1
|
Boß L, Stehling O, Elsässer HP, Lill R. Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome. J Biol Chem 2024:108087. [PMID: 39675708 DOI: 10.1016/j.jbc.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits. Each of these clusters is coordinated in a bridging fashion by cysteine residues from two different mitoribosomal proteins. Here, we investigated the cell biological and biochemical roles of all three Fe/S clusters in mitochondrial function and assembly. First, we found a requirement of both early and late factors of the mitochondrial iron-sulfur cluster assembly machinery for protein translation indicating that not only the mitoribosome [2Fe-2S] clusters but also the [4Fe-4S] cluster of the mitoribosome assembly factor METTL17 are required for mitochondrial translation. Second, siRNA-mediated depletion of the cluster-coordinating ribosomal proteins bS18m, mS25 or mL66 and complementation with either the respective wild-type or cysteine-exchange proteins unveiled the importance of the clusters for assembly, stability, and function of the human mitoribosome. As a consequence, the lack of cluster binding to mitoribosomes impaired the activity of the mitochondrial respiratory chain complexes and led to altered mitochondrial morphology with a loss of cristae membranes. Finally, in silico investigation of the phylogenetic distribution of the cluster-coordinating cysteine motifs indicated their presence in most metazoan mitoribosomes, with exception of ray-finned fish. Collectively, our study highlights the functional need of mitochondrial Fe/S protein biogenesis for both protein translation and respiratory energy supply in most metazoan mitochondria.
Collapse
Affiliation(s)
- Linda Boß
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Hans-Peter Elsässer
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany.
| |
Collapse
|
2
|
Tong WH, Rouault TA. In-Gel Activity Assay of Mammalian Mitochondrial and Cytosolic Aconitases, Surrogate Markers of Compartment-Specific Oxidative Stress and Iron Status. Bio Protoc 2024; 14:e5126. [PMID: 39677021 PMCID: PMC11635440 DOI: 10.21769/bioprotoc.5126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 12/17/2024] Open
Abstract
Two aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S]2+ cluster that is essential for substrate coordination and catalysis. Many Fe-S clusters are sensitive to oxidative stress, nitrative stress, and reduced iron availability, which forms the basis of redox- and iron-mediated regulation of intermediary metabolism via aconitase and other Fe-S cluster-containing metabolic enzymes, such as succinate dehydrogenase. As such, ACO1 and ACO2 activities can serve as compartment-specific surrogate markers of oxygen levels, reactive oxygen species (ROS), reactive nitrogen species (RNS), iron bioavailability, and the status of intermediary and iron metabolism. Here, we provide a protocol describing a non-denaturing polyacrylamide gel electrophoresis (PAGE)-based procedure that has been successfully used to monitor ACO1 and ACO2 aconitase activities simultaneously in human and mouse cells and tissues. Key features • Monitoring aconitase activity changes in the mitochondria and cytosol simultaneously in response to oxidative or nitrative stress, iron depletion, and various pathophysiological conditions. • Optimized for human and mouse cell lines and tissue samples. • Semi-quantitative detection of aconitase isoforms with different states of phosphorylation and/or post-translational modification.
Collapse
Affiliation(s)
- Wing-Hang Tong
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Tracey A. Rouault
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
3
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Hsiung KC, Tang HY, Cheng ML, Hung LM, Chin-Ming Tan B, Lo SJ. Mitochondrial Bioenergetics Deficiency in cisd-1 Mutants is Linked to AMPK-Mediated Lipid Metabolism. Biomed J 2024:100806. [PMID: 39521176 DOI: 10.1016/j.bj.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND CISD-1 is a mitochondrial iron-sulfate [2Fe-2S] protein known to be associated with various human diseases, including cancer and diabetes. Previously, we demonstrated that CISD-1 deficiency in worms lowers glucose and ATP levels. In this study, we further explored how worms compensate for lower ATP levels by analyzing changes in cytoplasmic and mitochondrial iron content, AMPK activities, and total lipid profiles. MATERIALS AND METHODS Expression levels of CISD-1 and CISD-1::GFP fusion proteins in wild-type worms (N2), cisd-1-deletion mutants (tm4993 and syb923) and GFP insertion transgenic worms (PHX953 and SJL40) were examined by western blot. Fluorescence microscopy analyzed CISD-1::GFP pattern in PHX953 embryos and adults, and lipid droplet sizes in N2, cisd-1, aak-2 and aak-2;cisd-1 worms. Total and mitochondrial iron content, electron transport complex profiles, and AMPK activity were investigated in tm4993 and syb923 mutants. mRNA levels of mitochondrial β-oxidation genes, acs-2, cpt-5, and ech-1, were quantified by RT-qPCR in various genetic worm strains. Lipidomic analyses were performed in N2 and cisd-1(tm4993) worms. RESULTS Defects in cisd-1 lead to an imbalance in iron transport and cause proton leak, resulting in lower ATP production by interrupting the mitochondrial electron transport chain. We identified a signaling pathway that links ATP deficiency-induced AMPK (AMP activated protein kinase) activation to the expression of genes that facilitate lipolysis via β-oxidation. CONCLUSION Our data provide a functional coordination between CISD-1 and AMPK constitutes a mitochondrial bioenergetics quality control mechanism that provides compensatory energy resources.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, TaoYuan, Taiwan
| | - Mei-Ling Cheng
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333; Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, TaoYuan, Taiwan
| | - Li-Man Hung
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333
| | - Bertrand Chin-Ming Tan
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333; Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan, 333; Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, TaoYuan, Taiwan, 333.
| | - Szecheng J Lo
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan, 333.
| |
Collapse
|
5
|
Pandey AK, Yoon H, Pain J, Dancis A, Pain D. Mitochondrial acyl carrier protein, Acp1, required for iron-sulfur cluster assembly in mitochondria and cytoplasm in Saccharomyces cerevisiae. Mitochondrion 2024; 79:101955. [PMID: 39251117 DOI: 10.1016/j.mito.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Mitochondria perform vital biosynthetic processes, including fatty acid synthesis and iron-sulfur (FeS) cluster biogenesis. In Saccharomyces cerevisiae mitochondria, the acyl carrier protein Acp1 participates in type II fatty acid synthesis, requiring a 4-phosphopantetheine (PP) prosthetic group. Acp1 also interacts with the mitochondrial FeS cluster assembly complex that contains the cysteine desulfurase Nfs1. Here we investigated the role of Acp1 in FeS cluster biogenesis in mitochondria and cytoplasm. In the Acp1-depleted (Acp1↓) cells, biogenesis of mitochondrial FeS proteins was impaired, likely due to greatly reduced Nfs1 protein and/or its persulfide-forming activity. Formation of cytoplasmic FeS proteins was also deficient, suggesting a disruption in generating the (Fe-S)int intermediate, that is exported from mitochondria and is subsequently utilized for cytoplasmic FeS cluster assembly. Iron homeostasis was perturbed, with enhanced iron uptake into the cells and accumulation of iron in mitochondria. The Δppt2 strain, lacking the mitochondrial ability to add PP to Acp1, phenocopied the Acp1↓ cells. These data suggest that the holo form of Acp1 with the PP-conjugated acyl chain is required for stability of the Nfs1 protein and/or stimulation of its persulfide-forming activity. Thus, mitochondria lacking Acp1 (or Ppt2) cannot support FeS cluster biogenesis in mitochondria or cytoplasm, leading to disrupted iron homeostasis.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States.
| |
Collapse
|
6
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
7
|
Ma Z, Wang W, Yang X, Rui M, Wang S. Glial ferritin maintains neural stem cells via transporting iron required for self-renewal in Drosophila. eLife 2024; 13:RP93604. [PMID: 39255019 PMCID: PMC11386955 DOI: 10.7554/elife.93604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Stem cell niche is critical for regulating the behavior of stem cells. Drosophila neural stem cells (Neuroblasts, NBs) are encased by glial niche cells closely, but it still remains unclear whether glial niche cells can regulate the self-renewal and differentiation of NBs. Here, we show that ferritin produced by glia, cooperates with Zip13 to transport iron into NBs for the energy production, which is essential to the self-renewal and proliferation of NBs. The knockdown of glial ferritin encoding genes causes energy shortage in NBs via downregulating aconitase activity and NAD+ level, which leads to the low proliferation and premature differentiation of NBs mediated by Prospero entering nuclei. More importantly, ferritin is a potential target for tumor suppression. In addition, the level of glial ferritin production is affected by the status of NBs, establishing a bicellular iron homeostasis. In this study, we demonstrate that glial cells are indispensable to maintain the self-renewal of NBs, unveiling a novel role of the NB glial niche during brain development.
Collapse
Affiliation(s)
- Zhixin Ma
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Wenshu Wang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Xiaojing Yang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Menglong Rui
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Su Wang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
8
|
Fahoum L, Moshe-Belisowski S, Zaydel K, Ghatpande N, Guttmann-Raviv N, Zhang W, Li K, Tong WH, Nyska A, Waterman M, Weisshof R, Zuckerman A, Meyron-Holtz EG. Iron regulatory protein 1 is required for the propagation of inflammation in inflammatory bowel disease. J Biol Chem 2024; 300:107639. [PMID: 39122013 PMCID: PMC11408829 DOI: 10.1016/j.jbc.2024.107639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation is known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution, and that this in turn perpetuates the inflammation. This study analyzed human biopsies, animal models, and cellular systems to decipher the role of iron homeostasis in IBD. We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP) 1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular coculture model was established, which replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.
Collapse
Affiliation(s)
- Lulu Fahoum
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shirly Moshe-Belisowski
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Kristina Zaydel
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Niraj Ghatpande
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Noga Guttmann-Raviv
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wing-Hang Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Abraham Nyska
- Department of Biotechnology and Food Engineering, Tel Aviv University and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - Matti Waterman
- Department of Biotechnology and Food Engineering, Rambam/Technion- Israel Institute of Technology, Haifa, Israel
| | - Ronni Weisshof
- Department of Biotechnology and Food Engineering, Rambam/Technion- Israel Institute of Technology, Haifa, Israel
| | - Avi Zuckerman
- Department of Biotechnology and Food Engineering, Aviv Projects, Ness Ziona, Israel
| | - Esther G Meyron-Holtz
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Liu Z, Jin T, Qin B, Li R, Shang J, Huang Y. The deletion of ppr2 interferes iron sensing and leads to oxidative stress response in Schizosaccharomyces pombe. Mitochondrion 2024; 76:101875. [PMID: 38499131 DOI: 10.1016/j.mito.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.
Collapse
Affiliation(s)
- Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Chen T, Liang L, Wang Y, Li X, Yang C. Ferroptosis and cuproptposis in kidney Diseases: dysfunction of cell metabolism. Apoptosis 2024; 29:289-302. [PMID: 38095762 PMCID: PMC10873465 DOI: 10.1007/s10495-023-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 02/18/2024]
Abstract
Metal ions play an important role in living organisms and are involved in essential physiological activities. However, the overload state of ions can cause excess free radicals, cell damage, and even cell death. Ferroptosis and cuproptosis are specific forms of cell death that are distinct from apoptosis, necroptosis, and other regulated cell death. These unique modalities of cell death, dependent on iron and copper, are regulated by multiple cellular metabolic pathways, including steady-state metal redox treatment mitochondrial activity of lipid, amino acid and glucose metabolism, and various signaling pathways associated with disease. Although the mechanisms of ferroptosis and cuproptosis are not yet fully understood, there is no doubt that ion overload plays a crucial act in these metal-dependent cell deaths. In this review, we discussed the core roles of ion overload in ferroptosis and cuproptosis, the association between metabolism imbalance and ferroptosis and cuproptosis, the extract the diseases caused by ion overload and current treatment modalities.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
- Zhangjiang Institue of Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
12
|
Zhao H, Lu Y, Zhang J, Sun Z, Cheng C, Liu Y, Wu L, Zhang M, He W, Hao S, Li K. NCOA4 requires a [3Fe-4S] to sense and maintain the iron homeostasis. J Biol Chem 2024; 300:105612. [PMID: 38159858 PMCID: PMC10831263 DOI: 10.1016/j.jbc.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
NCOA4 is a selective cargo receptor for ferritinophagy, the autophagic turnover of ferritin (FTH), a process critical for regulating intracellular iron bioavailability. However, how ferritinophagy flux is controlled through NCOA4 in iron-dependent processes needs to be better understood. Here, we show that the C-terminal FTH-binding domain of NCOA4 harbors a [3Fe-4S]-binding site with a stoichiometry of approximately one labile [3Fe-4S] cluster per NCOA4 monomer. By analyzing the interaction between NCOA4 and HERC2 ubiquitin ligase or NCOA4 and FTH, we demonstrate that NCOA4 regulates ferritinophagy by sensing the intracellular iron-sulfur cluster levels. Under iron-repletion conditions, HERC2 recognizes and recruits holo-NCOA4 as a substrate for polyubiquitination and degradation, favoring ferritin iron storage. Under iron-depletion conditions, NCOA4 exists in the form of apo-protein and binds ferritin to promote the occurrence of ferritinophagy and release iron. Thus, we identify an iron-sulfur cluster [3Fe-4S] as a critical cofactor in determining the fate of NCOA4 in favoring iron storage in ferritin or iron release via ferritinophagy and provide a dual mechanism for selective interaction between HERC2 and [3Fe-4S]-NCOA4 for proteasomal degradation or between ferritin and apo-NCOA4 for ferritinophagy in the control of iron homeostasis.
Collapse
Affiliation(s)
- Hongting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yao Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jinghua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zichen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chen Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yutong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Meng Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Weijiang He
- School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China.
| | - Kuanyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Li H, Deng N, Puopolo T, Jiang X, Seeram NP, Liu C, Ma H. Cannflavins A and B with Anti-Ferroptosis, Anti-Glycation, and Antioxidant Activities Protect Human Keratinocytes in a Cell Death Model with Erastin and Reactive Carbonyl Species. Nutrients 2023; 15:4565. [PMID: 37960218 PMCID: PMC10650133 DOI: 10.3390/nu15214565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Precursors of advanced glycation endproducts, namely, reactive carbonyl species (RCSs), are aging biomarkers that contribute to cell death. However, the impact of RCSs on ferroptosis-an iron-dependent form of cell death-in skin cells remains unknown. Herein, we constructed a cellular model (with human keratinocyte; HaCaT cells) to evaluate the cytotoxicity of the combinations of RCSs (including glyoxal; GO and methyglyoxal; MGO) and erastin (a ferroptosis inducer) using bioassays (measuring cellular lipid peroxidation and iron content) and proteomics with sequential window acquisition of all theoretical mass spectra. Additionally, a data-independent acquisition approach was used to characterize RCSs' and erastin's molecular network including genes, canonical pathways, and upstream regulators. Using this model, we evaluated the cytoprotective effects of two dietary flavonoids including cannflavins A and B against RCSs and erastin-induced cytotoxicity in HaCaT cells. Cannflavins A and B (at 0.625 to 20 µM) inhibited ferroptosis by restoring the cell viability (by 56.6-78.6% and 63.8-81.1%) and suppressing cellular lipid peroxidation (by 42.3-70.2% and 28.8-63.6%), respectively. They also alleviated GO + erastin- or MGO + erastin-induced cytotoxicity by 62.2-67.6% and 56.1-69.3%, and 35.6-54.5% and 33.8-62.0%, respectively. Mechanistic studies supported that the cytoprotective effects of cannflavins A and B are associated with their antioxidant activities including free radical scavenging capacity and an inhibitory effect on glycation. This is the first study showing that cannflavins A and B protect human keratinocytes from RCSs + erastin-induced cytotoxicity, which supports their potential applications as dietary interventions for aging-related skin conditions.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ni Deng
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Lail N, Pandey AK, Venkatesh S, Noland RD, Swanson G, Pain D, Branson HM, Suzuki CK, Yoon G. Child Neurology: Progressive Cerebellar Atrophy and Retinal Dystrophy: Clues to an Ultrarare ACO2-Related Neurometabolic Diagnosis. Neurology 2023; 101:e1567-e1571. [PMID: 37460232 PMCID: PMC10585704 DOI: 10.1212/wnl.0000000000207649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 10/11/2023] Open
Abstract
Pathogenic biallelic variants in ACO2, which encodes the enzyme mitochondrial aconitase, are associated with the very rare diagnosis of ACO2-related infantile cerebellar retinal degeneration (OMIM 614559). We describe the diagnostic odyssey of a 4-year-old female patient with profound global developmental delays, microcephaly, severe hypotonia, retinal dystrophy, seizures, and progressive cerebellar atrophy. Whole-exome sequencing revealed 2 variants in ACO2; c.2105_2106delAG (p.Gln702ArgfsX9), a likely pathogenic variant, and c.988C>T (p.Pro330Ser) which was classified as a variant of uncertain significance (VUS). While the VUS was confirmed to be maternally inherited, the phase of the other variant could not be confirmed due to lack of a paternal sample. Functional biochemical studies were performed on a research basis to clarify the interpretation of the VUS, which enabled clinical confirmation of the diagnosis of ACO2-related infantile cerebellar retinal degeneration for our patient.
Collapse
Affiliation(s)
- Noor Lail
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Ashutosh K Pandey
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Sundararajan Venkatesh
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Roberto D Noland
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Gabriel Swanson
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Debkumar Pain
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Helen M Branson
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Carolyn K Suzuki
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown
| | - Grace Yoon
- From the Division of Clinical and Metabolic Genetics (N.L., G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; Department of Pharmacology, Physiology and Neuroscience (A.K.P., D.P.), and Department of Microbiology, Biochemistry and Molecular Genetics (S.V., R.D.N., G.S., C.K.S.), Rutgers-New Jersey Medical School, Newark; and Division of Neuroradiology (H.M.B.), Department of Diagnostic Imaging, and Division of Neurology (G.Y.), Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada. S. Venkatesh is now with Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown.
| |
Collapse
|
16
|
Fahoum L, Belisowski S, Ghatpande N, Guttmann-Raviv N, Zhang W, Li K, Tong WH, Nyska A, Waterman M, Weisshof R, Zuckerman A, Meyron-Holtz E. Iron Regulatory Protein 1 is Required for the Propagation of Inflammation in Inflammatory Bowel Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525690. [PMID: 36789413 PMCID: PMC9928023 DOI: 10.1101/2023.01.27.525690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Inflammatory bowel diseases (IBD) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation are known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution and that this in turn perpetuates the inflammation. Design This study analyzed human biopsies, animal models and cellular systems to decipher the role of iron homeostasis in IBD. Results We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP)1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular co-culture model was established, that replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. Conclusion These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.
Collapse
Affiliation(s)
- L. Fahoum
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - S. Belisowski
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Ghatpande
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Guttmann-Raviv
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - W. Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - K. Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - W-H. Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - A. Nyska
- Tel Aviv University and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - M. Waterman
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | - R. Weisshof
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | | | - E.G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Ren X, Yan J, Zhao Q, Bao X, Han X, Zheng C, Zhou Y, Chen L, Wang B, Yang L, Lin X, Liu D, Lin Y, Li M, Fang H, Lu Z, Lyu J. The Fe-S cluster assembly protein IscU2 increases α-ketoglutarate catabolism and DNA 5mC to promote tumor growth. Cell Discov 2023; 9:76. [PMID: 37488138 PMCID: PMC10366194 DOI: 10.1038/s41421-023-00558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/01/2023] [Indexed: 07/26/2023] Open
Abstract
IscU2 is a scaffold protein that is critical for the assembly of iron-sulfur (Fe-S) clusters and the functions of Fe-S-containing mitochondrial proteins. However, the role of IscU2 in tumor development remains unclear. Here, we demonstrated that IscU2 expression is much higher in human pancreatic ductal adenocarcinoma (PDAC) tissues than in adjacent normal pancreatic tissues. In PDAC cells, activated KRAS enhances the c-Myc-mediated IscU2 transcription. The upregulated IscU2 stabilizes Fe-S cluster and regulates the activity of tricarboxylic acid (TCA) cycle enzymes α-ketoglutarate (α-KG) dehydrogenase and aconitase 2, which promote α-KG catabolism through oxidative and reductive TCA cycling, respectively. In addition to promoting mitochondrial functions, activated KRAS-induced and IscU2-dependent acceleration of α-KG catabolism results in reduced α-KG levels in the cytosol and nucleus, leading to an increase in DNA 5mC due to Tet methylcytosine dioxygenase 3 (TET3) inhibition and subsequent expression of genes including DNA polymerase alpha 1 catalytic subunit for PDAC cell proliferation and tumor growth in mice. These findings underscore a critical role of IscU2 in KRAS-promoted α-KG catabolism, 5mC-dependent gene expression, and PDAC growth and highlight the instrumental and integrated regulation of mitochondrial functions and gene expression by IscU2 in PDAC cells.
Collapse
Affiliation(s)
- Xiaojun Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jimei Yan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiongya Zhao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinzhu Bao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Han
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lina Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuyan Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianxin Lyu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Aghabi D, Sloan M, Gill G, Hartmann E, Antipova O, Dou Z, Guerra AJ, Carruthers VB, Harding CR. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun 2023; 14:3659. [PMID: 37339985 PMCID: PMC10281983 DOI: 10.1038/s41467-023-39436-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.
Collapse
Affiliation(s)
- Dana Aghabi
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan Sloan
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Grace Gill
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Hartmann
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Olga Antipova
- X-Ray Sciences Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Cayman Chemical Company, Ann Arbor, MI, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clare R Harding
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Sekine Y, Houston R, Eckl EM, Fessler E, Narendra DP, Jae LT, Sekine S. A mitochondrial iron-responsive pathway regulated by DELE1. Mol Cell 2023; 83:2059-2076.e6. [PMID: 37327776 PMCID: PMC10329284 DOI: 10.1016/j.molcel.2023.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The heme-regulated kinase HRI is activated under heme/iron deficient conditions; however, the underlying molecular mechanism is incompletely understood. Here, we show that iron-deficiency-induced HRI activation requires the mitochondrial protein DELE1. Notably, mitochondrial import of DELE1 and its subsequent protein stability are regulated by iron availability. Under steady-state conditions, DELE1 is degraded by the mitochondrial matrix-resident protease LONP1 soon after mitochondrial import. Upon iron chelation, DELE1 import is arrested, thereby stabilizing DELE1 on the mitochondrial surface to activate the HRI-mediated integrated stress response (ISR). Ablation of this DELE1-HRI-ISR pathway in an erythroid cell model enhances cell death under iron-limited conditions, suggesting a cell-protective role for this pathway in iron-demanding cell lineages. Our findings highlight mitochondrial import regulation of DELE1 as the core component of a previously unrecognized mitochondrial iron responsive pathway that elicits stress signaling following perturbation of iron homeostasis.
Collapse
Affiliation(s)
- Yusuke Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ryan Houston
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eva-Maria Eckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shiori Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Duan Y, Sun J. Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics (Basel) 2023; 8:biomimetics8020177. [PMID: 37218763 DOI: 10.3390/biomimetics8020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Recently, iron-based sulfides, including iron sulfide minerals and biological iron sulfide clusters, have attracted widespread interest, owing to their excellent biocompatibility and multi-functionality in biomedical applications. As such, controlled synthesized iron sulfide nanomaterials with elaborate designs, enhanced functionality and unique electronic structures show numerous advantages. Furthermore, iron sulfide clusters produced through biological metabolism are thought to possess magnetic properties and play a crucial role in balancing the concentration of iron in cells, thereby affecting ferroptosis processes. The electrons in the Fenton reaction constantly transfer between Fe2+ and Fe3+, participating in the production and reaction process of reactive oxygen species (ROS). This mechanism is considered to confer advantages in various biomedical fields such as the antibacterial field, tumor treatment, biosensing and the treatment of neurodegenerative diseases. Thus, we aim to systematically introduce recent advances in common iron-based sulfides.
Collapse
Affiliation(s)
- Yefan Duan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
21
|
Shang F, Wang SC, Gongol B, Han SY, Cho Y, Schiavon CR, Chen L, Xing Y, Zhao Y, Ning M, Guo X, He F, Lei Y, Wang L, Manor U, Marin T, Chou KT, He M, Huang PH, Shyy JYJ, Malhotra A. Obstructive Sleep Apnea-induced Endothelial Dysfunction Is Mediated by miR-210. Am J Respir Crit Care Med 2023; 207:323-335. [PMID: 36191258 PMCID: PMC9896631 DOI: 10.1164/rccm.202202-0394oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/03/2022] [Indexed: 02/03/2023] Open
Abstract
Rationale: Obstructive sleep apnea (OSA)-induced endothelial cell (EC) dysfunction contributes to OSA-related cardiovascular sequelae. The mechanistic basis of endothelial impairment by OSA is unclear. Objectives: The goals of this study were to identify the mechanism of OSA-induced EC dysfunction and explore the potential therapies for OSA-accelerated cardiovascular disease. Methods: The experimental methods include data mining, bioinformatics, EC functional analyses, OSA mouse models, and assessment of OSA human subjects. Measurements and Main Results: Using mined microRNA sequencing data, we found that microRNA 210 (miR-210) conferred the greatest induction by intermittent hypoxia in ECs. Consistently, the serum concentration of miR-210 was higher in individuals with OSA from two independent cohorts. Importantly, miR-210 concentration was positively correlated with the apnea-hypopnea index. RNA sequencing data collected from ECs transfected with miR-210 or treated with OSA serum showed a set of genes commonly altered by miR-210 and OSA serum, which are largely involved in mitochondrion-related pathways. ECs transfected with miR-210 or treated with OSA serum showed reduced [Formula: see text]o2 rate, mitochondrial membrane potential, and DNA abundance. Mechanistically, intermittent hypoxia-induced SREBP2 (sterol regulatory element-binding protein 2) bound to the promoter region of miR-210, which in turn inhibited the iron-sulfur cluster assembly enzyme and led to mitochondrial dysfunction. Moreover, the SREBP2 inhibitor betulin alleviated intermittent hypoxia-increased systolic blood pressure in the OSA mouse model. Conclusions: These results identify an axis involving SREBP2, miR-210, and mitochondrial dysfunction, representing a new mechanistic link between OSA and EC dysfunction that may have important implications for treating and preventing OSA-related cardiovascular sequelae.
Collapse
Affiliation(s)
- Fenqing Shang
- Translational Medicine Centre, Xi’an Chest Hospital, and
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | | | | | | | | | - Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Lili Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuanming Xing
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yingshuai Zhao
- Department of General Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming’an Ning
- Department of Cardiology, Xi’an No. 1 Hospital, Xi’an, China; and
| | - Xuan Guo
- Department of Cardiology, Xi’an No. 1 Hospital, Xi’an, China; and
| | - Fangzhou He
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuyang Lei
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Liuyi Wang
- Department of General Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Traci Marin
- Division of Cardiology and
- Department of Respiratory Therapy, Victor Valley College, Victorville, California
| | - Kun-Ta Chou
- Center of Sleep Medicine, and
- School of Medicine and
| | | | - Po-Hsun Huang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD : A pilot study. Wien Klin Wochenschr 2023; 135:35-44. [PMID: 36044093 DOI: 10.1007/s00508-022-02073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is associated with reduced exercise capacity. In COPD iron deficiency is found in up to 50% of patients and may impair exercise capacity, the potential therapeutic effect is yet unknown. We aimed to estimate the beneficial effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD. METHODS In this non-randomized, interrupted time series pilot trial we enrolled outpatients with stable COPD (GOLD II and III) and nonanemic iron deficiency (i.e., ferritin level < 100 μg/l or ferritin level 100-300 μg/l if transferrin saturation < 20%). Patients with cardiovascular-or inflammatory diseases were excluded. Participants performed 6‑minute walking test (6-MWT) and cardiopulmonary exercise testing (CPET) and completed the St. George's Respiratory Questionnaire (SGRQ). RESULTS From 35 screened patients, 11 (72% male, 63 ± 8 years, FEV1%predicted 44 ± 14) were included. Mean ferritin and hemoglobin were 70 ± 41 µg/l and 13.8 ± 1.7 g/dl, respectively. Four weeks after iron administration the 6‑MWT distance increased by 34.7 ± 34.4 m (95% CI, 10.0-59.3); p = 0.011. The VO2max increased by 1.87 ± 1.2 ml/kg/min (95% CI, 0.76-3); p = 0.006. Mean score of SGRQ was reduced by 7.56 ± 6.12 units (95% CI, 3 to 11); p = 0.004. The insignificant alteration in hemoglobin did not correlate with increase in exercise capacity. CONCLUSION Administration of intravenous iron was associated with improved exercise capacity and quality of life in stable COPD patients independent of hemoglobin. Our data provide a basis to calculate a statistically sufficient sample size for a randomized controlled follow-up study.
Collapse
|
23
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
24
|
Hu Y, Luo Y, Yin D, Zhao L, Wang Y, Yao R, Zhang P, Wu X, Li M, Hidalgo E, Huang Y. Schizosaccharomyces pombe MAP kinase Sty1 promotes survival of Δppr10 cells with defective mitochondrial protein synthesis. Int J Biochem Cell Biol 2022; 152:106308. [PMID: 36174923 DOI: 10.1016/j.biocel.2022.106308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Deletion of the Schizosaccharomyces pombe pentatricopeptide repeat gene ppr10 severely impairs mitochondrial translation, resulting in defective oxidative phosphorylation (OXPHOS). ppr10 deletion also induces iron starvation response, resulting in increased reactive oxygen species (ROS) production and reduced viability under fermentative conditions. S. pombe has two principal stress-response pathways, which are mediated by the mitogen-activated protein kinase Sty1 and the basic leucine zipper transcription factor Pap1, respectively. In this study, we examined the roles of Sty1 and Pap1 in the cellular response to the mitochondrial translation defect caused by ppr10 deletion. We found that ppr10 deletion resulted in two waves of stress protein activation. The early response occurred in exponential phase and resulted in the expression of a subset of stress proteins including Gst2 and Obr1. The upregulation of some of these stress proteins in Δppr10 cells in early response is dependent on the basal nuclear levels of Sty1 or Pap1. The late response occurred in early stationary phase and coincided with the stable localization of Sty1 and Pap1 in the nucleus, presumably resulting in persistent activation of a large set of stress proteins. Deletion of sty1 in Δppr10 cells caused severe defects in cell division and growth, and further impaired cell viability. Deletion of the mitochondrial superoxide dismutase gene sod2 whose expression is controlled by Sty1 severely inhibited the growth of Δppr10 cells. Overexpression of sod2 improves the viability of Δppr10 cells. Our results support an important role for Sty1 in counteracting stress induced by ppr10 deletion under fermentative growth conditions.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Yin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lan Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Minjie Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
25
|
Fujihara KM, Zhang BZ, Jackson TD, Ogunkola MO, Nijagal B, Milne JV, Sallman DA, Ang CS, Nikolic I, Kearney CJ, Hogg SJ, Cabalag CS, Sutton VR, Watt S, Fujihara AT, Trapani JA, Simpson KJ, Stojanovski D, Leimkühler S, Haupt S, Phillips WA, Clemons NJ. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. SCIENCE ADVANCES 2022; 8:eabm9427. [PMID: 36103522 PMCID: PMC9473576 DOI: 10.1126/sciadv.abm9427] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.
Collapse
Affiliation(s)
- Kenji M. Fujihara
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Corresponding author. (N.J.C.); (K.M.F.)
| | - Bonnie Z. Zhang
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas D. Jackson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Moses O. Ogunkola
- Institute of Biochemistry and Biology Department for Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia V. Milne
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - David A. Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Conor J. Kearney
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Translational Hematology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon J. Hogg
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Translational Hematology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos S. Cabalag
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Vivien R. Sutton
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sally Watt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Asuka T. Fujihara
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joseph A. Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Silke Leimkühler
- Institute of Biochemistry and Biology Department for Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Sue Haupt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Wayne A. Phillips
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery (St. Vincent’s Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nicholas J. Clemons
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Corresponding author. (N.J.C.); (K.M.F.)
| |
Collapse
|
26
|
Suwei D, Zhen L, Zhimin L, Mei L, Jianping K, Zhuohui P, Yanbin X, Xiang M. Hypoxia Modulates Melanoma Cells Proliferation and Apoptosis via miRNA-210/ISCU/ROS Signaling. Bull Exp Biol Med 2022; 173:645-650. [DOI: 10.1007/s10517-022-05605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/06/2022]
|
27
|
Tong WH, Ollivierre H, Noguchi A, Ghosh MC, Springer DA, Rouault TA. Hyperactivation of mTOR and AKT in a cardiac hypertrophy animal model of Friedreich ataxia. Heliyon 2022; 8:e10371. [PMID: 36061025 PMCID: PMC9433723 DOI: 10.1016/j.heliyon.2022.e10371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/28/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy is a primary cause of death in Friedreich ataxia (FRDA) patients with defective iron-sulfur cluster (ISC) biogenesis due to loss of functional frataxin and in rare patients with functional loss of other ISC biogenesis factors. The mechanistic target of rapamycin (mTOR) and AKT signaling cascades that coordinate eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors, are crucial regulators of cardiovascular growth and homeostasis. We observed increased phosphorylation of AKT and dysregulation of multiple downstream effectors of mTORC1, including S6K1, S6, ULK1 and 4EBP1, in a cardiac/skeletal muscle specific FRDA conditional knockout (cKO) mouse model and in human cell lines depleted of ISC biogenesis factors. Knockdown of several mitochondrial metabolic proteins that are downstream targets of ISC biogenesis, including lipoyl synthase and subunit B of succinate dehydrogenase, also resulted in activation of mTOR and AKT signaling, suggesting that mTOR and AKT hyperactivations are part of the metabolic stress response to ISC deficiencies. Administration of rapamycin, a specific inhibitor of mTOR signaling, enhanced the survival of the Fxn cKO mice, providing proof of concept for the potential of mTOR inhibition to ameliorate cardiac disease in patients with defective ISC biogenesis. However, AKT phosphorylation remained high in rapamycin-treated Fxn cKO hearts, suggesting that parallel mTOR and AKT inhibition might be necessary to further improve the lifespan and healthspan of ISC deficient individuals.
Collapse
Affiliation(s)
- Wing-Hang Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Hayden Ollivierre
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States
| | - Manik C. Ghosh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Danielle A. Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States
| | - Tracey A. Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
- Corresponding author.
| |
Collapse
|
28
|
Ismaeel A, Fletcher E, Miserlis D, Wechsler M, Papoutsi E, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Skeletal muscle MiR-210 expression is associated with mitochondrial function in peripheral artery disease patients. Transl Res 2022; 246:66-77. [PMID: 35288364 PMCID: PMC9197925 DOI: 10.1016/j.trsl.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that circulating microRNA (miR)-210 levels are elevated in peripheral artery disease (PAD) patients. MiR-210 is known to be a negative regulator of mitochondrial respiration; however, the relationship between miR-210 and mitochondrial function has yet to be studied in PAD. We aimed to compare skeletal muscle miR-210 expression of PAD patients to non-PAD controls (CON) and to examine the relationship between miR-210 expression and mitochondrial function. Skeletal muscle biopsies from CON (n = 20), intermittent claudication (IC) patients (n = 20), and critical limb ischemia (CLI) patients (n = 20) were analyzed by high-resolution respirometry to measure mitochondrial respiration of permeabilized fibers. Samples were also analyzed for miR-210 expression by real-time PCR. MiR-210 expression was significantly elevated in IC and CLI muscle compared to CON (P = 0.008 and P < 0.001, respectively). Mitochondrial respiration of electron transport chain (ETC) Complexes II (P = 0.001) and IV (P < 0.001) were significantly reduced in IC patients. Further, CLI patients demonstrated significant reductions in respiration during Complexes I (state 2: P = 0.04, state 3: P = 0.003), combined I and II (P < 0.001), II (P < 0.001), and IV (P < 0.001). The expression of the miR-210 targets, cytochrome c oxidase assembly factor heme A: farnesyltransferase (COX10), and iron-sulfur cluster assembly enzyme (ISCU) were down-regulated in PAD muscle. MiR-210 may play a role in the cellular adaptation to hypoxia and may be involved in the metabolic myopathy associated with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, Texas
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Marissa Wechsler
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | | | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
29
|
Genetic suppressors of Δgrx3 Δgrx4, lacking redundant multidomain monothiol yeast glutaredoxins, rescue growth and iron homeostasis. Biosci Rep 2022; 42:231328. [PMID: 35593209 PMCID: PMC9202360 DOI: 10.1042/bsr20212665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae Grx3 and Grx4 are multidomain monothiol glutaredoxins that are redundant with each other. They can be efficiently complemented by heterologous expression of their mammalian ortholog, PICOT, which has been linked to tumor development and embryogenesis. PICOT is now believed to act as a chaperone distributing Fe-S clusters, although the first link to iron metabolism was observed with its yeast counterparts. Like PICOT, yeast Grx3 and Grx4 reside in the cytosol and nucleus where they form unusual Fe-S clusters coordinated by two glutaredoxins with CGFS motifs and two molecules of glutathione. Depletion or deletion of Grx3/Grx4 leads to functional impairment of virtually all cellular iron-dependent processes and loss of cell viability, thus making these genes the most upstream components of the iron utilization system. Nevertheless, the Δgrx3/4 double mutant in the BY4741 genetic background is viable and exhibits slow but stable growth under hypoxic conditions. Upon exposure to air, growth of the double deletion strain ceases, and suppressor mutants appear. Adopting a high copy-number library screen approach, we discovered novel genetic interactions: overexpression of ESL1, ESL2, SOK1, SFP1 or BDF2 partially rescues growth and iron utilization defects of Δgrx3/4. This genetic escape from the requirement for Grx3/Grx4 has not been previously described. Our study shows that even a far-upstream component of the iron regulatory machinery (Grx3/4) can be bypassed, and cellular networks involving RIM101 pH sensing, cAMP signaling, mTOR nutritional signaling, or bromodomain acetylation, may confer the bypassing activities.
Collapse
|
30
|
Xie S, Ding B, Wang S, Zhang X, Yan W, Xia Q, Meng D, Shen S, Yu B, Liu H, Hu J, Wang S. Construction of hypoxia-immune-related prognostic model and targeted therapeutic strategies for cervical cancer. Int Immunol 2022; 34:379-394. [PMID: 35561666 DOI: 10.1093/intimm/dxac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicates that hypoxia and immunity play important roles in tumorigenesis and development. However, the hypoxia-immune-related prognostic risk model has not been established in cervical cancer (CC). We aimed to construct a hypoxia-immune-based prognostic risk model with potential application in CC patient prognosis and predicting response to targeted therapy. The RNA-seq data and corresponding clinical information were retrieved from The Cancer Genome Atlas (TCGA) database. Hypoxia and immune status of CC patients were evaluated using the Consensus Clustering method and single sample gene set enrichment analysis (ssGSEA), respectively. The univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were applied to establish the prognostic risk model of CC. The chemotherapy response for six chemotherapeutic agents of each CC patient was calculated according to the Genomics of Drug Sensitivity in Cancer (GDSC). And the Connectivity Map (CMap) database was performed to screen candidate small molecule drugs. In this study, we identified 7 gene signatures (P4HA2, MSMO1, EGLN1, ZNF316, IKZF3, ISCU, MYO1B) with prognostic values. And the survival time of patients with low-risk was significantly longer than those with high-risk. Meanwhile, CC patients in the high-risk group yielded higher sensitivity to five chemotherapeutic agents. And we listed ten candidate small-molecules drugs that exhibited a high correlation with the prognosis of cervical cancer. Thus, the prognostic model can accurately predict the prognosis of patients with CC and may be helpful for the development of new hypoxia-immune prognostic markers and therapeutic strategies for CC.
Collapse
Affiliation(s)
- Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
32
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis: From assembly to delivery to recipient proteins with a focus on novel targets of the chaperone and co‐chaperone proteins. IUBMB Life 2022; 74:684-704. [PMID: 35080107 PMCID: PMC10118776 DOI: 10.1002/iub.2593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| | - Tracey A. Rouault
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| |
Collapse
|
33
|
Freibert SA, Boniecki MT, Stümpfig C, Schulz V, Krapoth N, Winge DR, Mühlenhoff U, Stehling O, Cygler M, Lill R. N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nat Commun 2021; 12:6902. [PMID: 34824239 PMCID: PMC8617193 DOI: 10.1038/s41467-021-27122-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Synthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined. Our structural, biochemical and cell biological experiments now identify a crucial function of the universally conserved N-terminal Tyr35 of ISCU2 for these late reactions. Mixing two, per se non-functional ISCU2 mutant proteins with oppositely charged Asp35 and Lys35 residues, both bound to different cysteine desulfurase complexes NFS1-ISD11-ACP, restores wild-type ISCU2 maturation demonstrating that ionic forces can replace native Tyr-Tyr interactions during dimerization-induced [2Fe-2S] cluster formation. Our studies define the essential mechanistic role of Tyr35 in the reaction cycle of de novo mitochondrial [2Fe-2S] cluster synthesis. [2Fe-2S] protein cofactors are essential for life and are synthesized on ISCU2 scaffolds. Here, the authors show that hydrophobic interaction of two conserved N-terminal tyrosines induces ISCU2 dimerization and concomitant [2Fe-2S] cluster synthesis.
Collapse
Affiliation(s)
- Sven-A Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.,Core Facility 'Protein Biochemistry and Spectroscopy', Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Michal T Boniecki
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Claudia Stümpfig
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Vinzent Schulz
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Dennis R Winge
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.,Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.,Core Facility 'Protein Biochemistry and Spectroscopy', Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| | - Roland Lill
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany. .,Core Facility 'Protein Biochemistry and Spectroscopy', Karl-von-Frisch-Str. 14, 35032, Marburg, Germany. .,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Str., 35043, Marburg, Germany.
| |
Collapse
|
34
|
Jain A, Singh A, Maio N, Rouault TA. Assembly of the [4Fe-4S] cluster of NFU1 requires the coordinated donation of two [2Fe-2S] clusters from the scaffold proteins, ISCU2 and ISCA1. Hum Mol Genet 2021; 29:3165-3182. [PMID: 32776106 DOI: 10.1093/hmg/ddaa172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023] Open
Abstract
NFU1, a late-acting iron-sulfur (Fe-S) cluster carrier protein, has a key role in the pathogenesis of the disease, multiple mitochondrial dysfunctions syndrome. In this work, using genetic and biochemical approaches, we identified the initial scaffold protein, mitochondrial ISCU (ISCU2) and the secondary carrier, ISCA1, as the direct donors of Fe-S clusters to mitochondrial NFU1, which appears to dimerize and reductively mediate the formation of a bridging [4Fe-4S] cluster, aided by ferredoxin 2. By monitoring the abundance of target proteins that acquire their Fe-S clusters from NFU1, we characterized the effects of several novel pathogenic NFU1 mutations. We observed that NFU1 directly interacts with each of the Fe-S cluster scaffold proteins known to ligate [2Fe-2S] clusters, ISCU2 and ISCA1, and we mapped the site of interaction to a conserved hydrophobic patch of residues situated at the end of the C-terminal alpha-helix of NFU1. Furthermore, we showed that NFU1 lost its ability to acquire its Fe-S cluster when mutagenized at the identified site of interaction with ISCU2 and ISCA1, which thereby adversely affected biochemical functions of proteins that are thought to acquire their Fe-S clusters directly from NFU1, such as lipoic acid synthase, which supports the Fe-S-dependent process of lipoylation of components of multiple key enzyme complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and the glycine cleavage complex.
Collapse
Affiliation(s)
- Anshika Jain
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anamika Singh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Garcia D, Carr JF, Chan F, Peterson AL, Ellis KA, Scaffa A, Ghio AJ, Yao H, Dennery PA. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice. Pediatr Res 2021; 90:58-65. [PMID: 33144707 PMCID: PMC8089115 DOI: 10.1038/s41390-020-01224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Prolonged exposure to high oxygen concentrations in premature infants, although lifesaving, can induce lung oxidative stress and increase the risk of developing BPD, a form of chronic lung disease. The lung alveolar epithelium is damaged by sustained hyperoxia, causing oxidative stress and alveolar simplification; however, it is unclear what duration of exposure to hyperoxia negatively impacts cellular function. METHODS Here we investigated the role of a very short exposure to hyperoxia (95% O2, 5% CO2) on mitochondrial function in cultured mouse lung epithelial cells and neonatal mice. RESULTS In epithelial cells, 4 h of hyperoxia reduced oxidative phosphorylation, respiratory complex I and IV activity, utilization of mitochondrial metabolites, and caused mitochondria to form elongated tubular networks. Cells allowed to recover in air for 24 h exhibited a persistent global reduction in fuel utilization. In addition, neonatal mice exposed to hyperoxia for only 12 h demonstrated alveolar simplification at postnatal day 14. CONCLUSION A short exposure to hyperoxia leads to changes in lung cell mitochondrial metabolism and dynamics and has a long-term impact on alveolarization. These findings may help inform our understanding and treatment of chronic lung disease. IMPACT Many studies use long exposures (up to 14 days) to hyperoxia to mimic neonatal chronic lung disease. We show that even a very short exposure to hyperoxia leads to long-term cellular injury in type II-like epithelial cells. This study demonstrates that a short (4 h) period of hyperoxia has long-term residual effects on cellular metabolism. We show that neonatal mice exposed to hyperoxia for a short time (12 h) demonstrate later alveolar simplification. This work suggests that any exposure to clinical hyperoxia leads to persistent lung dysfunction.
Collapse
Affiliation(s)
- David Garcia
- Department of Chemistry, Brown University, Providence, Rhode Island
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Felix Chan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Kimberlyn A. Ellis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Alejandro Scaffa
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Andrew J. Ghio
- US Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island,Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, Rhode Island,Hasbro Children’s Hospital, Providence, Rhode Island.,Corresponding author information: Phyllis A. Dennery; Hasbro Children’s Hospital, Department of Pediatrics, 593 Eddy St, Providence, RI 02903; ; (401) 444-5648
| |
Collapse
|
36
|
Maio N, Zhang DL, Ghosh MC, Jain A, SantaMaria AM, Rouault TA. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin Hematol 2021; 58:161-174. [PMID: 34389108 DOI: 10.1053/j.seminhematol.2021.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
To maintain an adequate iron supply for hemoglobin synthesis and essential metabolic functions while counteracting iron toxicity, humans and other vertebrates have evolved effective mechanisms to conserve and finely regulate iron concentration, storage, and distribution to tissues. At the systemic level, the iron-regulatory hormone hepcidin is secreted by the liver in response to serum iron levels and inflammation. Hepcidin regulates the expression of the sole known mammalian iron exporter, ferroportin, to control dietary absorption, storage and tissue distribution of iron. At the cellular level, iron regulatory proteins 1 and 2 (IRP1 and IRP2) register cytosolic iron concentrations and post-transcriptionally regulate the expression of iron metabolism genes to optimize iron availability for essential cellular processes, including heme biosynthesis and iron-sulfur cluster biogenesis. Genetic malfunctions affecting the iron sensing mechanisms or the main pathways that utilize iron in the cell cause a broad range of human diseases, some of which are characterized by mitochondrial iron accumulation. This review will discuss the mechanisms of systemic and cellular iron sensing with a focus on the main iron utilization pathways in the cell, and on human conditions that arise from compromised function of the regulatory axes that control iron homeostasis.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - De-Liang Zhang
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Manik C Ghosh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anshika Jain
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anna M SantaMaria
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
37
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
38
|
Xiao J, Zhang S, Tu B, Jiang X, Cheng S, Tang Q, Zhang J, Qin X, Wang B, Zou Z, Chen C. Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy. Food Chem Toxicol 2021; 151:112114. [DOI: 10.1016/j.fct.2021.112114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
|
39
|
Terzi EM, Sviderskiy VO, Alvarez SW, Whiten GC, Possemato R. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. SCIENCE ADVANCES 2021; 7:7/22/eabg4302. [PMID: 34039609 PMCID: PMC8153722 DOI: 10.1126/sciadv.abg4302] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 05/23/2023]
Abstract
Intracellular iron levels are strictly regulated to support homeostasis and avoid iron-mediated ROS production. Loss of iron-sulfur cluster (ISC) synthesis can increase iron loading and promote cell death by ferroptosis. Iron-responsive element-binding proteins IRP1 and IRP2 posttranscriptionally regulate iron homeostasis. IRP1 binding to target mRNAs is competitively regulated by ISC occupancy. However, IRP2 is principally thought to be regulated at the protein level via E3 ubiquitin ligase FBXL5-mediated degradation. Here, we show that ISC synthesis suppression can activate IRP2 and promote ferroptosis sensitivity via a previously unidentified mechanism. At tissue-level O2 concentrations, ISC deficiency enhances IRP2 binding to target mRNAs independent of IRP1, FBXL5, and changes in IRP2 protein level. Deletion of both IRP1 and IRP2 abolishes the iron-starvation response, preventing its activation by ISC synthesis inhibition. These findings will inform strategies to manipulate ferroptosis sensitivity and help illuminate the mechanism underlying ISC biosynthesis disorders, such as Friedreich's ataxia.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, NY 10016, USA
| | - Vladislav O Sviderskiy
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, NY 10016, USA
| | - Samantha W Alvarez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, NY 10016, USA
| | - Gabrielle C Whiten
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, NY 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, New York, NY 10016, USA
| |
Collapse
|
40
|
Sandoval-Acuña C, Torrealba N, Tomkova V, Jadhav SB, Blazkova K, Merta L, Lettlova S, Adamcová MK, Rosel D, Brábek J, Neuzil J, Stursa J, Werner L, Truksa J. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res 2021; 81:2289-2303. [PMID: 33685989 DOI: 10.1158/0008-5472.can-20-1628] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Natalia Torrealba
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Sukanya B Jadhav
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Kristyna Blazkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Ladislav Merta
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Miroslava K Adamcová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jan Brábek
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jan Stursa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.
| |
Collapse
|
41
|
Pap R, Pandur E, Jánosa G, Sipos K, Agócs A, Deli J. Lutein Exerts Antioxidant and Anti-Inflammatory Effects and Influences Iron Utilization of BV-2 Microglia. Antioxidants (Basel) 2021; 10:antiox10030363. [PMID: 33673707 PMCID: PMC7997267 DOI: 10.3390/antiox10030363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lutein is a tetraterpene carotenoid, which has been reported as an important antioxidant and it is widely used as a supplement. Oxidative stress participates in many human diseases, including different types of neurodegenerative disorders. Microglia, the primary immune effector cells in the central nervous system, are implicated in these disorders by producing harmful substances such as reactive oxygen species (ROS). The protective mechanisms which scavenge ROS include enzymes and antioxidant substances. The protective effects of different carotenoids against oxidative stress have been described previously. Our study focuses on the effects of lutein on antioxidant enzymes, cytokines and iron metabolism under stress conditions in BV-2 microglia. We performed cell culture experiments: BV-2 cells were treated with lutein and/or with H2O2; the latter was used for inducing oxidative stress in microglial cells. Real-time PCR was performed for gene expression analyses of antioxidant enzymes, and ELISA was used for the detection of pro- and anti-inflammatory cytokines. Our results show that the application of lutein suppressed the H2O2-induced ROS (10′: 7.5 ng + 10 µM H2O2, p = 0.0002; 10 ng/µL + 10 µM H2O2, p = 0.0007), influenced iron utilization and changed the anti-inflammatory and pro-inflammatory cytokine secretions in BV-2 cells. Lutein increased the IL-10 secretions compared to control (24 h: 7.5 ng/µL p = 0.0274; 10 ng/µL p = 0.0008) and to 10 µM H2O2-treated cells (24 h: 7.5 ng/µL + H2O2, p = 0.0003; 10 ng/µL + H2O2, p = 0.0003), while it decreased the TNFα secretions compared to H2O2 treated cells (24 h: 7.5 ng/µL + H2O2, p < 0.0001; 10 ng/µL + H2O2, p < 0.0001). These results contribute to understanding the effects of lutein, which may help in preventing or suppressing ROS-mediated microglia activation, which is related to neuronal degeneration in oxidative stress scenario.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Attila Agócs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
| | - József Deli
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
42
|
Di Meo I, Cavestro C, Pedretti S, Fu T, Ligorio S, Manocchio A, Lavermicocca L, Santambrogio P, Ripamonti M, Levi S, Ayciriex S, Mitro N, Tiranti V. Neuronal Ablation of CoA Synthase Causes Motor Deficits, Iron Dyshomeostasis, and Mitochondrial Dysfunctions in a CoPAN Mouse Model. Int J Mol Sci 2020; 21:ijms21249707. [PMID: 33352696 PMCID: PMC7766928 DOI: 10.3390/ijms21249707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
- Correspondence: (I.D.M.); (V.T.)
| | - Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Tingting Fu
- Institut des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; (T.F.); (S.A.)
| | - Simona Ligorio
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Antonello Manocchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Lucrezia Lavermicocca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Paolo Santambrogio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
| | - Maddalena Ripamonti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sonia Levi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sophie Ayciriex
- Institut des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; (T.F.); (S.A.)
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
- Correspondence: (I.D.M.); (V.T.)
| |
Collapse
|
43
|
Liu G, Sil D, Maio N, Tong WH, Bollinger JM, Krebs C, Rouault TA. Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase. Nat Commun 2020; 11:6310. [PMID: 33298951 PMCID: PMC7725820 DOI: 10.1038/s41467-020-20145-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Heme biosynthesis and iron-sulfur cluster (ISC) biogenesis are two major mammalian metabolic pathways that require iron. It has long been known that these two pathways interconnect, but the previously described interactions do not fully explain why heme biosynthesis depends on intact ISC biogenesis. Herein we identify a previously unrecognized connection between these two pathways through our discovery that human aminolevulinic acid dehydratase (ALAD), which catalyzes the second step of heme biosynthesis, is an Fe-S protein. We find that several highly conserved cysteines and an Ala306-Phe307-Arg308 motif of human ALAD are important for [Fe4S4] cluster acquisition and coordination. The enzymatic activity of human ALAD is greatly reduced upon loss of its Fe-S cluster, which results in reduced heme biosynthesis in human cells. As ALAD provides an early Fe-S-dependent checkpoint in the heme biosynthetic pathway, our findings help explain why heme biosynthesis depends on intact ISC biogenesis. Heme biosynthesis depends on iron-sulfur (Fe-S) cluster biogenesis but the molecular connection between these pathways is not fully understood. Here, the authors show that the heme biosynthesis enzyme ALAD contains an Fe-S cluster, disruption of which reduces ALAD activity and heme production in human cells.
Collapse
Affiliation(s)
- Gang Liu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wing-Hang Tong
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tracey Ann Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Wan Z, Xu J, Huang Y, Zhai Y, Ma Z, Zhou B, Cao Z. Elevating bioavailable iron levels in mitochondria suppresses the defective phenotypes caused by PINK1 loss-of-function in Drosophila melanogaster. Biochem Biophys Res Commun 2020; 532:285-291. [DOI: 10.1016/j.bbrc.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
|
45
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
46
|
Pereira M, Chen TD, Buang N, Olona A, Ko JH, Prendecki M, Costa ASH, Nikitopoulou E, Tronci L, Pusey CD, Cook HT, McAdoo SP, Frezza C, Behmoaras J. Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation In Vivo. Cell Rep 2020; 28:498-511.e5. [PMID: 31291584 PMCID: PMC6635384 DOI: 10.1016/j.celrep.2019.06.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential metal that fine-tunes the innate immune response by regulating macrophage function, but an integrative view of transcriptional and metabolic responses to iron perturbation in macrophages is lacking. Here, we induced acute iron chelation in primary human macrophages and measured their transcriptional and metabolic responses. Acute iron deprivation causes an anti-proliferative Warburg transcriptome, characterized by an ATF4-dependent signature. Iron-deprived human macrophages show an inhibition of oxidative phosphorylation and a concomitant increase in glycolysis, a large increase in glucose-derived citrate pools associated with lipid droplet accumulation, and modest levels of itaconate production. LPS polarization increases the itaconate:succinate ratio and decreases pro-inflammatory cytokine production. In rats, acute iron deprivation reduces the severity of macrophage-dependent crescentic glomerulonephritis by limiting glomerular cell proliferation and inducing lipid accumulation in the renal cortex. These results suggest that acute iron deprivation has in vivo protective effects mediated by an anti-inflammatory immunometabolic switch in macrophages.
Collapse
Affiliation(s)
- Marie Pereira
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Tai-Di Chen
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK; Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Norzawani Buang
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Antoni Olona
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
47
|
Carr JF, Garcia D, Scaffa A, Peterson AL, Ghio AJ, Dennery PA. Heme Oxygenase-1 Supports Mitochondrial Energy Production and Electron Transport Chain Activity in Cultured Lung Epithelial Cells. Int J Mol Sci 2020; 21:ijms21186941. [PMID: 32971746 PMCID: PMC7554745 DOI: 10.3390/ijms21186941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase-1 is induced by many cellular stressors and catalyzes the breakdown of heme to generate carbon monoxide and bilirubin, which confer cytoprotection. The role of HO-1 likely extends beyond the simple production of antioxidants, for example HO-1 activity has also been implicated in metabolism, but this function remains unclear. Here we used an HO-1 knockout lung cell line to further define the contribution of HO-1 to cellular metabolism. We found that knockout cells exhibit reduced growth and mitochondrial respiration, measured by oxygen consumption rate. Specifically, we found that HO-1 contributed to electron transport chain activity and utilization of certain mitochondrial fuels. Loss of HO-1 had no effect on intracellular non-heme iron concentration or on proteins whose levels and activities depend on available iron. We show that HO-1 supports essential functions of mitochondria, which highlights the protective effects of HO-1 in diverse pathologies and tissue types. Our results suggest that regulation of heme may be an equally significant role of HO-1.
Collapse
Affiliation(s)
- Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA; (J.F.C.); (A.L.P.)
| | - David Garcia
- Department of Chemistry, Brown University, Providence, RI 02906, USA;
| | - Alejandro Scaffa
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02906, USA;
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA; (J.F.C.); (A.L.P.)
| | - Andrew J. Ghio
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC 27599, USA;
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA; (J.F.C.); (A.L.P.)
- Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Hasbro Children’s Hospital, Providence, RI 02903, USA
- Correspondence: ; Tel.: +1-401-444-5648
| |
Collapse
|
48
|
Ait-Aissa K, Nguyen QM, Gabani M, Kassan A, Kumar S, Choi SK, Gonzalez AA, Khataei T, Sahyoun AM, Chen C, Kassan M. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovasc Diabetol 2020; 19:136. [PMID: 32907629 PMCID: PMC7488343 DOI: 10.1186/s12933-020-01107-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023] Open
Abstract
The endothelium plays a pivotal role in maintaining vascular health. Obesity is a global epidemic that has seen dramatic increases in both adult and pediatric populations. Obesity perturbs the integrity of normal endothelium, leading to endothelial dysfunction which predisposes the patient to cardiovascular diseases. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that play important roles in a variety of cellular processes such as differentiation, proliferation, apoptosis, and stress response; their alteration contributes to the development of many pathologies including obesity. Mediators of obesity-induced endothelial dysfunction include altered endothelial nitric oxide synthase (eNOS), Sirtuin 1 (SIRT1), oxidative stress, autophagy machinery and endoplasmic reticulum (ER) stress. All of these factors have been shown to be either directly or indirectly caused by gene regulatory mechanisms of miRNAs. In this review, we aim to provide a comprehensive description of the therapeutic potential of miRNAs to treat obesity-induced endothelial dysfunction. This may lead to the identification of new targets for interventions that may prevent or delay the development of obesity-related cardiovascular disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Adam Kassan
- Department of Pharmaceutical Sciences, School of Pharmacy, West Coast University, Los Angeles, USA
| | - Santosh Kumar
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia, Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Tahsin Khataei
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Amal M Sahyoun
- Department of Food Science and Agriculture Chemistry, McGill University, Montreal, QC, Canada
| | - Cheng Chen
- Department of emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
49
|
Hui X, Al-Ward H, Shaher F, Liu CY, Liu N. The Role of miR-210 in the Biological System: A Current Overview. Hum Hered 2020; 84:233-239. [PMID: 32906127 DOI: 10.1159/000509280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent a group of non-coding RNAs measuring 19-23 nucleotides in length and are recognized as powerful molecules that regulate gene expression in eukaryotic cells. miRNAs stimulate the post-transcriptional regulation of gene expression via direct or indirect mechanisms. SUMMARY miR-210 is highly upregulated in cells under hypoxia, thereby revealing its significance to cell endurance. Induction of this mRNA expression is an important feature of the cellular low-oxygen response and the most consistent and vigorous target of HIF. Key Message: miR-210 is involved in many cellular functions under the effect of HIF-1α, including the cell cycle, DNA repair, immunity and inflammation, angiogenesis, metabolism, and macrophage regulation. It also plays an important regulatory role in T-cell differentiation and stimulation.
Collapse
Affiliation(s)
- Xu Hui
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Hisham Al-Ward
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China,
| | - Fahmi Shaher
- Department of Pathophysiology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Chun-Yang Liu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Ning Liu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| |
Collapse
|
50
|
Wu H, Wei H, Zhang D, Sehgal SA, Zhang D, Wang X, Qin Y, Liu L, Chen Q. Defective mitochondrial ISCs biogenesis switches on IRP1 to fine tune selective mitophagy. Redox Biol 2020; 36:101661. [PMID: 32795936 PMCID: PMC7426581 DOI: 10.1016/j.redox.2020.101661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Both iron metabolism and mitophagy, a selective mitochondrial degradation process via autolysosomal pathway, are fundamental for the cellular well-being. Mitochondria are the major site for iron metabolism, especially the biogenesis of iron-sulfur clusters (ISCs) via the mitochondria-localized ISCs assembly machinery. Here we report that mitochondrial ISCs biogenesis is coupled with receptor-mediated mitophagy in mammalian cells. Perturbation of mitochondrial ISCs biogenesis, either by depleting iron with the iron chelator or by knocking down the core components of the mitochondrial ISCs assembly machinery, triggers FUNDC1-dependent mitophagy. IRP1, one of the cellular iron sensors to maintain iron homeostasis, is crucial for iron stresses induced mitophagy. Knockdown of IRP1 disturbed iron stresses induced mitophagy. Furthermore, IRP1 could bind to a newly characterized IRE in the 5’ untranslated region of the Bcl-xL mRNA and suppress its translation. Bcl-xL is an intrinsic inhibitory protein of the mitochondrial phosphatase PGAM5, which catalyzes the dephosphorylation of FUNDC1 for mitophagy activation. Alterations of the IRP1/Bcl-xL axis navigate iron stresses induced mitophagy. We conclude that ISCs serve as physiological signals for mitophagy activation, thus coupling mitophagy with iron metabolism. Perturbation of ISCs biogenesis triggers FUNDC1 dependent mitophagy. IRP1 targets a newly characterized IRE in Bcl-xL mRNA to suppress its translation. IRP1/Bcl-xL axis navigates iron stresses induced mitophagy and dominates mitochondrial redox response.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huifang Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheikh Arslan Sehgal
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China; COMSATS University, Islamabad, Sahiwal Campus, Pakistan
| | - Dejiu Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Qin
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|