1
|
Bisen RS, Iqbal FM, Cascino-Milani F, Bockemühl T, Ache JM. Nutritional state-dependent modulation of insulin-producing cells in Drosophila. eLife 2025; 13:RP98514. [PMID: 39878318 PMCID: PMC11778929 DOI: 10.7554/elife.98514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Insulin plays a key role in metabolic homeostasis. Drosophila insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings. We found that the nutritional state strongly modulates IPC activity. IPC activity decreased with increasing periods of starvation. Refeeding flies with glucose or fructose, two nutritive sugars, significantly increased IPC activity, whereas non-nutritive sugars had no effect. In contrast to feeding, glucose perfusion did not affect IPC activity. This was reminiscent of the mammalian incretin effect, where glucose ingestion drives higher insulin release than intravenous application. Contrary to IPCs, Diuretic hormone 44-expressing neurons in the pars intercerebralis (DH44PINs) responded to glucose perfusion. Functional connectivity experiments demonstrated that these DH44PINs do not affect IPC activity, while other DH44Ns inhibit them. Hence, populations of autonomously and systemically sugar-sensing neurons work in parallel to maintain metabolic homeostasis. Accordingly, activating IPCs had a small, satiety-like effect on food-searching behavior and reduced starvation-induced hyperactivity, whereas activating DH44Ns strongly increased hyperactivity. Taken together, we demonstrate that IPCs and DH44Ns are an integral part of a modulatory network that orchestrates glucose homeostasis and adaptive behavior in response to shifts in the metabolic state.
Collapse
Affiliation(s)
- Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of WürzburgWürzburgGermany
| | - Fathima Mukthar Iqbal
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of WürzburgWürzburgGermany
| | - Federico Cascino-Milani
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of WürzburgWürzburgGermany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of CologneCologneGermany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of WürzburgWürzburgGermany
| |
Collapse
|
2
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
3
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
4
|
Mead EB, Lee M, Trammell CE, Goodman AG. Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. INSECTS 2024; 15:446. [PMID: 38921161 PMCID: PMC11203814 DOI: 10.3390/insects15060446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The arbovirus West Nile virus (WNV) is a danger to global health. Spread primarily by mosquitoes, WNV causes about 2000 cases per year in the United States. The natural mosquito immune response controls viral replication so that the host survives but can still transmit the virus. Using the genetically malleable Drosophila melanogaster model, we previously dissected innate immune pathways used to control WNV infection. Specifically, we showed that insulin/IGF-1 signaling (IIS) activates a JAK/STAT-mediated immune response that reduces WNV. However, how factors that regulate IIS in insects control infection has not been identified. D. melanogaster Limostatin (Lst) encodes a peptide hormone that suppresses insulin secretion. Its mammalian ortholog, Neuromedin U (NMU), is a peptide that regulates the production and secretion of insulin from pancreatic beta cells. In this study, we used D. melanogaster and human cell culture models to investigate the roles of these insulin regulators in immune signaling. We found that D. melanogaster Lst mutants, which have elevated insulin-like peptide expression, are less susceptible to WNV infection. Increased levels of insulin-like peptides in these flies result in upregulated JAK/STAT activity, leading to protection from infection. Treatment of human cells with the insulin regulator NMU results in increased WNV replication. Further investigation of methods to target Lst in mosquitoes or NMU in mammals can improve vector control methods and may lead to improved therapeutics for human and animal infection.
Collapse
Affiliation(s)
- Ezra B. Mead
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
6
|
Frappaolo A, Giansanti MG. Using Drosophila melanogaster to Dissect the Roles of the mTOR Signaling Pathway in Cell Growth. Cells 2023; 12:2622. [PMID: 37998357 PMCID: PMC10670727 DOI: 10.3390/cells12222622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The evolutionarily conserved target of rapamycin (TOR) serine/threonine kinase controls eukaryotic cell growth, metabolism and survival by integrating signals from the nutritional status and growth factors. TOR is the catalytic subunit of two distinct functional multiprotein complexes termed mTORC1 (mechanistic target of rapamycin complex 1) and mTORC2, which phosphorylate a different set of substrates and display different physiological functions. Dysregulation of TOR signaling has been involved in the development and progression of several disease states including cancer and diabetes. Here, we highlight how genetic and biochemical studies in the model system Drosophila melanogaster have been crucial to identify the mTORC1 and mTORC2 signaling components and to dissect their function in cellular growth, in strict coordination with insulin signaling. In addition, we review new findings that involve Drosophila Golgi phosphoprotein 3 in regulating organ growth via Rheb-mediated activation of mTORC1 in line with an emerging role for the Golgi as a major hub for mTORC1 signaling.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
7
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Martín-Blázquez R, Calhoun AC, Sadd BM, Cameron SA. Gene expression in bumble bee larvae differs qualitatively between high and low concentration imidacloprid exposure levels. Sci Rep 2023; 13:9415. [PMID: 37296299 PMCID: PMC10256756 DOI: 10.1038/s41598-023-36232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neonicotinoid pesticides negatively impact bumble bee health, even at sublethal concentrations. Responses to the neonicotinoid imidacloprid have been studied largely at individual adult and colony levels, focusing mostly on behavioral and physiological effects. Data from developing larvae, whose health is critical for colony success, are deficient, particularly at the molecular level where transcriptomes can reveal disruption of fundamental biological pathways. We investigated gene expression of Bombus impatiens larvae exposed through food provisions to two field-realistic imidacloprid concentrations (0.7 and 7.0 ppb). We hypothesized both concentrations would alter gene expression, but the higher concentration would have greater qualitative and quantitative effects. We found 678 genes differentially expressed under both imidacloprid exposures relative to controls, including mitochondrial activity, development, and DNA replication genes. However, more genes were differentially expressed with higher imidacloprid exposure; uniquely differentially expressed genes included starvation response and cuticle genes. The former may partially result from reduced pollen use, monitored to verify food provision use and provide additional context to results. A smaller differentially expressed set only in lower concentration larvae, included neural development and cell growth genes. Our findings show varying molecular consequences under different field-realistic neonicotinoid concentrations, and that even low concentrations may affect fundamental biological processes.
Collapse
Affiliation(s)
- Rubén Martín-Blázquez
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de la Cartuja, Seville, Spain.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Sydney A Cameron
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Meng Q, Xu Y, Li Y, Wang Y. Novel studies on Drosophila melanogaster model reveal the roles of JNK-Jak/STAT axis and intestinal microbiota in insulin resistance. J Drug Target 2023; 31:261-268. [PMID: 36343203 DOI: 10.1080/1061186x.2022.2144869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The JNK pathway play a critical role in insulin resistance induced by a long-term high-sugar diet. However, the roles of up- and downstream molecules of the JNK pathway in insulin resistance are less known in vertebrates and invertebrates. As a classical organism in biological research, Drosophila melanogaster (D. melanogaster) has been widely applied to the studies of mechanism of insulin resistance. Based on previous studies, we found a novel predictive mechanism of the formation of insulin resistance in D. melanogaster. We found that JNK activated by high-sugar diet and dysregulated intestinal microbiota could mediate inflammation, and then the activated JNK released Upd3, which in turn stimulated Jak/STAT pathway to release ImpL2. ImpL2 can compete with Drosophila insulin-like peptides (Dilps) for binding with the insulin receptor and inhibit the activation of insulin pathway. In this study, we reviewed novel studies on the insulin signalling pathway based on the D. melanogaster model. The findings support our hypothesis. We, therefore, described how a long-term high-sugar diet disrupts intestinal microbiota to induce inflammation and the disruption of JNK-Jak/STAT axis. This description may offer some new clues to the formation of insulin resistance.
Collapse
Affiliation(s)
- Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Gáliková M, Klepsatel P. Ion transport peptide regulates energy intake, expenditure, and metabolic homeostasis in Drosophila. Genetics 2022; 222:iyac150. [PMID: 36190340 PMCID: PMC9713441 DOI: 10.1093/genetics/iyac150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, energy homeostasis is regulated by the antagonistic action of hormones insulin and glucagon. However, in contrast to the highly conserved insulin, glucagon is absent in most invertebrates. Although there are several endocrine regulators of energy expenditure and catabolism (such as the adipokinetic hormone), no single invertebrate hormone with all of the functions of glucagon has been described so far. Here, we used genetic gain- and loss-of-function experiments to show that the Drosophila gene Ion transport peptide (ITP) codes for a novel catabolic regulator that increases energy expenditure, lowers fat and glycogen reserves, and increases glucose and trehalose. Intriguingly, Ion transport peptide has additional functions reminiscent of glucagon, such as inhibition of feeding and transit of the meal throughout the digestive tract. Furthermore, Ion transport peptide interacts with the well-known signaling via the Adipokinetic hormone; Ion transport peptide promotes the pathway by stimulating Adipokinetic hormone secretion and transcription of the receptor AkhR. The genetic manipulations of Ion transport peptide on standard and Adipokinetic hormone-deficient backgrounds showed that the Adipokinetic hormone peptide mediates the hyperglycemic and hypertrehalosemic effects of Ion transport peptide, while the other metabolic functions of Ion transport peptide seem to be Adipokinetic hormone independent. In addition, Ion transport peptide is necessary for critical processes such as development, starvation-induced foraging, reproduction, and average lifespan. Altogether, our work describes a novel master regulator of fly physiology with functions closely resembling mammalian glucagon.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Wang Z, Lincoln S, Nguyen AD, Li W, Young MW. Chronic sleep loss disrupts rhythmic gene expression in Drosophila. Front Physiol 2022; 13:1048751. [PMID: 36467698 PMCID: PMC9716074 DOI: 10.3389/fphys.2022.1048751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Genome-wide profiling of rhythmic gene expression has offered new avenues for studying the contribution of circadian clock to diverse biological processes. Sleep has been considered one of the most important physiological processes that are regulated by the circadian clock, however, the effects of chronic sleep loss on rhythmic gene expression remain poorly understood. In the present study, we exploited Drosophila sleep mutants insomniac 1 (inc 1 ) and wide awake D2 (wake D2 ) as models for chronic sleep loss. We profiled the transcriptomes of head tissues collected from 4-week-old wild type flies, inc 1 and wake D2 at timepoints around the clock. Analysis of gene oscillation revealed a substantial loss of rhythmicity in inc 1 and wake D2 compared to wild type flies, with most of the affected genes common to both mutants. The disruption of gene oscillation was not due to changes in average gene expression levels. We also identified a subset of genes whose loss of rhythmicity was shared among animals with chronic sleep loss and old flies, suggesting a contribution of aging to chronic, sleep-loss-induced disruption of gene oscillation.
Collapse
Affiliation(s)
- Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Andrew D. Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, United States
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| |
Collapse
|
12
|
Yoon S, Shin M, Shim J. Inter-organ regulation by the brain in Drosophila development and physiology. J Neurogenet 2022:1-13. [DOI: 10.1080/01677063.2022.2137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Sunggyu Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
14
|
Grunddal KV, Trammell SAJ, Bæch-Laursen C, Andersen DB, Xu SFS, Andersen H, Gillum MP, Ghiasi SM, Novak I, Tyrberg B, Li C, Rosenkilde MM, Hartmann B, Holst JJ, Kuhre RE. Opposing roles of the entero-pancreatic hormone urocortin-3 in glucose metabolism in rats. Diabetologia 2022; 65:1018-1031. [PMID: 35325259 PMCID: PMC9076751 DOI: 10.1007/s00125-022-05675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
AIM/HYPOTHESIS Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A J Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Bæch-Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stella F S Xu
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Andersen
- Global Obesity and Liver Disease Research, Novo Nordisk, Måløv, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed M Ghiasi
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Ivana Novak
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chien Li
- Global Obesity and Liver Disease Research, Novo Nordisk, Seattle, WA, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark.
- Global Obesity and Liver Disease Research, Novo Nordisk, Måløv, Denmark.
| |
Collapse
|
15
|
Meshrif WS, El Husseiny IM, Elbrense H. Drosophila melanogaster as a low-cost and valuable model for studying type 2 diabetes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:457-466. [PMID: 35189046 DOI: 10.1002/jez.2580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Drosophila melanogaster has been used as the most successful invertebrate model for studying metabolic diseases such as type 2 diabetes (T2D). We induced T2D by feeding Drosophila larvae on a high-sugar diet (HSD). The glucose and trehalose, glycogen, lipid, triglyceride, and protein levels were determined in HSD-fed larvae. Moreover, larval food intake, water content, size, and weight in addition to the development until pupation were observed. Levels of Drosophila insulin-like peptides (DILPs 2, 3, and 5), as well as adipokinetic hormone (AKH), were also determined in HSD-fed larvae by quantitative real-time polymerase chain reaction. The results demonstrated that HSD could induce elevated levels of glucose, trehalose, glycogen, and proteins in larvae. The larvae consumed less food intake and were smaller, lighter, and less developed on HSD than those on the control diet. Moreover, the water content of larvae fed HSD was similar to that fed the control diet. HSD induced higher expression of DILP3 and AKH, confirming hyperglycemia with insulin resistance. In sum, Drosophila offers an appropriate model for quick and inexpensive in vivo experimentation on human metabolic diseases.
Collapse
Affiliation(s)
- Wesam S Meshrif
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Iman M El Husseiny
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
17
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
18
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
19
|
McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. INSECT MOLECULAR BIOLOGY 2022; 31:85-100. [PMID: 34613655 DOI: 10.1111/imb.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives.
Collapse
Affiliation(s)
- C H McKenna
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - D Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - T L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, USA
| | - L Zheng
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R A Sherman
- BioTherapeutics, Education and Research (BTER) Foundation, Irvine, CA, USA
- Monarch Labs, Irvine, CA, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A M Tarone
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Evans RM, Wei Z. Interorgan crosstalk in pancreatic islet function and pathology. FEBS Lett 2022; 596:607-619. [PMID: 35014695 DOI: 10.1002/1873-3468.14282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Pancreatic β cells secrete insulin in response to glucose, a process that is regulated at multiple levels, including a network of input signals from other organ systems. Impaired islet function contributes to the pathogenesis of type 2 diabetes mellitus (T2DM), and targeting inter-organ communications, such as GLP-1 signalling, to enhance β-cell function has been proven to be a successful therapeutic strategy in the last decade. In this review, we will discuss recent advances in inter-organ communication from the metabolic, immune and neural system to pancreatic islets, their biological implication in normal pancreas endocrine function and their role in the (mal)adaptive responses of islet to nutrition-induced stress.
Collapse
Affiliation(s)
- Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
21
|
Sexual Dimorphism in Metabolic Responses to Western Diet in Drosophila melanogaster. Biomolecules 2021; 12:biom12010033. [PMID: 35053181 PMCID: PMC8774106 DOI: 10.3390/biom12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a chronic disease affecting millions of people worldwide. The fruit fly (Drosophila melanogaster) is an interesting research model to study metabolic and transcriptomic responses to obesogenic diets. However, the sex-specific differences in these responses are still understudied and perhaps underestimated. In this study, we exposed adult male and female Dahomey fruit flies to a standard diet supplemented with sugar, fat, or a combination of both. The exposure to a diet supplemented with 10% sugar and 10% fat efficiently induced an increase in the lipid content in flies, a hallmark for obesity. This increase in lipid content was more prominent in males, while females displayed significant changes in glycogen content. A strong effect of the diets on the ovarian size and number of ma-ture oocytes was also present in females exposed to diets supplemented with fat and a combina-tion of fat and sugar. In both males and females, fat body morphology changed and was associ-ated with an increase in lipid content of fat cells in response to the diets. The expression of me-tabolism-related genes also displayed a strong sexually dimorphic response under normal condi-tions and in response to sugar and/or fat-supplemented diets. Here, we show that the exposure of adult fruit flies to an obesogenic diet containing both sugar and fat allowed studying sexual dimorphism in metabolism and the expression of genes regulating metabolism.
Collapse
|
22
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
23
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
24
|
Li W, Wang Z, Syed S, Lyu C, Lincoln S, O'Neil J, Nguyen AD, Feng I, Young MW. Chronic social isolation signals starvation and reduces sleep in Drosophila. Nature 2021; 597:239-244. [PMID: 34408325 PMCID: PMC8429171 DOI: 10.1038/s41586-021-03837-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Social isolation and loneliness have potent effects on public health1-4. Research in social psychology suggests that compromised sleep quality is a key factor that links persistent loneliness to adverse health conditions5,6. Although experimental manipulations have been widely applied to studying the control of sleep and wakefulness in animal models, how normal sleep is perturbed by social isolation is unknown. Here we report that chronic, but not acute, social isolation reduces sleep in Drosophila. We use quantitative behavioural analysis and transcriptome profiling to differentiate between brain states associated with acute and chronic social isolation. Although the flies had uninterrupted access to food, chronic social isolation altered the expression of metabolic genes and induced a brain state that signals starvation. Chronically isolated animals exhibit sleep loss accompanied by overconsumption of food, which resonates with anecdotal findings of loneliness-associated hyperphagia in humans. Chronic social isolation reduces sleep and promotes feeding through neural activities in the peptidergic fan-shaped body columnar neurons of the fly. Artificial activation of these neurons causes misperception of acute social isolation as chronic social isolation and thereby results in sleep loss and increased feeding. These results present a mechanistic link between chronic social isolation, metabolism, and sleep, addressing a long-standing call for animal models focused on loneliness7.
Collapse
Affiliation(s)
- Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA.
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Cheng Lyu
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, USA
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Jenna O'Neil
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Andrew D Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Irena Feng
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
25
|
Yoshinari Y, Kosakamoto H, Kamiyama T, Hoshino R, Matsuoka R, Kondo S, Tanimoto H, Nakamura A, Obata F, Niwa R. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun 2021; 12:4818. [PMID: 34376687 PMCID: PMC8355161 DOI: 10.1038/s41467-021-25146-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryo Hoshino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rena Matsuoka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Obata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development Chiyoda-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
26
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
27
|
Léopold P. Sizes, proportions and environment. C R Biol 2021; 344:165-175. [PMID: 34213854 DOI: 10.5802/crbiol.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
The sizes of living organisms range over twenty orders of magnitude. Within the same species, the size of individuals also varies according to the environmental conditions to which they are subjected. From the studies conducted on organisms as diverse as the drosophila, the salamander or the mouse, laws and conserved mechanisms emerge that shed light on the fundamental aspects of growth, but also on more medical issues such as tissue regeneration, metabolic homeostasis and cancer.
Collapse
Affiliation(s)
- Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| |
Collapse
|
28
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
29
|
Chatterjee N, Perrimon N. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. SCIENCE ADVANCES 2021; 7:7/24/eabg4336. [PMID: 34108216 PMCID: PMC8189582 DOI: 10.1126/sciadv.abg4336] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 05/16/2023]
Abstract
The organs and metabolic pathways involved in energy metabolism, and the process of ATP production from nutrients, are comparable between humans and Drosophila melanogaster This level of conservation, together with the power of Drosophila genetics, makes the fly a very useful model system to study energy homeostasis. Here, we discuss the major organs involved in energy metabolism in Drosophila and how they metabolize different dietary nutrients to generate adenosine triphosphate. Energy metabolism in these organs is controlled by cell-intrinsic, paracrine, and endocrine signals that are similar between Drosophila and mammals. We describe how these signaling pathways are regulated by several physiological and environmental cues to accommodate tissue-, age-, and environment-specific differences in energy demand. Last, we discuss several genetic and diet-induced fly models of obesity and diabetes that can be leveraged to better understand the molecular basis of these metabolic diseases and thereby promote the development of novel therapies.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
30
|
Neuromedin U, a Key Molecule in Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22084238. [PMID: 33921859 PMCID: PMC8074168 DOI: 10.3390/ijms22084238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic neuropeptides. One of these neuropeptides, neuromedin U (NMU), was isolated in the 1980s, and its specific receptors, NMUR1 and NMUR2, were defined in 2000. A series of subsequent studies has revealed many of the physiological roles of the NMU system, including in feeding behavior, energy expenditure, stress responses, circadian rhythmicity, and inflammation. Particularly over the past decades, many reports have indicated that the NMU system plays an essential and direct role in regulating body weight, feeding behavior, energy metabolism, and insulin secretion, which are tightly linked to obesity pathophysiology. Furthermore, another ligand of NMU receptors, NMS (neuromedin S), was identified in 2005. NMS has physiological functions similar to those of NMU. This review summarizes recent observations of the NMU system in relation to the pathophysiology of obesity in both the central nervous systems and the peripheral tissues.
Collapse
|
31
|
Zhang W, Sakoda H, Nakazato Y, Islam MN, Pattou F, Kerr-Conte J, Nakazato M. Neuromedin U uses Gαi2 and Gαo to suppress glucose-stimulated Ca2+ signaling and insulin secretion in pancreatic β cells. PLoS One 2021; 16:e0250232. [PMID: 33857254 PMCID: PMC8049253 DOI: 10.1371/journal.pone.0250232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022] Open
Abstract
Neuromedin U (NMU), a highly conserved peptide in mammals, is involved in a wide variety of physiological processes, including impairment of pancreatic β-cell function via induction of mitochondrial dysfunction and endoplasmic reticulum (ER) stress, ultimately suppressing insulin secretion. NMU has two receptors, NMU receptor 1 (NMUR1) and NMUR2, both of which are G-protein-coupled receptors (GPCRs). Only NMUR1 is expressed in mouse islets and β cell-derived MIN6-K8 cells. The molecular mechanisms underlying the insulinostatic action mediated by NMUR1 in β cells have yet to be elucidated. In this study, we explored the molecular mechanism driving impairment of insulin secretion in β cells by the NMU-NMUR1 axis. Pretreatment with the Gαi/o inhibitor Bordetella pertussis toxin (PTX), but not the Gαq inhibitor YM254890, abolished NMU-induced suppression of glucose-stimulated insulin secretion and calcium response in β cells. Knockdown of Gαi2 and Gαo in β cells counteracted NMU-induced suppression of insulin secretion and gene alterations related to mitochondrial fusion (Mfn1, Mfn2), fission (Fis1, Drp1), mitophagy (Pink1, Park2), mitochondrial dynamics (Pgc-1α, Nrf1, and Tfam), ER stress (Chop, Atp2a3, Ryr2, and Itpr2), intracellular ATP level, and mitochondrial membrane potential. NMU decreased forskolin-stimulated intracellular cAMP in both mouse and human islets. We concluded that NMUR1 coupled to PTX-sensitive Gαi2 and Gαo proteins in β cells reduced intracellular Ca2+ influx and cAMP level, thereby causing β-cell dysfunction and impairment. These results highlight a novel signaling mechanism of NMU and provide valuable insights into the further investigation of NMU functions in β-cell biology.
Collapse
Affiliation(s)
- Weidong Zhang
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuki Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Md Nurul Islam
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - François Pattou
- UNIV. LILLE, INSERM, CHU LILLE, U1190, Translational Research Laboratory for Diabetes -European Genomics Institute for Diabetes, Lille, France
| | - Julie Kerr-Conte
- UNIV. LILLE, INSERM, CHU LILLE, U1190, Translational Research Laboratory for Diabetes -European Genomics Institute for Diabetes, Lille, France
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- AMED-CREST, Agency for Medical Research and Development, Tokyo, Japan
- * E-mail:
| |
Collapse
|
32
|
Crtc modulates fasting programs associated with 1-C metabolism and inhibition of insulin signaling. Proc Natl Acad Sci U S A 2021; 118:2024865118. [PMID: 33723074 DOI: 10.1073/pnas.2024865118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fasting in mammals promotes increases in circulating glucagon and decreases in circulating insulin that stimulate catabolic programs and facilitate a transition from glucose to lipid burning. The second messenger cAMP mediates effects of glucagon on fasting metabolism, in part by promoting the phosphorylation of CREB and the dephosphorylation of the cAMP-regulated transcriptional coactivators (CRTCs) in hepatocytes. In Drosophila, fasting also triggers activation of the single Crtc homolog in neurons, via the PKA-mediated phosphorylation and inhibition of salt-inducible kinases. Crtc mutant flies are more sensitive to starvation and oxidative stress, although the underlying mechanism remains unclear. Here we use RNA sequencing to identify Crtc target genes that are up-regulated in response to starvation. We found that Crtc stimulates a subset of fasting-inducible genes that have conserved CREB binding sites. In keeping with its role in the starvation response, Crtc was found to induce the expression of genes that inhibit insulin secretion (Lst) and insulin signaling (Impl2). In parallel, Crtc also promoted the expression of genes involved in one-carbon (1-C) metabolism. Within the 1-C pathway, Crtc stimulated the expression of enzymes that encode modulators of S-adenosyl-methionine metabolism (Gnmt and Sardh) and purine synthesis (ade2 and AdSl) Collectively, our results point to an important role for the CREB/CRTC pathway in promoting energy balance in the context of nutrient stress.
Collapse
|
33
|
Guimarães M, Pereira SS, Monteiro MP. From Entero-Endocrine Cell Biology to Surgical Interventional Therapies for Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:273-297. [PMID: 32016913 DOI: 10.1007/5584_2020_480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physiological roles of the enteroendocrine system in relation to energy and glucose homeostasis regulation have been extensively studied in the past few decades. Considerable advances were made that enabled to disclose the potential use of gastro-intestinal (GI) hormones to target obesity and type 2 diabetes (T2D). The recognition of the clinical relevance of these discoveries has led the pharmaceutical industry to design several hormone analogues to either to mitigate physiological defects or target pharmacologically T2D.Amongst several advances, a major breakthrough in the field was the unexpected observation that enteroendocrine system modulation to T2D target could be achieved by surgically induced anatomical rearrangement of the GI tract. These findings resulted from the widespread use of bariatric surgery procedures for obesity treatment, which despite initially devised to induce weight loss by limiting the systemic availably of nutrients, are now well recognized to influence GI hormone dynamics in a manner that is highly dependent on the type of anatomical rearrangement produced.This chapter will focus on enteroendocrine system related mechanisms leading to improved glycemic control in T2D after bariatric surgery interventions.
Collapse
Affiliation(s)
- Marta Guimarães
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Sofia S Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal. .,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
34
|
Boulan L, Léopold P. What determines organ size during development and regeneration? Development 2021; 148:148/1/dev196063. [PMID: 33431590 DOI: 10.1242/dev.196063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sizes of living organisms span over 20 orders of magnitude or so. This daunting observation could intimidate researchers aiming to understand the general mechanisms controlling growth. However, recent progress suggests the existence of principles common to organisms as diverse as fruit flies, mice and humans. As we review here, these studies have provided insights into both autonomous and non-autonomous mechanisms controlling organ growth as well as some of the principles underlying growth coordination between organs and across bilaterally symmetrical organisms. This research tackles several aspects of developmental biology and integrates inputs from physics, mathematical modelling and evolutionary biology. Although many open questions remain, this work also helps to shed light on medically related conditions such as tissue and limb regeneration, as well as metabolic homeostasis and cancer.
Collapse
Affiliation(s)
- Laura Boulan
- Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology unit, 75005 Paris, France
| | - Pierre Léopold
- Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology unit, 75005 Paris, France
| |
Collapse
|
35
|
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: An Updated Overview of Their Functions. Front Endocrinol (Lausanne) 2021; 12:713961. [PMID: 34276571 PMCID: PMC8283259 DOI: 10.3389/fendo.2021.713961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting via NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Collapse
|
36
|
Validation of Individualized Metabolic Surgery Score in Indian Diabetics Undergoing Metabolic Surgery—a Retrospective Study of 100 Patients. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
38
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
40
|
Zhao X, Karpac J. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. CURRENT OPINION IN INSECT SCIENCE 2020; 41:100-105. [PMID: 32898765 PMCID: PMC7669600 DOI: 10.1016/j.cois.2020.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The evolution of complex organ systems in metazoans has dictated that the maintenance of energy homeostasis requires coordinating local and systemic energy demands between organs with specialized functions. The gastrointestinal tract is one of many organs that is indispensable for the systemic coordination of energy substrate uptake, storage, and usage, and the spatial organization of this organ (i.e. proximity to other metabolic organs) within a complex body plan underlies its role in organ crosstalk. Studies of various arthropod intestines, and in particular insects, have shed light on the evolution and function of the gastrointestinal tract in the maintenance of energy homeostasis. This brief review focuses on studies and theories derived from the insect intestine (particularly the midgut) of adult Drosophila melanogaster to inform on the how, what, and why of the gastrointestinal tract in the systemic regulation of lipids, the most common form of stored energy in insects.
Collapse
Affiliation(s)
- Xiao Zhao
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jason Karpac
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
41
|
Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. Our main focus is on the T1DM that emerges due to pancreas’s failure to produce sufficient insulin due to the loss of beta cells (β-cells). We discuss various insulin administration and delivery methods including physiological methods, open-loop, and closed-loop schemes. Furthermore, we report several factors such as hyperglycemia, hypoglycemia, and many other physical factors that need to be considered while infusing insulin in human body via AP systems. We discuss three prominent control algorithms including proportional-integral- derivative (PID), fuzzy logic, and model predictive, which have been clinically evaluated and have all shown promising results. In addition, linear and non-linear insulin infusion control schemes have been formally discussed. To the best of our knowledge, this is the first work which systematically covers recent developments in the AP components with a solid foundation for future studies in the T1DM field.
Collapse
|
42
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
43
|
Dapagliflozin, a sodium glucose cotransporter 2 inhibitors, protects cardiovascular function in type-2 diabetic murine model. J Genet 2020. [DOI: 10.1007/s12041-020-01196-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
45
|
Colombani J, Andersen DS. The
Drosophila
gut: A gatekeeper and coordinator of organism fitness and physiology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e378. [DOI: 10.1002/wdev.378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Colombani
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| | - Ditte S. Andersen
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| |
Collapse
|
46
|
Umemura A, Sasaki A, Nitta H, Nikai H, Baba S, Takahara T, Hasegawa Y, Katagiri H, Kanno S, Ishigaki Y. Prognostic factors and a new preliminary scoring system for remission of type 2 diabetes mellitus after laparoscopic sleeve gastrectomy. Surg Today 2020; 50:1056-1064. [PMID: 32170427 DOI: 10.1007/s00595-020-01990-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate the early remission rate of type 2 diabetes mellitus (T2DM) after laparoscopic sleeve gastrectomy (LSG) and establish a preliminary scoring system that predicts T2DM remission. METHODS We assessed the outcomes of 49 morbidly obese patients with T2DM who underwent LSG between 2008 and 2018. The prognostic factors for T2DM remission 1 year post-LSG were identified and an original scoring system was established. We validated our scoring system by comparing it with the individualized metabolic surgery score and the ABCD score. RESULTS The patients' mean body weight loss and percentage of excess weight loss were 34.4 kg and 59.4%, respectively, while the T2DM remission rate was 77.5%. The serum insulin level and the T2DM duration were independent predictive factors, the receiver-operating characteristic (ROC) curves for which revealed cutoff values of 12.7 ng/mL and 72 months, respectively. We set our system's score range at 0-2, whereby patients with higher scores have a good T2DM remission prognosis, as higher insulin levels, and/or shorter T2DM duration. Our scoring system had accuracy levels similar to those of the ABCD score with a simple stratification. CONCLUSION Our preliminary scoring system attains a good level of accuracy for predicting T2DM remission.
Collapse
Affiliation(s)
- Akira Umemura
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan.
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Hiroyuki Nitta
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Haruka Nikai
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Shigeaki Baba
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Takeshi Takahara
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Hirokatsu Katagiri
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Shoji Kanno
- Department of Surgery, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| |
Collapse
|
47
|
Homodimerization of Drosophila Class A neuropeptide GPCRs: Evidence for conservation of GPCR dimerization throughout metazoan evolution. Biochem Biophys Res Commun 2020; 523:322-327. [PMID: 31864711 DOI: 10.1016/j.bbrc.2019.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
While many instances of GPCR dimerization have been reported for vertebrate receptors, invertebrate GPCR dimerization remains poorly investigated, with few invertebrate GPCRs having been shown to assemble as dimers. To date, no Drosophila GPCRs have been shown to assemble as dimers. To explore the evolutionary conservation of GPCR dimerization, we employed an acceptor-photobleaching FRET methodology to evaluate whether multiple subclasses of Drosophila GPCRs assembled as homodimers when heterologously expressed in HEK-293 T cells. We C-terminally tagged multiple Drosophila neuropeptide GPCRs that exhibited structural homology with a vertebrate GPCR family member previously shown to assemble as a dimer with CFP and YFP fluorophores and visualized these receptors through confocal microscopy. FRET responses were determined based on the increase in CFP emission intensity following YFP photobleaching for each receptor pair tested. A significant FRET response was observed for each receptor expressed as a homodimer pair, while non-significant FRET responses were displayed by both cytosolic CFP and YFP expressed alone, and a heterodimeric pair of receptors from unrelated families. These findings suggest that receptors exhibiting positive FRET responses assemble as homodimers at the plasma membrane and are the first to suggest that Drosophila GPCRs assemble as homodimeric complexes. We propose that GPCR dimerization arose early in metazoan evolution and likely plays an important and underappreciated role in the cellular signaling of all animals.
Collapse
|
48
|
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci 2019; 20:ijms20246110. [PMID: 31817135 PMCID: PMC6940736 DOI: 10.3390/ijms20246110] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.
Collapse
|
49
|
Ren X, Dong F, Zhuang Y, Wang Y, Ma W. Effect of neuromedin U on allergic airway inflammation in an asthma model. Exp Ther Med 2019; 19:809-816. [PMID: 32010240 PMCID: PMC6966147 DOI: 10.3892/etm.2019.8283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Asthma is a major inflammatory airway disease with high incidence and mortality rates. The Global Initiative for Asthma released a report called ‘The Global Burden of Asthma’ in 2004. However, the specific pathogenesis of asthma remains unclear. An increasing number of studies have demonstrated that neuromedin U (NMU) plays a pleiotropic role in the pathogenesis of asthma. NMU is a highly structurally conserved neuropeptide that was first purified from porcine spinal cord and named for its contractile effect on the rat uterus. NMU amplifies type 2 innate lymphoid cell (ILC2)-driven allergic lung inflammation. The NMU receptors (NMURs), designated as NMUR1 and NMUR2, belong to the G protein-coupled receptor family. NMUR1 has also been found in immune cells, including ILC2s, mast cells and eosinophils. In view of the important roles of NMU in the pathogenesis of asthma, the present review evaluates the potential mechanisms underlying the impact of NMU on asthma and its association with asthma therapy.
Collapse
Affiliation(s)
- Xiaojie Ren
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fang Dong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yuerong Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yong Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wuhua Ma
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
50
|
Zhang W, Sakoda H, Nakazato M. Neuromedin U suppresses insulin secretion by triggering mitochondrial dysfunction and endoplasmic reticulum stress in pancreatic β-cells. FASEB J 2019; 34:133-147. [PMID: 31914613 DOI: 10.1096/fj.201901743r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Neuromedin U (NMU), a highly conserved peptide in mammals, is involved in a wide variety of physiological processes. NMU, which is synthesized in β-cells and co-localizes with insulin, directly acts on β-cells via NMU receptor 1 (NMUR1) to suppress glucose-stimulated insulin secretion (GSIS). The mechanism underlying this insulinostatic effect has yet to be elucidated. We observed that NMU caused mitochondrial dysfunction by impairing mitochondrial biogenesis, respiration, and mitochondrial Ca2+ uptake in β-cell-derived MIN6-K8 cells. NMU administration induced the endoplasmic reticulum (ER) stress, as reflected by the activation of ER stress signaling pathways involving ATF6, XBP-1s, and PERK-ATF4-CHOP. Nmu knockdown in MIN6-K8 cells increased the number of insulin granules and improved mitochondrial biogenesis and function. NMU was upregulated in both the islets of db/db mice and palmitate-treated MIN6-K8 cells. Our results highlight the crucial role of NMU in the maintenance of β-cell function and glucose metabolism through regulation of mitochondria dysfunction and ER stress. In pathological stages that develop into diabetes, upregulation of NMU could suppress the insulin secretion by inducing mitochondrial dysfunction and ER stress, which may contribute to subsequent β-cell dysfunction.
Collapse
Affiliation(s)
- Weidong Zhang
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,AMED-CREST, Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|