1
|
Forzisi-Kathera-Ibarra E, Jo C, Castillo L, Gaur A, Lad P, Bortolami A, Roser C, Venkateswaran S, Dutto S, Selby M, Sampath H, Pan PY, Sesti F. KCNB1-Leptin receptor complexes couple electric and endocrine function in the melanocortin neurons of the hypothalamus. FASEB J 2024; 38:e70111. [PMID: 39436109 DOI: 10.1096/fj.202401931r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv+) channel named KCNB1 (alias Kv2.1) forms stable complexes with the leptin receptor (LepR) in a subset of hypothalamic neurons including proopiomelanocortin (POMC) expressing neurons of the Arcuate nucleus (ARHPOMC). Mice lacking functional KCNB1 channels (NULL mice) have less adipose tissue and circulating leptin than WT animals and are insensitive to anorexic stimuli induced by leptin administration. NULL mice produce aberrant amounts of POMC at any developmental stage. Canonical LepR-STAT3 signaling-which underlies POMC production-is impaired, whereas non-canonical insulin receptor substrate PI3K/Akt/FOXO1 and ERK signaling are constitutively upregulated in NULL hypothalami. The levels of proto-oncogene c-Fos-that provides an indirect measure of neuronal activity-are higher in arcuate NULL neurons compared to WT and most importantly do not increase in the former upon leptin stimulation. Hence, a Kv channel provides a molecular link between neuronal excitability and endocrine function in hypothalamic neurons.
Collapse
Affiliation(s)
- Elena Forzisi-Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Chanmee Jo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Leonard Castillo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Anika Gaur
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Prachi Lad
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Christian Roser
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Srinidi Venkateswaran
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stefania Dutto
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Matthew Selby
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
3
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
4
|
Jacobo-Piqueras N, Theiner T, Geisler SM, Tuluc P. Molecular mechanism responsible for sex differences in electrical activity of mouse pancreatic β cells. JCI Insight 2024; 9:e171609. [PMID: 38358819 PMCID: PMC11063940 DOI: 10.1172/jci.insight.171609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
In humans, type 2 diabetes mellitus shows a higher prevalence in men compared with women, a phenotype that has been attributed to a lower peripheral insulin sensitivity in men. Whether sex-specific differences in pancreatic β cell function also contribute is largely unknown. Here, we characterized the electrophysiological properties of β cells in intact male and female mouse islets. Elevation of glucose concentration above 5 mM triggered an electrical activity with a similar glucose dependence in β cells of both sexes. However, female β cells had a more depolarized membrane potential and increased firing frequency compared with males. The higher membrane depolarization in female β cells was caused by approximately 50% smaller Kv2.1 K+ currents compared with males but otherwise unchanged KATP, large-conductance and small-conductance Ca2+-activated K+ channels, and background TASK1/TALK1 K+ current densities. In female β cells, the higher depolarization caused a membrane potential-dependent inactivation of the voltage-gated Ca2+ channels (CaV), resulting in reduced Ca2+ entry. Nevertheless, this reduced Ca2+ influx was offset by a higher action potential firing frequency. Because exocytosis of insulin granules does not show a sex-specific difference, we conclude that the higher electrical activity promotes insulin release in females, improving glucose tolerance.
Collapse
|
5
|
Wang H, Li Q, Yuan YC, Han XC, Cao YT, Yang JK. KCNH6 channel promotes insulin exocytosis via interaction with Munc18-1 independent of electrophysiological processes. Cell Mol Life Sci 2024; 81:86. [PMID: 38349432 PMCID: PMC10864572 DOI: 10.1007/s00018-024-05134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on β-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with β-cell-specific KCNH6 knockout (βKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-βKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Ying-Chao Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xue-Chun Han
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yong-Ting Cao
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Endocrinology, Beijing Mentougou District Hospital, Beijing, 102399, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Lu J, Zhao RX, Xiong FR, Zhu JJ, Shi TT, Zhang YC, Peng GX, Yang JK. All-potassium channel CRISPR screening reveals a lysine-specific pathway of insulin secretion. Mol Metab 2024; 80:101885. [PMID: 38246588 PMCID: PMC10847698 DOI: 10.1016/j.molmet.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic β-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic β cell line to identify genes associated with insulin secretion. RESULTS The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with β-cell-specific deletion of Kcnh6. CONCLUSIONS Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ru-Xuan Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Feng-Ran Xiong
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Juan-Juan Zhu
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ying-Chao Zhang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Gong-Xin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100740, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China.
| |
Collapse
|
7
|
Ferns M, van der List D, Vierra NC, Lacey T, Murray K, Kirmiz M, Stewart RG, Sack JT, Trimmer JS. Electrically silent KvS subunits associate with native Kv2 channels in brain and impact diverse properties of channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577135. [PMID: 38328147 PMCID: PMC10849721 DOI: 10.1101/2024.01.25.577135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Voltage-gated K+ channels of the Kv2 family are highly expressed in brain and play dual roles in regulating neuronal excitability and in organizing endoplasmic reticulum - plasma membrane (ER-PM) junctions. Studies in heterologous cells suggest that the two pore-forming alpha subunits Kv2.1 and Kv2.2 assemble with "electrically silent" KvS subunits to form heterotetrameric channels with distinct biophysical properties. Here, using mass spectrometry-based proteomics, we identified five KvS subunits as components of native Kv2.1 channels immunopurified from mouse brain, the most abundant being Kv5.1. We found that Kv5.1 co-immunoprecipitates with Kv2.1 and to a lesser extent with Kv2.2 from brain lysates, and that Kv5.1 protein levels are decreased by 70% in Kv2.1 knockout mice and 95% in Kv2.1/2.2 double knockout mice. Multiplex immunofluorescent labelling of rodent brain sections revealed that in neocortex Kv5.1 immunolabeling is apparent in a large percentage of Kv2.1 and Kv2.2-positive layer 2/3 neurons, and in a smaller percentage of layer 5 and 6 neurons. At the subcellular level, Kv5.1 is co-clustered with Kv2.1 and Kv2.2 at ER-PM junctions in cortical neurons, although clustering of Kv5.1-containing channels is reduced relative to homomeric Kv2 channels. We also found that in heterologous cells coexpression with Kv5.1 reduces the clustering and alters the pharmacological properties of Kv2.1 channels. Together, these findings demonstrate that the Kv5.1 electrically silent subunit is a component of a substantial fraction of native brain Kv2 channels, and that its incorporation into heteromeric channels can impact diverse aspects of Kv2 channel function.
Collapse
Affiliation(s)
- Michael Ferns
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Deborah van der List
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicholas C. Vierra
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Taylor Lacey
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Karl Murray
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Psychiatry and Behavioral Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Michael Kirmiz
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Robert G. Stewart
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Jon T. Sack
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - James S. Trimmer
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
8
|
Zhao X, Deng L, Ren L, Yang H, Wang B, Zhu X, Zhang X, Guo C, Zhang Y, Liu Y. VPAC2 receptor mediates VIP-potentiated insulin secretion via ion channels in rat pancreatic β cells. Exp Cell Res 2023; 423:113471. [PMID: 36642263 DOI: 10.1016/j.yexcr.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Vasoactive intestinal peptide (VIP), a small neuropeptide composing of 28 amino acids, functions as a neuromodulator with insulinotropic effect on pancreatic β cells, in which it is of vital importance in regulating the levels of blood glucose. VIP potently agonizes VPAC2 receptor (VPAC2-R). Agonists of VPAC2-R stimulate glucose-dependent insulin secretion. The purpose of this study was to further investigate the possible ion channel mechanisms in VPAC2-R-mediated VIP-potentiated insulin secretion. The results of insulin secretion experiments showed that VIP augmented insulin secretion in a glucose-dependent manner. The insulinotropic effect was mediated by VPAC2-R rather than VPAC1 receptor (VPAC1-R), through the adenylyl cyclase (AC)/protein kinase A (PKA) signalling pathway. The calcium imaging analysis demonstrated that VIP increased intracellular Ca2+ concentration ([Ca2+]i). In addition, in the whole-cell voltage-clamp mode, we found that VIP blocked the voltage-dependent potassium (Kv) channel currents, while this effect was reversed by inhibiting the VPAC2-R, AC or PKA respectively. Taken together, these findings suggest that VIP stimulates insulin secretion by inhibiting the Kv channels, activating the Ca2+ channels, and increasing [Ca2+]i through the VPAC2-R and AC/PKA signalling pathway. These findings provide theoretical basis for the research of VPAC2-R as a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Bin Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoli Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
9
|
Morales-Reyes I, Atwater I, Esparza-Aguilar M, Pérez-Armendariz EM. Impact of biotin supplemented diet on mouse pancreatic islet β-cell mass expansion and glucose induced electrical activity. Islets 2022; 14:149-163. [PMID: 35758027 PMCID: PMC9733685 DOI: 10.1080/19382014.2022.2091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biotin supplemented diet (BSD) is known to enhance β-cell replication and insulin secretion in mice. Here, we first describe BSD impact on the islet β-cell membrane potential (Vm) and glucose-induced electrical activity. BALB/c female mice (n ≥ 20) were fed for nine weeks after weaning with a control diet (CD) or a BSD (100X). In both groups, islet area was compared in pancreatic sections incubated with anti-insulin and anti-glucagon antibodies; Vm was recorded in micro dissected islet β-cells during perfusion with saline solutions containing 2.8, 5.0, 7.5-, or 11.0 mM glucose. BSD increased the islet and β-cell area compared with CD. In islet β-cells of the BSD group, a larger ΔVm/Δ[glucose] was found at sub-stimulatory glucose concentrations and the threshold glucose concentration for generation of action potentials (APs) was increased by 1.23 mM. Moreover, at 11.0 mM glucose, a significant decrease was found in AP amplitude, frequency, ascending and descending slopes as well as in the calculated net charge influx and efflux of islet β-cells from BSD compared to the CD group, without changes in slow Vm oscillation parameters. A pharmacological dose of biotin in mice increases islet insulin cell mass, shifts islet β-cell intracellular electrical activity dose response curve toward higher glucose concentrations, very likely by increasing KATP conductance, and decreases voltage gated Ca2+ and K+ conductance at stimulatory glucose concentrations.
Collapse
Affiliation(s)
- Israel Morales-Reyes
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
| | - Illani Atwater
- Human Genetics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcelino Esparza-Aguilar
- Unidad de Investigación en Epidemiología, Instituto Nacional de Pediatría, México. Ciudad de México, México
| | - E. Martha Pérez-Armendariz
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
- CONTACT E. Martha Pérez-Armendariz ; Laboratorio de sinapsis eléctricas. Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMX, C.P. 04510, México
| |
Collapse
|
10
|
Activity-dependent endoplasmic reticulum Ca 2+ uptake depends on Kv2.1-mediated endoplasmic reticulum/plasma membrane junctions to promote synaptic transmission. Proc Natl Acad Sci U S A 2022; 119:e2117135119. [PMID: 35862456 PMCID: PMC9335237 DOI: 10.1073/pnas.2117135119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The endoplasmic reticulum (ER) extends throughout the neuron as a continuous organelle, and its dysfunction is associated with several neurological disorders. During electrical activity, the ER takes up Ca2+ from the cytosol, which has been shown to support synaptic transmission. This close choreography of ER Ca2+ uptake with electrical activity suggests functional coupling of the ER to sources of voltage-gated Ca2+ entry through an unknown mechanism. We report that a nonconducting role for Kv2.1 through its ER binding domain is necessary for ER Ca2+ uptake during neuronal activity. Loss of Kv2.1 profoundly disables neurotransmitter release without altering presynaptic voltage. This suggests that Kv2.1-mediated signaling hubs play an important neurobiological role in Ca2+ handling and synaptic transmission independent of ion conduction. The endoplasmic reticulum (ER) forms a continuous and dynamic network throughout a neuron, extending from dendrites to axon terminals, and axonal ER dysfunction is implicated in several neurological disorders. In addition, tight junctions between the ER and plasma membrane (PM) are formed by several molecules including Kv2 channels, but the cellular functions of many ER-PM junctions remain unknown. Recently, dynamic Ca2+ uptake into the ER during electrical activity was shown to play an essential role in synaptic transmission. Our experiments demonstrate that Kv2.1 channels are necessary for enabling ER Ca2+ uptake during electrical activity, as knockdown (KD) of Kv2.1 rendered both the somatic and axonal ER unable to accumulate Ca2+ during electrical stimulation. Moreover, our experiments demonstrate that the loss of Kv2.1 in the axon impairs synaptic vesicle fusion during stimulation via a mechanism unrelated to voltage. Thus, our data demonstrate that a nonconducting role of Kv2.1 exists through its binding to the ER protein VAMP-associated protein (VAP), which couples ER Ca2+ uptake with electrical activity. Our results further suggest that Kv2.1 has a critical function in neuronal cell biology for Ca2+ handling independent of voltage and reveals a critical pathway for maintaining ER lumen Ca2+ levels and efficient neurotransmitter release. Taken together, these findings reveal an essential nonclassical role for both Kv2.1 and the ER-PM junctions in synaptic transmission.
Collapse
|
11
|
Schmid V, Wurzel A, Wetzel CH, Plössl K, Bruckmann A, Luckner P, Weber BHF, Friedrich U. Retinoschisin and novel Na/K-ATPase interaction partners Kv2.1 and Kv8.2 define a growing protein complex at the inner segments of mammalian photoreceptors. Cell Mol Life Sci 2022; 79:448. [PMID: 35876901 PMCID: PMC9314279 DOI: 10.1007/s00018-022-04409-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.
Collapse
Affiliation(s)
- Verena Schmid
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Alexander Wurzel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patricia Luckner
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
12
|
Marquis MJ, Sack JT. Mechanism of use-dependent Kv2 channel inhibition by RY785. J Gen Physiol 2022; 154:e202112981. [PMID: 35435946 PMCID: PMC9195051 DOI: 10.1085/jgp.202112981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.
Collapse
Affiliation(s)
- Matthew James Marquis
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Jon T. Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
13
|
Short B. A Kv2 inhibitor traps itself in place. J Gen Physiol 2022; 154:213201. [PMID: 35522189 DOI: 10.1085/jgp.202213181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voltage activation, but not channel opening, is required for RY785 to access the central cavity of Kv2 channels, where it promotes voltage sensor deactivation to trap itself in place.
Collapse
|
14
|
Li XT. Beneficial effects of carvedilol modulating potassium channels on the control of glucose. Biomed Pharmacother 2022; 150:113057. [PMID: 35658228 DOI: 10.1016/j.biopha.2022.113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
The increased prevalence of hypertensive patients with type 2 diabetes mellitus (T2DM) is evident worldwide, leading to a higher risk of cardiovascular disease onset, which is substantially associated with disabilities and mortality in the clinic. In order to achieve the satisfyingly clinical outcomes and prognosis, the comprehensive therapies have been conducted with a beneficial effect on both blood pressure and glucose homeostasis, and clinical trials reveal that some kind of antihypertensive drugs such as angiotensin converting enzyme inhibitors (ACE-I) may, at least in part, meet the dual requirement during the disease management. As a nonselective β-blocker, carvedilol is employed for treating many cardiovascular diseases in clinical practice, including hypertension, angina pectoris and heart failure, and also exhibit the effectiveness for glycemic control and insulin resistance. Apart from alleviating sympathetic nervous system activity, several causes, such as lowering oxygen reactive species, may contribute to the effects of carvedilol on controlling plasma glucose levels, suggesting a feature of this drug having multiple targets. Interestingly, numerous distinct K+ channels expressed in pancreatic β-cells and peripheral insulin-sensitive tissues, which play a sentential role in glucose metabolism, are subjected to extensive modulation of carvdilol, establishing a linkage between K+ channels and drug's effects on the control of glucose. A variety of evidence shows that the impact of carvedilol on different K+ channels, including Kv, KAch, KATP and K2 P, can lead to positive influences for glucose homeostasis, contributing to its clinical beneficial effectiveness in treatment of hypertensive patients with T2DM. This review focus on the control of plasma glucose conferred by carvedilol modulation on K+ channels, providing the novel mechanistic explanation for drug's actions.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, Wuhan 430074, China; School of Medicine, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Molecular dissection of cellular response of pancreatic islet cells to Bisphenol-A (BPA): a comprehensive review. Biochem Pharmacol 2022; 201:115068. [DOI: 10.1016/j.bcp.2022.115068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
|
17
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
18
|
In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010182. [PMID: 35011414 PMCID: PMC8746715 DOI: 10.3390/molecules27010182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.
Collapse
|
19
|
Liu T, Cui L, Xue H, Yang X, Liu M, Zhi L, Yang H, Liu Z, Zhang M, Guo Q, He P, Liu Y, Zhang Y. Telmisartan Potentiates Insulin Secretion via Ion Channels, Independent of the AT1 Receptor and PPARγ. Front Pharmacol 2021; 12:739637. [PMID: 34594226 PMCID: PMC8477257 DOI: 10.3389/fphar.2021.739637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II type 1 (AT1) receptor blockers (ARBs), as antihypertensive drugs, have drawn attention for their benefits to individuals with diabetes and prediabetes. However, the direct effects of ARBs on insulin secretion remain unclear. In this study, we aimed to investigate the insulinotropic effect of ARBs and the underlying electrophysiological mechanism. We found that only telmisartan among the three ARBs (telmisartan, valsartan, and irbesartan) exhibited an insulin secretagogue role in rat islets. Independent of AT1 receptor and peroxisome proliferator-activated receptor γ (PPARγ), telmisartan exerted effects on ion channels including voltage-dependent potassium (Kv) channels and L-type voltage-gated calcium channels (VGCCs) to promote extracellular Ca2+ influx, thereby potentiating insulin secretion in a glucose-dependent manner. Furthermore, we identified that telmisartan directly inhibited Kv2.1 channel on a Chinese hamster ovary cell line with Kv2.1 channel overexpression. Acute exposure of db/db mice to a telmisartan dose equivalent to therapeutic doses in humans resulted in lower blood glucose and increased plasma insulin concentration in OGTT. We further observed the telmisartan-induced insulinotropic and electrophysiological effects on pathological pancreatic islets or β-cells isolated from db/db mice. Collectively, our results establish an important insulinotropic function of telmisartan distinct from other ARBs in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of General Surgery, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Li Z, Dong W, Zhang X, Lu JM, Mei YA, Hu C. Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel Activity. Neurosci Bull 2021; 38:135-148. [PMID: 34542799 PMCID: PMC8821747 DOI: 10.1007/s12264-021-00773-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023] Open
Abstract
The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenhao Dong
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xinyuan Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jun-Mei Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan-Ai Mei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Changlong Hu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
21
|
Langlhofer G, Kogel A, Schaefer M. Glucose-induced [Ca2+]i oscillations in β cells are composed of trains of spikes within a subplasmalemmal microdomain. Cell Calcium 2021; 99:102469. [PMID: 34509871 DOI: 10.1016/j.ceca.2021.102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Electrical activity and oscillations of cytosolic Ca2+ concentrations ([Ca2+]i) that trigger insulin release in response to glucose are key functions of pancreatic β cells. Although oscillatory Ca2+ signals have been intensively studied in β cells, their lower frequency did not match that of electrical activity. In addition, the measured peak [Ca2+]i did not reach levels that are typically required by synaptotagmins to elicit the release of insulin-containing vesicles in live-cell experiments. We therefore sought to resolve the Ca2+ dynamics in the subplasmalemmal microdomain that is critical for triggering fast exocytosis. Applying total internal reflection fluorescence (TIRF) microscopy in insulin-producing INS-1E and primary mouse β cells, we resolved extraordinary fast trains of Ca2+ spiking (frequency > 3 s-1) in response to glucose exposure. Using a low-affinity [Ca2+]i indicator dye, we provide experimental evidence that Ca2+ spikes reach low micromolar apparent concentrations in the vicinity of the plasma membrane. Analysis of Ca2+ spikes evoked by repeated depolarization for 10 ms closely matched the Ca2+ dynamics observed upon glucose application. To our knowledge, this is the first study that experimentally demonstrates Ca2+ spikes in β cells with velocities that resemble those of bursting or continuously appearing trains of action potentials (APs) in non-patched cells.
Collapse
Affiliation(s)
- Georg Langlhofer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexander Kogel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
22
|
Altman MK, Schaub CM, Dadi PK, Dickerson MT, Zaborska KE, Nakhe AY, Graff SM, Galletta TJ, Amarnath G, Thorson AS, Gu G, Jacobson DA. TRPM7 is a crucial regulator of pancreatic endocrine development and high-fat-diet-induced β-cell proliferation. Development 2021; 148:dev194928. [PMID: 34345920 PMCID: PMC8406533 DOI: 10.1242/dev.194928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, and α-cell and β-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences β-cell hyperplasia under insulin-resistant conditions. β-Cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient β-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we found that TRPM7 ablation altered β-cell Mg2+ and reduced the magnitude of elevation in β-cell Mg2+ during proliferation. Together, these findings revealed that TRPM7 controls pancreatic development and β-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.
Collapse
Affiliation(s)
- Molly K. Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Charles M. Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Karolina E. Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Arya Y. Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Sarah M. Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Thomas J. Galletta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Gautami Amarnath
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
- Molecular Neurophysiology, Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Ariel S. Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| |
Collapse
|
23
|
Liu Z, Yang H, Zhi L, Xue H, Lu Z, Zhao Y, Cui L, Liu T, Ren S, He P, Liu Y, Zhang Y. Sphingosine 1-phosphate Stimulates Insulin Secretion and Improves Cell Survival by Blocking Voltage-dependent K + Channels in β Cells. Front Pharmacol 2021; 12:683674. [PMID: 34322019 PMCID: PMC8313013 DOI: 10.3389/fphar.2021.683674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies suggest that Sphingosine 1-phosphate (S1P) plays an important role in regulating glucose metabolism in type 2 diabetes. However, its effects and mechanisms of promoting insulin secretion remain largely unknown. Here, we found that S1P treatment decreased blood glucose level and increased insulin secretion in C57BL/6 mice. Our results further showed that S1P promoted insulin secretion in a glucose-dependent manner. This stimulatory effect of S1P appeared to be irrelevant to cyclic adenosine monophosphate signaling. Voltage-clamp recordings showed that S1P did not influence voltage-dependent Ca2+ channels, but significantly blocked voltage-dependent potassium (Kv) channels, which could be reversed by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Calcium imaging revealed that S1P increased intracellular Ca2+ levels, mainly by promoting Ca2+ influx, rather than mobilizing intracellular Ca2+ stores. In addition, inhibition of PLC and PKC suppressed S1P-induced insulin secretion. Collectively, these results suggest that the effects of S1P on glucose-stimulated insulin secretion (GSIS) depend on the inhibition of Kv channels via the PLC/PKC signaling pathway in pancreatic β cells. Further, S1P improved β cell survival; this effect was also associated with Kv channel inhibition. This work thus provides new insights into the mechanisms whereby S1P regulates β cell function in diabetes.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanli Zhao
- Department of Emergency Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
24
|
Jiang X, Rashwan R, Voigt V, Nerbonne J, Hunt DM, Carvalho LS. Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K + Channel Subunits Kv8.2 and K2.1. Int J Mol Sci 2021; 22:4877. [PMID: 34063002 PMCID: PMC8124447 DOI: 10.3390/ijms22094877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cone Dystrophy with Supernormal Rod Response (CDSRR) is a rare autosomal recessive disorder leading to severe visual impairment in humans, but little is known about its unique pathophysiology. We have previously shown that CDSRR is caused by mutations in the KCNV2 (Potassium Voltage-Gated Channel Modifier Subfamily V Member 2) gene encoding the Kv8.2 subunit, a modulatory subunit of voltage-gated potassium (Kv) channels. In a recent study, we validated a novel mouse model of Kv8.2 deficiency at a late stage of the disease and showed that it replicates the human electroretinogram (ERG) phenotype. In this current study, we focused our investigation on young adult retinas to look for early markers of disease and evaluate their effect on retinal morphology, electrophysiology and immune response in both the Kv8.2 knockout (KO) mouse and in the Kv2.1 KO mouse, the obligate partner of Kv8.2 in functional retinal Kv channels. By evaluating the severity of retinal dystrophy in these KO models, we demonstrated that retinas of Kv KO mice have significantly higher apoptotic cells, a thinner outer nuclear cell layer and increased activated microglia cells in the subretinal space. Our results indicate that in the murine retina, the loss of Kv8.2 subunits contributes to early cellular and physiological changes leading to retinal dysfunction. These results could have potential implications in the early management of CDSRR despite its relatively nonprogressive nature in humans.
Collapse
Affiliation(s)
- Xiaotian Jiang
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
| | - Rabab Rashwan
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Valentina Voigt
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| | - Jeanne Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David M. Hunt
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| | - Livia S. Carvalho
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| |
Collapse
|
25
|
Jaffredo M, Bertin E, Pirog A, Puginier E, Gaitan J, Oucherif S, Lebreton F, Bosco D, Catargi B, Cattaert D, Renaud S, Lang J, Raoux M. Dynamic Uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets. Diabetes 2021; 70:878-888. [PMID: 33468514 DOI: 10.2337/db20-0214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022]
Abstract
Biphasic secretion is an autonomous feature of many endocrine micro-organs to fulfill physiological demands. The biphasic activity of islet β-cells maintains glucose homeostasis and is altered in type 2 diabetes. Nevertheless, underlying cellular or multicellular functional organizations are only partially understood. High-resolution noninvasive multielectrode array recordings permit simultaneous analysis of recruitment, of single-cell, and of coupling activity within entire islets in long-time experiments. Using this unbiased approach, we addressed the organizational modes of both first and second phase in mouse and human islets under physiological and pathophysiological conditions. Our data provide a new uni- and multicellular model of islet β-cell activation: during the first phase, small but highly active β-cell clusters are dominant, whereas during the second phase, electrical coupling generates large functional clusters via multicellular slow potentials to favor an economic sustained activity. Postprandial levels of glucagon-like peptide 1 favor coupling only in the second phase, whereas aging and glucotoxicity alter coupled activity in both phases. In summary, biphasic activity is encoded upstream of vesicle pools at the micro-organ level by multicellular electrical signals and their dynamic synchronization between β-cells. The profound alteration of the electrical organization of islets in pathophysiological conditions may contribute to functional deficits in type 2 diabetes.
Collapse
Affiliation(s)
- Manon Jaffredo
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Eléonore Bertin
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Antoine Pirog
- University of Bordeaux, CNRS, Institut National Polytechnique de Bordeaux, Laboratoire de l'Intégration du Matériau au Système, UMR 5218, Talence, France
| | - Emilie Puginier
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Julien Gaitan
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Sandra Oucherif
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Bogdan Catargi
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
- University of Bordeaux, Hôpital Saint-André, Endocrinology and Metabolic Diseases, Bordeaux, France
| | - Daniel Cattaert
- University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, UMR 5287, Bordeaux, France
| | - Sylvie Renaud
- University of Bordeaux, CNRS, Institut National Polytechnique de Bordeaux, Laboratoire de l'Intégration du Matériau au Système, UMR 5218, Talence, France
| | - Jochen Lang
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Matthieu Raoux
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| |
Collapse
|
26
|
Coulter-Parkhill A, McClean S, Gault VA, Irwin N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clin Med Insights Endocrinol Diabetes 2021; 14:11795514211006071. [PMID: 34621137 PMCID: PMC8491154 DOI: 10.1177/11795514211006071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of venom-derived drugs is evident today. Currently, several significant drugs are FDA approved for human use that descend directly from animal venom products, with others having undergone, or progressing through, clinical trials. In addition, there is growing awareness of the important cosmeceutical application of venom-derived products. The success of venom-derived compounds is linked to their increased bioactivity, specificity and stability when compared to synthetically engineered compounds. This review highlights advancements in venom-derived compounds for the treatment of diabetes and related disorders. Exendin-4, originating from the saliva of Gila monster lizard, represents proof-of-concept for this drug discovery pathway in diabetes. More recent evidence emphasises the potential of venom-derived compounds from bees, cone snails, sea anemones, scorpions, snakes and spiders to effectively manage glycaemic control. Such compounds could represent exciting exploitable scaffolds for future drug discovery in diabetes, as well as providing tools to allow for a better understanding of cell signalling pathways linked to insulin secretion and metabolism.
Collapse
Affiliation(s)
| | | | - Victor A Gault
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, UK
| |
Collapse
|
27
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
28
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:211728. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating “dark current” that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1−/−) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1−/− rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1−/− rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70–80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | - Camilla M Shores
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E Burns
- Center for Neuroscience, University of California, Davis, Davis, CA.,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
29
|
Jedrychowska J, Gasanov EV, Korzh V. Kcnb1 plays a role in development of the inner ear. Dev Biol 2020; 471:65-75. [PMID: 33316259 DOI: 10.1016/j.ydbio.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The function of the inner ear depends on the maintenance of high concentrations of K+ ions. The slow-inactivating delayed rectifier Kv2.1/KCNB1 channel works in the inner ear in mammals. The kcnb1 gene is expressed in the otic vesicle of developing zebrafish, suggesting its role in development of the inner ear. In the present study, we found that a Kcnb1 loss-of-function mutation affected development of the inner ear at multiple levels, including otic vesicle expansion, otolith formation, and the proliferation and differentiation of mechanosensory cells. This resulted in defects of kinocilia and stereocilia and abnormal function of the inner ear detected by behavioral assays. The quantitative transcriptional analysis of 75 genes demonstrated that the kcnb1 mutation affected the transcription of genes that are involved in K+ metabolism, cell proliferation, cilia development, and intracellular protein trafficking. These results demonstrate a role for Kv2.1/Kcnb1 channels in development of the inner ear in zebrafish.
Collapse
Affiliation(s)
- Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Eugene V Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
30
|
Zhu X, Chen Y, Xu X, Xu X, Lu Y, Huang X, Zhou J, Hu L, Wang J, Shen X. SP6616 as a Kv2.1 inhibitor efficiently ameliorates peripheral neuropathy in diabetic mice. EBioMedicine 2020; 61:103061. [PMID: 33096484 PMCID: PMC7581884 DOI: 10.1016/j.ebiom.2020.103061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes severely afflicting the patients, while there is yet no effective medication against this disease. As Kv2.1 channel functions potently in regulating neurological disorders, the present work was to investigate the regulation of Kv2.1 channel against DPN-like pathology of DPN model mice by using selective Kv2.1 inhibitor SP6616 (ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate) as a probe. METHODS STZ-induced type 1 diabetic mice with DPN (STZ mice) were defined at 12 weeks of age (4 weeks after STZ injection) through behavioral tests, and db/db (BKS Cg-m+/+Leprdb/J) type 2 diabetic mice with DPN (db/db mice) were at 18 weeks of age. SP6616 was administered daily via intraperitoneal injection for 4 weeks. The mechanisms underlying the amelioration of SP6616 on DPN-like pathology were investigated by RT-PCR, western blot and immunohistochemistry technical approaches against diabetic mice, and verified against the STZ mice with Kv2.1 knockdown in dorsal root ganglion (DRG) tissue by injection of adeno associated virus AAV9-Kv2.1-RNAi. Amelioration of SP6616 on the pathological behaviors of diabetic mice was assessed against tactile allodynia, thermal sensitivity and motor nerve conduction velocity (MNCV). FINDINGS SP6616 treatment effectively ameliorated the threshold of mechanical stimuli, thermal sensitivity and MNCV of diabetic mice. Mechanism research results indicated that SP6616 suppressed Kv2.1 expression, increased the number of intraepidermal nerve fibers (IENFs), improved peripheral nerve structure and vascular function in DRG tissue. In addition, SP6616 improved mitochondrial dysfunction through Kv2.1/CaMKKβ/AMPK/PGC-1α pathway, repressed inflammatory response by inhibiting Kv2.1/NF-κB signaling and alleviated apoptosis of DRG neuron through Kv2.1-mediated regulation of Bcl-2 family proteins and Caspase-3 in diabetic mice. INTERPRETATION Our work has highly supported the beneficial of Kv2.1 inhibition in ameliorating DPN-like pathology and highlighted the potential of SP6616 in the treatment of DPN. FUNDING Please see funding sources.
Collapse
Affiliation(s)
- Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xu Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
31
|
Antispasmodic Drug Drofenine as an Inhibitor of Kv2.1 Channel Ameliorates Peripheral Neuropathy in Diabetic Mice. iScience 2020; 23:101617. [PMID: 33089105 PMCID: PMC7559245 DOI: 10.1016/j.isci.2020.101617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication and has yet no efficient medication. Here, we report that antispasmodic drug drofenine (Dfe) blocks Kv2.1 and ameliorates DPN-like pathology in diabetic mice. The underlying mechanisms are investigated against the DPN mice with in vivo Kv2.1 knockdown through adeno associated virus AAV9-Kv2.1-RNAi. Streptozotocin (STZ) induced type 1 or db/db type 2 diabetic mice with DPN exhibited a high level of Kv2.1 protein in dorsal root ganglion (DRG) tissue and a suppressed neurite outgrowth in DRG neuron. Dfe promoted neurite outgrowth by inhibiting Kv2.1 channel and/or Kv2.1 mRNA and protein expression level. Moreover, it suppressed inflammation by repressing IκBα/NF-κB signaling, inhibited apoptosis by regulating Kv2.1-mediated Bcl-2 family proteins and Caspase-3 and ameliorated mitochondrial dysfunction through Kv2.1/CaMKKβ/AMPK/PGC1α pathway. Our work supports that Kv2.1 inhibition is a promisingly therapeutic strategy for DPN and highlights the potential of Dfe in treating this disease. Antispasmodic drug drofenine (Dfe) ameliorates DPN-like pathology in diabetic mice Dfe inhibits Kv2.1 channel and/or Kv2.1 mRNA and protein expression level Dfe represses inflammation, apoptosis, and mitochondrial dysfunction in DPN mice Kv2.1 inhibition is a therapeutic tactic and Dfe shows therapeutic potential for DPN
Collapse
|
32
|
Wang N, Shi XF, Khan SA, Wang B, Semenza GL, Prabhakar NR, Nanduri J. Hypoxia-inducible factor-1 mediates pancreatic β-cell dysfunction by intermittent hypoxia. Am J Physiol Cell Physiol 2020; 319:C922-C932. [PMID: 32936698 DOI: 10.1152/ajpcell.00309.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of hypoxia-inducible factor (HIF)-1 in pancreatic β-cell response to intermittent hypoxia (IH) was examined. Studies were performed on adult wild-type (WT), HIF-1α heterozygous (HET), β-cell-specific HIF-1-/- mice and mouse insulinoma (MIN6) cells exposed to IH patterned after blood O2 profiles during obstructive sleep apnea. WT mice treated with IH showed insulin resistance, and pancreatic β-cell dysfunction manifested as augmented basal insulin secretion, and impaired glucose-stimulated insulin secretion and these effects were absent in HIF-1α HET mice. IH increased HIF-1α expression and elevated reactive oxygen species (ROS) levels in β-cells of WT mice. The elevated ROS levels were due to transcriptional upregulation of NADPH oxidase (NOX)-4 mRNA, protein and enzymatic activity, and these responses were absent in HIF-1α HET mice as well as in β-HIF-1-/- mice. IH-evoked β-cell responses were absent in adult WT mice treated with digoxin, an inhibitor of HIF-1α. MIN6 cells treated with in vitro IH showed enhanced basal insulin release and elevated HIF-1α protein expression, and these effects were abolished with genetic silencing of HIF-1α. IH increased NOX4 mRNA, protein, and enzyme activity in MIN6 cells and disruption of NOX4 function by siRNA or scavenging H2O2 with polyethylene glycol catalase blocked IH-evoked enhanced basal insulin secretion. These results demonstrate that HIF-1-mediated transcriptional activation of NOX4 and the ensuing increase in H2O2 contribute to IH-induced pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Ning Wang
- Biological Sciences Division, Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xue-Feng Shi
- Biological Sciences Division, Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Shakil A Khan
- Biological Sciences Division, Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Benjamin Wang
- Biological Sciences Division, Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Gregg L Semenza
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nanduri R Prabhakar
- Biological Sciences Division, Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Biological Sciences Division, Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
33
|
CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic β Cells. Cell Rep 2020; 28:2892-2904.e7. [PMID: 31509750 DOI: 10.1016/j.celrep.2019.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to vital cellular processes including cell cycle regulation. Loss of CDKs is associated with impaired insulin secretion and β cell survival; however, the function of CDK8 in β cells remains elusive. Here, we report that genetic ablation of Cdk8 improves glucose tolerance by increasing insulin secretion. We identify OSBPL3 as a CDK8-dependent phosphoprotein, which acts as a negative regulator of insulin secretion in response to glucose. We also show that embryonic gene silencing of neuropeptide Y in β cells is compromised in Cdk8-null mice, leading to continued expression into adulthood. Cdk8 ablation in β cells aggravates apoptosis and induces de novo expression of neuropeptides upon oxidative stress. Moreover, pancreatic islets exposed to stress display augmented apoptosis in the presence of these same neuropeptides. Our results reveal critical roles for CDK8 in β cell function and survival during metabolic stress that are in part mediated through de novo expression of neuropeptides.
Collapse
|
34
|
Zhang Q, Dou H, Rorsman P. 'Resistance is futile?' - paradoxical inhibitory effects of K ATP channel closure in glucagon-secreting α-cells. J Physiol 2020; 598:4765-4780. [PMID: 32716554 PMCID: PMC7689873 DOI: 10.1113/jp279775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
By secreting insulin and glucagon, the β- and α-cells of the pancreatic islets play a central role in the regulation of systemic metabolism. Both cells are equipped with ATP-regulated potassium (KATP ) channels that are regulated by the intracellular ATP/ADP ratio. In β-cells, KATP channels are active at low (non-insulin-releasing) glucose concentrations. An increase in glucose leads to KATP channel closure, membrane depolarization and electrical activity that culminates in elevation of [Ca2+ ]i and initiation of exocytosis of the insulin-containing secretory granules. The α-cells are also equipped with KATP channels but they are under strong tonic inhibition at low glucose, explaining why α-cells are electrically active under hypoglycaemic conditions and generate large Na+ - and Ca2+ -dependent action potentials. Closure of residual KATP channel activity leads to membrane depolarization and an increase in action potential firing but this stimulation of electrical activity is associated with inhibition rather than acceleration of glucagon secretion. This paradox arises because membrane depolarization reduces the amplitude of the action potentials by voltage-dependent inactivation of the Na+ channels involved in action potential generation. Exocytosis in α-cells is tightly linked to the opening of voltage-gated P/Q-type Ca2+ channels, the activation of which is steeply voltage-dependent. Accordingly, the inhibitory effect of the reduced action potential amplitude exceeds the stimulatory effect resulting from the increased action potential frequency. These observations highlight a previously unrecognised role of the action potential amplitude as a key regulator of pancreatic islet hormone secretion.
Collapse
Affiliation(s)
- Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Haiqiang Dou
- Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.,Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden
| |
Collapse
|
35
|
Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y. D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells. Front Endocrinol (Lausanne) 2020; 11:152. [PMID: 32318020 PMCID: PMC7154177 DOI: 10.3389/fendo.2020.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Dopamine (DA) has a vital role in the central nervous system and also modulates lipid and glucose metabolism. The present study aimed to investigate the effect of dopamine on insulin secretion and the underlying mechanisms in rat pancreatic β-cells. Data from the radioimmunoassay indicated that dopamine inhibited insulin secretion in a glucose- and dose-dependent manner. This inhibitory effect of dopamine was mediated mainly by D2-like receptors, but not D1-like receptors. Whole-cell patch-clamp recordings showed that dopamine decreased voltage-dependent Ca2+ channel currents, which could be reversed by inhibition of the D2-like receptor. Dopamine increased voltage-dependent potassium (KV) channel currents and shortened action potential duration, which was antagonized by inhibition of D2-like receptors. Further experiments showed that D2-like receptor activation by quinpirole increased KV channel currents. In addition, using calcium imaging techniques, we found that dopamine reduced intracellular Ca2+ concentration, which was also reversed by D2-like receptor antagonists. Similarly, quinpirole was found to decrease intracellular Ca2+ levels. Taken together, these findings demonstrate that dopamine inhibits insulin secretion mainly by acting on D2-like receptors, inhibiting Ca2+ channels, and activating Kv channels. This process results in shortened action potential duration and decreased intracellular Ca2+ levels in β-cells. This work offers new insights into a glucose-dependent mechanism whereby dopamine regulates insulin secretion.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Yi Zhang
| |
Collapse
|
36
|
Bai T, Yang H, Wang H, Zhi L, Liu T, Cui L, Liu W, Wang Y, Zhang M, Liu Y, Zhang Y. Inhibition of voltage-gated K+ channels mediates docosahexaenoic acid-stimulated insulin secretion in rat pancreatic β-cells. Food Funct 2020; 11:8893-8904. [DOI: 10.1039/d0fo01891k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kv channels play a vital role in DHA-augmented insulin secretion through GPR40/AC/cAMP/PLC signaling pathway in rat pancreatic β-cells.
Collapse
|
37
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
38
|
Jędrychowska J, Korzh V. Kv2.1 voltage-gated potassium channels in developmental perspective. Dev Dyn 2019; 248:1180-1194. [PMID: 31512327 DOI: 10.1002/dvdy.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 11/11/2022] Open
Abstract
Kv2.1 voltage-gated potassium channels consist of two types of α-subunits: (a) electrically-active Kcnb1 α-subunits and (b) silent or modulatory α-subunits plus β-subunits that, similar to silent α-subunits, also regulate electrically-active subunits. Voltage-gated potassium channels were traditionally viewed, mainly by electrophysiologists, as regulators of the electrical activity of the plasma membrane in excitable cells, a role that is performed by transmembrane protein domains of α-subunits that form the electric pore. Genetic studies revealed a role for this region of α-subunits of voltage-gated potassium channels in human neurodevelopmental disorders, such as epileptic encephalopathy. The N- and C-terminal domains of α-subunits interact to form the cytoplasmic subunit of heterotetrameric potassium channels that regulate electric pores. Subsequent animal studies revealed the developmental functions of Kcnb1-containing voltage-gated potassium channels and illustrated their role during brain development and reproduction. These functions of potassium channels are discussed in this review in the context of regulatory interactions between electrically-active and regulatory subunits.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
39
|
Kirmiz M, Gillies TE, Dickson EJ, Trimmer JS. Neuronal ER-plasma membrane junctions organized by Kv2-VAP pairing recruit Nir proteins and affect phosphoinositide homeostasis. J Biol Chem 2019; 294:17735-17757. [PMID: 31594866 DOI: 10.1074/jbc.ra119.007635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
The association of plasma membrane (PM)-localized voltage-gated potassium (Kv2) channels with endoplasmic reticulum (ER)-localized vesicle-associated membrane protein-associated proteins VAPA and VAPB defines ER-PM junctions in mammalian brain neurons. Here, we used proteomics to identify proteins associated with Kv2/VAP-containing ER-PM junctions. We found that the VAP-interacting membrane-associated phosphatidylinositol (PtdIns) transfer proteins PYK2 N-terminal domain-interacting receptor 2 (Nir2) and Nir3 specifically associate with Kv2.1 complexes. When coexpressed with Kv2.1 and VAPA in HEK293T cells, Nir2 colocalized with cell-surface-conducting and -nonconducting Kv2.1 isoforms. This was enhanced by muscarinic-mediated PtdIns(4,5)P2 hydrolysis, leading to dynamic recruitment of Nir2 to Kv2.1 clusters. In cultured rat hippocampal neurons, exogenously expressed Nir2 did not strongly colocalize with Kv2.1, unless exogenous VAPA was also expressed, supporting the notion that VAPA mediates the spatial association of Kv2.1 and Nir2. Immunolabeling signals of endogenous Kv2.1, Nir2, and VAP puncta were spatially correlated in cultured neurons. Fluorescence-recovery-after-photobleaching experiments revealed that Kv2.1, VAPA, and Nir2 have comparable turnover rates at ER-PM junctions, suggesting that they form complexes at these sites. Exogenous Kv2.1 expression in HEK293T cells resulted in significant differences in the kinetics of PtdIns(4,5)P2 recovery following repetitive muscarinic stimulation, with no apparent impact on resting PtdIns(4,5)P2 or PtdIns(4)P levels. Finally, the brains of Kv2.1-knockout mice had altered composition of PtdIns lipids, suggesting a crucial role for native Kv2.1-containing ER-PM junctions in regulating PtdIns lipid metabolism in brain neurons. These results suggest that ER-PM junctions formed by Kv2 channel-VAP pairing regulate PtdIns lipid homeostasis via VAP-associated PtdIns transfer proteins.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - Taryn E Gillies
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616 .,Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California 95616
| |
Collapse
|
40
|
Johnson B, Leek AN, Tamkun MM. Kv2 channels create endoplasmic reticulum / plasma membrane junctions: a brief history of Kv2 channel subcellular localization. Channels (Austin) 2019; 13:88-101. [PMID: 30712450 PMCID: PMC6380216 DOI: 10.1080/19336950.2019.1568824] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The potassium channels Kv2.1 and Kv2.2 are widely expressed throughout the mammalian brain. Kv2.1 provides the majority of delayed rectifying current in rat hippocampus while both channels are differentially expressed in cortex. Particularly unusual is their neuronal surface localization pattern: while half the channel population is freely-diffusive on the plasma membrane as expected from the generalized Singer & Nicolson fluid mosaic model, the other half localizes into micron-sized clusters on the soma, dendrites, and axon initial segment. These clusters contain hundreds of channels, which for Kv2.1, are largely non-conducting. Competing theories of the mechanism underlying Kv2.1 clustering have included static tethering to being corralled by an actin fence. Now, recent work has demonstrated channel clustering is due to formation of endoplasmic reticulum/plasma membrane (ER/PM) junctions through interaction with ER-resident VAMP-associated proteins (VAPs). Interaction between surface Kv2 channels and ER VAPs groups channels together in clusters. ER/PM junctions play important roles in inter-organelle communication: they regulate ion flux, are involved in lipid transfer, and are sites of endo- and exocytosis. Kv2-induced ER/PM junctions are regulated through phosphorylation of the channel C-terminus which in turn regulates VAP binding, providing a rapid means to create or dismantle these microdomains. In addition, insults such as hypoxia or ischemia disrupt this interaction resulting in ER/PM junction disassembly. Kv2 channels are the only known plasma membrane protein to form regulated, injury sensitive junctions in this manner. Furthermore, it is likely that concentrated VAPs at these microdomains sequester additional interactors whose functions are not yet fully understood.
Collapse
Affiliation(s)
- Ben Johnson
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Ashley N Leek
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Michael M Tamkun
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA.,c Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
41
|
Martinez-Pinna J, Marroqui L, Hmadcha A, Lopez-Beas J, Soriano S, Villar-Pazos S, Alonso-Magdalena P, Dos Santos RS, Quesada I, Martin F, Soria B, Gustafsson JÅ, Nadal A. Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia 2019; 62:1667-1680. [PMID: 31250031 DOI: 10.1007/s00125-019-4925-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and β (ERβ). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 μg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor β (ERβ) knockout (Erβ-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERβ-/- mice did not present BPA-induced changes, suggesting that ERβ mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERβ in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.
Collapse
Affiliation(s)
- Juan Martinez-Pinna
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Laura Marroqui
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Abdelkrim Hmadcha
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Javier Lopez-Beas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Sergi Soriano
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Sabrina Villar-Pazos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Franz Martin
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Bernat Soria
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Jan-Åke Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain, .
| |
Collapse
|
42
|
PACAP stimulates insulin secretion by PAC1 receptor and ion channels in β-cells. Cell Signal 2019; 61:48-56. [DOI: 10.1016/j.cellsig.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
|
43
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
44
|
Delgado-Ramírez M, Rodríguez-Menchaca AA. Cytoskeleton disruption affects Kv2.1 channel function and its modulation by PIP 2. J Physiol Sci 2019; 69:513-521. [PMID: 30900190 PMCID: PMC10717730 DOI: 10.1007/s12576-019-00671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium channels are expressed in a wide variety of excitable and non-excitable cells and regulate numerous cellular functions. The activity of ion channels can be modulated by direct interaction or/and functional coupling with other proteins including auxiliary subunits, scaffold proteins and the cytoskeleton. Here, we evaluated the influence of the actin-based cytoskeleton on the Kv2.1 channel using pharmacological and electrophysiological methods. We found that disruption of the actin-based cytoskeleton by latrunculin B resulted in the regulation of the Kv2.1 inactivation mechanism; it shifted the voltage of half-maximal inactivation toward negative potentials by approximately 15 mV, accelerated the rate of closed-state inactivation, and delayed the recovery rate from inactivation. The actin cytoskeleton stabilizing agent phalloidin prevented the hyperpolarizing shift in the half-maximal inactivation potential when co-applied with latrunculin B. Additionally, PIP2 depletion (a strategy that regulates Kv2.1 inactivation) after cytoskeleton disruption does not regulate further the inactivation of Kv2.1, which suggests that both factors could be regulating the Kv2.1 channel by a common mechanism. In summary, our results suggest a role for the actin-based cytoskeleton in regulating Kv2.1 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
45
|
The Role of the Voltage-Gated Potassium Channel Proteins Kv8.2 and Kv2.1 in Vision and Retinal Disease: Insights from the Study of Mouse Gene Knock-Out Mutations. eNeuro 2019; 6:eN-NWR-0032-19. [PMID: 30820446 PMCID: PMC6393689 DOI: 10.1523/eneuro.0032-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
Mutations in the KCNV2 gene, which encodes the voltage-gated K+ channel protein Kv8.2, cause a distinctive form of cone dystrophy with a supernormal rod response (CDSRR). Kv8.2 channel subunits only form functional channels when combined in a heterotetramer with Kv2.1 subunits encoded by the KCNB1 gene. The CDSRR disease phenotype indicates that photoreceptor adaptation is disrupted. The electroretinogram (ERG) response of affected individuals shows depressed rod and cone activity, but what distinguishes this disease is the supernormal rod response to a bright flash of light. Here, we have utilized knock-out mutations of both genes in the mouse to study the pathophysiology of CDSRR. The Kv8.2 knock-out (KO) mice show many similarities to the human disorder, including a depressed a-wave and an elevated b-wave response with bright light stimulation. Optical coherence tomography (OCT) imaging and immunohistochemistry indicate that the changes in six-month-old Kv8.2 KO retinae are largely limited to the outer nuclear layer (ONL), while outer segments appear intact. In addition, there is a significant increase in TUNEL-positive cells throughout the retina. The Kv2.1 KO and double KO mice also show a severely depressed a-wave, but the elevated b-wave response is absent. Interestingly, in all three KO genotypes, the c-wave is totally absent. The differential response shown here of these KO lines, that either possess homomeric channels or lack channels completely, has provided further insights into the role of K+ channels in the generation of the a-, b-, and c-wave components of the ERG.
Collapse
|
46
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women. J Diabetes Investig 2018; 9:1196-1202. [PMID: 29352517 PMCID: PMC6123053 DOI: 10.1111/jdi.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. MATERIALS AND METHODS A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. RESULTS The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. CONCLUSIONS The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Li
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Liangkun Ma
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Fan Ping
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Juntao Liu
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xueyan Wu
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jiangfeng Mao
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xi Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Min Nie
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
47
|
Zhou T, Du M, Zhao T, Quan L, Zhu Z, Chen J. ETA as a novel Kv2.1 inhibitor ameliorates β-cell dysfunction and hyperglycaemia. Clin Exp Pharmacol Physiol 2018; 45:1257-1264. [PMID: 30003581 DOI: 10.1111/1440-1681.13011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/01/2022]
Abstract
The Kv2.1 channel plays an important role in the regulation against pancreatic β-cell dysfunctions. Therefore, it is regarded as a promising target for drug discovery against type 2 diabetes. In the present study, we found that the small molecule 4-ethoxy-N-{[6-(2-thienyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl]methyl}aniline (ETA), a novel Kv2.1 inhibitor, may be capable of promoting glucose-stimulated insulin secretion and protecting from apoptosis in pancreatic INS-832/13 cells. The assay of ETA on type 2 diabetic mice induced by high-fat diet (HFD)/streptozocin (STZ) confirmed its potency in ameliorating glucose homeostasis. ETA administration reduced fasting blood glucose and glycated haemoglobin levels, improved oral glucose tolerance, and increased serum insulin levels in HFD/STZ mice. Mechanism study demonstrated that ETA protected INS-832/13 cells involving the regulation against protein kinase B and extracellular-regulated protein kinase 1/2 signalling pathways. Our study has confirmed the underlying regulation of Kv2.1 against β-cell function and also addressed the potential of ETA as a lead compound in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengfan Du
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Tong Zhao
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Quan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Zhiyuan Zhu
- Central Laboratory, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Kirmiz M, Palacio S, Thapa P, King AN, Sack JT, Trimmer JS. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell 2018; 29:2410-2432. [PMID: 30091655 PMCID: PMC6233057 DOI: 10.1091/mbc.e18-05-0337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) and plasma membrane (PM) form junctions crucial to ion and lipid signaling and homeostasis. The Kv2.1 ion channel is localized at ER–PM junctions in brain neurons and is unique among PM proteins in its ability to remodel these specialized membrane contact sites. Here, we show that this function is conserved between Kv2.1 and Kv2.2, which differ in their biophysical properties, modulation, and cellular expression. Kv2.2 ER–PM junctions are present at sites deficient in the actin cytoskeleton, and disruption of the actin cytoskeleton affects their spatial organization. Kv2.2-containing ER–PM junctions overlap with those formed by canonical ER–PM tethers. The ability of Kv2 channels to remodel ER–PM junctions is unchanged by point mutations that eliminate their ion conduction but eliminated by point mutations within the Kv2-specific proximal restriction and clustering (PRC) domain that do not impact their ion channel function. The highly conserved PRC domain is sufficient to transfer the ER–PM junction–remodeling function to another PM protein. Last, brain neurons in Kv2 double-knockout mice have altered ER–PM junctions. Together, these findings demonstrate a conserved in vivo function for Kv2 family members in remodeling neuronal ER–PM junctions that is distinct from their canonical role as ion-conducting channels shaping neuronal excitability.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Stephanie Palacio
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| | - Anna N King
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
49
|
Identification of VAPA and VAPB as Kv2 Channel-Interacting Proteins Defining Endoplasmic Reticulum-Plasma Membrane Junctions in Mammalian Brain Neurons. J Neurosci 2018; 38:7562-7584. [PMID: 30012696 DOI: 10.1523/jneurosci.0893-18.2018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 07/07/2018] [Indexed: 11/21/2022] Open
Abstract
Membrane contacts between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are ubiquitous in eukaryotic cells and are platforms for lipid and calcium signaling and homeostasis. Recent studies have revealed proteins crucial to the formation and function of ER-PM junctions in non-neuronal cells, but little is known of the ER-PM junctions prominent in aspiny regions of mammalian brain neurons. The Kv2.1 voltage-gated potassium channel is abundantly clustered at ER-PM junctions in brain neurons and is the first PM protein that functions to organize ER-PM junctions. However, the molecular mechanism whereby Kv2.1 localizes to and remodels these junctions is unknown. We used affinity immunopurification and mass spectrometry-based proteomics on brain samples from male and female WT and Kv2.1 KO mice and identified the resident ER vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as prominent Kv2.1-associated proteins. Coexpression with Kv2.1 or its paralog Kv2.2 was sufficient to recruit VAPs to ER-PM junctions. Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. The association of VAPA with Kv2.1 relies on a "two phenylalanines in an acidic tract" (FFAT) binding domain on VAPA and a noncanonical phosphorylation-dependent FFAT motif comprising the Kv2-specific clustering or PRC motif. These results suggest that Kv2.1 localizes to and organizes neuronal ER-PM junctions through an interaction with VAPs.SIGNIFICANCE STATEMENT Our study identified the endoplasmic reticulum (ER) proteins vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as proteins copurifying with the plasma membrane (PM) Kv2.1 ion channel. We found that expression of Kv2.1 recruits VAPs to ER-PM junctions, specialized membrane contact sites crucial to distinct aspects of cell function. We found endogenous VAPs at Kv2.1-mediated ER-PM junctions in brain neurons and other mammalian cells and that knocking out VAPA expression disrupts Kv2.1 clustering. We identified domains of VAPs and Kv2.1 necessary and sufficient for their association at ER-PM junctions. Our study suggests that Kv2.1 expression in the PM can affect ER-PM junctions via its phosphorylation-dependent association to ER-localized VAPA and VAPB.
Collapse
|
50
|
Mendes CP, Postal BG, Oliveira GTC, Castro AJG, Frederico MJS, Moraes ALL, Neuenfeldt PD, Nunes RJ, Menegaz D, Silva FRMB. Insulin stimulus‐secretion coupling is triggered by a novel thiazolidinedione/sulfonylurea hybrid in rat pancreatic islets. J Cell Physiol 2018; 234:509-520. [DOI: 10.1002/jcp.26746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/13/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Camila P. Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Bárbara G. Postal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Geisel T. C. Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
- Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Allisson J. G. Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Marisa J. S. Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Ana L. L. Moraes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Patrícia D. Neuenfeldt
- Universidade Federal de Santa Catarina, Departamento de Química, Centro de Ciências Físicas e MatemáticasCampus UniversitárioBairro Trindade, FlorianópolisSanta CatarinaBrazil
| | - Ricardo J. Nunes
- Universidade Federal de Santa Catarina, Departamento de Química, Centro de Ciências Físicas e MatemáticasCampus UniversitárioBairro Trindade, FlorianópolisSanta CatarinaBrazil
| | - Danusa Menegaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
- Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Fátima R. M. B. Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
- Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| |
Collapse
|