Office 08-15, Singapore 169857, Singapore
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Tagliaferro M, Marino M, Basile V, Pocino K, Rapaccini GL, Ciasca G, Basile U, Carnazzo V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? J Pers Med 2024; 14:798. [PMID: 39201990 PMCID: PMC11355846 DOI: 10.3390/jpm14080798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic liver diseases (CLD) stem from various causes and lead to a gradual progression that ultimately may result in fibrosis and eventually cirrhosis. This process is typically prolonged and asymptomatic, characterized by the complex interplay among various cell types, signaling pathways, extracellular matrix components, and immune responses. With the prevalence of CLD increasing, diagnoses are often delayed, which leads to poor prognoses and in some cases, the need for liver transplants. Consequently, there is an urgent need for the development of novel, non-invasive methods for the diagnosis and monitoring of CLD. In this context, serum biomarkers-safer, repeatable, and more acceptable alternatives to tissue biopsies-are attracting significant research interest, although their clinical implementation is not yet widespread. This review summarizes the latest advancements in serum biomarkers for detecting hepatic fibrogenesis and advocates for concerted efforts to consolidate current knowledge, thereby providing patients with early, effective, and accessible diagnoses that facilitate personalized therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Tagliaferro
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, I.R.C.C.S. Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Clinical Pathology Unit, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Umberto Basile
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Valeria Carnazzo
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| |
Collapse
|
4
|
Yu D, Yin G, Lei J, Gong Y, Zheng L, He D, Lei L, Sun L. The correlation between serum levels of laminin, type IV collagen, type III procollagen N-terminal peptide and hyaluronic acid with the progression of post-COVID-19 pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1382244. [PMID: 38979035 PMCID: PMC11228261 DOI: 10.3389/fcell.2024.1382244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
COVID-19 patients often suffer from post-COVID-19 acute sequelae (PASC). Pulmonary fibrosis has the most significant long-term impact on the respiratory health of patients, known as post-COVID-19 pulmonary fibrosis (PC19-PF). PC19-PF can be caused by acute respiratory distress syndrome (ARDS) or COVID-19-induced pneumonia. Individuals who experience COVID-19 pneumonia symptoms (including cough, shortness of breath, dyspnea on exertion, and desaturation) for at least 12 weeks after diagnosis, almost all develop PC19-PF. Extracellular matrix molecules: laminin (LN), type IV collagen (IV Col), procollagen III N-terminal peptide (PIIINP), and hyaluronic acid (HA) are involved in the development and progression of PC19-PF. This study aimed to investigate the relationship between the progression of PC19-PF and serum levels of laminin, IV COL, PIIINP, and hyaluronic acid. This retrospective study included 162 PC19-PF patients treated and 160 healthy controls who received treatment at Shenzhen Longgang District Third People's Hospital, Hebei PetroChina Central Hospital and Changzhi People's Hospital from January 2021 to December 2023. Serum levels of LN, IV COL, PIIINP, and HA were detected by chemiluminescence immunoassay using commercial kits. Predicted forced vital capacity percentage (FVC% pred), predicted carbon monoxide lung diffusion capacity percentage (DLCO% pred), high-resolution computed tomography (HRCT) scores were assessed, and patient mortality was compared with healthy controls. Serum levels of LN, IV Col, PIIINP, and HA were significantly higher in PC19-PF or CTD-ILD patients than in healthy controls (all p < 0.05), and they were further elevated in acute exacerbation cases (all p < 0.01). In patients, HA was positively associated with HRCT scores and negatively associated with FVC% pred and DLCO% pred (all p < 0.05). Serum levels of LN, IV COL, PIIINP, and HA were significantly lower in surviving patients than in those who deceased (all p > 0.05). Serum levels of LN, IV C, PIIINP, and HA may affect the progression of PC19-PF and may serve as indicators of PC19-PF severity.
Collapse
Affiliation(s)
- Dapeng Yu
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Guangyue Yin
- Department of Clinical Laboratory, Hebei Petro China Central Hospital, Langfang, China
| | - Jing Lei
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yijun Gong
- Guangdong Provincial Engineering Technology Research Center for Autoimmune Laboratory Diagnostic Products, Shenzhen, China
| | - Liang Zheng
- Guangdong Provincial Engineering Technology Research Center for Autoimmune Laboratory Diagnostic Products, Shenzhen, China
| | - Dahui He
- Department of Clinical Laboratory, Shenzhen Longgang District Third People's Hospital, Shenzhen, China
| | - Lihua Lei
- Department of Clinical Laboratory, Huaiji County Traditional Chinese Medicine Hospital, Zhaoqing, China
| | - Lei Sun
- Department of Clinical Laboratory, Changzhi People's Hospital, Changzhi, China
| |
Collapse
|
5
|
Maroto-García J, Moreno Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Serum biomarkers for liver fibrosis assessment. ADVANCES IN LABORATORY MEDICINE 2024; 5:115-130. [PMID: 38939201 PMCID: PMC11206202 DOI: 10.1515/almed-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 06/29/2024]
Abstract
Liver fibrosis is the result of chronic liver injury of different etiologies produced by an imbalance between the synthesis and degeneration of the extracellular matrix and dysregulation of physiological mechanisms. Liver has a high regenerative capacity in the early stage of chronic diseases so a prompt liver fibrosis detection is important. Consequently, an easy and economic tool that could identify patients with liver fibrosis at the initial stages is needed. To achieve this, many non-invasive serum direct, such as hyaluronic acid or metalloproteases, and indirect biomarkers have been proposed to evaluate liver fibrosis. Also, there have been developed formulas that combine these biomarkers, some of them also introduce clinical and/or demographic parameters, like FIB-4, non-alcoholic fatty liver disease fibrosis score (NFS), enhance liver fibrosis (ELF) or Hepamet fibrosis score (HFS). In this manuscript we critically reviewed different serum biomarkers and formulas for their utility in the diagnosis and progression of liver fibrosis.
Collapse
Affiliation(s)
| | - Ana Moreno Álvarez
- Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Antonio Buño-Soto
- Laboratory Medicine Department, Hospital Universitario La Paz, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Álvaro González
- Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
6
|
Maroto-García J, Moreno-Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Biomarcadores séricos para la evaluación de la fibrosis hepática. ADVANCES IN LABORATORY MEDICINE 2024; 5:131-147. [PMID: 38939202 PMCID: PMC11206201 DOI: 10.1515/almed-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 06/29/2024]
Abstract
La fibrosis hepática se desarrolla como respuesta a la presencia de daño hepático crónico de diferentes etiologías, provocando un desequilibrio entre la síntesis y degeneración de la matriz extracelular y la desregulación de diversos mecanismos fisiológicos. En los estadios iniciales de las patologías crónicas, el hígado posee una elevada capacidad de regeneración, por lo que la detección temprana de la fibrosis hepática resulta esencial. En este contexto, es preciso contar con herramientas sencillas y económicas que permitan detectar la fibrosis hepática en sus fases iniciales. Para evaluar la fibrosis hepática, se han propuesto multitud de biomarcadores séricos no invasivos, tanto directos, como el ácido hialurónico o las metaloproteasas, como indirectos. Así mismo, se han desarrollado diversas fórmulas que combinan dichos biomarcadores junto con parámetros demográficos, como el índice FIB-4, el índice de fibrosis en la enfermedad de hígado graso no alcohólico (NFS, por sus siglas en inglés), la prueba ELF o el score de fibrosis Hepamet (HFS, por sus siglas en inglés). En el presente manuscrito, realizamos una revisión crítica del valor diagnóstico y pronóstico de los diferentes biomarcadores séricos y fórmulas actualmente existentes.
Collapse
Affiliation(s)
- Julia Maroto-García
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
| | - Ana Moreno-Álvarez
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
| | | | - Antonio Buño-Soto
- Departamento de Análisis Clínicos, Hospital Universitario La Paz, Madrid, España
- Instituto de investigación en salud del Hospital La (IdiPaz), Madrid, España
| | - Álvaro González
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
- Instituto Navarro de investigación en salud (IdiSNA), Pamplona, España
| |
Collapse
|
7
|
Li Y, Han M, Li X. Clinical and prognostic implications of hyaluronic acid in patients with COVID-19 reinfection and first infection. Front Microbiol 2024; 15:1406581. [PMID: 38881657 PMCID: PMC11178136 DOI: 10.3389/fmicb.2024.1406581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Previous research has shown that human identical sequences of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) promote coronavirus disease 2019 (COVID-19) progression by upregulating hyaluronic acid (HA). However, the association of HA with mortality and long COVID in SARS-CoV-2 reinfection and first infection is unclear. Methods Patients with COVID-19 at Beijing Ditan Hospital from September 2023 to November 2023 were consecutively enrolled. SARS-CoV-2 reinfections were matched 1:2 with first infections using a nearest neighbor propensity score matching algorithm. We compared the hospital outcomes between patients with COVID-19 reinfection and first infection. The association between HA levels and mortality and long COVID in the matched cohort was analyzed. Results The reinfection rate among COVID-19 hospitalized patients was 25.4% (62 cases). After propensity score matching, we found that reinfection was associated with a better clinical course and prognosis, including lower levels of C-reactive protein and erythrocyte sedimentation rate, fewer cases of bilateral lung infiltration and respiratory failure, and shorter viral clearance time and duration of symptoms (p < 0.05). HA levels were significantly higher in patients with primary infection [128.0 (90.5, 185.0) vs. 94.5 (62.0, 167.3), p = 0.008], those with prolonged viral clearance time [90.5 (61.5, 130.8) vs. 130.0 (95.0, 188.0), p < 0.001], and deceased patients [105.5 (76.8, 164.5) vs. 188.0 (118.0, 208.0), p = 0.002]. Further analysis showed that HA was an independent predictor of death (AUC: 0.789), and the risk of death increased by 4.435 times (OR = 5.435, 95% CI = 1.205-24.510, p = 0.028) in patients with high HA levels. We found that patients with HA levels above 116 ng/mL had an increased risk of death. However, the incidence of long COVID was similar in the different HA level groups (p > 0.05). Conclusion Serum HA may serve as a novel biomarker for predicting COVID-19 mortality in patients with SARS-CoV-2 reinfection and first infection. However, HA levels may not be associated with long COVID.
Collapse
Affiliation(s)
- Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ming Han
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ebrahimpour-Koujan S, Sohrabpour AA, Giovannucci E, Vatannejad A, Esmaillzadeh A. Effects of vitamin D supplementation on liver fibrogenic factors, vitamin D receptor and liver fibrogenic microRNAs in metabolic dysfunction-associated steatotic liver disease (MASLD) patients: an exploratory randomized clinical trial. Nutr J 2024; 23:24. [PMID: 38413933 PMCID: PMC10898146 DOI: 10.1186/s12937-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global metabolic problem which can lead to irreversible liver fibrosis. It has been shown that vitamin D and its receptors contribute to fibrogenic pathways in the liver. However, the effect of vitamin D supplementation on liver fibrosis related factors have not been examined. This double blinded placebo controlled clinical trial was designed to investigate the effects on vitamin D supplementation on serum levels of VDR, fibrogenic factors and fibrogenic MicroRNAs in MASLD patients. METHODS Forty six MASLD patients after block matching for sex and BMI were randomly assigned to receive 4000 IU/d vitamin D or placebo for 12 weeks. Weight, height and waist circumference were measured. Serum fibrogenic microRNAs, laminin, collagen type IV, hyaluronic acid, vitamin D, VDR, PTH, blood fasting glucose, serum fasting insulin, lipid profile, ALT and AST were determined at the baseline and at the end of the trial. Insulin resistance and insulin sensitivity were calculated using the HOMA-IR and QUICKI equation. RESULTS Supplementation with vitamin D for 12 weeks led to the significant increases in serum 25(OH) vitamin D, VDR and HDL-C compared to placebo (P < 0.001, P = 0.008 and P < 0.001). There were significant decreases in ALT, AST, FBS and LDL-C levels in the vitamin D group as compared to the placebo (P < 0.05). Laminin and hyaluronic acid concentrations were significantly decreased in the vitamin D group as compared to the placebo group, by -10.6 and - 28.7 ng/mL, respectively. Supplementation with vitamin D for 12 weeks resulted in a significant lower MiR-21 and MiR-122 gene expressions compared to the placebo group (P = 0.01 and P < 0.001, respectively). DISCUSSION As the first randomized controlled trial on the effect of vitamin D supplementation on serum levels of VDR, fibrogenic factors and fibrogenic MicroRNAs in MASLD patients, we found a significant reduction in some liver fibrogenic factors, in liver transaminases and corresponding changes in some fibrosis-related MiRs and some metabolic factors. Further clinical trials with larger sample sizes and direct measures of liver fibrosis are needed to confirm these findings. TRIAL REGISTRATION NUMBER (available at: http://www.irct.ir , identifier: IRCT201405251485N13), Registration date: 14-03-2017.
Collapse
Affiliation(s)
- Soraiya Ebrahimpour-Koujan
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box 14155-6117, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- The Liver, Pancreatic, and Biliary Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Edward Giovannucci
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box 14155-6117, Tehran, Iran.
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Hildenbrand FF, Illi B, von Felten S, Bachofner J, Gawinecka J, von Eckardstein A, Müllhaupt B, Mertens JC, Blümel S. Evaluation of soluble suppression of tumorigenicity 2 (sST2) as serum marker for liver fibrosis. BMC Gastroenterol 2024; 24:54. [PMID: 38291388 PMCID: PMC10825988 DOI: 10.1186/s12876-023-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND & AIMS With the increase in patients at risk of advanced liver disease due to the obesity epidemic, there will be a need for simple screening tools for advanced liver fibrosis. Soluble suppression of tumorigenicity 2 (sST2) is a serum biomarker for fibrotic processes. The aim of this study was to evaluate sST2 as marker for liver fibrosis in patients successfully treated for chronic hepatitis C. METHODS 424 patients from the Swiss Hepatitis C Cohort Study were screened for inclusion in this post-hoc cohort study. Inclusion criteria were sustained virological response (SVR), available elastography (VCTE) and serum samples for biomarker analysis before and after treatment. For the validation of sST2, values were compared to VCTE, FIB-4 and APRI using Spearman's correlation and AUROC analyses. RESULTS Data of 164 subjects were finally analyzed. Median sST2 values slightly increased with VCTE-derived fibrosis stages and remained stable after reaching SVR within the respective fibrosis stage, suggesting that sST2 is not influenced by liver inflammation. However, correlation of sST2 pre- and post-treatment with VCTE was fair (Spearman's rho = 0.39 and rho = 0.36). The area under the curve (AUROC) for sST2 in detecting VCTE-defined F4 fibrosis (vs. F0-F3) before therapy was 0.74 (95%CI 0.65-0.83), and 0.67(95%CI 0.56-0.78) for the discrimination of F3/F4 fibrosis vs. F0-F2. Adding sST2 to either APRI or FIB-4, respectively, increased diagnostic performance of both tests. CONCLUSIONS sST2 can potentially identify patients with advanced fibrosis as a single serum marker and in combination with APRI and FIB-4.
Collapse
Affiliation(s)
- Florian F Hildenbrand
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, Stadtspital Zurich, Zurich, Switzerland
| | - Barbara Illi
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Stefanie von Felten
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Jacqueline Bachofner
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Joanna Gawinecka
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Beat Müllhaupt
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | | | - Sena Blümel
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
10
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M, Shakouri SK. An Innovative Electrochemical Immuno-Platform for Monitoring Chronic Conditions Using the Biosensing of Hyaluronic Acid in Human Plasma Samples. CHEMOSENSORS 2023; 11:367. [DOI: 10.3390/chemosensors11070367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Hyaluronic acid (HA) is the main non-sulfated glycosaminoglycan of the extracellular matrix that is synthesized by fibroblasts and other specialized connective tissue cells. The accumulation of HA on different tissues is a characteristic of disorders that are associated with progressive tissue fibrosis. HA is also known to play a critical role in tumorigenesis and tumor metastasis. It is overproduced by many types of tumors and promotes tumor progression and multidrug resistance. There is a great necessity for the development of an easy and cost-effective detection method for the monitoring of HA for both the diagnosis and efficient treatment of related disorders. In the present study, an innovative immune device was designed for the rapid and sensitive recognition of HA in human plasma samples. For this purpose, an efficient alloy (Pt@Au) was fabricated on the surface of the gold electrode. Thus, a novel substrate was used for the preparation of an efficient transducer, which is necessary for the immobilization of biotinylated antibodies. CHA was applied for the electrochemical deposition of Pt@Au nano-alloy on Au electrodes. Additionally, the morphological study of the used nanocomposite was assessed using FESEM at a working voltage of 3 kV, and the chemical structures of the electrode were analyzed using the EDS apparatus. For the first time, a biocompatible alloy-based substrate was prepared for the study of antigen–antibody identification. The developed immunosensor has a linear response within the range of 0.156–160 ng.mL−1 with a limit of detection of 0.039 ng.mL−1 in human plasma samples. This research study offers a novel promising technique for HA analyses and is anticipated to be used in the early diagnosis of some disorders related to abnormal levels of HA in human bio-fluids. Thus, a constructed (pt@Au) nano-alloy provides a useful interface for the dense loading of AB. This excellent design loads high sensations of the biosensor for the selective detection of HA in real samples (human bio-fluids).
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Fereshteh Kohansal
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Seyed Kazem Shakouri
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| |
Collapse
|
11
|
Feng L, Riaz F, Lu K, Cheng X, Chen Y, Zhao R, Wu L, Lu S, Li D. Leucine aminopeptidase 3:a promising serum biomarker candidate for nonalcoholic steatohepatitis diagnosis. Int Immunopharmacol 2023; 119:110152. [PMID: 37058753 DOI: 10.1016/j.intimp.2023.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a highly prevalent liver disease that lacks targeted therapeutic drugs and non-invasive diagnostic methods. Increasing evidence demonstrated that aberrant expression of leucine aminopeptidase 3 (LAP3) is involved in NASH. Herein, we aimed to investigate whether LAP3 can be a promising serum biomarker for NASH diagnosis. METHODS Liver tissues and serum from NASH rats, serum from NASH patients, and liver biopsies from chronic hepatitis B (CHB) patients combined with NASH (CHB+NASH) were obtained to evaluate the LAP3 level. Correlation analysis was conducted to evaluate the association between LAP3 expression and clinical indexes in CHB patients and CHB+NASH patients. ROC curve analysis of LAP3 in the serum and liver was applied to assess whether LAP3 can be a promising biomarker for NASH diagnosis. RESULTS LAP3 was significantly upregulated in serum and hepatocytes of NASH rats and patients with NASH. Correlation analysis revealed that LAP3 in the liver of CHB patients and CHB+NASH patients showed a strong positive correlation with lipidome indicators total cholesterol (TC) and triglyceride (TG), and liver fibrosis indicator hyaluronic acid (HA), which showed a negative correlation with the international normalized ratio of prothrombin coagulation (INR) and liver injury indicator aspartate aminotransferase (AST). For NASH, the diagnostic accuracy of ALT > LAP3 > AST, the sensitivity LAP3 (0.87) > ALT (0.5957) > AST (0.2941), the specificity AST (0.975) > ALT (0.9) > LAP3 (0.5). CONCLUSION Our data urge that LAP3 can serve as a promising serum biomarker candidate for NASH diagnosis.
Collapse
Affiliation(s)
- Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068, Xueyuan Avenue, Shenzhen 518055, China
| | - Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Yanping Chen
- Department of Infectious Diseases, The Affiliated Hospital of Yan'an University Yan'an, China; Department of Infectious Diseases, Yan'an Second People's Hospital, Yan'an, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
12
|
Kim J, Seki E. Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets. Hepatol Commun 2023; 7:e0083. [PMID: 36930869 PMCID: PMC10027054 DOI: 10.1097/hc9.0000000000000083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/01/2022] [Indexed: 03/19/2023] Open
Abstract
Hyaluronan (HA), also known as hyaluronic acid, is a glycosaminoglycan that is a critical component of the extracellular matrix (ECM). Production and deposition of ECM is a wound-healing response that occurs during chronic liver disease, such as cirrhosis. ECM production is a sign of the disease progression of fibrosis. Indeed, the accumulation of HA in the liver and elevated serum HA levels are used as biomarkers of cirrhosis. However, recent studies also suggest that the ECM, and HA in particular, as a functional signaling molecule, facilitates disease progression and regulation. The systemic and local levels of HA are regulated by de novo synthesis, cleavage, endocytosis, and degradation of HA, and the molecular mass of HA influences its pathophysiological effects. However, the regulatory mechanisms of HA synthesis and catabolism and the functional role of HA are still poorly understood in liver fibrosis. This review summarizes the role of HA in liver fibrosis at molecular levels as well as its clinical implications and discusses the potential therapeutic uses of targeting HA in liver fibrosis.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
13
|
Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
14
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
15
|
Duizendstra AA, De Knegt RJ, Nagtzaam NMA, Betjes MGH, Dik WA, Litjens NHR, Kwekkeboom J. Minimal Development of Liver Fibrosis in Adult Tolerant Liver Transplant Recipients Late After Immunosuppressive Drug Weaning and Transplantation. Transplant Proc 2022; 54:1874-1880. [PMID: 36100485 DOI: 10.1016/j.transproceed.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Operationally tolerant liver transplant (LTx)-recipients can be weaned off immunosuppressive (IS) drugs without development of graft rejection. However, it is feared that liver fibrosis might develop after complete IS weaning. The purpose of this small single-center study was to assess liver fibrosis in adult tolerant LTx recipients long after LTx and IS weaning. METHODS Liver fibrosis was assessed in adult tolerant LTx-recipients (n = 9) using noninvasive transient elastography and measurements of multiple pro- and antifibrotic serum markers associated with liver fibrosis. The data was collected for 2 subsequent years; 8 and 9 years after IS weaning and 19 and 20 years after transplantation. Healthy individuals (n = 9) matched for age and sex were included as a reference for fibrosis-related serum markers. This study was conducted in accordance with the Declaration of Helsinki and approved by the medical ethics committee of our institution. RESULTS Transient elastography indicated that 7 of 9 tolerant LTx recipients had no or minimal liver fibrosis (F0-F1), whereas 2 recipients had moderate or severe liver fibrosis (F2-F3). Most fibrosis-related serum markers in tolerant LTx recipients were within or close to the range obtained for healthy individuals. CONCLUSIONS The results from this small, single-center study indicated that most adult tolerant LTx recipients have no or minimal liver graft fibrosis long after transplantation and IS weaning, and their fibrosis-related serum marker profile indicates an absence of a profibrotic status.
Collapse
Affiliation(s)
- Aafke A Duizendstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert J De Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicole M A Nagtzaam
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicolle H R Litjens
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Small fragments of hyaluronan are increased in individuals with obesity and contribute to low-grade inflammation through TLR-mediated activation of innate immune cells. Int J Obes (Lond) 2022; 46:1960-1969. [PMID: 35896710 PMCID: PMC9584819 DOI: 10.1038/s41366-022-01187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Background and aim Extracellular matrix (ECM) components released during excessive fat mass expansion are considered potential endogenous danger/alarm signals contributing to innate immune system activation. The aim of the current study was to specifically measure plasma levels of low molecular weight (LMW) hyaluronan (HA) and to evaluate its role as pro-inflammatory damage-associated molecular pattern (DAMP) on leukocyte response in the context of human obesity. Subjects and methods Participants were selected according to their body mass index (BMI, kg/m2) as non-obese (BMI < 29.9, n = 18) and obese (BMI > 29.9, n = 33). Plasma samples were size-dependent fractionated using ion-exchange chromatography to specifically obtain LMW HA fractions that were subsequently quantified by ELISA. Cell incubation experiments with synthetic HA molecules were performed on freshly Ficoll-isolated neutrophils (PMN) and peripheral blood monocytes (PBMC). Leukocyte and adipose tissue gene expression was assessed by real-time PCR and NF-κB activation by western blot. Plasma cytokine levels were measured by fluorescent bead-based (Luminex) immunoassay. Results We observed a statistically significant increase in the circulating levels of HA fragments of LMW in individuals with obesity which were consistent with significant up-regulated expression of the LMW HA synthesizing enzyme hyaluronan synthase-1 (HAS-1) in obese adipose tissue. Gene expression assessment of HA receptors revealed up-regulated levels for TLR2 in both obese PMN and PBMC. Synthetic HA molecules of different sizes were tested on leukocytes from healthy donors. LMW HA fragments (15–40 kDa) and not those from intermediate molecular sizes (75–350 kDa) induced a significant up-regulation of the expression of major pro-inflammatory cytokines such as IL-1β, MCP-1 and IL-8 in PBMC. Importantly, LMW HA was able to induce the phosphorylation of IKK α/β complex supporting its pro-inflammatory role through NF-κB activation. Conclusion Circulating LMW HA molecules are elevated in obesity and may play an important role in triggering low-grade inflammation and the development of metabolic complications.
Collapse
|
17
|
Hamdi M, Elmowafy E, Abdel-Bar HM, ElKashlan AM, Al-Jamal KT, Awad GAS. Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. Int J Biol Macromol 2022; 217:731-747. [PMID: 35841964 DOI: 10.1016/j.ijbiomac.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom.
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
18
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
19
|
Zhang C, Zhang C. Analysis of current status of quantitative detection of biomarkers for liver fibrosis in Clinical labs in China. J Clin Lab Anal 2022; 36:e24490. [PMID: 35587485 PMCID: PMC9279982 DOI: 10.1002/jcla.24490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023] Open
Abstract
Aim To explore the quality control and implementation of the quantitative detection of liver fibrosis biomarkers, laminin (LN), collagen IV (Col Ⅳ), procollagen III amino‐terminal propeptide (PⅢNP), hyaluronic acid (HA), and cholyglycine (CG), in China. Methods Two quality control products were measured in different laboratories using different measurement methods and reagents, and the acquired results were subjected to analysis. The quantitative detection technique was based on the conventional assessment criteria, with a target value ±30% being employed. Results Hundred labs were involved in the External Quality Assessment with 88 laboratories completing the assessment, and the pass rates were 84%, 80.2%, 67.5%, 77.3%, and 58.3% for HA, LN, PⅢNP, Col Ⅳ, and CG, respectively. Chemiluminescence immunoassay was used most for HA (90.1%), LN (90.1%), PⅢNP (87.9%), and Col Ⅳ (82.9%) determination, whereas the chemiluminescence immunoassay (31.6%), latex‐enhanced immunoturbidimetry (36.7%), and homogeneous enzyme immunoassay (26.7%) were used for CG determination. The coefficients of variation for HA, LN, PⅢNP, Col Ⅳ, and CG in different laboratories were 3.3%–19.49%, 1.74%–38.81%, 1.97%–41.29%, 2.85%–41.69%, and 2.71%–41.8%, respectively. Conclusion The clinical quantitative detection of liver fibrosis biomarkers is highly performed in China. The existing problems are that there are many manufacturers producing reagents and instruments, the quality of reagents is uneven, the specificity and sensitivity of reagents are greatly different, the comparability of results of various systems is poor, and the accuracy and consistency between different systems are lacking. All above underscores the critical importance of EQA in improving and monitoring the identification of biomarkers for liver fibrosis.
Collapse
Affiliation(s)
- Chao Zhang
- National Center for Clinical Laboratories, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
20
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Stecco A, Cowman M, Pirri N, Raghavan P, Pirri C. Densification: Hyaluronan Aggregation in Different Human Organs. Bioengineering (Basel) 2022; 9:159. [PMID: 35447719 PMCID: PMC9028708 DOI: 10.3390/bioengineering9040159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronan (HA) has complex biological roles that have catalyzed clinical interest in several fields of medicine. In this narrative review, we provide an overview of HA aggregation, also called densification, in human organs. The literature suggests that HA aggregation can occur in the liver, eye, lung, kidney, blood vessel, muscle, fascia, skin, pancreatic cancer and malignant melanoma. In all these organs, aggregation of HA leads to an increase in extracellular matrix viscosity, causing stiffness and organ dysfunction. Fibrosis, in some of these organs, may also occur as a direct consequence of densification in the long term. Specific imaging evaluation, such dynamic ultrasonography, elasto-sonography, elasto-MRI and T1ρ MRI can permit early diagnosis to enable the clinician to organize the treatment plan and avoid further progression of the pathology and dysfunction.
Collapse
Affiliation(s)
- Antonio Stecco
- Rusk Rehabilitation, New York University School of Medicine, New York, NY 10016, USA;
| | - Mary Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 10016, USA;
| | - Nina Pirri
- Department of Medicine—DIMED, School of Radiology, Radiology Institute, University of Padua, 35122 Padova, Italy;
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy
| |
Collapse
|
22
|
Rivas F, Erxleben D, Smith I, Rahbar E, DeAngelis PL, Cowman MK, Hall AR. Methods for isolating and analyzing physiological hyaluronan: a review. Am J Physiol Cell Physiol 2022; 322:C674-C687. [PMID: 35196167 PMCID: PMC8977137 DOI: 10.1152/ajpcell.00019.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging functions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiological samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyaluronan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and molecular weight.
Collapse
Affiliation(s)
- Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dorothea Erxleben
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ian Smith
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
23
|
Long non-coding RNA in Non-alcoholic fatty liver disease. Adv Clin Chem 2022; 110:1-35. [DOI: 10.1016/bs.acc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Xiong Y, Hu J, Xuan C, Tian J, Tan K, Chen Z, Luo Y, Du X, Cheng J, Zhang L, Cao W. Transcriptome analysis reveals the molecular mechanism of Yiqi Rougan decoction in reducing CCl 4-induced liver fibrosis in rats. Chin Med 2021; 16:142. [PMID: 34952623 PMCID: PMC8709947 DOI: 10.1186/s13020-021-00552-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Liver fibrosis develops from various chronic liver diseases, and there is currently a lack of specific treatment strategies. Yiqi Rougan decoction (YQRG) is a traditional Chinese medicine that has shown durative effects in the treatment of liver fibrosis; however, the mechanism associated with YQRG-related improvements in liver fibrosis remains to be experimentally determined. This study evaluated the therapeutic effect of YQRG on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and its molecular mechanism. Methods We used low-, medium-, and high-dose YQRG to treat CCl4-induced liver fibrosis in rats, followed by assessment of liver injury and fibrosis according to liver appearance, body weight, liver mass index, histopathologic examination, and serum testing. Additionally, we performed transcriptome analysis using RNA-sequencing (RNA-seq) technology, including cluster, Gene Ontology (GO), and pathway analyses, to identify differentially expressed genes (DEGs), and protein and gene expression were detected by immunofluorescence (IFC), western blot and real-time quantitative PCR. Results The results showed that YQRG effectively alleviated CCl4-induced liver injury and fibrosis in rats, including observations of improved liver function, decreased activity of hepatic stellate cells (HSCs), and decreased extracellular matrix (ECM) deposition. Moreover, we identified downregulated and upregulated DEGs in the model group relative to the control and YQRG-treated groups, with GO analysis revealing their enrichment in biological processes, such as endoplasmic reticulum stress (ERS), apoptosis, and autophagy. Furthermore, pathway analysis showed that YQRG treatment downregulated the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/AKT) signalling pathways and upregulated other signalling pathways, including those related to peroxisome proliferator-activated receptors(PPAR) and AMP-activated protein kinase(AMPK), with these findings subsequently verified experimentally. Conclusion These findings showed that YQRG improved CCl4-induced liver fibrosis through multiple mechanisms and pathways, offering critical insight into the YQRG-related therapeutic mechanism and promoting further research into its potential application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00552-w.
Collapse
Affiliation(s)
- Yu Xiong
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jinyuan Hu
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Chen Xuan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jiayu Tian
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Kaiyue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Zhiwei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Yan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China.,Department of Kidney Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Xuqin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Junxiong Cheng
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Lanyue Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Wenfu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China. .,Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Progressive Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10123401. [PMID: 34943908 PMCID: PMC8699709 DOI: 10.3390/cells10123401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic and progressive form of non-alcoholic fatty liver disease. Its global incidence is increasing and makes NASH an epidemic and a public health threat. Non-alcoholic fatty liver disease is associated with major morbidity and mortality, with a heavy burden on quality of life and liver transplant requirements. Due to repeated insults to the liver, patients are at risk for developing hepatocellular carcinoma. The progression of NASH was initially defined according to a two-hit model involving an initial development of steatosis, followed by a process of lipid peroxidation and inflammation. In contrast, current evidence proposes a “multi-hit” or “multi-parallel hit” model that includes multiple pathways promoting progressive fibrosis and oncogenesis. This model includes multiple cellular, genetic, immunological, metabolic, and endocrine pathways leading to hepatocellular carcinoma development, underscoring the complexity of this disease.
Collapse
|
26
|
Kolesova O, Vanaga I, Laivacuma S, Derovs A, Kolesovs A, Radzina M, Platkajis A, Eglite J, Hagina E, Arutjunana S, Putrins DS, Storozenko J, Rozentale B, Viksna L. Intriguing findings of liver fibrosis following COVID-19. BMC Gastroenterol 2021; 21:370. [PMID: 34635073 PMCID: PMC8503733 DOI: 10.1186/s12876-021-01939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background Studies on a new coronavirus disease (COVID-19) show the elevation of liver enzymes and liver fibrosis index (FIB-4) independently on pre-existing liver diseases. It points to increased liver fibrogenesis during acute COVID-19 with possible long-term consequences. This study aimed to assess liver fibrosis in COVID-19 patients by serum hyaluronic acid (HA) and FIB-4.
Methods The study included the acute COVID-19 group (66 patients, 50% females, mean age 58.3 ± 14.6), the post-COVID group (58 patients in 3–6 months after the recovery, 47% females, mean age 41.2 ± 13.4), and a control group (17 people, 47% females, mean age 42.8 ± 11.0). Ultrasound elastography was performed in the post-COVID and control groups.
Results Sixty-five percent of the acute COVID-19 group had increased FIB-4 (> 1.45), and 38% of patients had FIB-4 ≥ 3.25. After matching by demographics, 52% of acute COVID-19 and 5% of the post-COVID group had FIB-4 > 1.45, and 29% and 2% of patients had FIB-4 ≥ 3.25, respectively. Increased serum HA (≥ 75 ng/ml) was observed in 54% of the acute COVID-19 and 15% of the post-COVID group. In the acute COVID-19 group, HA positively correlated with FIB-4, AST, ALT, LDH, IL-6, and ferritin and negatively with blood oxygen saturation. In the post-COVID group, HA did not correlate with FIB-4, but it was positively associated with higher liver stiffness and ALT. Conclusion More than half of acute COVID-19 patients had increased serum HA and FIB-4 related to liver function tests, inflammatory markers, and blood oxygen saturation. It provides evidence for the induction of liver fibrosis by multiple factors during acute COVID-19. Findings also indicate possible liver fibrosis in about 5% of the post-COVID group.
Collapse
Affiliation(s)
- Oksana Kolesova
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia. .,Institute of Microbiology and Virology, Joint Laboratory of Immunology and Immunogenetics, Rīga Stradiņš University, 5 Ratsupites Street, Riga, 1067, Latvia.
| | - Ieva Vanaga
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia.,Institute of Microbiology and Virology, Joint Laboratory of Immunology and Immunogenetics, Rīga Stradiņš University, 5 Ratsupites Street, Riga, 1067, Latvia.,Riga East Clinical University Hospital, Riga, Latvia
| | - Sniedze Laivacuma
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia.,Riga East Clinical University Hospital, Riga, Latvia
| | - Aleksejs Derovs
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia
| | - Aleksandrs Kolesovs
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia.,Faculty of Education, Psychology, and Art, University of Latvia, Riga, Latvia
| | - Maija Radzina
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Radiology Research Laboratory, Rīga Stradiņš University, Riga, Latvia.,Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, Riga, Latvia
| | - Ardis Platkajis
- Department of Radiology, Rīga Stradiņš University, Riga, Latvia
| | - Jelena Eglite
- Institute of Microbiology and Virology, Joint Laboratory of Immunology and Immunogenetics, Rīga Stradiņš University, 5 Ratsupites Street, Riga, 1067, Latvia
| | - Elvira Hagina
- Institute of Microbiology and Virology, Joint Laboratory of Immunology and Immunogenetics, Rīga Stradiņš University, 5 Ratsupites Street, Riga, 1067, Latvia
| | | | - Davis Simanis Putrins
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, Riga, Latvia
| | - Jelena Storozenko
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia.,Central Laboratory Ltd., Riga, Latvia
| | - Baiba Rozentale
- Riga East Clinical University Hospital, Riga, Latvia.,Department of Public Health and Epidemiology, Rīga Stradiņš University, Riga, Latvia
| | - Ludmila Viksna
- Departments of Infectology, Rīga Stradiņš University, Riga, Latvia.,Riga East Clinical University Hospital, Riga, Latvia
| |
Collapse
|
27
|
Sato N, Kenjo A, Nishimagi A, Kimura T, Okada R, Ishigame T, Kofunato Y, Yamada S, Hashimoto Y, Marubashi S. Accuracy comparison of MR elastography and biological markers in detecting liver fibrosis and predicting postoperative ascites. HPB (Oxford) 2021; 23:1383-1391. [PMID: 33583734 DOI: 10.1016/j.hpb.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND This retrospective study aimed to compare the discriminative performance between magnetic resonance elastography (MRE) and biological markers in detecting liver fibrosis and in predicting postoperative ascites (PA). METHODS We enrolled 77 patients consecutively who underwent hepatectomy between March 2017 and June 2019. Liver fibrosis was histopathologically graded using the METAVIR scoring system as reference. Discriminative performance of non-invasive assessments in detecting different stages of liver fibrosis and predicting PA was evaluated by receiver-operator curve analysis. RESULTS The concordance indices (C-indices) for MRE and biological markers for detecting significant fibrosis (≥F2) and cirrhosis (F4) were: MRE, 0.84 and 0.86; Wisteria floribunda agglutinin + Mac-2 binding protein (WM2BP), 0.63 and 0.71; Hyaluronic acid (HA), 0.72 and 0.75; 7 S-type 4 collagen (T4C), 0.61 and 0.66; APRI, 0.76 and 0.83; and Fib-4, 0.75 and 0.76. Univariable logistic analysis for predicting PA showed that C-indices were 0.751 (p = 0.007), 0.798 (p = 0.106), 0.771 (p = 0.050), 0.674 (p = 0.855), 0.655 (p = 0.263), and 0.560 (p = 0.640) for MRE, WM2BP, Fib-4, HA, APRI, and T4C, respectively. CONCLUSION MRE has a higher diagnostic performance than biological markers in detecting the stages of liver fibrosis and is a predictor for PA after hepatectomy.
Collapse
Affiliation(s)
- Naoya Sato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan.
| | - Akira Kenjo
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Atsushi Nishimagi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Takashi Kimura
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Ryo Okada
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Teruhide Ishigame
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Yasuhide Kofunato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Shoki Yamada
- Department of Diagnostic Pathology, Fukushima Medical University, Hikarigaoka-1, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Hikarigaoka-1, Fukushima, Japan
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| |
Collapse
|
28
|
Rewisha E, Salman T, Alhaddad O, Raia GA, Naguib M, Rashad S, Abdelfattah A, Metwally K, Abdelsameea E. Hyaluronic acid as a potential marker for assessment of fibrosis regression after direct acting antiviral drugs in chronic hepatitis C patients. Clin Exp Hepatol 2021; 7:320-327. [PMID: 34712835 PMCID: PMC8527342 DOI: 10.5114/ceh.2021.109293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Fibrosis is an inevitable complication of chronic hepatitis C virus (HCV) infection. Direct acting antivirals (DAAs) radically treated HCV and were suggested to ameliorate fibrosis. Silymarin (a natural herbal remedy) was proposed to further decrease hepatic inflammation and fibrosis. Consequently, serial monitoring of liver fibrosis status by different biomarkers is needed. AIM OF THE STUDY To assess hyaluronic acid (HA) as a potential marker of fibrosis regression after DAAs in chronic HCV patients; in addition, to evaluate silymarin as an agent that, beside DAAs, could further improve fibrosis. MATERIAL AND METHODS Two groups were included (150 patients each). Group 1 received DAAs only, while group 2 received DAAs followed by silymarin. Hyaluronic acid and FIB4 score were assessed at baseline before treatment and 1 year after inclusion in the study. RESULTS We found that DAA therapy alone or in combination with silymarin resulted in a significant reduction in serum HA level. However, the latter case showed a statistically significantly greater reduction (p = 0.034). Mean ±SD of serum HA level was 211.8 ±179.9 and 143.3 ±123.9 µg/l before and one year after inclusion respectively in group 1 (p = 0.001) and also, its level decreased significantly in group 2 from 188.3 ±211.8 µg/l before receiving DAAs to 126.4 ±136.9 µg/l at one year after inclusion (p = 0.001). There was no significant difference between the 2 studied groups as regards FIB-4 at 1 year after inclusion (p = 0.103). CONCLUSIONS Hyaluronic acid might be a sensitive marker for monitoring fibrosis regression in treated chronic HCV patients. Adding silymarin to treatment protocols could ameliorate the fibrosis status.
Collapse
Affiliation(s)
- Eman Rewisha
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| | - Tary Salman
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| | - Omkolsoum Alhaddad
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| | - Gamal Abo Raia
- Clinical Pathology Department, National Liver Institute, Menoufia University, Egypt
| | - Mary Naguib
- Clinical Pathology Department, National Liver Institute, Menoufia University, Egypt
| | - Shymaa Rashad
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| | - Ahmed Abdelfattah
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| | - Khaled Metwally
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| | - Eman Abdelsameea
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Egypt
| |
Collapse
|
29
|
Osawa Y, Kawai H, Tsunoda T, Komatsu H, Okawara M, Tsutsui Y, Yoshida Y, Yoshikawa S, Mori T, Yamazoe T, Yoshio S, Oide T, Inui A, Kanto T. Cluster of Differentiation 44 Promotes Liver Fibrosis and Serves as a Biomarker in Congestive Hepatopathy. Hepatol Commun 2021; 5:1437-1447. [PMID: 34430787 PMCID: PMC8369942 DOI: 10.1002/hep4.1721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Congestive hepatopathy (CH) with chronic passive congestion is characterized by the progression of liver fibrosis without prominent inflammation and hepatocellular damage. Currently, the lack of reliable biomarkers for liver fibrosis in CH often precludes the clinical management of patients with CH. To explore fibrosis biomarkers, we performed proteome analysis on serum exosomes isolated from patients with CH after the Fontan procedure. Exosomal cluster of differentiation (CD)44 levels were increased in patients with CH compared to healthy volunteers and was accompanied by increases in serum levels of soluble CD44 and CD44 expression in the liver. To address the roles of CD44 in CH, we established a mouse model of chronic liver congestion by partial inferior vena cava ligation (pIVCL) that mimics CH by fibrosis progression with less inflammation and cellular damage. In the pIVCL mice, enhanced CD44 expression in hepatic stellate cells (HSCs) and deposition of its ligand hyaluronan were observed in the liver. Blood levels of soluble CD44 were correlated with liver fibrosis. The blockade of CD44 with specific antibody inhibited liver fibrosis in pIVCL mice and was accompanied by a reduction in S100 calcium-binding protein A4 expression following activation of HSCs. Conclusion: Chronic liver congestion promotes fibrosis through CD44. This identifies CD44 as a novel biomarker and therapeutic target of liver fibrosis in patients with CH.
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of GastroenterologyInternational University of Health and Welfare HospitalNasushiobaraJapan.,Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Hironari Kawai
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Haruki Komatsu
- Department of PediatricsToho University Medical CenterSakura HospitalSakuraJapan
| | - Miku Okawara
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuriko Tsutsui
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuichi Yoshida
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Shiori Yoshikawa
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taizo Mori
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taiji Yamazoe
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Sachiyo Yoshio
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Takashi Oide
- Department of Pathology and Laboratory MedicineKohnodai HospitalNational Center for Global Health and MedicineIchikawaJapan
| | - Ayano Inui
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Tatsuya Kanto
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| |
Collapse
|
30
|
Fujita K, Masaki T. Serum Biomarkers of Liver Fibrosis Staging in the Era of the Concept "Compensated Advanced Chronic Liver Disease". J Clin Med 2021; 10:3340. [PMID: 34362121 PMCID: PMC8347037 DOI: 10.3390/jcm10153340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
Non-invasive indexes of liver fibrosis based on blood examinations have been developed for decades, partially replacing liver biopsy examinations. Recently, the concept of liver cirrhosis was revised and converted to "compensated advanced chronic liver diseases" since the Baveno VI consensus statement in 2015. The term "compensated advanced chronic liver diseases" was established based on the premise that serum biomarkers were not able to differentiate cirrhosis from severe fibrosis. The difficulty to histologically distinguish cirrhosis from severe fibrosis had been pointed out in 1977, when the definition and nomenclatures of cirrhosis had been determined by the World Health Organization. That was decades before serum biomarkers available at present were investigated. Though we are accustomed to differentiating the fibrosis stage as stage 1, 2, 3 (severe fibrosis), and 4 (cirrhosis), differentiation of cirrhosis from severe fibrosis is difficult even by histopathological examination. The current review will provide readers a framework to revise how to apply serum biomarkers on liver fibrosis staging in an era of the concept of "compensated advanced chronic liver disease".
Collapse
Affiliation(s)
- Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita District, Kagawa 761-0793, Japan;
| | | |
Collapse
|
31
|
Lin CY, Adhikary P, Cheng K. Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis. Adv Drug Deliv Rev 2021; 174:127-139. [PMID: 33857552 PMCID: PMC8217274 DOI: 10.1016/j.addr.2021.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix due to chronic injuries, such as viral infection, alcohol abuse, high-fat diet, and toxins. Liver fibrosis is reversible before it progresses to cirrhosis and hepatocellular carcinoma. Type 2 diabetes significantly increases the risk of developing various complications including liver diseases. Abundant evidence suggests that type 2 diabetes and liver diseases are bidirectionally associated. Patients with type 2 diabetes experience more severe symptoms and accelerated progression of live diseases. Obesity and insulin resistance resulting from hyperlipidemia and hyperglycemia are regarded as the two major risk factors that link type 2 diabetes and liver fibrosis. This review summarizes possible mechanisms of the association between type 2 diabetes and liver fibrosis. The cellular protein markers that can be used for diagnosis and therapy of type 2 diabetes-associated liver fibrosis are discussed. We also highlight the potential therapeutic agents and their delivery systems that have been investigated for type 2 diabetes-associated liver fibrosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States.
| |
Collapse
|
32
|
Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne) 2021; 8:615978. [PMID: 33937277 PMCID: PMC8079659 DOI: 10.3389/fmed.2021.615978] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing percentage of people have or are at risk to develop non-alcoholic fatty liver disease (NAFLD) worldwide. NAFLD comprises different stadia going from isolated steatosis to non-alcoholic steatohepatitis (NASH). NASH is a chronic state of liver inflammation that leads to the transformation of hepatic stellate cells to myofibroblasts. These cells produce extra-cellular matrix that results in liver fibrosis. In a normal situation, fibrogenesis is a wound healing process that preserves tissue integrity. However, sustained and progressive fibrosis can become pathogenic. This process takes many years and is often asymptomatic. Therefore, patients usually present themselves with end-stage liver disease e.g., liver cirrhosis, decompensated liver disease or even hepatocellular carcinoma. Fibrosis has also been identified as the most important predictor of prognosis in patients with NAFLD. Currently, only a minority of patients with liver fibrosis are identified to be at risk and hence referred for treatment. This is not only because the disease is largely asymptomatic, but also due to the fact that currently liver biopsy is still the golden standard for accurate detection of liver fibrosis. However, performing a liver biopsy harbors some risks and requires resources and expertise, hence is not applicable in every clinical setting and is unsuitable for screening. Consequently, different non-invasive diagnostic tools, mainly based on analysis of blood or other specimens or based on imaging have been developed or are in development. In this review, we will first give an overview of the pathogenic mechanisms of the evolution from isolated steatosis to fibrosis. This serves as the basis for the subsequent discussion of the current and future diagnostic biomarkers and anti-fibrotic drugs.
Collapse
Affiliation(s)
- Leen J. M. Heyens
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Dana Busschots
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Ger H. Koek
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Geert Robaeys
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Gastroenterology and Hepatology, University Hospital Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Sven Francque
| |
Collapse
|
33
|
Saleh SAB, Abdelwahab KM, Mady AM, Mohamed GA. The impact of achieving a sustained virological response with direct-acting antivirals on serum autotaxin levels in chronic hepatitis C patients. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00060-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Autotaxin (ATX) is an emerging biomarker for liver fibrosis. Achievement of sustained virological response (SVR) by direct-acting antivirals (DAAs) results in hepatic fibrosis regression in chronic hepatitis C (CHC) patients. In this context, the clinical implications of ATX have not yet been well-defined. In this study, we aimed to assess the impact of achieving SVR with DAA therapy on serum ATX levels and whether these levels can reflect the regression of hepatic fibrosis in CHC patients. We evaluated serum ATX levels at baseline and 12 weeks post-DAA therapy in 48 CHC patients. We compared ATX with FIB4 score and AST-to-Platelet Ratio Index (APRI) as regards the detection of grade F3–4 fibrosis.
Results
Serum ATX levels were significantly declined in 47 patients after the achievement of SVR12 (p < 0.001). The diagnostic ability of ATX for the detection of grade F3–4 fibrosis was inferior to FIB4 and APRI scores at baseline and SVR12.
Conclusion
Achievement of SVR with DAA therapy causes a significant decline in serum autotaxin concentrations, suggesting early regression of hepatic fibrosis in CHC patients. However, its diagnostic capability for routine patient monitoring and follow-up is still under debate.
Collapse
|
34
|
Mosca A, Panera N, Crudele A, Alisi A. Noninvasive diagnostic tools for pediatric NAFLD: where are we now? Expert Rev Gastroenterol Hepatol 2020; 14:1035-1046. [PMID: 32715793 DOI: 10.1080/17474124.2020.1801413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver disease in the pediatric population. It is a significant liver complication of obesity that also prominently affects children. Over the past decade, several noninvasive methods have been investigated for replacing liver biopsy to identify which children with NAFLD have nonalcoholic steatohepatitis (NASH) and fibrosis. These methods that aim to differentiate the type and extent of liver damage are based on two main different methodologies: a 'biological' approach centered on the quantification of circulating biomarkers; and a 'physical' approach established by analyzing different imaging data. AREAS COVERED In this review, we illustrate the state of the art and recent discoveries on noninvasive methods for the diagnosis of NAFLD, NASH, and advanced fibrosis. EXPERT OPINION Currently, noninvasive tests cannot diagnose NASH or determine the degree of fibrosis. However, several lines of evidence have suggested that if these tests are used in a complementary way with other laboratory tests and imaging they have the potential to be used to monitor progression of disease and response to therapy in pediatric NAFLD. Future scientific research will focus on combining these methods with multiple potential predictors of genetic susceptibility.
Collapse
Affiliation(s)
- Antonella Mosca
- Hepatology Gastroenterology and Nutrition, Bambino Gesù Children's Hospital , Rome, Italy
| | - Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| |
Collapse
|
35
|
Wu LF, Xiang XX, Bai DS, Jin SJ, Zhang C, Zhou BH, Qian JJ, Jiang GQ. Novel noninvasive liver fibrotic markers to predict postoperative re-bleeding after laparoscopic splenectomy and azygoportal disconnection: a 1-year prospective study. Surg Endosc 2020; 35:6158-6165. [PMID: 33094827 DOI: 10.1007/s00464-020-08111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Esophagogastric variceal re-bleeding (EGVR) is a common and potentially lethal complication after open or laparoscopic splenectomy and azygoportal disconnection (LSD) in patients with cirrhosis and portal hypertension. Currently, noninvasive biomarkers for predicting EGVR are lacking. This prospective study focused on developing a noninvasive and convenient clinical model for predicting postoperative EGVR. METHODS Between September 2014 and March 2017, we enrolled 164 patients with cirrhosis who successfully underwent LSD. Based on the absence or presence of EGVR, patients were divided into EGVR and non-EGVR groups. We used correlation analysis to determine significant candidate variables among the liver fibrotic markers procollagen type III (PC-III), hyaluronidase (HA), laminin (LN), and type IV collagen (C-IV). RESULTS Postoperative EGVR occurred in 22 (13.41%) patients. Correlation analyses showed that LN (r = 0.375; p < 0.001) and C-IV (r = 0.349; p < 0.001) were significantly positively associated with EGVR. The area under the receiver operating characteristic curve (AUC) of LN was 0.817 (95% confidence interval [CI] 0.722-0.913); that of C-IV was 0.795 (95% CI 0.710-0.881). In logistic multivariate regression, cutoff values LN ≥ 64 µg/L and of C-IV ≥ 65 µg/L were independent risk factors for EGVR. LN ≥ 64 µg/L combined with C-IV ≥ 65 µg/L was the best performing model, with AUC 0.867 (95% CI 0.768-0.967). CONCLUSION LN and C-IV are potential markers to predict EGVR. Combining the two markers showed satisfactory ability to predict EGVR in patients with cirrhosis and portal hypertension after LSD.
Collapse
Affiliation(s)
- Long-Fei Wu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Hepatobiliary Surgery, The First Clinical College, Dalian Medical University, Dalian, China
| | - Xiao-Xing Xiang
- Department of Digestive Diseases, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Bao-Huan Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Jian-Jun Qian
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
36
|
Hyaluronan-carnosine conjugates inhibit Aβ aggregation and toxicity. Sci Rep 2020; 10:15998. [PMID: 32994475 PMCID: PMC7524733 DOI: 10.1038/s41598-020-72989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder. Finding a pharmacological approach that cures and/or prevents the onset of this devastating disease represents an important challenge for researchers. According to the amyloid cascade hypothesis, increases in extracellular amyloid-β (Aβ) levels give rise to different aggregated species, such as protofibrils, fibrils and oligomers, with oligomers being the more toxic species for cells. Many efforts have recently been focused on multi-target ligands to address the multiple events that occur concurrently with toxic aggregation at the onset of the disease. Moreover, investigating the effect of endogenous compounds or a combination thereof is a promising approach to prevent the side effects of entirely synthetic drugs. In this work, we report the synthesis, structural characterization and Aβ antiaggregant ability of new derivatives of hyaluronic acid (Hy, 200 and 700 kDa) functionalized with carnosine (Car), a multi-functional natural dipeptide. The bioactive substances (HyCar) inhibit the formation of amyloid-type aggregates of Aβ42 more than the parent compounds; this effect is proportional to Car loading. Furthermore, the HyCar derivatives are able to dissolve the amyloid fibrils and to reduce Aβ-induced toxicity in vitro. The enzymatic degradation of Aβ is also affected by the interaction with HyCar.
Collapse
|
37
|
Matsuda M, Seki E. The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food Chem Toxicol 2020; 143:111556. [PMID: 32640349 DOI: 10.1016/j.fct.2020.111556] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a hepatic wound-healing response caused by chronic liver diseases that include viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis, and cholestatic liver disease. Liver fibrosis eventually progresses to cirrhosis that is histologically characterized by an abnormal liver architecture that includes distortion of liver parenchyma, formation of regenerative nodules, and a massive accumulation of extracellular matrix (ECM). Despite intensive investigations into the underlying mechanisms of liver fibrosis, developments of anti-fibrotic therapies for liver fibrosis are still unsatisfactory. Recent novel experimental approaches, such as single-cell RNA sequencing and proteomics, have revealed the heterogeneity of ECM-producing cells (mesenchymal cells) and ECM-regulating cells (immune cells and endothelial cells). These approaches have accelerated the identification of fibrosis-specific subpopulations among these cell types. The ECM also consists of heterogenous components. Their production, degradation, deposition, and remodeling are dynamically regulated in liver fibrosis, further affecting the functions of cells responsible for fibrosis. These cellular and ECM elements cooperatively form a unique microenvironment: a fibrotic niche. Understanding the complex interplay between these elements could lead to a better understanding of underlying fibrosis mechanisms and to the development of effective therapies.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ekihiro Seki
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Liu Q, Liu Q, Lei X, Cao Z, Zhang J, Kuang T, Liu G, Fang Y, Qian K, Fu J, Du H, Yan L, Xiao Z, Li C, Xu X. Protective effect of oil from Cornus wilsoniana fruits against carbon tetrachloride-induced hepatic fibrosis in mice. Food Nutr Res 2020. [DOI: 10.29219/fnr.v64.4205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Campello E, Radu CM, Zanetto A, Bulato C, Shalaby S, Spiezia L, Franceschet E, Burra P, Russo FP, Simioni P. Changes in plasma circulating microvesicles in patients with HCV-related cirrhosis after treatment with direct-acting antivirals. Liver Int 2020; 40:913-920. [PMID: 31454463 DOI: 10.1111/liv.14234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The eradication of Hepatitis C (HCV) infection by direct-acting antiviral (DAAs) agents has been linked to an amelioration of liver synthesis and regression of fibrosis. Although changes in number and type of circulating microvesicles (MVs) have been reported in cirrhosis, conclusive data on the effect of DAAs treatment on MVs profile in HCV cirrhotic patients remain scarce. METHODS We measured the levels of endothelial, platelet and hepatocyte MVs, as well as MVs-expressing versican core protein (VCAN+) in patients with HCV-related cirrhosis at baseline, end of treatment (EOT), at 12, 24 and 48 weeks (W) after EOT by new generation flow cytometry. RESULTS Fifty-eight patients were enrolled (86% Child's A). MVs were increased at EOT vs baseline, though only platelet MVs revealed a statistically significant difference (P < .01). MV levels did not change significantly after EOT notwithstanding a steady downward trend towards baseline levels. Conversely, VCAN + MVs dropped significantly at EOT (P < .001) and remained low throughout the follow-up. Hepatocyte MVs significantly correlated with liver stiffness (r = .40, P = .0021). Eight composite outcomes occurred during the 1-year follow-up: three portal vein thromboses (PVTs), two hepatocellular carcinomas (HCCs) and three liver decompensation. Child's B, the presence of F2 oesophageal varices (OR for interaction 19.2 [95% CI 1.45-253.7], P = .023) and platelet MVs (OR 1.026 [95% CI 1.00-1.05, P = .023) correlated significantly with clinical outcomes. CONCLUSIONS VCAN + MVs appear to mirror the profibrotic status of the cirrhotic disease; hepatocyte MVs correlate with liver stiffness and increased platelet MV levels could be associated with a worse clinical outcome.
Collapse
Affiliation(s)
- Elena Campello
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padova University Hospital, Padova, Italy
| | - Claudia M Radu
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padova University Hospital, Padova, Italy
| | - Alberto Zanetto
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology and Multivisceral Transplant Unit, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padova University Hospital, Padova, Italy
| | - Sarah Shalaby
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology and Multivisceral Transplant Unit, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padova University Hospital, Padova, Italy
| | - Enrica Franceschet
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology and Multivisceral Transplant Unit, Padova University Hospital, Padova, Italy
| | - Patrizia Burra
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology and Multivisceral Transplant Unit, Padova University Hospital, Padova, Italy
| | - Francesco P Russo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology and Multivisceral Transplant Unit, Padova University Hospital, Padova, Italy
| | - Paolo Simioni
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
40
|
Ayobahan SU, Eilebrecht S, Baumann L, Teigeler M, Hollert H, Kalkhof S, Eilebrecht E, Schäfers C. Detection of biomarkers to differentiate endocrine disruption from hepatotoxicity in zebrafish (Danio rerio) using proteomics. CHEMOSPHERE 2020; 240:124970. [PMID: 31726584 DOI: 10.1016/j.chemosphere.2019.124970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Measurement of specific biomarkers identified by proteomics provides a potential alternative method for risk assessment, which is required to discriminate between hepatotoxicity and endocrine disruption. In this study, adult zebrafish (Danio rerio) were exposed to the hepatotoxic substance acetaminophen (APAP) for 21 days, in a fish short-term reproduction assay (FSTRA). The molecular changes induced by APAP exposure were studied in liver and gonads by applying a previously developed combined FSTRA and proteomics approach. We observed a significant decrease in egg numbers, an increase in plasma hyaluronic acid, and the presence of single cell necrosis in liver tissue. Furthermore, nine common biomarkers (atp5f1b, etfa, uqcrc2a, cahz, c3a.1, rab11ba, mettl7a, khdrbs1a and si:dkey-108k21.24) for assessing hepatotoxicity were detected in both male and female liver, indicating hepatic damage. In comparison with exposure to fadrozole, an endocrine disrupting chemical (EDC), three potential biomarkers for liver injury, i.e. cahz, c3a.1 and atp5f1b, were differentially expressed. The zebrafish proteome response to fadrozole exposure indicated a significant regulation in estrogen synthesis and perturbed binding of sperm to zona pellucida in the ovary. This study demonstrates that biomarkers identified and quantified by proteomics can serve as additional weight-of-evidence for the discrimination of hepatotoxicity and endocrine disruption, which is necessary for hazard identification in EU legislation and to decide upon the option for risk assessment.
Collapse
Affiliation(s)
- Steve U Ayobahan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Institute of Environmental Research (Biology V), RWTH Aachen, Aachen, Germany.
| | - Sebastian Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Teigeler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Institute of Environmental Research (Biology V), RWTH Aachen, Aachen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
41
|
Shao X, Uojima H, Setsu T, Okubo T, Atsukawa M, Furuichi Y, Arase Y, Hidaka H, Tanaka Y, Nakazawa T, Kako M, Kagawa T, Iwakiri K, Terai S, Koizumi W. Usefulness of autotaxin for the complications of liver cirrhosis. World J Gastroenterol 2020; 26:97-108. [PMID: 31933517 PMCID: PMC6952300 DOI: 10.3748/wjg.v26.i1.97] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autotaxin (ATX) has been reported as a direct biomarker for estimating the evaluation of liver fibrosis. But available data on ATX as a useful biomarker for the complications of liver cirrhosis (LC) are scant.
AIM To assess the clinical usefulness of ATX for assessing the complications of LC.
METHODS This multicenter, retrospective study was conducted at six locations in Japan. We include patients with LC, n = 400. The ATX level was evaluated separately in men and women because of its high level in female patients. To assess the clinical usefulness of ATX for the complications of LC, the area under the curve (AUC) of ATX assessing for the severe complications was analyzed in comparison with the model for end-stage liver disease score, albumin-bilirubin (ALBI) score, fibrosis-4 index, and aspartate aminotransferase-to-platelet ratio index.
RESULTS The mean age was 68.4 ± 11.4 years, 240 patients (60.0%) were male. A total of 213 (53.3%) and 187 (46.8%) patients were compensated and decompensated, respectively. The numbers of patients with varix rupture, hepatic ascites, and hepatic encephalopathy were 35 (8.8%), 131 (32.8%), and 103 (25.8%), respectively. The AUCs of ATX in men for hepatic encephalopathy, hepatic ascites, and varix ruptures were 0.853, 0.816, and 0.706, respectively. The AUCs of ATX in women for hepatic encephalopathy, hepatic ascites, and varix rupture were 0.759, 0.717, and 0.697, respectively. The AUCs of ATX in men were higher than those in women, as were all the other biomarkers used to detect encephalopathy and varix ruptures. However, for detecting ascites, the AUC of ALBI in men was more effective than using ATX.
CONCLUSION ATX in men was more effective than any other biomarkers for detecting hepatic encephalopathy and varix ruptures.
Collapse
Affiliation(s)
- Xue Shao
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kamakura, Kanagawa 247-8533, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomomi Okubo
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Chiba 270-1694, Japan
| | - Masanori Atsukawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yoshihiro Furuichi
- Department of Gastroenterology and Hepatology, Tokyo Medical University Hospital, Shinjuku, Tokyo 113-8510, Japan
| | - Yoshitaka Arase
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Yoshiaki Tanaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Takahide Nakazawa
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Makoto Kako
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kamakura, Kanagawa 247-8533, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Katsuhiko Iwakiri
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| |
Collapse
|
42
|
Kluge M, Tacke F. Liver impairment in critical illness and sepsis: the dawn of new biomarkers? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S258. [PMID: 32015977 DOI: 10.21037/atm.2019.12.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Martin Kluge
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
43
|
Kawada T. Validation Study of Elastographies in Patients With Nonalcoholic Fatty Liver Disease for Detecting Liver Fibrosis. Clin Gastroenterol Hepatol 2019; 17:2139-2140. [PMID: 30953755 DOI: 10.1016/j.cgh.2019.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
44
|
Mustonen AM, Salvén A, Kärjä V, Rilla K, Matilainen J, Nieminen P. Hyaluronan histochemistry-a potential new tool to assess the progress of liver disease from simple steatosis to hepatocellular carcinoma. Glycobiology 2019; 29:298-306. [PMID: 30689936 DOI: 10.1093/glycob/cwz002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease is among the most common liver diseases worldwide and one cause of cirrhosis that can result in the development of hepatocellular carcinoma (HCC). Hyaluronan (HA) is a high-molecular-mass glycosaminoglycan with diverse functions in tissue injury and repair, for instance, in inflammation and fibrogenesis. The aim of the present study was to investigate the relationships between the HA synthesizing and degrading enzymes in a spectrum of liver pathologies. This was realized by histological staining of liver sections from controls and patients with simple steatosis, steatohepatitis, cirrhosis and HCC (n = 90). HA-positive staining intensified in connective tissue in all liver pathologies, and staining of CD44, the major HA receptor, similarly increased in steatohepatitis and cirrhosis. HA synthase 1 (HAS1)-positive staining was reduced in steatosis, steatohepatitis and HCC. Staining of HAS3, which produces HA of a lower molecular mass, promotes inflammation and is pathogenic in animal models, increased in all diagnoses. The responses in staining intensity of HAS2 and hyaluronidases 1-2 were specific for different cell types. These findings suggest that HAS1-2 are responsible for HA synthesis in healthy livers, while HAS3 increases in importance in liver diseases. It is noteworthy that the pathological changes in HA metabolism are already visible in simple steatosis and, thus, precede the histological changes of inflammation and fibrosis. It could be possible to intervene in disease progression at an early stage by influencing HA metabolism. The results could have potential clinical applications with HAS3 immunostaining supplementing the existing HCC diagnostics.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| | - Anu Salvén
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Matilainen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Nieminen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
45
|
Yang YM, Noureddin M, Liu C, Ohashi K, Kim SY, Ramnath D, Powell EE, Sweet MJ, Roh YS, Hsin IF, Deng N, Liu Z, Liang J, Mena E, Shouhed D, Schwabe RF, Jiang D, Lu SC, Noble PW, Seki E. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci Transl Med 2019; 11:eaat9284. [PMID: 31189722 PMCID: PMC6589184 DOI: 10.1126/scitranslmed.aat9284] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/14/2019] [Indexed: 01/18/2023]
Abstract
Hyaluronan (HA), a major extracellular matrix glycosaminoglycan, is a biomarker for cirrhosis. However, little is known about the regulatory and downstream mechanisms of HA overproduction in liver fibrosis. Hepatic HA and HA synthase 2 (HAS2) expression was elevated in both human and murine liver fibrosis. HA production and liver fibrosis were reduced in mice lacking HAS2 in hepatic stellate cells (HSCs), whereas mice overexpressing HAS2 had exacerbated liver fibrosis. HAS2 was transcriptionally up-regulated by transforming growth factor-β through Wilms tumor 1 to promote fibrogenic, proliferative, and invasive properties of HSCs via CD44, Toll-like receptor 4 (TLR4), and newly identified downstream effector Notch1. Inhibition of HA synthesis by 4-methylumbelliferone reduced HSC activation and liver fibrosis in mice. Our study provides evidence that HAS2 actively synthesizes HA in HSCs and that it promotes HSC activation and liver fibrosis through Notch1. Targeted HA inhibition may have potential to be an effective therapy for liver fibrosis.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Mazen Noureddin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cheng Liu
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Koichiro Ohashi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - So Yeon Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, University of Queensland, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yoon Seok Roh
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pharmacy, Chungbuk National University College of Pharmacy, Cheongju, Chungbuk 28160, South Korea
| | - I-Fang Hsin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edward Mena
- California Liver Research Institute, Pasadena, CA 91105, USA
| | - Daniel Shouhed
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
46
|
Hyaluronan as tunable drug delivery system. Adv Drug Deliv Rev 2019; 146:83-96. [PMID: 31421148 DOI: 10.1016/j.addr.2019.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
The hyaluronan (HA) polymer is an important macromolecule of extracellular matrix with remarkable structure and functions: it is a linear and unbranched polymer without sulphate or phosphate groups and has key role in several biological processes in mammals. It is ubiquitous in mammalian tissues with several and specific functions, influencing cell proliferation and migration as well as angiogenesis and inflammation. To exert these important functions in tissues HA modifies the concentration and size. Considering this HA content in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The function of HA is also critical in several pathologies including cancer, diabetes and chronic inflammation. Among these biological roles, the structural properties of HA allow to use this polymer in regenerative medicine including cosmetics and drug delivery. HA takes advantage from its capacity to form gels even at concentration of 1% producing scaffolds with very intriguing mechanical properties. These hydrogels are useful in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues and its role as drug delivery system.
Collapse
|
47
|
Agbim U, Asrani SK. Non-invasive assessment of liver fibrosis and prognosis: an update on serum and elastography markers. Expert Rev Gastroenterol Hepatol 2019; 13:361-374. [PMID: 30791772 DOI: 10.1080/17474124.2019.1579641] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-invasive assessment of fibrosis is increasingly utilized in clinical practice to diagnose hepatic fibrosis. Non-invasive assessment of liver fibrosis relies on biologic and/or physical properties to assess tissue fibrosis. Serum markers estimate fibrosis by incorporating markers reflecting hepatic function (indirect markers) and/or markers measuring extracellular matrix degradation/fibrogenesis (direct markers). Radiology based techniques relay the mechanical properties and stiffness of a tissue, with increased stiffness associated with more advanced fibrosis. Areas covered: In this comprehensive review, the recent literature discussing serum markers and elastography-based techniques will be covered. These modalities are also explored in the setting of various liver diseases. Expert opinion: The etiology of liver disease and clinical context should be taken into consideration when non-invasive markers are incorporated in clinical practice. Non-invasive assessment of fibrosis has been most extensively utilized in hepatitis C, followed by hepatitis B and nonalcoholic fatty liver disease, but its role remains less developed in other etiologies of liver disease such as alcohol-associated liver disease and autoimmune liver disease. The role of non-invasive markers in predicting progression or regression of fibrosis, development of liver-related events and survival needs to be further explored.
Collapse
Affiliation(s)
- Uchenna Agbim
- a Division of Transplant Surgery, Department of Surgery , University of Tennessee Health Science Center , Memphis , TN , USA
| | | |
Collapse
|
48
|
Sukowati CHC, Anfuso B, Fiore E, Ie SI, Raseni A, Vascotto F, Avellini C, Mazzolini G, Tiribelli C. Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis. Sci Rep 2019; 9:4026. [PMID: 30858465 PMCID: PMC6411988 DOI: 10.1038/s41598-019-40436-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan of extracellular matrix related to cell surface which interacts with various cell types. To understand the role of HA during hepatocarcinogenesis, we assessed the effect of the inhibition of HA deposition and its association with heterogeneous hepatocellular carcinoma (HCC) cells. In this study, we used transgenic mice C57BL/6J-Tg(Alb1HBV)44Bri/J (HBV-TG) and normal C57BL/6 J (WT) for in vivo study, while HCC cells Huh7 and JHH6 as in vitro models. Both models were treated with an HA inhibitor 4-methylumbelliferone (4MU). We observed that 4MU treatments in animal model down-regulated the mRNA expressions of HA-related genes Has3 and Hyal2 only in HBV-TG but not in normal WT. As observed in vivo, in HCC cell lines, the HAS2 mRNA expression was down-regulated in Huh7 while HAS3 in JHH6, both with or without the presence of extrinsic HA. Interestingly, in both models, the expressions of various cancer stem cells (CD44, CD90, CD133, and EpCAM) were also decreased. Further, histological analysis showed that 4MU treatment with dose 25 mg/kg/day reduced fibrosis, inflammation, and steatosis in vivo, in addition to be pro-apoptotic. We concluded that the inhibition of HA reduced the expressions of HA-related genes and stem cells markers in both models, indicating a possible modulation of cells-to-cells and cells-to-matrix interaction.
Collapse
Affiliation(s)
- Caecilia H C Sukowati
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy. .,Department of Medicine, University of Udine, Piazzale M. Kolbe 1, 33100, Udine, Italy.
| | - Beatrice Anfuso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| | - Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Avenida Presidente Perón 1500, B1629ODT, Derqui-Pilar, Buenos Aires, Argentina
| | - Susan I Ie
- Laboratory of Hepatitis and Emerging Diseases, Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Alan Raseni
- Institute for Maternal and Child Health - Institute for Research and Health Care Burlo Garofolo, Via dell'Istria, 65, 34137, Trieste, Italy
| | - Fulvia Vascotto
- Institute for Maternal and Child Health - Institute for Research and Health Care Burlo Garofolo, Via dell'Istria, 65, 34137, Trieste, Italy
| | - Claudio Avellini
- Department of Medical and Biological Sciences, University Hospital Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Avenida Presidente Perón 1500, B1629ODT, Derqui-Pilar, Buenos Aires, Argentina
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| |
Collapse
|
49
|
Hansen JF, Christiansen KM, Staugaard B, Moessner BK, Lillevang S, Krag A, Christensen PB. Combining liver stiffness with hyaluronic acid provides superior prognostic performance in chronic hepatitis C. PLoS One 2019; 14:e0212036. [PMID: 30742668 PMCID: PMC6370278 DOI: 10.1371/journal.pone.0212036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background Non-invasive methods are the first choice for liver fibrosis evaluation in chronic liver diseases, but few studies investigate the ability of combined methods to predict outcomes. Methods 591 chronic hepatitis C patients with baseline liver stiffness (LSM) by FibroScan and hyaluronic acid measurements were identified retrospectively. The patients were grouped by baseline LSM: < 10kPa, 10–16.9kPa, and 17-75kPa. Primary outcomes were all-cause mortality and liver-related mortality, analyzed using cox regression and competing risk regression models, respectively. Results Median follow-up was 46.1 months. Prevalence of cirrhosis at baseline was 107/591 (18.1%). Median LSM was 6.8kPa (IQR 5.3–11.6) and divided into groups, 404/591 (68.4%) had a LSM < 10kPa, 100/591 (16.9%) had a LSM between 10–16.9kPa and 87/591 (14.7%) had a LSM between 17-75kPa. There were 69 deaths, 27 from liver-related disease. 26 patients developed cirrhosis and 30 developed complications of cirrhosis. The mortality rate in the 17-75kPa group was 9.7/100 person-years, compared to 2.2/100 person-years and 1.1/100 person-years in the 10–16.9kPa and <10kPa groups (p<0.005). Liver-related mortality increased 10-fold for each group (p<0.005). Cirrhotic complications occurred almost exclusively in the 17-75kPa group, with an incidence of 10.3/100 person-years, compared to 1.8/100 person-years and 0.2/100 person-years in the 10–16.9kPa and <10kPa groups (p<0.005). Median hyaluronic acid in the 17-75kPa group was approximately 200ng/mL. Patients with a LSM 17-75kPa had significantly higher risks of death, liver-related death, and complications to cirrhosis if their hyaluronic acid measurement was more than or equal to 200ng/mL at baseline, with hazard ratios of 3.25 (95% CI 1.48–7.25), 7.7 (95% CI 2.32–28), and 3.2 (95% CI 1.35–7.39), respectively. Conclusions The combination of LSM and circulating hyaluronic acid measurements significantly improved prognostic ability, relative to LSM alone. Combined static and dynamic markers of liver fibrosis could provide superior risk prediction.
Collapse
Affiliation(s)
- Janne Fuglsang Hansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | | | - Benjamin Staugaard
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | | | - Søren Lillevang
- Clinical Immunological Department, Odense University Hospital, Odense, Denmark
| | - Aleksander Krag
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
50
|
Huang X, Li L, Ammar R, Zhang Y, Wang Y, Ravi K, Thompson J, Jarai G. Molecular characterization of a precision-cut rat lung slice model for the evaluation of antifibrotic drugs. Am J Physiol Lung Cell Mol Physiol 2019; 316:L348-L357. [DOI: 10.1152/ajplung.00339.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The translation of novel pulmonary fibrosis therapies from preclinical models into the clinic represents a major challenge demonstrated by the high attrition rate of compounds that showed efficacy in preclinical models but demonstrated no significant beneficial effects in clinical trials. A precision-cut lung tissue slice (PCLS) contains all major cell types of the lung and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study pulmonary fibrosis. In this study, using RNA sequencing, we demonstrated that transforming growth factor-β1 (TGFβ1) induced robust fibrotic responses in the rat PCLS model, as it changed the expression of genes functionally related to extracellular matrix remodeling, cell adhesion, epithelial-to-mesenchymal transition, and various immune responses. Nintedanib, pirfenidone, and sorafenib each reversed a subset of genes modulated by TGFβ1, and of those genes we identified 229 whose expression was reversed by all three drugs. These genes define a molecular signature characterizing many aspects of pulmonary fibrosis pathology and its attenuation in the rat PCLS fibrosis model. A panel of 12 genes and three secreted biomarkers, including procollagen I, hyaluronic acid, and WNT1-inducible signaling pathway protein 1 were validated as efficacy end points for the evaluation of antifibrotic activity of experimental compounds. Finally, we showed that blockade of αV-integrins suppressed TGFβ1-induced fibrotic responses in the rat PCLS fibrosis model. Overall, our results suggest that the TGFβ1-induced rat PCLS fibrosis model may represent a valuable system for target validation and to determine the efficacy of experimental compounds.
Collapse
Affiliation(s)
- Xinqiang Huang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Li Li
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Ron Ammar
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Yan Zhang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Yihe Wang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Kandasamy Ravi
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - John Thompson
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Gabor Jarai
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| |
Collapse
|