1
|
Kolia NR, Fleseriu CM, Thavaraputta S, Fazeli PK, Gardner PA, Snyderman CH, Wang EW. Sinonasal Outcomes after Endoscopic Pituitary Surgery in Patients With Cushing's Disease. Ann Otol Rhinol Laryngol 2024:34894241290978. [PMID: 39425926 DOI: 10.1177/00034894241290978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
PURPOSE The endoscopic endonasal approach (EEA) has become the preferred treatment for pituitary tumors, with minimal sinonasal morbidity. However, patients with Cushing's disease (CD) may represent a subgroup with prolonged impairment of sinonasal quality of life (QOL). METHODS We retrospectively identified patients with CD who underwent EEA at our institution. Control patients with non-functional tumors were matched by age, gender, and extent of EEA. The primary outcome was post-operative 22-item Sino-Nasal Outcome Test (SNOT-22) scores. RESULTS Ten patients with CD met the selection criteria and 20 controls were selected for comparison. Nine of the CD patients achieved persistent endocrinologic remission post-operatively. Comparing the CD and control groups, there was no difference in post-operative SNOT-22 score at 1 or 3 months. At 6 months, SNOT-22 scores were significantly worse in the CD group (27.4 ± 21.6 vs. 2.8 ± 2.3, P = .039). SNOT-22 scores improved to normal from 1 to 6 months in the control cohort (P = .007), but not in the Cushing's group (P = .726). Morbidity was present across all SNOT-22 domains, but was highest in the sleep domain (P = .023). Only morbidity in the facial domain improved over time (P = .032). CONCLUSIONS Patients with CD have significantly prolonged postoperative sinonasal QOL impairment following EEA compared to patients with non-functioning tumors, who normalize within 6 months. In CD patients, only morbidity in the facial domain, likely related to post-operative pain and nasal packing, improved over time, while the sleep domain was the most affected.
Collapse
Affiliation(s)
- Nadeem R Kolia
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Otolaryngology-Head and Neck Surgery, Cooper University Health Care, Camden, NJ, USA
| | - Cara M Fleseriu
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Subhanudh Thavaraputta
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pouneh K Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carl H Snyderman
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric W Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Cantave CY, Ruttle PL, Coté SM, Lupien SJ, Geoffroy MC, Vitaro F, Brendgen M, Tremblay R, Boivin M, Ouellet-Morin I. Body mass index across development and adolescent hair cortisol: the role of persistence, variability, and timing of exposure. Int J Obes (Lond) 2024:10.1038/s41366-024-01640-1. [PMID: 39367209 DOI: 10.1038/s41366-024-01640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Research suggests a putative role of the glucocorticoid stress hormone cortisol in the accumulation of adiposity. However, obesity and weight fluctuations may also wear and tear physiological systems promoting adaptation, affecting cortisol secretion. This possibility remains scarcely investigated in longitudinal research. This study tests whether trajectories of body mass index (BMI) across the first 15 years of life are associated with hair cortisol concentration (HCC) measured two years later and whether variability in BMI and timing matter. METHODS BMI (kg/m2) was prospectively measured at twelve occasions between age 5 months and 15 years. Hair was sampled at age 17 in 565 participants. Sex, family socioeconomic status, and BMI measured concurrently to HCC were considered as control variables. RESULTS Latent class analyses identified three BMI trajectories: "low-stable" (59.2%, n = 946), "moderate" (32.6%, n = 507), and "high-rising" (8.2%, n = 128). BMI variability was computed by dividing the standard deviation of an individual's BMI measurements by the mean of these measurements. Findings revealed linear effects, such that higher HCC was noted for participants with moderate BMI trajectories in comparison to low-stable youth (β = 0.10, p = 0.03, 95% confidence interval (CI) = [0.02-0.40]); however, this association was not detected in the high-rising BMI youth (β = -0.02, p = 0.71, 95% CI = [-0.47-0.32]). Higher BMI variability across development predicted higher cortisol (β = 0.17, p = 0.003, 95% CI = [0.10-4.91]), additively to the contribution of BMI trajectories. BMI variability in childhood was responsible for that finding, possibly suggesting a timing effect. CONCLUSIONS This study strengthens empirical support for BMI-HCC association and suggests that more attention should be devoted to BMI fluctuations in addition to persistent trajectories of BMI.
Collapse
Affiliation(s)
- Christina Y Cantave
- Institute of Child Development, University of Minnesota-Twin Cities, 51 E River Parkway, Minneapolis, MN, 55455, USA
| | - Paula L Ruttle
- Translational Neuroscience, Oregon State University, Corvallis, OR, USA
| | - Sylvana M Coté
- Department of Social and Preventive Medicine, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
- Sainte-Justine Hospital Research Center, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Sonia J Lupien
- Centre for Studies on Human Stress, Research Center of the Montreal Mental Health University Institute, 7331, rue Hochelaga, Montréal, QC, H1N 3V2, Canada
- Department of Psychiatry, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Marie-Claude Geoffroy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, 6875 LaSalle Boulevard, Montreal, QC, H4A 1R3, Canada
| | - Frank Vitaro
- Sainte-Justine Hospital Research Center, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- School of Psychoeducation, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Mara Brendgen
- Sainte-Justine Hospital Research Center, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Psychology, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Richard Tremblay
- Department of Pediatrics and Psychology, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
- School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel Boivin
- School of Psychology, Laval University, 2325 rue des Bibliothèques, Bureau 1116, Quebec City, QC, G1V 0A6, Canada
| | - Isabelle Ouellet-Morin
- Centre for Studies on Human Stress, Research Center of the Montreal Mental Health University Institute, 7331, rue Hochelaga, Montréal, QC, H1N 3V2, Canada.
- School of Criminology, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
3
|
Zhang W, Nowotny H, Theodoropoulou M, Simon J, Hemmer CM, Bidlingmaier M, Auer MK, Reincke M, Uhlenhaut H, Reisch N. E47 as a novel glucocorticoid-dependent gene mediating lipid metabolism in patients with endogenous glucocorticoid excess. Front Endocrinol (Lausanne) 2023; 14:1249863. [PMID: 38047107 PMCID: PMC10691538 DOI: 10.3389/fendo.2023.1249863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose E47 has been identified as a modulating transcription factor of glucocorticoid receptor target genes, its loss protecting mice from metabolic adverse effects of glucocorticoids. We aimed to analyze the role of E47 in patients with endogenous glucocorticoid excess [Cushing's syndrome (CS)] and its association with disorders of lipid and glucose metabolism. Methods This is a prospective cohort study including 120 female patients with CS (ACTH-dependent = 79; ACTH-independent = 41) and 26 healthy female controls. Morning whole blood samples after an overnight fast were used to determine E47 mRNA expression levels in patients with overt CS before and 6-12 months after curative surgery. Expression levels were correlated with the clinical phenotype of the patients. Control subjects underwent ACTH stimulation tests and dexamethasone suppression tests to analyze short-term regulation of E47. Results E47 gene expression showed significant differences in patient cohorts with overt CS vs. patients in remission (p = 0.0474) and in direct intraindividual comparisons pre- vs. post-surgery (p = 0.0353). ACTH stimulation of controls resulted in a significant decrease of E47 mRNA expression 30 min after i.v. injection compared to baseline measurements. Administration of 1 mg of dexamethasone overnight in controls did not change E47 mRNA expression. E47 gene expression showed a positive correlation with total serum cholesterol (p = 0.0036), low-density lipoprotein cholesterol (p = 0.0157), and waist-arm ratio (p = 0.0138) in patients with CS in remission. Conclusion E47 is a GC-dependent gene that is upregulated in GC excess potentially aiming at reducing metabolic glucocorticoid side effects such as dyslipidemia.
Collapse
Affiliation(s)
- Wei Zhang
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Hanna Nowotny
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Julia Simon
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Charlotte M. Hemmer
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Matthias K. Auer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Henriette Uhlenhaut
- Molecular Endocrinology, Institutes for Diabetes and Obesity & Diabetes and Cancer IDO & IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
- Metabolic Programming, Technische Universität München (TUM) School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich, Germany
| | - Nicole Reisch
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| |
Collapse
|
4
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
5
|
Comparison of in vitro scratch wound assay experimental procedures. Biochem Biophys Rep 2023; 33:101423. [PMID: 36647554 PMCID: PMC9840221 DOI: 10.1016/j.bbrep.2023.101423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Fibroblast migration is an important aspect of wound healing. Different factors can influence migration and as such proper wound healing. In vitro scratch wound assays are used to examine cellular migration. However, the wide array of techniques available reduces reproducibility of findings. In this paper, we compare two techniques for wound creation; i.e. the exclusion method or scratching of cell monolayers. Furthermore, we investigate if analysis software influences experimental outcome by comparing both commercially and freely available analysis software. Besides, we examine the effect of cortisol on migration behavior of fibroblasts and identify possible caveats in experimental design. Results show a significantly reduced migration of fibroblasts when wounds are created using a cell exclusion method. Furthermore, addition of cortisol to the cell culture media only reduced migration of fibroblast monolayers that had been scratched but not in those where wounds were created using the exclusion method. A possible explanation related to cytokine expression is discussed.
Collapse
|
6
|
Choo JH, Lee HG, Lee SY, Kang NG. Iris Pallida Extract Alleviates Cortisol-Induced Decrease in Type 1 Collagen and Hyaluronic Acid Syntheses in Human Skin Cells. Curr Issues Mol Biol 2023; 45:353-363. [PMID: 36661511 PMCID: PMC9857657 DOI: 10.3390/cimb45010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Excessive endogenous or exogenous levels of the stress hormone cortisol have negative effects on various tissues, including the skin. Iris pallida (IP), used in traditional medicine and perfumes, exhibits biological activities, such as antioxidant and anti-inflammatory activities. In this study, we aimed to investigate the inhibitory effect of IP extract (IPE) on cortisol activity in human skin cells. We found that IPE alleviated the cortisol-induced decrease in the levels of procollagen type 1 and hyaluronic acid (HA), which were significantly recovered by 106% and 31%, respectively, compared with cortisol-induced reductions. IPE also rescued the suppression of the gene expression of COL1A1 and the HA synthases HAS2 and HAS3 in cortisol-exposed cells. Moreover, IPE blocked the cortisol-induced translocation of the glucocorticoid receptor (GR) from the cytoplasm to the nucleus as effectively as the GR inhibitor mifepristone. Analysis using a high-performance liquid chromatography-diode-array detector system revealed that irigenin, an isoflavone, is the main component of IPE, which restored the cortisol-induced reduction in collagen type 1 levels by 82% relative to the cortisol-induced decrease. Our results suggest that IPE can act as an inhibitor of cortisol in human skin cells, preventing cortisol-induced collagen and HA degradation by blocking the nuclear translocation of the GR. Therefore, IPE may be used as a cosmetic material or herbal medicine to treat stress-related skin changes.
Collapse
|
7
|
Muacevic A, Adler JR, Eid FA, Alaswad HA, Ali WM, Aladraj FJ. Effects of Hormones and Endocrine Disorders on Hair Growth. Cureus 2022; 14:e32726. [PMID: 36578854 PMCID: PMC9788837 DOI: 10.7759/cureus.32726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Hormones have a close association with hair growth; thus, they have a big impact on the hair cycle and hair follicle structure. Many hormones control hair growth, cycle, and density. Hair abnormalities are frequent in therapeutic practice, and they can cause severe emotional discomfort depending on societal and ethnic standards. As a result, disorders that impact the endocrine system can induce a variety of physiological hair growth and cycling alterations. Hirsutism and patterned hair loss have a significant impact on human personality. These illnesses necessitate a comprehensive approach to diagnosis and treatment. The hormonal impact on hair growth and the association of different endocrine disorders with hair changes are briefly discussed here.
Collapse
|
8
|
Cain-Shields L, Glover L, Joseph JJ, Bertoni AG, Sims M. Goal-striving stress and repeated measures of adiposity in the Jackson heart study. Stress Health 2022; 38:443-452. [PMID: 34643027 PMCID: PMC9023066 DOI: 10.1002/smi.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022]
Abstract
Psychosocial stressors are determinants of increases in adiposity. Both psychosocial stressors and adiposity are higher among African Americans (AAs). Therefore, clarifying the stress-obesity link in AAs is important. The stress associated with goal striving is particularly relevant to AAs because opportunity for upward mobility is not always equal. Goal-striving stress (GSS) has not been assessed with adiposity, a potential result of GSS. Therefore, the objective of this study was to determine whether GSS would be associated with repeated measures of adiposity [body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHR)] in AAs. Linear mixed models were used to assess the relationship between GSS with repeated measures of adiposity across three exam periods among 2902 AAs, and sex was assessed as a moderator. Models were adjusted for demographics, health behaviours, morbidities, and daily discrimination. GSS was positively associated with repeated measures of adiposity in women but not men: WC [estimate (standard error) p-value] [0.003 (0.001) p < 0.01] and WHR [0.003 (0.0007) p < 0.01]. This suggests that high stress due to goal striving may contribute to greater increases in adiposity in AA women over time. Community-based interventions should continue to consider focused support group models as viable options for goal-striving related stress reduction.
Collapse
Affiliation(s)
- Loretta Cain-Shields
- Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - LáShauntá Glover
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua J. Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alain G. Bertoni
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
9
|
Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements. Pharmaceutics 2022; 14:pharmaceutics14081542. [PMID: 35893798 PMCID: PMC9331996 DOI: 10.3390/pharmaceutics14081542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Interest in the use of mesoporous materials as carriers of medicinal substances has been steadily increasing in the last two decades. Mesoporous carriers have application in the preparation of delivery systems for drugs from various therapeutic groups; however, their use as the carriers of anti-inflammatory agents is particularly marked. This review article, with about 170 references, summarizes the achievements in the application of mesoporous materials as the carriers of anti-inflammatory agents in recent years. This article will discuss a variety of mesoporous carriers as well as the characteristics of their porous structure that determine further use of these materials in the field of medical applications. Special attention will be paid to the progress observed in the construction of stimuli-responsive drug carriers and systems providing site-specific drug delivery. Subsequently, a review of the literature devoted to the use of mesoporous matrices as the carriers of anti-inflammatory drugs was carried out.
Collapse
|
10
|
van Haalen FM, Kaya M, Pelsma ICM, Dekkers OM, Biermasz NR, Cannegieter SC, Huisman MV, van Vlijmen BJM, Feelders RA, Klok FA, Pereira AM. Current clinical practice for thromboprophylaxis management in patients with Cushing's syndrome across reference centers of the European Reference Network on Rare Endocrine Conditions (Endo-ERN). Orphanet J Rare Dis 2022; 17:178. [PMID: 35505430 PMCID: PMC9062860 DOI: 10.1186/s13023-022-02320-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cushing’s syndrome (CS) is associated with an hypercoagulable state and an increased risk of venous thromboembolism (VTE). Evidence-based guidelines on thromboprophylaxis strategies in patients with CS are currently lacking. We aimed to map the current clinical practice for thromboprophylaxis management in patients with CS across reference centers (RCs) of the European Reference Network on Rare Endocrine Conditions (Endo-ERN), which are endorsed specifically for the diagnosis and treatment of CS. Using the EU survey tool, a primary screening survey, and subsequently a secondary, more in-depth survey were developed. Results The majority of the RCs provided thromboprophylaxis to patients with CS (n = 23/25), although only one center had a standardized thromboprophylaxis protocol (n = 1/23). RCs most frequently started thromboprophylaxis from CS diagnosis onwards (n = 11/23), and the majority stopped thromboprophylaxis based on individual patient characteristics, rather than standardized treatment duration (n = 15/23). Factors influencing the initiation of thromboprophylaxis were ‘medical history of VTE’ (n = 15/23) and ‘severity of hypercortisolism’ (n = 15/23). Low-Molecular-Weight-Heparin was selected as the first-choice anticoagulant drug for thromboprophylaxis by all RCs (n = 23/23). Postoperatively, the majority of RCs reported ‘severe immobilization’ as an indication to start thromboprophylaxis in patients with CS (n = 15/25). Most RCs (n = 19/25) did not provide standardized testing for variables of hemostasis in the postoperative care of CS. Furthermore, the majority of the RCs provided preoperative medical treatment to patients with CS (n = 23/25). About half of these RCs (n = 12/23) took a previous VTE into account when starting preoperative medical treatment, and about two-thirds (n = 15/23) included ‘reduction of VTE risk’ as a goal of treatment. Conclusions There is a large practice variation regarding thromboprophylaxis management and perioperative medical treatment in patients with CS, even in Endo-ERN RCs. Randomized controlled trials are needed to establish the optimal prophylactic anticoagulant regimen, carefully balancing the increased risk of (perioperative) bleeding, and the presence of additional risk factors for thrombosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02320-x.
Collapse
Affiliation(s)
- F M van Haalen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.
| | - M Kaya
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - I C M Pelsma
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - O M Dekkers
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - N R Biermasz
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - S C Cannegieter
- Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - M V Huisman
- Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, Netherlands
| | - B J M van Vlijmen
- Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, Netherlands
| | - R A Feelders
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Department of Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - F A Klok
- Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, Netherlands
| | - A M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
11
|
Radstake WE, Baselet B, Baatout S, Verslegers M. Spaceflight Stressors and Skin Health. Biomedicines 2022; 10:364. [PMID: 35203572 PMCID: PMC8962330 DOI: 10.3390/biomedicines10020364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Traveling to space puts astronauts at risk of developing serious health problems. Of particular interest is the skin, which is vitally important in protecting the body from harmful environmental factors. Although data obtained from long-duration spaceflight studies are inconsistent, there have been indications of increased skin sensitivity and signs of dermal atrophy in astronauts. To better understand the effects of spaceflight stressors including microgravity, ionizing radiation and psychological stress on the skin, researchers have turned to in vitro and in vivo simulation models mimicking certain aspects of the spaceflight environment. In this review, we provide an overview of these simulation models and highlight studies that have improved our understanding on the effect of simulation spaceflight stressors on skin function. Data show that all aforementioned spaceflight stressors can affect skin health. Nevertheless, there remains a knowledge gap regarding how different spaceflight stressors in combination may interact and affect skin health. In future, efforts should be made to better simulate the spaceflight environment and reduce uncertainties related to long-duration spaceflight health effects.
Collapse
Affiliation(s)
- Wilhelmina E. Radstake
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| | - Sarah Baatout
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| |
Collapse
|
12
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
13
|
Dille M, Nikolic A, Wahlers N, Fahlbusch P, Jacob S, Hartwig S, Lehr S, Kabra D, Klymenko O, Al-Hasani H, Kotzka J, Knebel B. Long-term adjustment of hepatic lipid metabolism after chronic stress and the role of FGF21. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166286. [PMID: 34624498 DOI: 10.1016/j.bbadis.2021.166286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
Chronic stress leads to post-traumatic stress disorder (PTSD) and metabolic disorders including fatty liver. We hypothesized that stress-induced molecular mechanisms alter energy metabolism, thereby promoting hepatic lipid accumulation even after a stress-free recovery period. In this context, we investigated fibroblast growth factor-21 (FGF21) as protective for energy and glucose homeostasis. FGF21 knockout mice (B6.129S6(SJL)-Fgf21tm1.2Djm; FGF21KO) and control mice (C57BL6; WT) were subjected to chronic variable stress. Mice were examined directly after acute intervention (Cvs) and long-term after 3 months of recovery (3mCvs). In WT, Cvs reduced insulin sensitivity and hepatic lipid accumulation, whilst fatty acid uptake increased. FGF21KO mice responded to Cvs with improved glucose tolerance, insulin resistance but liver triglycerides and plasma lipids were unaltered. Hepatic gene expression was specifically altered by genotype and stress e.g. by PPARa and SREBP-1 regulated genes. The stress-induced alteration of hepatic metabolism persisted after stress recovery. In hepatocytes at 3mCvs, differential gene regulation and secreted proteins indicated a genotype specific progression of liver dysfunction. Overall, at 3mCvs FGF21 was involved in maintaining mitochondrial activity, attenuating de novo lipogenesis, increased fatty acid uptake and histone acetyltransferase activity. Glucocorticoid release and binding to the FGF21 promoter may contribute to prolonged FGF21 release and protection against hepatic lipid accumulation. In conclusion, we showed that stress favors fatty liver disease and FGF21 protected against hepatic lipid accumulation after previous chronic stress loading by i) restored physiological function, ii) modulated gene expression via DNA-modifying enzymes, and iii) maintained energy metabolism.
Collapse
Affiliation(s)
- Matthias Dille
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Aleksandra Nikolic
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Natalie Wahlers
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Pia Fahlbusch
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sylvia Jacob
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sonja Hartwig
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dhiraj Kabra
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Oleksiy Klymenko
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
14
|
Gehrand AL, Phillips J, Welhouse KD, Siddiqui H, Schulgit M, Hoffman J, Hunt H, Raff H. Glucocorticoid Receptor Antagonist Alters Corticosterone and Receptor-sensitive mRNAs in the Hypoxic Neonatal Rat. Endocrinology 2022; 163:6429713. [PMID: 34791109 DOI: 10.1210/endocr/bqab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/19/2022]
Abstract
Hypoxia, a common stressor with preterm birth, increases morbidity and mortality associated with prematurity. Glucocorticoids (GCs) are administered to the preterm infant to improve oxygenation; prolonged use of GCs remains controversial. We evaluated a selective glucocorticoid receptor (GR) antagonist (CORT113176) in our neonatal rat model of human prematurity to assess how fasting and hypoxia-induced increases in neonatal corticosterone affects endogenous hormones and endocrine pancreas function. Neonatal rat pups at postnatal day (PD) 2, PD8, and PD15 were pretreated with CORT113176 and, after 60 minutes of separation and fasting, exposed to hypoxia (8% O2) or control (normoxia) for 30 or 60 minutes while fasting was continued. Plasma corticosterone, ACTH, glucose, and insulin were measured and fasting Homeostatic Model Assessment of Insulin Resistance was calculated. Glucocorticoid and insulin receptor-sensitive gene mRNAs were analyzed in liver, muscle, and adipose to evaluate target tissue biomarkers. CORT113176 pretreatment augmented baseline and hypoxia-induced increases in corticosterone and attenuated hypoxia-induced increases in insulin resistance at PD2. Normoxic and hypoxic stress increased the hepatic GR-sensitive gene mRNAs, Gilz and Per1; this was eliminated by pretreatment with CORT113176. CORT113176 pretreatment decreased baseline insulin receptor-sensitive gene mRNAs Akt2, Irs1, Pik3r1, and Srebp1c at PD2. We show that CORT113176 variably augments the stress-induced increases in corticosterone concentrations (attenuation of negative feedback) and that GR is critical for hepatic responses to stress in the hypoxic neonate. We also propose that measurement of Gilz and Per1 mRNA expression may be useful to evaluate the effectiveness of GR antagonism.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | - Jonathan Phillips
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | - Kyle D Welhouse
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hana Siddiqui
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | - Matthew Schulgit
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA 94025, USA
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
van der Spoel E, Roelfsema F, van Heemst D. Relationships Between 24-hour LH and Testosterone Concentrations and With Other Pituitary Hormones in Healthy Older Men. J Endocr Soc 2021; 5:bvab075. [PMID: 34337275 PMCID: PMC8315483 DOI: 10.1210/jendso/bvab075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the relationship between LH and testosterone (T), which characteristics associate with the strength of this relationship, and their interrelationships with GH, TSH, cortisol, and ACTH. Design Hormones were measured in serum samples collected every 10 minutes during 24 hours from 20 healthy men, comprising 10 offspring of long-lived families and 10 control subjects, with a mean (SD) age of 65.6 (5.3) years. We performed cross-correlation analyses to assess the relative strength between 2 timeseries for all possible time shifts. Results Mean (95% CI) maximal correlation was 0.21 (0.10-0.31) at lag time of 60 minutes between LH and total T concentrations. Results were comparable for calculated free, bioavailable, or secretion rates of T. Men with strong LH-T cross-correlations had, compared with men with no cross-correlation, lower fat mass (18.5 [14.9-19.7] vs. 22.3 [18.4-29.4] kg), waist circumference (93.6 [5.7] vs. 103.1 [12.0] cm), high-sensitivity C-reactive protein (0.7 [0.4-1.3] vs. 1.8 [0.8-12.3] mg/L), IL-6 (0.8 [0.6-1.0] vs. 1.2 [0.9-3.0] pg/mL), and 24-hour mean LH (4.3 [2.0] vs. 6.1 [1.5] U/L), and stronger LH-T feedforward synchrony (1.5 [0.3] vs. 1.9 [0.2]). Furthermore, T was positively cross-correlated with TSH (0.32 [0.21-0.43]), cortisol (0.26 [0.19-0.33]), and ACTH (0.26 [0.19-0.32]). Conclusions LH is followed by T with a delay of 60 minutes in healthy older men. Men with a strong LH-T relationship had more favorable body composition, inflammatory markers, LH levels, and LH-T feedforward synchrony. We observed positive correlations between T and TSH, cortisol, and ACTH.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferdinand Roelfsema
- Section Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Manso J, Sharifi-Rad J, Zam W, Tsouh Fokou PV, Martorell M, Pezzani R. Plant Natural Compounds in the Treatment of Adrenocortical Tumors. Int J Endocrinol 2021; 2021:5516285. [PMID: 34567112 PMCID: PMC8463247 DOI: 10.1155/2021/5516285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Plant natural products are a plethora of diverse and complex molecules produced by the plant secondary metabolism. Among these, many can reserve beneficial or curative properties when employed to treat human diseases. Even in cancer, they can be successfully used and indeed numerous phytochemicals exert antineoplastic activity. The most common molecules derived from plants and used in the fight against cancer are polyphenols, i.e., quercetin, genistein, resveratrol, curcumin, etc. Despite valuable data especially in preclinical models on such compounds, few of them are currently used in the medical practice. Also, in adrenocortical tumors (ACT), phytochemicals are scarcely or not at all used. This work summarizes the available research on phytochemicals used against ACT and adrenocortical cancer, a very rare disease with poor prognosis and high metastatic potential, and wants to contribute to stimulate preclinical and clinical research to find new therapeutic strategies among the overabundance of biomolecules produced by the plant kingdom.
Collapse
Affiliation(s)
- Jacopo Manso
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, Padova 35128, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wissam Zam
- Analytical and Food Chemistry Department, Faculty of Pharmacy, Tartous University, Tartous, Syria
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, Padova 35128, Italy
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| |
Collapse
|
17
|
Yoshioka Y, Samukawa Y, Yamashita Y, Ashida H. 4-Hydroxyderricin and xanthoangelol isolated from Angelica keiskei prevent dexamethasone-induced muscle loss. Food Funct 2020; 11:5498-5512. [PMID: 32510085 DOI: 10.1039/d0fo00720j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since a decrease in muscle mass leads to an increased risk of mortality, the prevention of muscle wasting contributes to maintaining the quality of life. Recently, we reported that glabridin, a prenylated flavonoid in licorice, prevents dexamethasone-induced muscle loss. In this study, we focused on the other prenylated chalcones 4-hydroxyderricin and xanthoangelol in Ashitaba (Angelica keiskei) and investigated their prevention effect on dexamethasone-induced muscle loss. It was found that 4-hydroxyderricin and xanthoangelol significantly prevented dexamethasone-induced protein degradation in C2C12 myotubes by suppressing the expression of ubiquitin ligases, Cbl-b and MuRF-1. These prenylated chalcones acted as the antagonists of the glucocorticoid receptor and inhibited the binding of dexamethasone to this receptor and its subsequent nuclear translocation. In addition, the chalcones suppressed the phosphorylation of p38 and FoxO3a as the upstream factors for ubiquitin ligases. Dexamethasone-induced protein degradation and upregulation of Cbl-b were attenuated by the knockdown of the glucocorticoid receptor but not by the knockdown of p38. In male C57BL/6J mice, the Ashitaba extract, containing 4-hydroxyderricin and xanthoangelol, suppressed dexamethasone-induced muscle mass wasting accompanied by a decrease in the expression of ubiquitin ligases by inhibiting the nuclear translocation of the glucocorticoid receptor and phosphorylation of FoxO3a. In conclusion, 4-hydroxyderricin and xanthoangelol are effective compounds to inhibit steroid-induced muscle loss.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Hyogo 658-0001, Japan
| | - Yumi Samukawa
- Graduate school of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | - Yoko Yamashita
- Graduate school of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | - Hitoshi Ashida
- Graduate school of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
18
|
Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-Induced Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:1133-1145. [PMID: 32368109 PMCID: PMC7171875 DOI: 10.2147/dmso.s247379] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used at high doses and for prolonged periods (weeks to months) in the treatment of a variety of diseases. Among the many side effects are increased insulin resistance with disturbances in glucose/insulin homeostasis and increased deposition of lipids (mostly triglycerides) in the liver. Here, we review the metabolic pathways of lipid deposition and removal from the liver that become altered by excess glucocorticoids. Pathways of lipid deposition stimulated by excess glucocorticoids include 1) increase in appetite and high caloric intake; 2) increased blood glucose levels due to GC-induced stimulation of gluconeogenesis; 3) stimulation of de novo lipogenesis that is augmented by the high glucose and insulin levels and by GC itself; and 4) increased release of free fatty acids from adipose stores and stimulation of their uptake by the liver. Pathways that decrease hepatic lipids affected by glucocorticoids include a modest stimulation of very-low-density lipoprotein synthesis and secretion into the circulation and inhibition of β-oxidation of fatty acids. Role of 11β-hydroxysteroid dehydrogenases-1 and -2 and the reversible conversion of cortisol to cortisone on intracellular levels of cortisol is examined. In addition, GC control of osteocalcin expression and the effect of this bone-derived hormone in increasing insulin sensitivity are discussed. Finally, research focused on gaining a better understanding of the dose and duration of treatment with glucocorticoids, which leads to increased triglyceride deposition in the liver, and the reversibility of the condition is highlighted.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aman Rajpal
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
19
|
Salzmann SN, Okano I, Rentenberger C, Winter F, Miller CO, Schadler P, Sax OC, Miller TT, Shue J, Boskey AL, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Skin Ultrasound Measurement as a Potential Marker of Bone Quality: A Prospective Pilot Study of Patients undergoing Lumbar Spinal Fusion. J Orthop Res 2019; 37:2508-2515. [PMID: 31403220 DOI: 10.1002/jor.24438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Bone mineral density (BMD) is not the sole predictor of fracture development. Qualitative markers including bone collagen maturity contribute to bone fragility. Bone and related type I collagen containing connective tissues degenerate in parallel fashion. With aging, changes in skin collagen content and quality have been observed that can be detected on ultrasound (US) as a decrease in dermal thickness and an increase in reticular layer echogenicity. We hypothesized that US dermal thickness and echogenicity correlate with bone collagen maturity. Data of 43 prospectively enrolled patients (mean age 61 years, 24 females), who underwent instrumented, posterior lumbar fusion was analyzed. Besides preoperative quantitative computed tomography (QCT) and skin US measurements, intraoperative bone biopsies were obtained and analyzed with Fourier-transform infrared spectroscopy. Among men, there was no correlation between US measurements and collagen maturity. Among women, dermal layer thickness correlated negatively with collagen maturity in trabecular bone of the iliac crest (r = -0.51, p = 0.01) and vertebra (r = -0.59, p = 0.01) as well as in cortical bone of the iliac crest (r = -0.50, p = 0.02) and vertebra (r = -0.50, p = 0.04). In addition, echogenicity correlated positively with collagen maturity in trabecular vertebral bone (r = 0.59, p = 0.01). In both genders, US measurements showed no correlation with QCT BMD. In summary, ultrasound skin parameters are associated with bone quality factors such as collagen maturity, rather than bone quantity (BMD). Ultrasound of the skin may thereby be an easy and accessible take off point for diagnosis of bone collagen maturity and connective tissue degeneration in the future. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2508-2515, 2019.
Collapse
Affiliation(s)
| | - Ichiro Okano
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | - Oliver C Sax
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Niccolai E, Boem F, Russo E, Amedei A. The Gut⁻Brain Axis in the Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the Emerging Director "Microbiome". Nutrients 2019; 11:E156. [PMID: 30642052 PMCID: PMC6356219 DOI: 10.3390/nu11010156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemic of obesity has become an important public health issue, with serious psychological and social consequences. Obesity is a multifactorial disorder in which various elements (genetic, host, and environment), play a definite role, even if none of them satisfactorily explains its etiology. A number of neurological comorbidities, such as anxiety and depression, charges the global obesity burden, and evidence suggests the hypothesis that the brain could be the seat of the initial malfunction leading to obesity. The gut microbiome plays an important role in energy homeostasis regulating energy harvesting, fat deposition, as well as feeding behavior and appetite. Dietary patterns, like the Western diet, are known to be a major cause of the obesity epidemic, probably promoting a dysbiotic drift in the gut microbiota. Moreover, the existence of a "gut⁻brain axis" suggests a role for microbiome on hosts' behavior according to different modalities, including interaction through the nervous system, and mutual crosstalk with the immune and the endocrine systems. In the perspective of obesity as a real neuropsychological disease and in light of the discussed considerations, this review focuses on the microbiome role as an emerging director in the development of obesity.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Federico Boem
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
21
|
Koracevic G, Stojkovic M, Lovic D, Pavlovic M, Kostic T, Kutlesic M, Micic S, Koracevic M, Djordjevic M. Should Cushing's Syndrome be Considered as a Disease with High Cardiovascular Risk in Relevant Guidelines? Curr Vasc Pharmacol 2018; 18:12-24. [PMID: 30289080 DOI: 10.2174/1570161116666181005122339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
A considerable amount of data supports a 1.8-7.4-fold increased mortality associated with Cushing's syndrome (CS). This is attributed to a high occurrence of several cardiovascular disease (CVD) risk factors in CS [e.g. adiposity, arterial hypertension (AHT), dyslipidaemia and type 2 diabetes mellitus (T2DM)]. Therefore, practically all patients with CS have the metabolic syndrome (MetS), which represents a high CVD risk. Characteristically, despite a relatively young average age, numerous patients with CS display a 'high' or 'very high' CVD risk (i.e. risk of a major CVD event >20% in the following 10 years). Although T2DM is listed as a condition with a high CVD risk, CS is not, despite the fact that a considerable proportion of the CS population will develop T2DM or impaired glucose tolerance. CS is also regarded as a risk factor for aortic dissection in current guidelines. This review considers the evidence supporting listing CS among high CVD risk conditions.
Collapse
Affiliation(s)
- Goran Koracevic
- Department for Cardiovascular Diseases, Clinical Centre, Nis, Serbia.,Medical Faculty, University of Nis, Nis, Serbia
| | | | - Dragan Lovic
- Clinic for Internal Medicine Intermedica, Nis, Serbia
| | - Milan Pavlovic
- Department for Cardiovascular Diseases, Clinical Centre, Nis, Serbia.,Medical Faculty, University of Nis, Nis, Serbia
| | - Tomislav Kostic
- Department for Cardiovascular Diseases, Clinical Centre, Nis, Serbia.,Medical Faculty, University of Nis, Nis, Serbia
| | | | | | | | - Milan Djordjevic
- Health Centre Jagodina, Emergency Medical Service, Jagodina, Serbia
| |
Collapse
|
22
|
Abstract
Many pathways connect stress and obesity, two highly prevalent problems facing society today. First, stress interferes with cognitive processes such as executive function and self-regulation. Second, stress can affect behavior by inducing overeating and consumption of foods that are high in calories, fat, or sugar; by decreasing physical activity; and by shortening sleep. Third, stress triggers physiological changes in the hypothalamic-pituitary-adrenal axis, reward processing in the brain, and possibly the gut microbiome. Finally, stress can stimulate production of biochemical hormones and peptides such as leptin, ghrelin, and neuropeptide Y. Obesity itself can be a stressful state due to the high prevalence of weight stigma. This article therefore traces the contribution of weight stigma to stress and obesogenic processes, ultimately describing a vicious cycle of stress to obesity to stigma to stress. Current obesity prevention efforts focus solely on eating and exercise; the evidence reviewed in this article points to stress as an important but currently overlooked public policy target.
Collapse
Affiliation(s)
- A Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
23
|
Chen Q, Niu L, Hua C, Geng Y, Cai L, Tao S, Ni Y, Zhao R. Chronic dexamethasone exposure markedly decreased the hepatic triglyceride accumulation in growing goats. Gen Comp Endocrinol 2018; 259:115-121. [PMID: 29155266 DOI: 10.1016/j.ygcen.2017.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Chronic stress seriously threatens welfare and health in animals and humans. Consecutive dexamethasone (Dex) injection was used to mimic chronic stress previously. In order to investigate the effect of chronic stress on hepatic lipids metabolism, in this study, 10 healthy male goats were randomly allocated into two groups, one received a consecutive injection of Dex via intramuscularly for 3 weeks (Dex group), the other received the same volume of saline as the control group (Con group). Hepatic health and triglyceride (TG) metabolism were analyzed and compared between two groups. The data showed that a significant decrease of TG in plasma and the liver was significantly decreased by Dex (P < .05), while the hepatic nonesterified fatty acid (NEFA) concentration was increased compared to the Con group (P < .05). Consistent with the decrease of TG level, the activity of hepatic lipoprotein lipase (LPL) and hepatic lipase (HL) enzymes activities were significantly enhanced by Dex. Real-time PCR results showed that the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBP-1), acyl-CoA dehydrogenase long chain (ACADL) and acyl-CoA synthetase bubblegum family member 1 (ACSBG1) genes in liver was significantly up-regulated by chronic Dex injection (P < .05), whereas perilipin 2 (PLIN2) and adipose triglyceride lipase (ATGL) mRNA expression was significantly decreased by Dex (P < .05). In addition, no obvious damages were observed in the liver in both Con and Dex groups demonstrating by the sirius red staining, HE staining as well as several biochemical parameters related to the functional status of hepatocytes. Our data indicate that chronic Dex exposure decreases TG levels in the circulation and the liver through activating lipolysis and inhibiting lipogenesis without causing hepatic damages in the growing goats.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
24
|
Lee HA, Kang SH, Kim M, Lee E, Cho HM, Moon EK, Kim I. Histone deacetylase inhibition ameliorates hypertension and hyperglycemia in a model of Cushing's syndrome. Am J Physiol Endocrinol Metab 2018; 314:E39-E52. [PMID: 28928236 DOI: 10.1152/ajpendo.00267.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cushing's syndrome (CS) caused by hypercortisolism is occasionally accompanied by metabolic disorders such as hypertension, diabetes mellitus (DM), dyslipidemia, and central obesity. Thus morbidity and mortality, observed in cardiovascular disease, are elevated in patients with CS. We hypothesized that HDAC inhibition (HDACi) decreased transcriptional activity of glucocorticoid receptor (GR), which ameliorates hypertension and hyperglycemia in patients with CS. To establish an animal model of hypercortisolism, Sprague-Dawley rats were infused with adrenocorticotropic hormone (ACTH, 40 ng/day) or dexamethasone (Dex, 10 μg/day) via osmotic minipumps for 4 wk. Expression of GR target genes was determined by quantitative real-time PCR (qRT-PCR). GR enrichment on specific loci, and across the whole genome, was analyzed by chromatin immunoprecipitation (ChIP) and ChIPseq, respectively. HDACi decreased blood pressure and expression of ion regulators in the kidneys of ACTH-infused rats. Additionally, HDACi reduced deposition of polysaccharide, fasting blood glucose level, glucose intolerance, and expression of gluconeogenesis genes in the livers and kidneys of ACTH- and Dex-infused rats. Among class I HDACs, HDAC1 and HDAC3 interacted with GR. HDAC1 knockdown resulted in increased level of acetylation and decreased transcriptional activity of GR. GR recruitment on the promoters of 2,754 genes, which include ion transporters, channels, and gluconeogenic genes, was significantly decreased by MS-275, a class I HDAC inhibitor. These results indicate that HDACi ameliorates hypertension and hyperglycemia in a model of CS by decreasing the transcriptional activity of GR via elevating its level of acetylation.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seol-Hee Kang
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Mina Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Eunjo Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyun-Min Cho
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
25
|
Tanaka H, Shimizu N, Yoshikawa N. Role of skeletal muscle glucocorticoid receptor in systemic energy homeostasis. Exp Cell Res 2017; 360:24-26. [DOI: 10.1016/j.yexcr.2017.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
|
26
|
Kang SH, Lee HA, Kim M, Lee E, Sohn UD, Kim I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing's syndrome. Am J Physiol Endocrinol Metab 2017; 312:E495-E507. [PMID: 28246104 DOI: 10.1152/ajpendo.00389.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
Cushing's syndrome is caused by overproduction of the adrenocorticotropic hormone (ACTH), which stimulates the adrenal grand to make cortisol. Skeletal muscle wasting occurs in pathophysiological response to Cushing's syndrome. The forkhead box (FOX) protein family has been implicated as a key regulator of muscle loss under conditions such as diabetes and sepsis. However, the mechanistic role of the FOXO family in ACTH-induced muscle atrophy is not understood. We hypothesized that FOXO3a plays a role in muscle atrophy through expression of the E3 ubiquitin ligases, muscle RING finger protein-1 (MuRF-1), and atrogin-1 in Cushing's syndrome. For establishment of a Cushing's syndrome animal model, Sprague-Dawley rats were implanted with osmotic minipumps containing ACTH (40 ng·kg-1·day-1). ACTH infusion significantly reduced muscle weight. In ACTH-infused rats, MuRF-1, atrogin-1, and FOXO3a were upregulated and the FOXO3a promoter was targeted by the glucocorticoid receptor (GR). Transcriptional activity and expression of FOXO3a were significantly decreased by the GR antagonist RU486. Treatment with RU486 reduced MuRF-1 and atrogin-1 expression in accordance with reduced enrichment of FOXO3a and Pol II on the promoters. Knockdown of FOXO3a prevented dexamethasone-induced MuRF-1 and atrogin-1 expression. These results indicate that FOXO3a plays a role in muscle atrophy through expression of MuRF-1 and atrogin-1 in Cushing's syndrome.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Cell Line
- Chromatin Immunoprecipitation
- Cushing Syndrome/metabolism
- Cushing Syndrome/pathology
- Cushing Syndrome/physiopathology
- Disease Models, Animal
- Forkhead Box Protein O3/agonists
- Forkhead Box Protein O3/antagonists & inhibitors
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Gene Expression Regulation/drug effects
- Genes, Reporter/drug effects
- Glucocorticoids/pharmacology
- Hormone Antagonists/pharmacology
- Male
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/agonists
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Promoter Regions, Genetic/drug effects
- RNA Interference
- Rats, Sprague-Dawley
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/metabolism
- Response Elements/drug effects
- SKP Cullin F-Box Protein Ligases/antagonists & inhibitors
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Tripartite Motif Proteins/agonists
- Tripartite Motif Proteins/antagonists & inhibitors
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Seol-Hee Kang
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus Kyungpook National University Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hae-Ahm Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Mina Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus Kyungpook National University Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Eunjo Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- BK21 Plus Kyungpook National University Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea; and
| | - Inkyeom Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea;
- BK21 Plus Kyungpook National University Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
27
|
Nakamoto M, Ishihara K, Watanabe T, Hirosue A, Hino S, Shinohara M, Nakayama H, Nakao M. The Glucocorticoid Receptor Regulates the ANGPTL4 Gene in a CTCF-Mediated Chromatin Context in Human Hepatic Cells. PLoS One 2017; 12:e0169225. [PMID: 28056052 PMCID: PMC5215901 DOI: 10.1371/journal.pone.0169225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoid signaling through the glucocorticoid receptor (GR) plays essential roles in the response to stress and in energy metabolism. This hormonal action is integrated to the transcriptional control of GR-target genes in a cell type-specific and condition-dependent manner. In the present study, we found that the GR regulates the angiopoietin-like 4 gene (ANGPTL4) in a CCCTC-binding factor (CTCF)-mediated chromatin context in the human hepatic HepG2 cells. There are at least four CTCF-enriched sites and two GR-binding sites within the ANGPTL4 locus. Among them, the major CTCF-enriched site is positioned near the ANGPTL4 enhancer that binds GR. We showed that CTCF is required for induction and subsequent silencing of ANGPTL4 expression in response to dexamethasone (Dex) and that transcription is diminished after long-term treatment with Dex. Although the ANGPTL4 locus maintains a stable higher-order chromatin conformation in the presence and absence of Dex, the Dex-bound GR activated transcription of ANGPTL4 but not that of the neighboring three genes through interactions among the ANGPTL4 enhancer, promoter, and CTCF sites. These results reveal that liganded GR spatiotemporally controls ANGPTL4 transcription in a chromosomal context.
Collapse
Affiliation(s)
- Masafumi Nakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ko Ishihara
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- * E-mail: (MiN); (KI)
| | - Takehisa Watanabe
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
- * E-mail: (MiN); (KI)
| |
Collapse
|
28
|
Savas M, Wester VL, Staufenbiel SM, Koper JW, van den Akker ELT, Visser JA, van der Lely AJ, Penninx BWJH, van Rossum EFC. Systematic Evaluation of Corticosteroid Use in Obese and Non-obese Individuals: A Multi-cohort Study. Int J Med Sci 2017; 14:615-621. [PMID: 28824292 PMCID: PMC5562111 DOI: 10.7150/ijms.19213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Although the use of corticosteroids has been linked to high incidence of weight gain, no data are available concerning the differences in corticosteroid use between a diverse obese population and non-obese individuals. The main purpose of this study was to systematically explore the use of corticosteroids in obese subjects compared to non-obese controls. In addition, we also explored self-reported marked weight gain within obese subjects. Methods: Two hundred seventy-four obese outpatients (median [range] BMI: 40.1 kg/m2 [30.5-67.0]), and 526 non-obese controls (BMI: 24.1 kg/m2 [18.6-29.9]) from two different Dutch cohort studies were included. Corticosteroid use at the time of clinic or research site visit for up to the preceding three months was recorded in detail. Medical records and clinical data were evaluated with regard to age and body mass index in relation to corticosteroid use, single or multiple type use, and administration forms. Results: Recent corticosteroid use was nearly twice as high for obese subjects than for non-obese controls (27.0% vs. 11.9% and 14.8%, both P<.001). Largest differences were found for use of local corticosteroids, in particular inhaled forms, and simultaneous use of multiple types. Marked weight gain was self-reported during corticosteroid use in 10.5% of the obese users. Conclusion: Corticosteroid use, especially the inhaled agents, is higher in obese than in non-obese individuals. Considering the potential systemic effects of also local corticosteroids, caution is warranted on the increasing use in the general population and on its associations with weight gain.
Collapse
Affiliation(s)
- Mesut Savas
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent L Wester
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sabine M Staufenbiel
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan W Koper
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aart J van der Lely
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Lifelines Cohort Study and Biobank, Groningen, The Netherlands
| |
Collapse
|
29
|
Marti AR, Meerlo P, Grønli J, van Hasselt SJ, Mrdalj J, Pallesen S, Pedersen TT, Henriksen TEG, Skrede S. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work: A Rat Model. Nutrients 2016; 8:nu8110712. [PMID: 27834804 PMCID: PMC5133098 DOI: 10.3390/nu8110712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.
Collapse
Affiliation(s)
- Andrea Rørvik Marti
- Department of Biological and Medical Psychology, University of Bergen, Bergen 5009, Norway.
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands.
| | - Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen 5009, Norway.
- College of Medical Sciences, Washington State University, Spokane, WA 99210, USA.
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99210, USA.
| | - Sjoerd Johan van Hasselt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands.
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen 5009, Norway.
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen 5021, Norway.
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen 5015, Norway.
- Section of Psychiatry, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen 5021, Norway.
| | - Torhild Thue Pedersen
- Department of Biological and Medical Psychology, University of Bergen, Bergen 5009, Norway.
| | - Tone Elise Gjøtterud Henriksen
- Section of Psychiatry, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen 5021, Norway.
- Division of Mental Health Care, Valen Hospital, Fonna Local Health Authority, Valen 5451, Norway.
| | - Silje Skrede
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland Univeristy Hospital, 5021 Bergen, Norway.
| |
Collapse
|
30
|
Greulich F, Hemmer MC, Rollins DA, Rogatsky I, Uhlenhaut NH. There goes the neighborhood: Assembly of transcriptional complexes during the regulation of metabolism and inflammation by the glucocorticoid receptor. Steroids 2016; 114:7-15. [PMID: 27192428 PMCID: PMC5052104 DOI: 10.1016/j.steroids.2016.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 01/04/2023]
Abstract
Glucocorticoids (GCs), as ligands for the glucocorticoid receptor (GR), represent one of the most effective and frequently used classes of drugs for anti-inflammatory and immunosuppressive therapy. In addition, its role in physiological and pathophysiological processes makes the GR an important research target. The past decades have yielded a wealth of insight into the physiological and pharmacological effects of GCs. Today's era of next generation sequencing techniques is now beginning to elucidate the molecular and genomic circuits underlying GR's cell type-specific actions. This review focuses on the concepts and insights gained from recent studies in two of the most important tissues for GC action: the liver (mediating GR's metabolic effects) and macrophages (as the main target of anti-inflammatory GC therapy). We summarize results obtained from transgenic mouse models, molecular and genome-wide studies to illustrate GR's complex interactions with DNA, chromatin, co-regulators and other transcription factors. Characterizing the cell type-specific transcriptional complexes assembled around GR will pave the road for the development of new anti-inflammatory and metabolic therapies in the future.
Collapse
Affiliation(s)
- Franziska Greulich
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - M Charlotte Hemmer
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - David A Rollins
- Hospital for Special Surgery, The David Rosensweig Genomics Center, 535 East 70th Street, New York, NY 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021, USA
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, 535 East 70th Street, New York, NY 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021, USA
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany.
| |
Collapse
|
31
|
Diz-Chaves Y, Gil-Lozano M, Toba L, Fandiño J, Ogando H, González-Matías LC, Mallo F. Stressing diabetes? The hidden links between insulinotropic peptides and the HPA axis. J Endocrinol 2016; 230:R77-94. [PMID: 27325244 DOI: 10.1530/joe-16-0118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus exerts metabolic stress on cells and it provokes a chronic increase in the long-term activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, perhaps thereby contributing to insulin resistance. GLP-1 receptor (GLP-1R) agonists are pleiotropic hormones that not only affect glycaemic and metabolic control, but they also produce many other effects including activation of the HPA axis. In fact, several of the most relevant effects of GLP-1 might involve, at least in part, the modulation of the HPA axis. Thus, the anorectic activity of GLP-1 could be mediated by increasing CRF at the hypothalamic level, while its lipolytic effects could imply a local increase in glucocorticoids and glucocorticoid receptor (GC-R) expression in adipose tissue. Indeed, the potent activation of the HPA axis by GLP-1R agonists occurs within the range of therapeutic doses and with a short latency. Interestingly, the interactions of GLP-1 with the HPA axis may underlie most of the effects of GLP-1 on food intake control, glycaemic metabolism, adipose tissue biology and the responses to stress. Moreover, such activity has been observed in animal models (mice and rats), as well as in normal humans and in type I or type II diabetic patients. Accordingly, better understanding of how GLP-1R agonists modulate the activity of the HPA axis in diabetic subjects, especially obese individuals, will be crucial to design new and more efficient therapies for these patients.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Manuel Gil-Lozano
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Laura Toba
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Juan Fandiño
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Hugo Ogando
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Lucas C González-Matías
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Federico Mallo
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| |
Collapse
|
32
|
Takahashi H, Sato T, Ikeuchi T, Saito K, Sakaizumi M, Sakamoto T. High levels of plasma cortisol and impaired hypoosmoregulation in a mutant medaka deficient in P450c17I. Mol Cell Endocrinol 2016; 430:25-32. [PMID: 27107936 DOI: 10.1016/j.mce.2016.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
scl is a spontaneous medaka mutant deficient in P450c17I, which is required for production of sex steroids, but not of cortisol, the major role of which is osmoregulation in teleost fish. The scl mutant provides a new model to study the functions of these hormones. We first found that fish homozygous for this mutation have plasma cortisol constitutively at a high physiological level (1000 nM). Since we previously showed that this level reversed the seawater-type differentiation of the medaka gastrointestinal tract, hypoosmoregulation of the scl mutant was analyzed. Muscle water contents in freshwater were normal in scl homozygotes, but the contents were lower than those of the wild type (WT) after seawater transfer. There were no differences in gill mRNA levels of corticosteroid receptors or ion transporters between scl homozygotes and WT. In the intestine, expression of glucocorticoid receptors and Na(+)/K(+)/2Cl(-) cotransporter were induced in WT during seawater acclimation, but not in scl homozygotes. The high plasma cortisol may prevent hypoosmoregulation by inhibition of increased intestinal water absorption, essentially by the Na(+)/K(+)/2Cl(-) cotransporter, in seawater.
Collapse
Affiliation(s)
- Hideya Takahashi
- Department of Environmental Science, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan; Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Tadashi Sato
- Department of Environmental Science, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Toshitaka Ikeuchi
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Kazuhiro Saito
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Mitsuru Sakaizumi
- Department of Environmental Science, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan.
| |
Collapse
|
33
|
Abstract
In response to stress, the central nervous system initiates a signaling cascade, which leads to the production of glucocorticoids (GCs). GCs act through the glucocorticoid receptor (GR) to coordinate the appropriate cellular response with the primary goal of mobilizing the storage forms of carbon precursors to generate a continuous glucose supply for the brain. Although GCs are critical for maintaining energy homeostasis, excessive GC stimulation leads to a number of undesirable side effects, including hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting leading to severe metabolic dysfunction. Summarized below are the diverse metabolic roles of glucocorticoids in energy homeostasis and dysregulation, focusing specifically on glucose, lipid, and protein metabolism.
Collapse
Affiliation(s)
- Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
34
|
Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB. Mechanisms in endocrinology: The spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol 2015; 173:R101-13. [PMID: 25987566 DOI: 10.1530/eje-15-0308] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
Abstract
Glucocorticoids (GCs) target several components of the integrated system that preserves vascular integrity and free blood flow. Cohort studies on Cushing's syndrome (CS) have revealed increased thromboembolism, but the pathogenesis remains unclear. Lessons from epidemiological data and post-treatment normalisation time suggest a bimodal action with a rapid and reversible effect on coagulation factors and an indirect sustained effect on the vessel wall. The redundancy of the steps that are potentially involved requires a systematic comparison of data from patients with endogenous or exogenous hypercortisolism in the context of either inflammatory or non-inflammatory disorders. A predominant alteration in the intrinsic pathway that includes a remarkable rise in factor VIII and von Willebrand factor (vWF) levels and a reduction in activated partial thromboplastin time appears in the majority of studies on endogenous CS. There may also be a rise in platelets, thromboxane B2, thrombin-antithrombin complexes and fibrinogen (FBG) levels and, above all, impaired fibrinolytic capacity. The increased activation of coagulation inhibitors seems to be compensatory in order to counteract disseminated coagulation, but there remains a net change towards an increased risk of venous thromboembolism (VTE). Conversely, GC administered in the presence of inflammation lowers vWF and FBG, but fibrinolytic activity is also reduced. As a result, the overall risk of VTE is increased in long-term users. Finally, no studies have assessed haemostatic abnormalities in patients with Addison's disease, although these may present as a consequence of bilateral adrenal haemorrhage, especially in the presence of antiphospholipid antibodies or anticoagulant treatments. The present review aimed to provide a comprehensive overview of the complex alterations produced by GCs in order to develop better screening and prevention strategies against bleeding and thrombosis.
Collapse
Affiliation(s)
- Andrea M Isidori
- Department of Experimental MedicineSapienza University of Rome, Viale del Policlinico 155, Rome 00161, ItalyOxford Centre for DiabetesEndocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LE, UK
| | - Marianna Minnetti
- Department of Experimental MedicineSapienza University of Rome, Viale del Policlinico 155, Rome 00161, ItalyOxford Centre for DiabetesEndocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LE, UK Department of Experimental MedicineSapienza University of Rome, Viale del Policlinico 155, Rome 00161, ItalyOxford Centre for DiabetesEndocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LE, UK
| | - Emilia Sbardella
- Department of Experimental MedicineSapienza University of Rome, Viale del Policlinico 155, Rome 00161, ItalyOxford Centre for DiabetesEndocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LE, UK
| | - Chiara Graziadio
- Department of Experimental MedicineSapienza University of Rome, Viale del Policlinico 155, Rome 00161, ItalyOxford Centre for DiabetesEndocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LE, UK
| | - Ashley B Grossman
- Department of Experimental MedicineSapienza University of Rome, Viale del Policlinico 155, Rome 00161, ItalyOxford Centre for DiabetesEndocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LE, UK
| |
Collapse
|
35
|
Matsubara S, Watanabe M, Inoue Y, Ando Y. [Angiographically documented hemorrhagic transformation of embolic stroke: A case report]. Rinsho Shinkeigaku 2015; 55:478-82. [PMID: 26004258 DOI: 10.5692/clinicalneurol.cn-000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 81-year-old man with rheumatoid vasculitis presented with total aphasia followed by right hemiplegia. The NIHSS score was 24. Diffusion weighted magnetic resonance imaging (DWI) demonstrated an acute infarct in the left middle cerebral artery (MCA) territory, and magnetic resonance angiogram (MRA) revealed left MCA M1 occlusion. We administrated recombinant tissue plasminogen activator (rt-PA) at 132 min after symptom onset, but symptom was not improved. Emergency neuroendovascular recanalization was conducted with Penumbra(®) system. After MCA was recanalized partially, extravasations appeared on left lenticulostriate arteries territory at 376 min from symptom onset. Multiple extravasations spread over perforating branches, and ventricular rupture recognized angiographically. After the procedure, head CT demonstrated hematoma on left basal ganglia territory with intraventricular bleeding. Rheumatoid vasculitis might affect hemorrhagic infarction in emergency neuroendovascular recanalization procedure, and careful choice of treatment would be required.
Collapse
Affiliation(s)
- Soichiro Matsubara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University
| | | | | | | |
Collapse
|
36
|
Abstract
INTRODUCTION Cushing's syndrome is associated with a number of clinical manifestations and co-morbidities which may not resolve even after long-term remission leading to excessive mortality. MATERIALS AND METHODS This review summarizes the main manifestations of Cushing's syndrome (active or in remission) with particular focus on data from recently published literature. CONCLUSION Obesity and metabolic alterations, hypertension and cardio/cerebrovascular complications, hypercoagulability/thromboembolism, neuropsychiatric, muscle/skeletal and immune consequences remain the most challenging. Cardiovascular consequences and immunosuppression determine the main causes of death in Cushing's syndrome necessitating early intervention when possible.
Collapse
Affiliation(s)
- Georgia Ntali
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Rd, Headington, Oxford, OX3 7LJ, UK
| | | | | |
Collapse
|
37
|
Beaudry JL, Dunford EC, Leclair E, Mandel ER, Peckett AJ, Haas TL, Riddell MC. Voluntary exercise improves metabolic profile in high-fat fed glucocorticoid-treated rats. J Appl Physiol (1985) 2015; 118:1331-43. [PMID: 25792713 DOI: 10.1152/japplphysiol.00467.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/15/2015] [Indexed: 01/12/2023] Open
Abstract
Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic β-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED (P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Emily C Dunford
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Erwan Leclair
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Erin R Mandel
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Ashley J Peckett
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Uchoa ET, Aguilera G, Herman JP, Fiedler JL, Deak T, Cordeiro de Sousa MB. Novel aspects of glucocorticoid actions. J Neuroendocrinol 2014; 26:557-72. [PMID: 24724595 PMCID: PMC4161987 DOI: 10.1111/jne.12157] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 12/20/2022]
Abstract
Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to the rhythmic and episodic release of adrenal glucocorticoids (GCs) is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, GCs regulate behaviour, as well as metabolic, cardiovascular, immune and neuroendocrine activities. By contrast to chronic elevated levels, circadian and acute stress-induced increases in GCs are necessary for hippocampal neuronal survival and memory acquisition and consolidation, as a result of the inhibition of apoptosis, the facilitation of glutamatergic neurotransmission and the formation of excitatory synapses, and the induction of immediate early genes and dendritic spine formation. In addition to metabolic actions leading to increased energy availability, GCs have profound effects on feeding behaviour, mainly via the modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that, in addition to the recognised immune suppressive actions of GCs by counteracting adrenergic pro-inflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative-feedback by GCs involves multiple mechanisms leading to limited HPA axis activation and prevention of the deleterious effects of excessive GC production. Adequate GC secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin-releasing hormone (CRH) and vasopressin secretion, which are the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving nongenomic actions of GCs, mediate the immediate inhibition of hypothalamic CRH and ACTH secretion, whereas intermediate and delayed mechanisms mediated by genomic actions involve the modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily conserved, being present in the earliest vertebrates. An understanding of these basic mechanisms may lead to novel approaches for the development of diagnostic and therapeutic tools for disorders related to stress and alterations of GC secretion.
Collapse
Affiliation(s)
- Ernane Torres Uchoa
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Greti Aguilera
- Section on Endocrine Physiology, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James P. Herman
- Department of Psychiatry and Behavioural Neuroscience, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH, USA
| | - Jenny L. Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Terrence Deak
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | |
Collapse
|
39
|
Tomiyama AJ. Weight stigma is stressful. A review of evidence for the Cyclic Obesity/Weight-Based Stigma model. Appetite 2014; 82:8-15. [PMID: 24997407 DOI: 10.1016/j.appet.2014.06.108] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/13/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Weight stigma is highly pervasive, but its consequences are understudied. This review draws from theory in social psychology, health psychology, and neuroendocrinology to construct an original, generative model called the cyclic obesity/weight-based stigma (COBWEBS) model. This model characterizes weight stigma as a "vicious cycle" - a positive feedback loop wherein weight stigma begets weight gain. This happens through increased eating behavior and increased cortisol secretion governed by behavioral, emotional, and physiological mechanisms, which are theorized to ultimately result in weight gain and difficulty of weight loss. The purpose of this review is to evaluate the existing literature for evidence supporting such a model, propose ways in which individuals enter, fight against, and exit the cycle, and conclude by outlining fruitful future directions in this nascent yet important area of research.
Collapse
Affiliation(s)
- A Janet Tomiyama
- Department of Psychology, University of California, 1285 Franz Hall, Los Angeles, CA 90095-1563, USA.
| |
Collapse
|
40
|
Patel R, Williams-Dautovich J, Cummins CL. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 2014; 28:999-1011. [PMID: 24766141 DOI: 10.1210/me.2014-1062] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid receptor (GR) was one of the first nuclear hormone receptors cloned and represents one of the most effective drug targets available today for the treatment of severe inflammation. The physiologic consequences of endogenous or exogenous glucocorticoid excess are well established and include hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting. However, at the molecular and tissue-specific level, there are still many unknown protein mediators of glucocorticoid response and thus, much remains to be uncovered that will help determine whether activation of the GR can be tailored to improve therapeutic efficacy while minimizing unwanted side effects. This review summarizes recent discoveries of tissue-selective modulators of glucocorticoid signaling that are important in mediating the unwanted side effects of therapeutic glucocorticoid use, emphasizing the downstream molecular effects of GR activation in the liver, adipose tissue, muscle, and pancreas.
Collapse
Affiliation(s)
- Rucha Patel
- Department of Pharmaceutical Sciences (R.P., J.W-D., C.L.C.), University of Toronto, Toronto, Ontario, M5S 3M2, Canada; and Banting and Best Diabetes Centre (C.L.C.), Toronto, Ontario M5G 2C4 Canada
| | | | | |
Collapse
|
41
|
Beaudry JL, Dunford EC, Teich T, Zaharieva D, Hunt H, Belanoff JK, Riddell MC. Effects of selective and non-selective glucocorticoid receptor II antagonists on rapid-onset diabetes in young rats. PLoS One 2014; 9:e91248. [PMID: 24642683 PMCID: PMC3958344 DOI: 10.1371/journal.pone.0091248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
The blockade of glucocorticoid (GC) action through antagonism of the glucocorticoid receptor II (GRII) has been used to minimize the undesirable effects of chronically elevated GC levels. Mifepristone (RU486) is known to competitively block GRII action, but not exclusively, as it antagonizes the progesterone receptor. A number of new selective GRII antagonists have been developed, but limited testing has been completed in animal models of overt type 2 diabetes mellitus. Therefore, two selective GRII antagonists (C113176 and C108297) were tested to determine their effects in our model of GC-induced rapid-onset diabetes (ROD). Male Sprague-Dawley rats (∼ six weeks of age) were placed on a high-fat diet (60%), surgically implanted with pellets containing corticosterone (CORT) or wax (control) and divided into five treatment groups. Each group was treated with either a GRII antagonist or vehicle for 14 days after surgery: CORT pellets (400 mg/rat) + antagonists (80 mg/kg/day); CORT pellets + drug vehicle; and wax pellets (control) + drug vehicle. After 10 days of CORT treatment, body mass gain was increased with RU486 (by ∼20% from baseline) and maintained with C113176 administration, whereas rats given C108297 had similar body mass loss (∼15%) to ROD animals. Fasting glycemia was elevated in the ROD animals (>20 mM), normalized completely in animals treated with RU486 (6.2±0.1 mM, p<0.05) and improved in animals treated with C108297 and C113176 (14.0±1.6 and 8.8±1.6 mM, p<0.05 respectively). Glucose intolerance was normalized with RU486 treatment, whereas acute insulin response was improved with RU486 and C113176 treatment. Also, peripheral insulin resistance was attenuated with C113176 treatment along with improved levels of β-cell function while C108297 antagonism only provided modest improvements. In summary, C113176 is an effective agent that minimized some GC-induced detrimental metabolic effects and may provide an alternative to the effective, but non-selective, GRII antagonist RU486.
Collapse
Affiliation(s)
- Jacqueline L. Beaudry
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Emily C. Dunford
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Trevor Teich
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Dessi Zaharieva
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, United States of America
| | | | - Michael C. Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Giordano C, Guarnotta V, Pivonello R, Amato MC, Simeoli C, Ciresi A, Cozzolino A, Colao A. Is diabetes in Cushing's syndrome only a consequence of hypercortisolism? Eur J Endocrinol 2014; 170:311-9. [PMID: 24255133 DOI: 10.1530/eje-13-0754] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Diabetes mellitus (DM) is one of the most frequent complications of Cushing's syndrome (CS). The aim of this study was to define the changes in insulin sensitivity and/or secretion in relation to glucose tolerance categories in newly diagnosed CS patients. DESIGN Cross-sectional study on 140 patients with CS. METHODS A total of 113 women (80 with pituitary disease and 33 with adrenal disease, aged 41.7±15.7 years) and 27 men (19 with pituitary disease and eight with adrenal disease, aged 38.1±20.01 years) at diagnosis were divided according to glucose tolerance into normal glucose tolerance (CS/NGT), impaired fasting glucose and/or impaired glucose tolerance (CS/prediabetes), and diabetes (CS/DM) groups. RESULTS Seventy-one patients had CS/NGT (49.3%), 26 (18.5%) had CS/prediabetes and 43 (30.8%) had CS/DM. Significant increasing trends in the prevalence of family history of diabetes (P<0.001), metabolic syndrome (P<0.001), age (P<0.001) and waist circumference (P=0.043) and decreasing trends in HOMA-β (P<0.001) and oral disposition index (DIo) (P<0.002) were observed among the groups. No significant trends in fasting insulin levels, area under the curve for insulin (AUCINS), Matsuda index of insulin sensitivity (ISI-Matsuda) and visceral adiposity index were detected. CONCLUSIONS Impairment of glucose tolerance is characterized by the inability of β-cells to adequately compensate for insulin resistance through increased insulin secretion. Age, genetic predisposition and lifestyle, in combination with the duration and degree of hypercortisolism, strongly contribute to the impairment of glucose tolerance in patients with a natural history of CS. A careful phenotypic evaluation of glucose tolerance defects in patients with CS proves useful for the identification of those at a high risk of metabolic complications.
Collapse
Affiliation(s)
- Carla Giordano
- Dipartimento di Medicina Interna e Specialistica (Di.Bi.Mi.S) Sezione di Endocrinologia e Malattie del Metabolismo Università di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013; 380:65-78. [PMID: 23523966 DOI: 10.1016/j.mce.2013.03.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 01/28/2023]
Abstract
In the past decades, glucocorticoid (GC) hormones and their cognate, intracellular receptor, the glucocorticoid receptor (GR), have been well established as critical checkpoints in mammalian energy homeostasis. Whereas many aspects in healthy nutrient metabolism require physiological levels and/or action of GC, aberrant GC/GR signalling has been linked to severe metabolic dysfunction, including obesity, insulin resistance and type 2 diabetes. Consequently, studies of the molecular mechanisms within the GC signalling axis have become a major focus in biomedical research, up-to-date particularly focusing on systemic glucose and lipid handling. However, with the availability of novel high throughput technologies and more sophisticated metabolic phenotyping capabilities, as-yet non-appreciated, metabolic functions of GC have been recently discovered, including regulatory roles of the GC/GR axis in protein and bile acid homeostasis as well as metabolic inter-organ communication. Therefore, this review summarises recent advances in GC/GR biology, and summarises findings relevant for basic and translational metabolic research.
Collapse
Affiliation(s)
- Adam J Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | | |
Collapse
|
44
|
Grasso D, Corsetti R, Lanteri P, Di Bernardo C, Colombini A, Graziani R, Banfi G, Lombardi G. Bone-muscle unit activity, salivary steroid hormones profile, and physical effort over a 3-week stage race. Scand J Med Sci Sports 2013; 25:70-80. [DOI: 10.1111/sms.12147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 11/26/2022]
Affiliation(s)
- D. Grasso
- Laboratory of Experimental Biochemistry and Molecular Biology; I.R.C.C.S. Istituto Ortopedico Galeazzi; Milano Italy
| | - R. Corsetti
- Medical Board Liquigas-Cannondale Pro-tour Cycling Team; Sesto al Reghena Italy
| | - P. Lanteri
- Laboratory of Experimental Biochemistry and Molecular Biology; I.R.C.C.S. Istituto Ortopedico Galeazzi; Milano Italy
| | - C. Di Bernardo
- Laboratory of Experimental Biochemistry and Molecular Biology; I.R.C.C.S. Istituto Ortopedico Galeazzi; Milano Italy
| | - A. Colombini
- Laboratory of Experimental Biochemistry and Molecular Biology; I.R.C.C.S. Istituto Ortopedico Galeazzi; Milano Italy
| | - R. Graziani
- Centro Diagnostico Alto-Lombardo - CEDAL; Gallarate Italy
| | - G. Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology; I.R.C.C.S. Istituto Ortopedico Galeazzi; Milano Italy
- Department of Biomedical Sciences for Health; University of Milan; Milan Italy
| | - G. Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology; I.R.C.C.S. Istituto Ortopedico Galeazzi; Milano Italy
| |
Collapse
|
45
|
Leloup P, Le Bras M, Mirallie E, Barbarot S, Durant C. [Cushing's syndrome revealed by a chronic sore]. Ann Dermatol Venereol 2013; 140:407-9. [PMID: 23663721 DOI: 10.1016/j.annder.2013.01.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/14/2013] [Indexed: 11/27/2022]
Affiliation(s)
- P Leloup
- Service de dermatologie, clinique dermatologique, CHU Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093 Nantes cedex 1, France.
| | | | | | | | | |
Collapse
|
46
|
Fan C, Zhang C, Shi X, Bian L, Zhao W, Zhang H, Su T, Wang W, Li X, Ning G, Kong L, Hu L, Sun Q. Assessing the value of bilateral inferior petrosal sinus sampling in the diagnosis and treatment of a complex case of Cushing's disease. Intractable Rare Dis Res 2013; 2:24-29. [PMID: 25343097 PMCID: PMC4204576 DOI: 10.5582/irdr.2013.v2.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 11/05/2022] Open
Abstract
A 41-year-old female visited Ruijin Hospital because her face was swollen for more than 2 months. The patient was initially diagnosed with Cushing's disease (CD). Several examinations, including a dexamethasone suppression test (DST) at 2 mg and 8 mg, pituitary MRI, abdominal CT, punch biopsy of adrenal masses, and bilateral inferior petrosal sinus sampling (BIPSS), were performed, but the findings were not consistent with the clinical presentation. Ultimately, the patient underwent surgery and recovered. In this case, BIPSS was a useful way to diagnosis CD and suggested the exact location of a pituitary adenoma to Neurosurgery. BIPSS should be a required test for cases of CD that cannot be definitively diagnosed with just an MRI and 8 mg DST before surgery.
Collapse
Affiliation(s)
- Changyan Fan
- Department of Neurology, Wuxi No.3 People's Hospital, Wuxi, China
| | - Chenran Zhang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Xiuhua Shi
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiguo Zhao
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingwei Su
- Department of Endocrine and Metabolic Disorders, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Disorders, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolic Disorders, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Disorders, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Kong
- Department of Neurology, Wuxi No.3 People's Hospital, Wuxi, China
| | - Lingling Hu
- Department of Neurology, Wuxi No.3 People's Hospital, Wuxi, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Address correspondence to: Dr. Qingfang Sun, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China. E-mail:
| |
Collapse
|
47
|
Mueller KM, Themanns M, Friedbichler K, Kornfeld JW, Esterbauer H, Tuckermann JP, Moriggl R. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Mol Cell Endocrinol 2012; 361:1-11. [PMID: 22564914 PMCID: PMC3419266 DOI: 10.1016/j.mce.2012.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/30/2012] [Indexed: 01/07/2023]
Abstract
Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.
Collapse
Affiliation(s)
| | | | | | - Jan-Wilhelm Kornfeld
- Institute for Genetics, Department of Mouse Genetics and Metabolism, University of Cologne, Cologne, Germany
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Jan P. Tuckermann
- Tissue-Specific Hormone Action, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
- Institute for General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Corresponding author. Address: Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria. Tel.: +43 14277 64111; fax: +43 14277 9641.
| |
Collapse
|
48
|
Hatipoglu BA. Cushing's syndrome. J Surg Oncol 2012; 106:565-71. [DOI: 10.1002/jso.23197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/22/2012] [Indexed: 12/29/2022]
|
49
|
Abstract
The skin should not be considered as an isolated organ but rather as a definite functioning system that communicates with the internal environment. Skin signs of systemic diseases occur frequently and sometimes feature the first symptoms of an internal disease; furthermore, these manifestations may be the sole expressions of otherwise asymptomatic systemic disorders. A number of dermatologic signs, symptoms, and disorders can be invaluable as markers of systemic disease. Although a plethora of specialized modern diagnostic tests are available, the skin still remains the only organ of the body that is immediately and completely accessible to direct clinical examination. This contribution reviews the skin signs of systemic diseases. The description of the clinical features of skin lesions observed in several internal diseases will be useful to general physicians, internists, and dermatologists in the diagnosis of a systemic disease.
Collapse
Affiliation(s)
- Dimitris Rigopoulos
- Department of Dermatology, University of Athens, Andreas Sygros Hospital, 5th Ionos Dragoumi St, 16121 Athens, Greece.
| | | | | |
Collapse
|
50
|
Cai Y, Song Z, Wang X, Jiao H, Lin H. Dexamethasone-induced hepatic lipogenesis is insulin dependent in chickens (Gallus gallus domesticus). Stress 2011; 14:273-81. [PMID: 21294661 DOI: 10.3109/10253890.2010.543444] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatic lipogenesis-induced de novo by glucocorticoids (GCs) is associated with the development of obesity and diabetes mellitus. The interaction of GCs and insulin in the regulation of hepatic lipogenesis remains unclear. The effect of exogenous GC administration on hepatic lipogenesis and fat deposition was studied in broiler chickens (Gallus gallus domesticus), and the role of insulin in the effect of GCs on hepatic lipogenesis was evaluated. Dexamethasone (DEX, 2 mg/kg body mass (BM)) administration for 3-d resulted in BM loss and increased liver and cervical adipose tissue mass compared to control and pair-fed counterparts. DEX treatment significantly (P < 0.05) increased plasma level of insulin in either the fed or fasting state, whereas plasma glucose level was only increased in the fed state. In fasted chickens, DEX treatment significantly (P < 0.01) upregulated the hepatic mRNA levels of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). In the fed state, the mRNA levels of ACC and FAS were not significantly influenced by DEX treatment, nor was FAS activity. In cultured primary hepatocytes, combined DEX and insulin significantly upregulated the transcription of the genes for FAS (1.34-fold) and malic enzyme (1.72-fold). By contrast, the expression of sterol response element-binding protein-1 (SREBP-1) was significantly upregulated by insulin (1.67-fold) regardless of DEX. In abdominal adipose tissue, DEX treatment had no significant (P>0.05) effect on the activities and transcription of FAS. The expressions of lipoprotein lipase and peroxisome proliferator-activated receptor-γ were not significantly (P>0.05) affected by DEX treatment in either the fasting or fed state. The results indicate that DEX increased hepatic de novo lipogenesis via the increased activity and expression of lipogenic enzymes. Insulin-activated gene expression for SREBP-1 is suggested to be involved in stress-augmented hepatic lipogenesis.
Collapse
Affiliation(s)
- Yuanli Cai
- Department of Animal Science, Shandong Agricultural UniversityTaian, Shandong, 271018, People's Republic of China
| | | | | | | | | |
Collapse
|