1
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS, Shao DY. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol 2025:116802. [PMID: 39954742 DOI: 10.1016/j.bcp.2025.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cholesterol is an essential component of the cell membrane which plays a critical role in the survival of immune and tumor cells. Reprogramming of cholesterol metabolism in both tumor cells and immune cells can impact tumor progression and anti-tumor immune responses. Strategies aimed at modulating cholesterol metabolism have been demonstrated to be effective in hindering tumor growth and boosting anti-tumor immune functions. This review provides a thorough analysis of intracellular cholesterol homeostasis regulation in cells, focusing on key genes and signaling pathways. It particularly emphasizes the regulatory mechanisms and importance of the cholesterol presence state (esterified/free), levels of cholesterol, and its metabolites in immune and tumor cells. Additionally, the review thoroughly explores how cholesterol metabolism and sources (endogenous/exogenous) in the tumor microenvironment (TME) contribute to the interplay among tumor cells, immune suppressor cells, and immune effector cells, promoting cancer progression and immune evasion. It also delves into current insights on the influence of cholesterol metabolites and related drugs in regulating tumor development or immunotherapy. Finally, it presents an overview of recent advancements in clinical and preclinical trials investigating the efficacy of targeted cholesterol metabolism treatments and combination therapies in cancer management, while proposing potential future research directions in tumor immunity. This review is poised to offer fresh perspectives and avenues for examining the potential of cancer immunotherapy centered on cholesterol metabolism regulation.
Collapse
Affiliation(s)
- Xiao-Jia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Bo-Bo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jing Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710072, PR China
| | - Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Wallace Yokoyama
- Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China.
| | - Dong-Yan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City 518063, PR China.
| |
Collapse
|
2
|
Cai D, Zhong GC, Dai X, Zhao Z, Chen M, Hu J, Wu Z, Cheng L, Li S, Gong J. Targeting FDFT1 Reduces Cholesterol and Bile Acid Production and Delays Hepatocellular Carcinoma Progression Through the HNF4A/ALDOB/AKT1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411719. [PMID: 39899681 DOI: 10.1002/advs.202411719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/17/2024] [Indexed: 02/05/2025]
Abstract
Targeting cholesterol metabolism is a novel direction for tumor therapy. Unfortunately, the current use of statins for hepatocellular carcinoma (HCC) is controversial. Herein, farnesyl-diphosphate farnesyltransferase 1 (FDFT1) is identified as a novel target for treating HCC and a potential alternative to statins. Twenty-three key genes in cholesterol biosynthesis are screened, and FDFT1 is identified via public databases (The Cancer Genome Atlas, International Cancer Genome Consortium and Gene Expression Omnibus). Clinical samples reveal that FDFT1 is highly expressed in HCC tissues, and this phenotype is strongly associated with a poor prognosis. Functionally, FDFT1 knockdown inhibits the proliferation and metastasis of HCC cells and suppresses hepatocarcinogenesis in vitro and in vivo, whereas FDFT1 overexpression promotes HCC cell proliferation and metastasis. Mechanistically, FDFT1 downregulation decreases cholesterol and bile acid levels and then increases hepatocyte nuclear factor 4 alpha (HNF4A) transcriptional activity. Experiments indicate that HNF4A combines with the promoter of aldolase B (ALDOB) and promotes the ALDOB transcription and that ALDOB combines with AKT serine/threonine kinase 1 (AKT1) and inhibits AKT1 phosphorylation. Moreover, FDFT1 knockdown combined with AKT inhibitor (AZD5363) treatment shows remarkable therapeutic potential. FDFT1 inhibition reduces cholesterol and bile acid levels to delay HCC progression through the HNF4A/ALDOB/AKT1 axis. Thus, targeting FDFT1 may be a novel potential strategy for treating HCC.
Collapse
Affiliation(s)
- Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Dai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Menglin Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiejun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lve Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
3
|
Lu D, Wang F, Yang Y, Duan A, Ren Y, Feng Y, Teng H, Chen Z, Sun X, Wang Z. Comprehensive analysis reveals cholesterol metabolism-related signature for predicting prognosis and guiding individualized treatment of glioma. Heliyon 2025; 11:e41601. [PMID: 39866460 PMCID: PMC11757779 DOI: 10.1016/j.heliyon.2024.e41601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/24/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Objective Gliomas are the most common intracranial tumors with the highest degree of malignancy. Disturbed cholesterol metabolism is one of the key features of many malignant tumors, including gliomas. This study aimed to investigate the significance of cholesterol metabolism-related genes in prognostic prediction and in guiding individualized treatment of patients with gliomas. Methods Transcriptional data and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Intraoperative glioma samples retained in our unit and the corresponding clinicopathological information were also collected with the patients' knowledge. Firstly, cholesterol metabolism-related gene signatures (CMRGS) were identified and constructed based on difference analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and univariate/multivariate COX analysis. Then, the role of CMRGS in predicting the prognosis of gliomas and distinguishing immune landscapes was evaluated by using nomograms, survival analysis, enrichment analysis, and immune-infiltration analysis. Finally, the drug sensitivity of gliomas in different risk groups was evaluated using the oncoPredict algorithm, and potentially sensitive chemotherapeutic and molecular-targeted drugs were identified. Results The prognostic CMRGS contained seven genes: APOE, SCD, CXCL16, FABP5, S100A11, TNFRSF12A, and ELOVL2. Patients were divided into high- and low-risk groups based on the median cholesterol metabolic index (CMI). There were significant differences in clinicopathological characteristics and overall survival between groups. COX analysis suggested that CMRGS was an independent risk factor for glioma prognosis and had a better predictive performance than several classical indicators. In addition, GSEA, immune infiltration analysis showed that CMRGS could differentiate the immune landscapes of patients in groups. The reliability of CMRGS was validated in the CGGA cohort and our Gusu cohort. Finally, 14 drugs sensitive to high-risk patients and 16 drugs sensitive to low-risk patients were identified. Conclusion The CMRGS reliably predicts glioma prognosis in multiple cohorts and may be useful in guiding individualized treatment.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Fei Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Teng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
4
|
Yan S, Xue P, Sun Y, Bai T, Shao S, Zeng X. Cupric Doping Hollow Prussian Blue Nanoplatform for Enhanced Cholesterol Depletion: a Promising Strategy for Breast Cancer Therapy and Metastasis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409967. [PMID: 39606805 PMCID: PMC11744725 DOI: 10.1002/advs.202409967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The dysregulated cholesterol metabolism in breast cancer cells drives malignancy, invasion, and metastasis, emphasizing the significance of reducing abnormal cholesterol accumulation for effective cancer treatment and metastasis inhibition. Despite its promise, cholesterol oxidase (ChOx) encounters challenge due to limited catalytic efficiency and susceptibility to harsh conditions. To overcome these hurdles, biocompatible nanoplatforms (Cu-HPB/C) tailored for efficient cholesterol depletion are introduced. Cu2+-doped hollow Prussian blue (Cu-HPB) acts as a carrier, shelter, and enhancer for ChOx, bolstering tumor-targeting ability, stability, and enzymatic activity. Tumor-responsive released Cu2+ notably augments ChOx activity, facilitating cholesterol depletion and disrupting lipid rafts, thereby impeding cell invasion and migration. Additionally, H2O2 generated from the oxidase reaction enhances Cu-HPB's chemo dynamic therapeutic efficacy. Transcriptomic analysis validates Cu-HPB/C's impact on cholesterol homeostasis and reveals cell death mechanisms including oxidative stress, ferroptosis, cuproptosis, and apoptosis. Demonstrating therapeutic efficacy in both 4T1 tumor subcutaneous and metastasis mouse models, the study presents a direct and effective strategy for tumor therapy and metastasis inhibition through enhanced cholesterol depletion.
Collapse
Affiliation(s)
- Shuangqian Yan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Panpan Xue
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Ying Sun
- Department of GastroenterologyFuzhou No. 1 Hospital Affiliated with Fujian Medical UniversityFuzhouFujian350009P. R. China
| | - Tingjie Bai
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
| | - Sijie Shao
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
| |
Collapse
|
5
|
Isingizwe ZR, Sjoelund V, Benbrook DM. Implications of GPIIB-IIIA Integrin and Liver X Receptor in Platelet-Induced Compression of Ovarian Cancer Multi-Cellular Spheroids. Cancers (Basel) 2024; 16:3533. [PMID: 39456628 PMCID: PMC11506604 DOI: 10.3390/cancers16203533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Platelets have been shown to promote ovarian cancer; however, the mechanism is poorly understood. Previously, we demonstrated that platelets reduce the size and increase the density of multi-cellular ovarian cancer spheroids in cell cultures. The objectives of this study were to determine if platelet inhibitors could counteract these effects, and to explore the mechanisms involved. Methods: FDA-approved platelet inhibitors were screened for their abilities to alter platelet effects on ovarian cancer spheroids. Mass spectrometry was used to identify proteins significantly altered in cancer cells upon exposure to platelets. The effects of platelets and/or liver x receptor agonists or antagonists on LXR activity were measured using ES-2 ovarian cancer cells transduced with an LXR-reporter vector. Results: Eptifibatide, a GPIIB-IIIA integrin inhibitor, and dipyridamole, an adenosine reuptake inhibitor, reduced and enhanced platelet effects on ovarian cancer spheroids, respectively. Proteomic studies identified the LXR/RXR and integrin pathways as mediators of platelet effects on ovarian cancer, and downstream effectors of eptifibatide. Conclusions: Integrin pathways and their downstream LXR/RXR effectors are implicated in how platelets alter ovarian cancer spheroid morphology. These results support studying eptifibatide and LXR/RXR agonists as candidate drugs for repurposing as therapeutic strategies to counteract platelet promotion of ovarian cancer.
Collapse
Affiliation(s)
- Zitha Redempta Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
| | - Virginie Sjoelund
- Department of Biochemistry, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Ghayee HK, Costa KA, Xu Y, Hatch HM, Rodriguez M, Straight SC, Bustamante M, Yu F, Smagulova F, Bowden JA, Tevosian SG. Polyamine Pathway Inhibitor DENSPM Suppresses Lipid Metabolism in Pheochromocytoma Cell Line. Int J Mol Sci 2024; 25:10029. [PMID: 39337514 PMCID: PMC11432427 DOI: 10.3390/ijms251810029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pheochromocytomas (PCCs) are tumors arising from chromaffin cells in the adrenal medulla, and paragangliomas (PGLs) are tumors derived from extra-adrenal sympathetic or parasympathetic paraganglia; these tumors are collectively referred to as PPGL cancer. Treatment for PPGL primarily involves surgical removal of the tumor, and only limited options are available for treatment of the disease once it becomes metastatic. Human carriers of the heterozygous mutations in the succinate dehydrogenase subunit B (SDHB) gene are susceptible to the development of PPGL. A physiologically relevant PCC patient-derived cell line hPheo1 was developed, and SDHB_KD cells carrying a stable short hairpin knockdown of SDHB were derived from it. An untargeted metabolomic approach uncovered an overactive polyamine pathway in the SDHB_KD cells that was subsequently fully validated in a large set of human SDHB-mutant PPGL tumor samples. We previously reported that treatment with the polyamine metabolism inhibitor N1,N11-diethylnorspermine (DENSPM) drastically inhibited growth of these PCC-derived cells in culture as well as in xenograft mouse models. Here we explored the mechanisms underlying DENSPM action in hPheo1 and SDHB_KD cells. Specifically, by performing an RNAseq analysis, we have identified gene expression changes associated with DENSPM treatment that broadly interfere with all aspects of lipid metabolism, including fatty acid (FA) synthesis, desaturation, and import/uptake. Furthermore, by performing an untargeted lipidomic liquid chromatography-mass spectrometry (LC/MS)-based analysis we uncovered specific groups of lipids that are dramatically reduced as a result of DENSPM treatment. Specifically, the bulk of plasmanyl ether lipid species that have been recently reported as the major determinants of cancer cell fate are notably decreased. In summary, this work suggests an intersection between active polyamine and lipid pathways in PCC cells.
Collapse
Affiliation(s)
- Hans K. Ghayee
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; (Y.X.); (M.B.)
| | - Kaylie A. Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Yiling Xu
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; (Y.X.); (M.B.)
| | - Heather M. Hatch
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Mateo Rodriguez
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Shelby C. Straight
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Marian Bustamante
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; (Y.X.); (M.B.)
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Fahong Yu
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA;
| | - Fatima Smagulova
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), Campus Sante de Villejean—UMR_S 1085, F-35000 Rennes, France;
| | - John A. Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| | - Sergei G. Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 03610, USA; (K.A.C.); (H.M.H.); (M.R.); (S.C.S.); (J.A.B.)
| |
Collapse
|
7
|
Salido-Bueno B, Gil-Hernandez E, Rueda-Ruzafa L, Gomez-Chica P, Roman P, Cardona D. Effects of ketogenic diets on cancer-related variables: A systematic review and meta-analysis of randomised controlled trials. NUTR BULL 2024; 49:264-277. [PMID: 38923748 DOI: 10.1111/nbu.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a global health concern influenced by genetics, environment and lifestyle choices. Recent research shows that a ketogenic diet (KD) might ease cancer symptoms and reduce tumour size. We hypothesised that the KD could result in improvements in cancer-related variables. Therefore, this study aims to perform a systematic review and meta-analysis to assess the KD's efficacy for patients with cancer. The databases PubMed (MEDLINE), Web of Science, CINAHL and Open Grey were utilised for conducting a systematic review and meta-analysis. The analysis was limited to randomised controlled trials with adult participants aged 18 years and above. Levels of glucose, cholesterol, insulin-like growth factor 1, weight and quality of life were evaluated following the KD. After identifying 596 articles in the initial search, eight studies, lasting between 4 and 16 weeks, were included in the systematic review and seven in the meta-analysis. The KD led to decreased glucose levels in patients with cancer but did not show significant improvements in cholesterol, insulin-like growth factor 1, weight or quality of life. Based on the results of this systematic review and meta-analysis, there is insufficient evidence to establish a definitive link between the KD and cancer-related parameters. While some studies suggest potential benefits in terms of some outcomes and tumour size reduction, further research is required to fully comprehend the effects of this diet.
Collapse
Affiliation(s)
- Belinda Salido-Bueno
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | | | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Spain
| | | | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Spain
| |
Collapse
|
8
|
Crudele L, De Matteis C, Novielli F, Petruzzelli S, Di Buduo E, Graziano G, Cariello M, Piccinin E, Gadaleta RM, Moschetta A. Fasting hyperglycaemia and fatty liver drive colorectal cancer: a retrospective analysis in 1145 patients. Intern Emerg Med 2024; 19:1267-1277. [PMID: 38668822 PMCID: PMC11364717 DOI: 10.1007/s11739-024-03596-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/23/2024] [Indexed: 08/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the hepatic manifestation of increased adiposopathy, whose pathogenetic features have been proposed as tumourigenic triggers for colorectal cancer (CRC). We aim to identify specific metabolic signatures involved in CRC development that may be used as non-invasive biomarkers, paving the way for specific and personalized strategies of CRC prevention and early detection. METHODS We retrospectively assessed CRC onset during a time frame of 8 years in a cohort of 1145 out-patients individuals who had previously been evaluated for Metabolic Syndrome. RESULTS 28 patients developed CRC. No association between CRC development and visceral and general obesity was detected, while baseline fasting plasma glucose (FPG) and non-invasive liver fibrosis scores were significantly higher in patients with CRC, compared to those who did not develop cancer. Liver steatosis and MASLD were more frequently diagnosed in patients who developed CRC compared to no cancer developers. Canonical correlations among metabolic biomarkers were not present in CRC developers, differently from no cancer group. In ROC analysis, FPG and non-invasive scores also showed good sensitivity and specificity in predicting colon cancer. We then calculated ORs for metabolic biomarkers, finding that higher FPG and non-invasive scores were associated with an increased risk of developing CRC. CONCLUSION MASLD and increased FPG may play a role in the clinical background of CRC, bringing to light the fascinating possibility of a reversed gut-liver axis communication in the pathogenesis of CRC. Thus, the use of non-invasive scores of fatty liver may be helpful to predict the risk of CRC and serve as novel prognostic factors for prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Ersilia Di Buduo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Giusi Graziano
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), 65124, Pescara, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d'Oro 305, 00136, Rome, Italia.
| |
Collapse
|
9
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Piccinin E, Arconzo M, Pasculli E, Tricase AF, Cultrera S, Bertrand-Michel J, Loiseau N, Villani G, Guillou H, Moschetta A. Pivotal role of intestinal cholesterol and nuclear receptor LXR in metabolic liver steatohepatitis and hepatocarcinoma. Cell Biosci 2024; 14:69. [PMID: 38824560 PMCID: PMC11144344 DOI: 10.1186/s13578-024-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Angela Fulvia Tricase
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Silvia Cultrera
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | | | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
11
|
Crudele L, De Matteis C, Novielli F, Di Buduo E, Petruzzelli S, De Giorgi A, Antonica G, Berardi E, Moschetta A. Fatty Liver Index (FLI) is the best score to predict MASLD with 50% lower cut-off value in women than in men. Biol Sex Differ 2024; 15:43. [PMID: 38760802 PMCID: PMC11100212 DOI: 10.1186/s13293-024-00617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by the presence of hepatic steatosis, detected on ultrasonography (US) imaging or histology, and at least one of criteria for Metabolic Syndrome diagnosis. Simple non-invasive tests (NITs) have been proposed as an acceptable alternative when US and biopsy are not available or feasible but have not been validated for MASLD. In this observational study, we investigated the reliability of NITs for MASLD detection and whether sex-differences in screening methods should be considered. METHODS We included 1069 individuals (48% males and 52% females) who underwent their first clinical examination for Metabolic Syndrome in the period between January 2015 and December 2022. Liver steatosis was detected through US and anthropometric and clinical parameters were recorded. RESULTS Liver steatosis was detected in 648 patients and MASLD was diagnosed in 630 subjects (355 males; 275 females). Women with MASLD showed better metabolic profile and lower prevalence of Metabolic Syndrome criteria than men. Among NITs, Fatty Liver Index (FLI) showed the best ability for detection of MASLD, with a cut-off value of 44 (AUC = 0.82). When considering the two sexes for MASLD detection via FLI, despite no substantial differences regarding FLI correlations with metabolic biomarkers except for age, women showed marked lower FLI cut-off value (32; AUC = 0.80) than men (60; AUC = 0.80). CONCLUSIONS In this study, we found that FLI is the best non-invasive predictor of both liver steatosis and MASLD. The finding that in women FLI cut-off value for MASLD detection is 50% lower than in men suggests the need of a sex-specific personalized program of screening and prevention of dysmetabolism-related liver diseases, despite outwardly healthy biomarkers profile.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Ersilia Di Buduo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Alessia De Giorgi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Gianfranco Antonica
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Elsa Berardi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare N. 11, 70124, Bari, Italy.
- INBB National Institute for Biostructure and Biosystems, Viale Delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
12
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Xue C, Wei Z, Zhang Y, Liu Y, Zhang S, Li Q, Feng K, Yang X, Liu G, Chen Y, Li X, Yao Z, Han J, Duan Y. Activation of CTU2 expression by LXR promotes the development of hepatocellular carcinoma. Cell Biol Toxicol 2024; 40:23. [PMID: 38630355 PMCID: PMC11024035 DOI: 10.1007/s10565-024-09862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.
Collapse
Affiliation(s)
- Chao Xue
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zhuo Wei
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.
| | - Ye Zhang
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ying Liu
- Guizhou Medical University, Guiyang, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qi Li
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ke Feng
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guangqing Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoju Li
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
14
|
Zhang J, Liu B, Xu C, Ji C, Yin A, Liu Y, Yao Y, Li B, Chen T, Shen L, Wu Y. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR. Neuro Oncol 2024; 26:684-700. [PMID: 38070488 PMCID: PMC10995519 DOI: 10.1093/neuonc/noad233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is a significant characteristic of glioma, yet the underlying mechanisms are largely unknown. N6-methyladenosine (m6A) modification has been implicated in promoting tumor development and progression. The aim of this study was to determine the key m6A regulatory proteins involved in the progression of glioma, which is potentially associated with the reprogramming of cholesterol homeostasis. METHODS Bioinformatics analysis was performed to determine the association of m6A modification with glioma malignancy from The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Glioma stem cell (GSC) self-renewal was determined by tumor sphere formation and bioluminescence image assay. RNA sequencing and lipidomic analysis were performed for cholesterol homeostasis analysis. RNA immunoprecipitation and luciferase reporter assay were performed to determine hnRNPA2B1-dependent regulation of sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR) mRNA. The methylation status of hnRNPA2B1 promoter was determined by bioinformatic analysis and methylation-specific PCR assay. RESULTS Among the m6A-regulatory proteins, hnRNPA2B1 was demonstrated the most important independent prognostic risk factor for glioma. hnRNPA2B1 ablation exhibited a significant tumor-suppressive effect on glioma cell proliferation, GSC self-renewal and tumorigenesis. hnRNPA2B1 triggers de novo cholesterol synthesis by inducing HMGCR through the stabilization of SREBP2 mRNA. m6A modification of SREBP2 or LDLR mRNA is required for hnRNPA2B1-mediated mRNA stability. The hypomethylation of cg21815882 site on hnRNPA2B1 promoter confers elevated expression of hnRNPA2B1 in glioma tissues. The combination of targeting hnRNPA2B1 and cholesterol metabolism exhibited remarkable antitumor effects, suggesting valuable clinical implications for glioma treatment. CONCLUSIONS hnRNPA2B1 facilitates cholesterol uptake and de novo synthesis, thereby contributing to glioma stemness and malignancy.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bei Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Changwei Xu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenchen Ji
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Anan Yin
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yifeng Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
15
|
Ramalingam PS, Elangovan S, Mekala JR, Arumugam S. Liver X Receptors (LXRs) in cancer-an Eagle's view on molecular insights and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1386102. [PMID: 38550382 PMCID: PMC10972936 DOI: 10.3389/fcell.2024.1386102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer has become a serious health burden that results in high incidence and mortality rates every year, mainly due to various molecular alterations inside the cell. Liver X receptors (LXRs) dysregulation is one among them that plays a vital role in cholesterol metabolism, lipid metabolism and inflammation and also plays a crucial role in various diseases such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular diseases, Type 2 diabetes, osteoporosis, and cancer. Studies report that the activation of LXRs inhibits cancer growth by inhibiting cellular proliferation, inducing apoptosis and autophagy, regulating cholesterol metabolism, various signalling pathways such as Wnt, and PI3K/AKT, modulating the expression levels of cell-cycle regulators, and promoting antitumor immunity inside the tumor microenvironment. In this review, we have discussed the role, structure, and functions of LXRs and also summarized their ligands along with their mechanism of action. In addition, the role of LXRs in various cancers, tumor immunity and tumor microenvironment (TME) along with the importance of precision medicine in LXR-targeted therapies has been discussed to emphasize the LXRs as potent targets for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
| | - Sujatha Elangovan
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, Andhra Pradesh, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
16
|
De Matteis C, Crudele L, Gadaleta RM, Di Buduo E, Novielli F, Petruzzelli S, Cariello M, Moschetta A. Low Adherence to Mediterranean Diet Characterizes Metabolic Patients with Gastrointestinal Cancer. Nutrients 2024; 16:630. [PMID: 38474758 DOI: 10.3390/nu16050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Background. Gastrointestinal (GI) cancers are one of the most relevant causes of death globally, frequently associated with poor dietary patterns. The Mediterranean Diet (MedDiet) contributes to cancer prevention. To assess adherence to MedDiet, our research group validated a new score, the Chrono Med Diet Score (CMDS), that captures increased visceral adiposity. Methods. We enrolled 401 subjects who underwent an evaluation for metabolic diseases and specific screening procedures according to current guidelines and were asked to answer CMDS. A total of 71 new cancer cases were recorded, including 40 GI and 31 non-gastrointestinal (NON-GI) cancers. Results. We found that CMDS was reduced in subjects who were diagnosed with cancers. Patients who reported a CMDS score of 12 or less had an over three times increased risk of being diagnosed with GI cancers and presented increased waist circumference and triglycerides and reduced HDL cholesterol compared to adherent subjects. Conclusions. Low CMDS values capture the risk for cancer diagnosis, especially for GI cancers. Thus, CMDS, along with waist circumference, can be considered as a bona fide marker for increased risk of cancer, requiring anticipated screening procedures for the detection of premalignant and early stage GI cancers in patients with low adherence to MedDiet.
Collapse
Affiliation(s)
- Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Ersilia Di Buduo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
17
|
Manickasamy MK, Sajeev A, BharathwajChetty B, Alqahtani MS, Abbas M, Hegde M, Aswani BS, Shakibaei M, Sethi G, Kunnumakkara AB. Exploring the nexus of nuclear receptors in hematological malignancies. Cell Mol Life Sci 2024; 81:78. [PMID: 38334807 PMCID: PMC10858172 DOI: 10.1007/s00018-023-05085-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024]
Abstract
Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
18
|
Shang QX, Yang YS, Zhang HL, Cheng YP, Lu H, Yuan Y, Chen LQ, Ji AF. Vitamin D receptor induces oxidative stress to promote esophageal squamous cell carcinoma proliferation via the p53 signaling pathway. Heliyon 2024; 10:e23832. [PMID: 38234882 PMCID: PMC10792188 DOI: 10.1016/j.heliyon.2023.e23832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a common pathological esophageal cancer with poor prognosis. Vitamin D deficiency reportedly occurs in ESCC patients, and this is related to single nucleotide polymorphism of vitamin D receptor (VDR). Objective We investigated the effect of VDR on ESCC proliferation, invasion, and metastasis and its potential mechanism. Methods ESCC and normal tissues were collected from 20 ESCC patients. The ESCC tissue microarray contained 116 pairs of ESCC and normal tissues and 73 single ESCC tissues. VDR expression and its clinicopathological role were determined by real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry staining. sh-VDR and VDR overexpression were used to validate the effect of VDR on ESCC cell phenotype, and tandem mass tag-based quantitative proteomics and bioinformatics methods identified differential VDR-related proteins. The downstream pathway and regulatory effect were analyzed using ingenuity pathway analysis (IPA). Differentially expressed proteins were verified through parallel reaction monitoring and Western blot. In vivo imaging visualized subcutaneous tumor growth following tail vein injection of VDR-deficient ESCC cells. Results High VDR expression was observed in ESCC tissues and cells. Gender, T stage, and TNM stage were related to VDR expression, which was the independent prognostic factor related to ESCC. VDR downregulation repressed ESCC cell proliferation, invasion, and migration in vitro and subcutaneous tumor growth and lung metastases in vivo. The cell phenotype changes were reversed upon VDR upregulation, and differential proteins were mainly enriched in the p53 signaling pathway. TP53 cooperated with ABCG2, APOE, FTH1, GCLM, GPX1, HMOX1, JUN, PRDX5, and SOD2 and may activate apoptosis and inhibit oxidative stress, cell metastasis, and proliferation. TP53 was upregulated after VDR knockdown, and TP53 downregulation reversed VDR knockdown-induced cell phenotype changes. Conclusions VDR may inhibit p53 signaling pathway activation and induce ESCC proliferation, invasion, and metastasis by activating oxidative stress.
Collapse
Affiliation(s)
- Qi-Xin Shang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shang Yang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Han-Lu Zhang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ya-Ping Cheng
- Heping Hospital Affiliated to Changzhi Medical University, No. 161 Jiefang East Street, Changzhi, 046000, China
| | - Han Lu
- Heping Hospital Affiliated to Changzhi Medical University, No. 161 Jiefang East Street, Changzhi, 046000, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ai-Fang Ji
- Heping Hospital Affiliated to Changzhi Medical University, No. 161 Jiefang East Street, Changzhi, 046000, China
| |
Collapse
|
19
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Schönberger K, Cabezas-Wallscheid N. How nutrition regulates hematopoietic stem cell features. Exp Hematol 2023; 128:10-18. [PMID: 37816445 DOI: 10.1016/j.exphem.2023.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
Our dietary choices significantly impact all the cells in our body. Increasing evidence suggests that diet-derived metabolites influence hematopoietic stem cell (HSC) metabolism and function, thereby actively modulating blood homeostasis. This is of particular relevance because regulating the metabolic activity of HSCs is crucial for maintaining stem cell fitness and mitigating the risk of hematologic disorders. In this review, we examine the current scientific knowledge of the impact of diet on stemness features, and we specifically highlight the established mechanisms by which dietary components modulate metabolic and transcriptional programs in adult HSCs. Gaining a deeper understanding of how nutrition influences our HSC compartment may pave the way for targeted dietary interventions with the potential to decelerate aging and improve the effectiveness of transplantation and cancer therapies.
Collapse
|
21
|
Lu J, Chen S, Bai X, Liao M, Qiu Y, Zheng LL, Yu H. Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications. Biochem Pharmacol 2023; 218:115907. [PMID: 37931664 DOI: 10.1016/j.bcp.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cholesterol is an essential component of cell membranes and helps to maintain their structure and function. Abnormal cholesterol metabolism has been linked to the development and progression of tumors. Changes in cholesterol metabolism triggered by internal or external stimuli can promote tumor growth. During metastasis, tumor cells require large amounts of cholesterol to support their growth and colonization of new organs. Recent research has shown that cholesterol metabolism is reprogrammed during tumor development, and this can also affect the anti-tumor activity of immune cells in the surrounding environment. However, identifying the specific targets in cholesterol metabolism that regulate cancer progression and the tumor microenvironment is still a challenge. Additionally, exploring the potential of combining statin drugs with other therapies for different types of cancer could be a worthwhile avenue for future drug development. In this review, we focus on the molecular mechanisms of cholesterol and its derivatives in cell metabolism and the tumor microenvironment, and discuss specific targets and relevant therapeutic agents that inhibit aspects of cholesterol homeostasis.
Collapse
Affiliation(s)
- Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuejiao Bai
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
He X, Lan H, Jin K, Liu F. Cholesterol in colorectal cancer: an essential but tumorigenic precursor? Front Oncol 2023; 13:1276654. [PMID: 38023258 PMCID: PMC10655112 DOI: 10.3389/fonc.2023.1276654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal human malignancies, and with the growth of societies and lifestyle changes, the rate of people suffering from it increases yearly. Important factors such as genetics, family history, nutrition, lifestyle, smoking, and alcohol can play a significant role in increasing susceptibility to this cancer. On the other hand, the metabolism of several macromolecules is also involved in the fate of tumors and immune cells. The evidence discloses that cholesterol and its metabolism can play a role in the pathogenesis of several cancers because there appears to be an association between cholesterol levels and CRC, and cholesterol-lowering drugs may reduce the risk. Furthermore, changes or mutations of some involved genes in cholesterol metabolism, such as CYP7A1 as well as signaling pathways, such as mitogen-activated protein kinase (MAPK), can play a role in CRC pathogenesis. This review summarized and discussed the role of cholesterol in the pathogenesis of CRC as well as available cholesterol-related therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
24
|
Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med 2023; 23:3373-3390. [PMID: 37639069 PMCID: PMC10618328 DOI: 10.1007/s10238-023-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a significant impact on the management of MM.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Arcavacata Di Rende, Cosenza, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Raissa Kaori Ikeda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Centro Universitário São Camilo, São Paulo, Brazil
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
25
|
Crudele L, Novielli F, De Matteis C, Petruzzelli S, Suppressa P, Berardi E, Antonica G, Piazzolla G, Sabbà C, Graziano G, Moschetta A. Thyroid nodule malignancy is associated with increased non-invasive hepatic fibrosis scores in metabolic subjects. Front Oncol 2023; 13:1233083. [PMID: 37965446 PMCID: PMC10641401 DOI: 10.3389/fonc.2023.1233083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Thyroid cancer incidence is increasing, and adiposity-related conditions are gaining space in its pathogenesis. In this study, we aimed to detect any anthropometric, biohumoral, and clinical features that might be associated with thyroid nodule malignancy, potentially representing novel non-invasive markers of thyroid cancer. Materials and methods The study was conducted in a group of 142 consecutive outpatients (47 men and 95 women) who underwent fine-needle aspiration biopsy/cytology (FNAB/C) due to suspicion of malignancy from January 2018 to September 2022. We compared lipid and glycemic blood profiles as well as non-invasive liver fibrosis indexes such as aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio (AAR), AST to platelet ratio index (APRI), and fibrosis index based on four factors (FIB-4) between patients with benign and malignant newly diagnosed nodules. Then, we performed receiver operating characteristic (ROC) analysis to assess their best cutoff values for discrimination of malignant nodules and chi-squared test to evaluate the association of specific dysmetabolic conditions with malignancy. To understand whether and to what degree dysmetabolic conditions increased the risk of thyroid nodule malignancy, we also calculated the odds ratio (OR) of the main biomarkers. Results After FNAB/C, 121 (85%) patients were diagnosed with benign thyroid nodules, while 21 (15%) individuals were diagnosed with thyroid cancer. Comparing patients with benign and malignant nodules, we found that individuals with thyroid cancer exhibited increased body mass index (BMI) (p = 0.048) and fasting plasma glucose (p = 0.046). Intriguingly, considering non-invasive scores for liver fibrosis, subjects with thyroid cancer presented increased AAR (p < 0.001) and APRI (p = 0.007), and these scores were associated with malignancy (p < 0.005) with OR = 7.1 and OR = 5, respectively. Moreover, we showed that only in the cancer group, low levels of vitamin D correlated with stigmata of impaired metabolism. Discussion In our study, AAR and APRI scores were associated with thyroid nodule malignancy and could be used to predict it and to speed up the diagnostic process. From a pathogenic point of view, we speculated that metabolic-associated fatty liver disease (MAFLD) along with hyperglycemia and vitamin D deficiency may represent putative drivers of thyroid carcinogenesis.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Elsa Berardi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Gianfranco Antonica
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giusi Graziano
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- IINBB National Institute for Biostructure and Biosystems, Roma, Italy
| |
Collapse
|
26
|
Crudele L, De Matteis C, Graziano G, Novielli F, Petruzzelli S, Piccinin E, Gadaleta RM, Cariello M, Moschetta A. AST/ALT-to-platelet ratio (AARPRI) predicts gynaecological cancers: a 8-years follow-up study in 653 women. Sci Rep 2023; 13:17793. [PMID: 37852989 PMCID: PMC10584967 DOI: 10.1038/s41598-023-44243-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), specifically liver steatosis and fibrosis with steatohepatitis (NASH), is often associated with visceral adiposopathy, whose pathogenetic features have been proposed as tumorigenic triggers. We performed a prospective analysis in 653 metabolic women to reveal any conditions that may predict and concur to cancer development during a 8-years period of follow-up. Among clinical and biochemical variables, only AST and non-invasive liver fibrosis scores (AARPRI, APRI, FIB-4, mFIB4) significantly distinguished cancer-developer women (n = 62, 9.5%) from those who did not develop cancer (p < 0.001). In ROC analysis, these scores also showed good sensitivity and specificity in differentiating women who developed cancer (all p < 0.001). We then calculated OR for these indexes finding that increased AARPRI was associated with the highest risk (OR = 6, p < 0.001) of gynaecological cancers development. We further validated these cut-off values in women who had developed other types of cancer, confirming that AARPRI is able to identify the risk for cancer development (OR = 5, p < 0.001). Our findings support the hypothesis that NAFLD, more than obesity per se, is directly associated with the clinical and pathogenic metabolic scenario of gynaecological cancers and encourage the use of liver fibrosis indexes to detect risk of cancer onset in women. Preventing adiposopathy and NAFLD through lifestyle and therapies may represent an instrumental strategy for cancer prevention and/or co-treatment in oncology.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Giusi Graziano
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), 65124, Pescara, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136, Rome, Italy.
| |
Collapse
|
27
|
Haugen MH, von der Lippe Gythfeldt H, Egeland EV, Svartdal Normann L, Pandya AD, Vedin L, Juell S, Tenstad E, Øy GF, Kristian A, Marangoni E, Sørlie T, Steffensen K, Mælandsmo GM, Engebraaten O. Liver X receptors induce antiproliferative effects in basal-like breast cancer. Mol Oncol 2023; 17:2041-2055. [PMID: 37341140 PMCID: PMC10552888 DOI: 10.1002/1878-0261.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear transcription factors important in the regulation of cholesterol transport, and glucose and fatty acid metabolism. The antiproliferative role of LXRs has been studied in a variety of malignancies and may represent a therapeutic opportunity in cancers lacking targeted therapies, such as triple-negative breast cancer. In this study, we investigated the impact of LXR agonists alone and in combination with carboplatin in preclinical models of breast cancer. In vitro experiments revealed a dose-dependent decrease in tumor cell proliferation in estrogen receptor-positive breast cancer cells, whereas LXR activation in vivo resulted in an increased growth inhibitory effect in a basal-like breast cancer model (in combination with carboplatin). Functional proteomic analysis identified differences in protein expression between responding and nonresponding models related to Akt activity, cell-cycle progression, and DNA repair. Furthermore, pathway analysis suggested that the LXR agonist in combination with carboplatin inhibits the activity of targets of E2F transcription factors and affects cholesterol homeostasis in basal-like breast cancer.
Collapse
Affiliation(s)
| | - Hedda von der Lippe Gythfeldt
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalNorway
- Department of OncologyOslo University HospitalNorway
- Insitute for Clinical MedicineUniversity of OsloNorway
| | | | - Lisa Svartdal Normann
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of Research and InnovationVestre Viken Hospital TrustDrammenNorway
| | | | - Lise‐Lotte Vedin
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Siri Juell
- Department of Tumor BiologyOslo University Hospital OsloNorway
| | - Ellen Tenstad
- Department of Tumor BiologyOslo University Hospital OsloNorway
| | - Geir Frode Øy
- Department of Tumor BiologyOslo University Hospital OsloNorway
| | | | - Elisabetta Marangoni
- Translational Research Department, Institut CuriePSL Research UniversityParisFrance
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalNorway
- Insitute for Clinical MedicineUniversity of OsloNorway
| | - Knut Steffensen
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Gunhild Mari Mælandsmo
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of Medical Biology, Faculty of Health SciencesThe Arctic University of Norway‐University of TromsøNorway
| | - Olav Engebraaten
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of OncologyOslo University HospitalNorway
- Insitute for Clinical MedicineUniversity of OsloNorway
| |
Collapse
|
28
|
Li Z, Wang Y, Liu J, Chen D, Feng G, Chen M, Feng Y, Zhang R, Yan X. The potential role of alfalfa polysaccharides and their sulphated derivatives in the alleviation of obesity. Food Funct 2023; 14:7586-7602. [PMID: 37526987 DOI: 10.1039/d3fo01390a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sulfated alfalfa polysaccharides (SAPs) as derivatives of alfalfa polysaccharides (APs) showed better in vitro antioxidant activity and potential obesity inhibition. The purpose of this study was to investigate the effect and mechanisms of APs and SAPs on obesity alleviation. Different concentrations of APs and SAPs were tested for effects on body conditions, gut flora, antioxidant capacity, and immunological factors. The results showed that APs and SAPs improved the physical conditions of obese mice, including organ weight, body weight, intraperitoneal fat ratio, and lipid levels. APs and SAPs increased the antioxidant capacity of the obese mice, enhanced the activity of SOD and CAT, and decreased the activity of MDA in the serum, liver, and colon. APs and SAPs upregulated the mRNA expression of IL-4 and IL-10 and downregulated the mRNA expression of NF-κB, IFN-γ, TNF-α, and IL-6 in the liver and colon. Meanwhile, APs and SAPs improved lipid absorption in the jejunum, upregulated LXR and GLP-2, and down-regulated the mRNA expression of NPC1L1. APs and SAPs also contributed to restoring short-chain fatty acid levels in the colon. APs and SAPs improved the structure of the intestinal flora, promoted the proliferation of bacteria associated with short-chain fatty acid metabolism, and inhibited the proliferation of pathogenic bacteria. At the same concentration, the effect of SAPs on the antioxidant capacity was stronger than that of APs. In the AP group, high concentrations of APs showed the best anti-inflammatory effect, while in the SAP group, medium concentrations of SAPs showed the best inhibition of inflammation. Our results suggest that APs and SAPs alleviate obesity symptoms by relieving inflammation, improving the antioxidant capacity, and regulating intestinal flora and therefore could be used as potential probiotic products to alleviate obesity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Guilan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Min Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
29
|
Crudele L, De Matteis C, Moschetta A. Reply to: "Reconsidering low HDL-cholesterol levels as a predictive factor for the development of hepatocellular carcinoma". JHEP Rep 2023; 5:100783. [PMID: 37554926 PMCID: PMC10405083 DOI: 10.1016/j.jhepr.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
30
|
Yang QC, Wang S, Liu YT, Song A, Wu ZZ, Wan SC, Li HM, Sun ZJ. Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer. iScience 2023; 26:106916. [PMID: 37305703 PMCID: PMC10250824 DOI: 10.1016/j.isci.2023.106916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - An Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Philipsen MH, Hansson E, Manaprasertsak A, Lange S, Jennische E, Carén H, Gatzinsky K, Jakola A, Hammarlund EU, Malmberg P. Distinct Cholesterol Localization in Glioblastoma Multiforme Revealed by Mass Spectrometry Imaging. ACS Chem Neurosci 2023; 14:1602-1609. [PMID: 37040529 PMCID: PMC10161228 DOI: 10.1021/acschemneuro.2c00776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor in adults and is highly resistant to chemo- and radiotherapies. GBM has been associated with alterations in lipid contents, but lipid metabolism reprogramming in tumor cells is not fully elucidated. One of the key hurdles is to localize the lipid species that are correlated with tumor growth and invasion. A better understanding of the localization of abnormal lipid metabolism and its vulnerabilities may open up to novel therapeutic approaches. Here, we use time-of-flight secondary ion mass spectrometry (ToF-SIMS) to spatially probe the lipid composition in a GBM biopsy from two regions with different histopathologies: one region with most cells of uniform size and shape, the homogeneous part, and the other with cells showing a great variation in size and shape, the heterogeneous part. Our results reveal elevated levels of cholesterol, diacylglycerols, and some phosphatidylethanolamine in the homogeneous part, while the heterogeneous part was dominated by a variety of fatty acids, phosphatidylcholine, and phosphatidylinositol species. We also observed a high expression of cholesterol in the homogeneous tumor region to be associated with large cells but not with macrophages. Our findings suggest that ToF-SIMS can distinguish in lipid distribution between parts within a human GBM tumor, which can be linked to different molecular mechanisms.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Ellinor Hansson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE41296 Gothenburg, Sweden
| | - Auraya Manaprasertsak
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Stefan Lange
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Eva Jennische
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska
Centre for Cancer Research, Department of Medical Biochemistry and
Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE41390 Gothenburg, Sweden
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Kliment Gatzinsky
- Department
of Neurosurgery, Sahlgrenska University
Hospital, SE41345 Gothenburg, Sweden
| | - Asgeir Jakola
- Department
of Neurosurgery, Sahlgrenska University
Hospital, SE41345 Gothenburg, Sweden
- Institute
of Neuroscience and physiology, Department of clinical neuroscience, Sahlgrenska Academy, SE41345 Gothenburg, Sweden
| | - Emma U. Hammarlund
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE41296 Gothenburg, Sweden
| |
Collapse
|
32
|
An D, Zhai D, Wan C, Yang K. The role of lipid metabolism in cancer radioresistance. Clin Transl Oncol 2023:10.1007/s12094-023-03134-4. [PMID: 37079212 DOI: 10.1007/s12094-023-03134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 04/21/2023]
Abstract
Radiotherapy is one of the main therapies for cancer. The process leading to radioresistance is still not fully understood. Cancer radiosensitivity is related to the DNA reparation of cancer cells and the tumor microenvironment (TME), which supports cancer cell survival. Factors that affect DNA reparation and the TME can directly or indirectly affect the radiosensitivity of cancer. Recent studies have shown that lipid metabolism in cancer cells, which is involved in the stability of cell membrane structure, energy supply and signal transduction of cancer cells, can also affect the phenotype and function of immune cells and stromal cells in the TME. In this review, we discussed the effects of lipid metabolism on the radiobiological characteristics of cancer cells and the TME. We also summarized recent advances in targeted lipid metabolism as a radiosensitizer and discussed how these scientific findings could be translated into clinical practice to improve the radiosensitivity of cancer.
Collapse
Affiliation(s)
- Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
Murakami-Nishimagi Y, Sugimoto K, Kobayashi M, Tachibana K, Kojima M, Okano M, Hashimoto Y, Saji S, Ohtake T, Chiba H. Claudin-4-adhesion signaling drives breast cancer metabolism and progression via liver X receptor β. Breast Cancer Res 2023; 25:41. [PMID: 37059993 PMCID: PMC10105442 DOI: 10.1186/s13058-023-01646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Cell adhesion is indispensable for appropriate tissue architecture and function in multicellular organisms. Besides maintaining tissue integrity, cell adhesion molecules, including tight-junction proteins claudins (CLDNs), exhibit the signaling abilities to control a variety of physiological and pathological processes. However, it is still fragmentary how cell adhesion signaling accesses the nucleus and regulates gene expression. METHODS By generating a number of knockout and rescued human breast cell lines and comparing their phenotypes, we determined whether and how CLDN4 affected breast cancer progression in vitro and in vivo. We also identified by RNA sequencing downstream genes whose expression was altered by CLDN4-adhesion signaling. Additionally, we analyzed by RT-qPCR the CLDN4-regulating genes by using a series of knockout and add-back cell lines. Moreover, by immunohistochemistry and semi-quantification, we verified the clinicopathological significance of CLDN4 and the nuclear receptor LXRβ (liver X receptor β) expression in breast cancer tissues from 187 patients. RESULTS We uncovered that the CLDN4-adhesion signaling accelerated breast cancer metabolism and progression via LXRβ. The second extracellular domain and the carboxy-terminal Y197 of CLDN4 were required to activate Src-family kinases (SFKs) and the downstream AKT in breast cancer cells to promote their proliferation. Knockout and rescue experiments revealed that the CLDN4 signaling targets the AKT phosphorylation site S432 in LXRβ, leading to enhanced cell proliferation, migration, and tumor growth, as well as cholesterol homeostasis and fatty acid metabolism, in breast cancer cells. In addition, RT-qPCR analysis showed the CLDN4-regulated genes are classified into at least six groups according to distinct LXRβ- and LXRβS432-dependence. Furthermore, among triple-negative breast cancer subjects, the "CLDN4-high/LXRβ-high" and "CLDN4-low and/or LXRβ-low" groups appeared to exhibit poor outcomes and relatively favorable prognoses, respectively. CONCLUSIONS The identification of this machinery highlights a link between cell adhesion and transcription factor signalings to promote metabolic and progressive processes of malignant tumors and possibly to coordinate diverse physiological and pathological events.
Collapse
Affiliation(s)
- Yuko Murakami-Nishimagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kazunoshin Tachibana
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Maiko Okano
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Tohru Ohtake
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
34
|
Adigun TO, Danazumi AU, Umar HI, Na'Allah A, Alabi MA, Joel WO, Aberuagba A, Alejolowo OO, Bamidele JO, Omotayo OS, Medayedupin OA. In silico molecular modeling and simulations of black tea theaflavins revealed theaflavin-3'-gallate as putative liver X receptor-beta agonist. J Biomol Struct Dyn 2023; 41:13015-13028. [PMID: 36729100 DOI: 10.1080/07391102.2023.2175264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
The low constitutive activation of Liver X receptor, an endogenous nuclear receptor with two subtypes (α and β), is a condition lying at the crossroad of cancer and cardiovascular disease. Both natural and synthetic Liver X receptor agonists have reportedly shown remarkable antiproliferative and atheroprotective effects but the repeated doses of its synthetic ones are also paradoxically associated with hyperlipidaemic effects and neurotoxicity, though attributed to the alpha subtype. This highlights the need for novel, safe, and potent LXR-beta-selective agonists. Hypocholesterolaemic effects of black theaflavins have been widely reported, but data on the exact theaflavin compound (s) responsible for these effects is currently lacking. Neither is information on the possible modulatory effects of the compound (s) on LXR-beta nor its possible implications in the context of drug development for cardiovascular diseases and cancers is explored. On this account, we investigated the potential interaction of four main theaflavin monomers (TF1, TF2A, TF2B & TF3) with human LXR-beta through robust computational modelling that entails molecular docking, free energy calculations and molecular dynamics simulations. The ligands were further profiled (in silico) for absorption, distribution, metabolism, excretion, and toxicological properties. Our result revealed theaflavin TF2B as a putative LXR-beta agonist, possibly responsible for the widely observed hypocholesterolaemic effect in black tea. This finding, while encouraging, needs to be experimentally verified in wet studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Temidayo O Adigun
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ammar U Danazumi
- Faculty of Chemistry, Warsaw, University of Technology, Warsaw, Poland
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Haruna I Umar
- Molecular Biology and Bioinformatics Lab, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
- Computer-aided Therapeutic Discovery and Design Group, Federal University of Technology Akure, Akure, Nigeria
| | - Asiat Na'Allah
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| | - Mutiu A Alabi
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| | - Wisdom O Joel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Adepeju Aberuagba
- Department of Biochemistry, McPherson University, Seriki Sotayo, Nigeria
| | | | - Joy O Bamidele
- Science Laboratory Technology, The Federal Polytechnic Ilaro, Ilaro, Nigeria
| | - Olakunle S Omotayo
- Science Laboratory Technology, The Federal Polytechnic Ilaro, Ilaro, Nigeria
| | | |
Collapse
|
35
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
36
|
Wang S, Liao X, Xiong X, Feng D, Zhu W, Zheng B, Li Y, Yang L, Wei Q. Pyroptosis in urinary malignancies: a literature review. Discov Oncol 2023; 14:12. [PMID: 36702978 PMCID: PMC9880131 DOI: 10.1007/s12672-023-00620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Urinary neoplasms refer to malignant tumours occurring in any part of the urinary system, including the kidney, renal pelvis, ureter, bladder, prostate, etc. The worldwide incidence of urinary system tumours has been increasing yearly. Available methods include surgical treatment, radiotherapy, chemotherapy, endocrine therapy, molecular targeted therapy, and immune therapy. In recent years, emerging evidence has demonstrated that cell pyroptosis plays an important role in the occurrence and progression of malignant urinary tumours. Pyroptosis is a new type of cell death that involves inflammatory processes regulated by gasdermins (GSDMs) and is characterized by membrane perforation, cell swelling and cell rupture. Recent studies have shown that pyroptosis can inhibit and promote the development of tumours. This manuscript reviews the role of pyroptosis in the development and progression of prostate cancer, kidney cancer and bladder cancer and introduces the latest research results in these fields to discuss the therapeutic potential of the pyroptosis pathway in urinary malignancies.
Collapse
Affiliation(s)
- Sheng Wang
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Xinyang Liao
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Xingyu Xiong
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Dechao Feng
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Weizhen Zhu
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Bojue Zheng
- The Department of Clinical Medicine, West China Medical School, Sichuan University, Chengdu, China
| | - Yifan Li
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Lu Yang
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Qiang Wei
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| |
Collapse
|
37
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
38
|
Vegliante MC, Mazzara S, Zaccaria GM, De Summa S, Esposito F, Melle F, Motta G, Sapienza MR, Opinto G, Volpe G, Bucci A, Gargano G, Enjuanes A, Tabanelli V, Fiori S, Minoia C, Clemente F, Negri A, Gulino A, Morello G, Scattone A, Zito AF, Tommasi S, Agostinelli C, Vitolo U, Chiappella A, Barbui AM, Derenzini E, Zinzani PL, Casadei B, Rivas-Delgado A, López-Guillermo A, Campo E, Moschetta A, Guarini A, Pileri SA, Ciavarella S. NR1H3 (LXRα) is associated with pro-inflammatory macrophages, predicts survival and suggests potential therapeutic rationales in diffuse large b-cell lymphoma. Hematol Oncol 2022; 40:864-875. [PMID: 35850118 PMCID: PMC10087298 DOI: 10.1002/hon.3050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022]
Abstract
The role of macrophages (Mo) and their prognostic impact in diffuse large B-cell lymphomas (DLBCL) remain controversial. By regulating the lipid metabolism, Liver-X-Receptors (LXRs) control Mo polarization/inflammatory response, and their pharmacological modulation is under clinical investigation to treat human cancers, including lymphomas. Herein, we surveyed the role of LXRs in DLBCL for prognostic purposes. Comparing bulk tumors with purified malignant and normal B-cells, we found an intriguing association of NR1H3, encoding for the LXR-α isoform, with the tumor microenvironment (TME). CIBERSORTx-based purification on large DLBCL datasets revealed a high expression of the receptor transcript in M1-like pro-inflammatory Mo. By determining an expression cut-off of NR1H3, we used digital measurement to validate its prognostic capacity on two large independent on-trial and real-world cohorts. Independently of classical prognosticators, NR1H3high patients displayed longer survival compared with NR1H3low cases and a high-resolution Mo GEP dissection suggested a remarkable transcriptional divergence between subgroups. Overall, our findings indicate NR1H3 as a Mo-related biomarker identifying patients at higher risk and prompt future preclinical studies investigating its mouldability for therapeutic purposes.
Collapse
Affiliation(s)
| | - Saveria Mazzara
- Division of Hematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Gian Maria Zaccaria
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Bari, Italy.,INDAM-GNCS Research Group, Rome, Italy
| | - Federica Melle
- Division of Hematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giovanna Motta
- Division of Hematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Giuseppina Opinto
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Antonella Bucci
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Grazia Gargano
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy.,INDAM-GNCS Research Group, Rome, Italy
| | - Anna Enjuanes
- Unitat de Genòmica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona; CIBERONC, Barcelona, Spain
| | - Valentina Tabanelli
- Division of Hematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Stefano Fiori
- Division of Hematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carla Minoia
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Felice Clemente
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Antonio Negri
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Alessandro Gulino
- Cogentech srl Società Benefit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Gaia Morello
- Department of Health Sciences, Tumor Immunology Unit, University of Palermo School of Medicine, Palermo, Italy
| | - Anna Scattone
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Alfredo F Zito
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Annalisa Chiappella
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Anna Maria Barbui
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Enrico Derenzini
- Onco-Hematology Division, European Institute of Oncology IRCCS, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Pier Luigi Zinzani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Casadei
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alfredo Rivas-Delgado
- CIBERONC, Barcelona, Spain; Hematology Department, Hospital Clínic, Barcelona; IDIBAPS, Barcelona, Spain
| | - Armando López-Guillermo
- CIBERONC, Barcelona, Spain; Hematology Department, Hospital Clínic, Barcelona; IDIBAPS, Barcelona, Spain
| | - Elias Campo
- CIBERONC, Barcelona, Spain; Haematopathology Unit, Pathology Department, Hospital Clínic, Barcelona; University of Barcelona, Barcelona, Spain
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Attilio Guarini
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Stefano A Pileri
- Division of Hematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| |
Collapse
|
39
|
Crudele L, De Matteis C, Piccinin E, Gadaleta RM, Cariello M, Di Buduo E, Piazzolla G, Suppressa P, Berardi E, Sabbà C, Moschetta A. Low HDL-cholesterol levels predict hepatocellular carcinoma development in individuals with liver fibrosis. JHEP Rep 2022; 5:100627. [PMID: 36561127 PMCID: PMC9763866 DOI: 10.1016/j.jhepr.2022.100627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background & Aims Dysmetabolic conditions could drive liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD), increasing susceptibility to hepatocellular carcinoma (HCC). We therefore aimed to identify novel predictive biomarkers of HCC in patients with and without liver fibrosis. Methods A total of 1,234 patients with putative metabolic conditions and NAFLD were consecutively assessed in our outpatient clinic. Clinical and biochemical data were recorded, and then liver ultrasonography was performed annually for 5 years to detect HCC onset. For the analysis, the population was first divided according to HCC diagnosis; then a further subdivision of those who did not develop HCC was performed based on the presence or absence of liver fibrosis at time 0. Results Sixteen HCC cases were recorded in 5 years. None of our patients had been diagnosed with cirrhosis before HCC was detected. Compared to patients who did not develop HCC, those who did had higher liver transaminases and fibrosis scores at time 0 (p <0.001). In addition, they presented with increased glycated haemoglobin levels and lower 25-OH vitamin D levels (p <0.05). Intriguingly, patients with higher liver fibrosis scores who subsequently developed HCC had lower HDL-cholesterol (HDL-c) levels at time 0 (p <0.001). Furthermore, in the 484 patients presenting with lower HDL-c at baseline, we found that waist circumference, and then vitamin D and glycated haemoglobin levels, were significantly different in those who developed HCC, regardless of liver fibrosis (p <0.05). Conclusions This study identifies HDL-c as a bona fide novel marker to predict HCC in patients with NAFLD. Increased waist circumference and deranged metabolic pathways represent additional predisposing factors among patients with low HDL-c, highlighting the importance of studying cholesterol metabolism and integrating clinical approaches with dietary regimens and a healthy lifestyle to prevent HCC. Impact and implications Visceral adiposity and its associated conditions, such as chronic inflammation and insulin resistance, may play a pivotal role in hepatocellular carcinoma development in patients with non-alcoholic fatty liver disease. We provide new insights on the underlying mechanisms of its pathogenesis, shedding light on the involvement of low levels of "good" HDL-cholesterol. We recommend integrating dietary regimens and advice on healthy lifestyles into the clinical management of non-alcoholic fatty liver disease, with the goal of reducing the incidence of hepatocellular carcinoma.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- APRI score
- APRI, AST-to-platelet ratio index
- AST, aspartate aminotransferase
- CVR, cardiovascular risk
- FA, fatty acid
- FIB-4, fibrosis-4
- GGT, gamma-glutamyltransferase
- HCC, hepatocellular carcinoma
- HDL-c, HDL-cholesterol
- HbA1c, glycated haemoglobin
- LXRs, liver X receptors
- MetS, metabolic syndrome
- Metabolic syndrome
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- RCT, reverse cholesterol transport
- TG, triglyceride
- Vitamin D
- WC, waist circumference
- Waist circumference
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy,INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d'Oro 305 - 00136 Roma, Italy
| | - Elena Piccinin
- Department of Basic Medical Science, Neurosciences and Sense organs, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ersilia Di Buduo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Elsa Berardi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy,INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d'Oro 305 - 00136 Roma, Italy,Corresponding author. Address: Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy. Tel: +39 0805593262
| |
Collapse
|
40
|
Targeting the cholesterol-RORα/γ axis inhibits colorectal cancer progression through degrading c-myc. Oncogene 2022; 41:5266-5278. [DOI: 10.1038/s41388-022-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
AbstractDysregulated cholesterol metabolism is a hallmark of colorectal cancer (CRC). However, the usage of cholesterol-lowering agents seemed to have no benefit in CRC patients. In this study, we focused on the cholesterol-nuclear receptors (NRs) axis as a strategy. Cholesterol and its derivatives work as ligands for different nuclear receptors, thus promoting cancer progression. The key NR downstream of cholesterol in CRC is unknown. Here, we treated CRC cells with a cholesterol-lowering agent and lipoprotein-depleted conditioned medium, and then detected the change of the putative NRs. The results revealed that RORα/γ (Retinoic acid receptor-related Orphan Receptor α/γ) levels exhibited the most obvious increases in CRC cells subjected them to cholesterol deprivation. RORα/γ agonists significantly inhibited CRC cells proliferation and migration in vitro and in vivo. Also, RORα/γ overexpression repressed CRC cells proliferation and migration in vitro and in vivo and RORα/γ knockdown promoted it. Mechanistically, RORα/γ agonists promoted c-myc degradation by activating the transcription of the ubiquitinase NEDD4. Intriguingly, the combination of RORα/γ agonists and atorvastatin had a synergistic effect on inhibiting CRC cells. These findings demonstrate that the cholesterol- RORα/γ axis is important for maintaining c-myc protein levels. Combination therapy with atorvastatin and RORα/γ agonist is a promising therapeutic strategy for CRC.
Collapse
|
41
|
Ducheix S, Piccinin E, Peres C, Garcia‐Irigoyen O, Bertrand‐Michel J, Fouache A, Cariello M, Lobaccaro J, Guillou H, Sabbà C, Ntambi JM, Moschetta A. Reduction in gut-derived MUFAs via intestinal stearoyl-CoA desaturase 1 deletion drives susceptibility to NAFLD and hepatocarcinoma. Hepatol Commun 2022; 6:2937-2949. [PMID: 35903850 PMCID: PMC9512486 DOI: 10.1002/hep4.2053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by a set of hepatic conditions ranging from steatosis to steatohepatitis (NASH), characterized by inflammation and fibrosis, eventually predisposing to hepatocellular carcinoma (HCC). Together with fatty acids (FAs) originated from adipose lipolysis and hepatic lipogenesis, intestinal-derived FAs are major contributors of steatosis. However, the role of mono-unsaturated FAs (MUFAs) in NAFLD development is still debated. We previously established the intestinal capacity to produce MUFAs, but its consequences in hepatic functions are still unknown. Here, we aimed to determine the role of the intestinal MUFA-synthetizing enzyme stearoyl-CoA desaturase 1 (SCD1) in NAFLD. We used intestinal-specific Scd1-KO (iScd1-/- ) mice and studied hepatic dysfunction in different models of steatosis, NASH, and HCC. Intestinal-specific Scd1 deletion decreased hepatic MUFA proportion. Compared with controls, iScd1-/- mice displayed increased hepatic triglyceride accumulation and derangement in cholesterol homeostasis when fed a MUFA-deprived diet. Then, on Western diet feeding, iScd1-/- mice triggered inflammation and fibrosis compared with their wild-type littermates. Finally, intestinal-Scd1 deletion predisposed mice to liver cancer. Conclusions: Collectively, these results highlight the major importance of intestinal MUFA metabolism in maintaining hepatic functions and show that gut-derived MUFAs are protective from NASH and HCC.
Collapse
Affiliation(s)
- Simon Ducheix
- Department of Interdisciplinary MedicineUniversity of Bari “Aldo Moro”BariItaly
| | - Elena Piccinin
- Department of Basic Medical Science, Neurosciences, and Sense organsUniversity of Bari “Aldo Moro”BariItaly
| | - Claudia Peres
- INBB, National Institute for Biostructures and BiosystemsRomeItaly
| | | | - Justine Bertrand‐Michel
- MetaboHUB‐MetaToul, National Infrastructure of Metabolomics and FluxomicsToulouseFrance
- I2MC, Université de Toulouse, InsermUniversité Toulouse III–Paul SabatierToulouseFrance
| | - Allan Fouache
- INSERM U 1103, CNRS, UMR 6293Université Clermont AuvergneGReDAubièreFrance
- Centre de Recherche en Nutrition Humaine d'AuvergneClermont‐FerrandFrance
| | - Marica Cariello
- Department of Interdisciplinary MedicineUniversity of Bari “Aldo Moro”BariItaly
| | - Jean‐Marc Lobaccaro
- INSERM U 1103, CNRS, UMR 6293Université Clermont AuvergneGReDAubièreFrance
- Centre de Recherche en Nutrition Humaine d'AuvergneClermont‐FerrandFrance
| | - Hervé Guillou
- Integrative Toxicology and Metabolism TeamToxalim (Research Centre in Food Toxicology)Université de Toulouse, INRA, ENVTINP‐Purpan, UPSToulouseFrance
| | - Carlo Sabbà
- Department of Interdisciplinary MedicineUniversity of Bari “Aldo Moro”BariItaly
| | - James M. Ntambi
- Departments of Biochemistry and of Nutritional SciencesUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Antonio Moschetta
- Department of Interdisciplinary MedicineUniversity of Bari “Aldo Moro”BariItaly
- INBB, National Institute for Biostructures and BiosystemsRomeItaly
| |
Collapse
|
42
|
Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol 2022; 15:120. [PMID: 36038892 PMCID: PMC9422141 DOI: 10.1186/s13045-022-01340-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.,School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xingrong Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
43
|
Lipoprotein Deprivation Reveals a Cholesterol-Dependent Therapeutic Vulnerability in Diffuse Glioma Metabolism. Cancers (Basel) 2022; 14:cancers14163873. [PMID: 36010867 PMCID: PMC9405833 DOI: 10.3390/cancers14163873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary High-grade gliomas are aggressive cancers that arise in children and adults, for which there is an urgent need for more effective drug therapies. Targeting the energy requirements (‘metabolism’) of these cancer cells may offer a new avenue for therapy. Cholesterol is a fatty substance found on the surface of cancer cells. Our research shows that childhood high-grade gliomas require cholesterol for their energy needs. By repurposing a drug called LXR-623 to reduce the levels of cholesterol inside high-grade glioma cancer cells, we could impair the growth of these cells in laboratory conditions. These results provide evidence for future experiments using LXR-623 to test whether this drug is able to increase the survival of mice with similar high-grade gliomas. Abstract Poor outcomes associated with diffuse high-grade gliomas occur in both adults and children, despite substantial progress made in the molecular characterisation of the disease. Targeting the metabolic requirements of cancer cells represents an alternative therapeutic strategy to overcome the redundancy associated with cell signalling. Cholesterol is an integral component of cell membranes and is required by cancer cells to maintain growth and may also drive transformation. Here, we show that removal of exogenous cholesterol in the form of lipoproteins from culture medium was detrimental to the growth of two paediatric diffuse glioma cell lines, KNS42 and SF188, in association with S-phase elongation and a transcriptomic program, indicating dysregulated cholesterol homeostasis. Interrogation of metabolic perturbations under lipoprotein-deficient conditions revealed a reduced abundance of taurine-related metabolites and cholesterol ester species. Pharmacological reduction in intracellular cholesterol via decreased uptake and increased export was simulated using the liver X receptor agonist LXR-623, which reduced cellular viability in both adult and paediatric models of diffuse glioma, although the mechanism appeared to be cholesterol-independent in the latter. These results provide proof-of-principle for further assessment of liver X receptor agonists in paediatric diffuse glioma to complement the currently approved therapeutic regimens and expand the options available to clinicians to treat this highly debilitating disease.
Collapse
|
44
|
Wang Z, Wang M, Zhang M, Xu K, Zhang X, Xie Y, Zhang Y, Chang C, Li X, Sun A, He F. High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth. BMC Med 2022; 20:292. [PMID: 35941608 PMCID: PMC9361549 DOI: 10.1186/s12916-022-02436-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although cholesterol metabolism is a common pathway for the development of antitumor drugs, there are no specific targets and drugs for clinical use. Here, based on our previous study of sterol O-acyltransferase 1 (SOAT1) in hepatocelluar carcinoma, we sought to screen an effective targeted drug for precise treatment of hepatocelluar carcinoma and, from the perspective of cholesterol metabolism, clarify the relationship between cholesterol regulation and tumorigenesis and development. METHODS In this study, we developed a virtual screening integrated affinity screening technology for target protein drug screening. A series of in vitro and in vivo experiments were used for drug activity verification. Multi-omics analysis and flow cytometry analysis were used to explore antitumor mechanisms. Comparative analysis of proteome and transcriptome combined with survival follow-up information of patients reveals the clinical therapeutic potential of screened drugs. RESULTS We screened three compounds, nilotinib, ABT-737, and evacetrapib, that exhibited optimal binding with SOAT1. In particular, nilotinib displayed a high affinity for SOAT1 protein and significantly inhibited tumor activity both in vitro and in vivo. Multi-omics analysis and flow cytometry analysis indicated that SOAT1-targeting compounds reprogrammed the cholesterol metabolism in tumors and enhanced CD8+ T cells and neutrophils to suppress tumor growth. CONCLUSIONS Taken together, we reported several high-affinity SOAT1 ligands and demonstrated their clinical potential in the precision therapy of liver cancer, and also reveal the potential antitumor mechanism of SOAT1-targeting compounds.
Collapse
Affiliation(s)
- Zhihua Wang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.506261.60000 0001 0706 7839Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Miaomiao Wang
- grid.452422.70000 0004 0604 7301Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Mengxin Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Kaikun Xu
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xinshuai Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Yi Xie
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.12527.330000 0001 0662 3178Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100083 China
| | - Yiming Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Cheng Chang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xiaolu Li
- grid.452422.70000 0004 0604 7301Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Aihua Sun
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.506261.60000 0001 0706 7839Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Fuchu He
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.506261.60000 0001 0706 7839Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| |
Collapse
|
45
|
Lipid metabolism in tumor microenvironment: novel therapeutic targets. Cancer Cell Int 2022; 22:224. [PMID: 35790992 PMCID: PMC9254539 DOI: 10.1186/s12935-022-02645-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Bioactive lipid molecules have been proposed to play important roles linking obesity/metabolic syndrome and cancers. Studies reveal that aberrant lipid metabolic signaling can reprogram cancer cells and non-cancer cells in the tumor microenvironment, contributing to cancer initiation, progression, metastasis, recurrence, and poor therapeutic response. Existing evidence indicates that controlling lipid metabolism can be a potential strategy for cancer prevention and therapy. By reviewing the current literature on the lipid metabolism in various cancers, we summarized major lipid molecules including fatty acids and cholesterol as well as lipid droplets and discussed their critical roles in cancer cells and non-cancer in terms of either promoting- or anti-tumorigenesis. This review provides an overview of the lipid molecules in cellular entities and their tumor microenvironment, adding to the existing knowledge with lipid metabolic reprogramming in immune cells and cancer associated cells. Comprehensive understanding of the regulatory role of lipid metabolism in cellular entities and their tumor microenvironment will provide a new direction for further studies, in a shift away from conventional cancer research. Exploring the lipid-related signaling targets that drive or block cancer development may lead to development of novel anti-cancer strategies distinct from traditional approaches for cancer prevention and treatment.
Collapse
|
46
|
Yang N, Yang Y, Huang Z, Chen HW. Deregulation of Cholesterol Homeostasis by a Nuclear Hormone Receptor Crosstalk in Advanced Prostate Cancer. Cancers (Basel) 2022; 14:3110. [PMID: 35804882 PMCID: PMC9265016 DOI: 10.3390/cancers14133110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/26/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) features high intratumoral cholesterol levels, due to aberrant regulation of cholesterol homeostasis. However, the underlying mechanisms are still poorly understood. The retinoid acid receptor-related orphan receptor gamma (RORγ), an attractive therapeutic target for cancer and autoimmune diseases, is strongly implicated in prostate cancer progression. We demonstrate in this study that in mCRPC cells and tumors, RORγ plays a crucial role in deregulation of cholesterol homeostasis. First, we found that RORγ activates the expression of key cholesterol biosynthesis proteins, including HMGCS1, HMGCR, and SQLE. Interestingly, we also found that RORγ inhibition induces cholesterol efflux gene program including ABCA1, ABCG1 and ApoA1. Our further studies revealed that liver X receptors (LXRα and LXRβ), the master regulators of cholesterol efflux pathway, mediate the function of RORγ in repression of cholesterol efflux. Finally, we demonstrated that RORγ antagonist in combination with statins has synergistic effect in killing mCRPC cells through blocking statin-induced feedback induction of cholesterol biosynthesis program and that the combination treatment also elicits stronger anti-tumor effects than either alone. Altogether, our work revealed that in mCRPC, RORγ contributes to aberrant cholesterol homeostasis by induction of cholesterol biosynthesis program and suppression of cholesterol efflux genes. Our findings support a therapeutic strategy of targeting RORγ alone or in combination with statin for effective treatment of mCRPC.
Collapse
Affiliation(s)
- Nianxin Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Zenghong Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
- National Cancer Institute Designated Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
- Veterans Affairs Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
47
|
Gu H, Hu P, Zhao Y, Liu Y, Wang YT, Ahmed AA, Liu HY, Cai D. Nuclear Receptor RORα/γ: Exciting Modulators in Metabolic Syndrome and Related Disorders. Front Nutr 2022; 9:925267. [PMID: 35799591 PMCID: PMC9253614 DOI: 10.3389/fnut.2022.925267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Under the influences of modern lifestyle, metabolic syndromes (MetS), including insulin resistance, obesity, and fatty liver, featuring a worldwide chronic disease, greatly raise the risk of type 2 diabetes, heart disease, and stroke. However, its pathogenesis is still unclear, and there are limited drugs with strong clinical efficacy and specificity. Given the close connection between impaired lipid metabolism and MetS onset, modulating the lipid metabolic genes may provide potential prospects in the development of MetS therapeutics. Nuclear receptors are such druggable transcription factors that translate physiological signals into gene regulation via DNA binding upon ligand activation. Recent studies reveal vital functions of the NRs retinoic acid's receptor-related orphan receptors (RORs), including RORα and RORγ, in the gene regulation in lipid metabolism and MetS. This review focuses on the latest developments in their actions on MetS and related metabolic disorders, which would benefit future clinically therapeutic applications.
Collapse
Affiliation(s)
- Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaya Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi-Ting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
- Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Hao-Yu Liu
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Demin Cai
| |
Collapse
|
48
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
49
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
50
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|