1
|
Bayram B, Meijer D, Barumerli R, Spierings M, Baumgartner R, Pomper U. Bayesian prior uncertainty and surprisal elicit distinct neural patterns during sound localization in dynamic environments. Sci Rep 2025; 15:7931. [PMID: 40050310 PMCID: PMC11885517 DOI: 10.1038/s41598-025-90269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Estimating the location of a stimulus is a key function in sensory processing, and widely considered to result from the integration of prior information and sensory input according to Bayesian principles. A deviation of sensory input from the prior elicits surprisal, depending on the uncertainty of the prior. While this mechanism is increasingly understood in the visual domain, much less is known about its implementation in audition, especially regarding spatial localization. Here, we combined human EEG with computational modeling to study auditory spatial inference in a noisy, volatile environment and analyzed behavioral and neural patterns associated with prior uncertainty and surprisal. First, our results demonstrate that participants indeed used prior information during periods of stable environmental statistics, but showed evidence of surprisal and discarded prior information following environmental changes. Second, we observed distinct EEG activity patterns associated with prior uncertainty and surprisal in both the time- and time-frequency domain, which are in line with previous studies using visual tasks. Third, these EEG activity patterns were predictive of our participants' sound localization error, response uncertainty, and prior bias on a trial-by-trial basis. In summary, our work provides novel behavioral and neural evidence for Bayesian inference during dynamic auditory localization.
Collapse
Affiliation(s)
- Burcu Bayram
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - David Meijer
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Roberto Barumerli
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michelle Spierings
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Department of Animal Sciences, Institute for Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Robert Baumgartner
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Samantaray S, Goyal N, Kesavan M, Venkatasubramanian G, Bose A, Shreekantiah U, Sreeraj VS, Das M, Raj J, Kumar S. Impact of EEG Reference Schemes on Event-Related Potential Outcomes: A Corollary Discharge Study Using a Talk/Listen Paradigm. Brain Topogr 2025; 38:30. [PMID: 39937375 DOI: 10.1007/s10548-025-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
The selection of an appropriate virtual reference schema is pivotal in determining the outcomes of event-related potential (ERP) studies, particularly within the widely utilized Talk/Listen ERP paradigm, which is employed to non-invasively explore the corollary discharge phenomenon in the speech-auditory system. This research centers on examining the effects of prevalent EEG reference schemas-linked mastoids (LM), common average reference (CAR), and reference electrode standardization technique (REST)-through statistical analysis, statistical parametric scalp mapping (SPSM), and source localization techniques. Our ANOVA findings indicate significant main effects for both the reference and the experimental condition on the amplitude of N1 ERPs. Depending on the reference used, the polarity and amplitude of the N1 ERPs demonstrate systematic variations: LM is associated with pronounced frontocentral activity, whereas both CAR and REST exhibit patterns of frontocentral and occipitotemporal activity. The significance of SPSM results is confined to regions exhibiting prominent N1 activity for each reference schema. Source analysis provides corroborative evidence more aligned with the SPSM results for CAR and REST than for LM, suggesting that results under CAR and REST are more objective and reliable. Therefore, the CAR and REST reference are recommended for future studies involving Talk/Listen ERP paradigms.
Collapse
Affiliation(s)
- Subham Samantaray
- Department of Psychiatry, Central Institute of Psychiatry (CIP), Ranchi, India.
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry (CIP), Ranchi, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Umesh Shreekantiah
- Department of Psychiatry, Central Institute of Psychiatry (CIP), Ranchi, India
| | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Manul Das
- Department of Psychiatry, Central Institute of Psychiatry (CIP), Ranchi, India
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Justin Raj
- Department of Psychiatry, Central Institute of Psychiatry (CIP), Ranchi, India
| | - Sujeet Kumar
- Department of Psychiatry, Central Institute of Psychiatry (CIP), Ranchi, India
| |
Collapse
|
3
|
Kisker J, Johnsdorf M, Sagehorn M, Hofmann T, Gruber T, Schöne B. Visual information processing of 2D, virtual 3D and real-world objects marked by theta band responses: Visuospatial processing and cognitive load as a function of modality. Eur J Neurosci 2025; 61:e16634. [PMID: 39648815 DOI: 10.1111/ejn.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
While pictures share global similarities with the real-world objects they depict, the latter have unique characteristics going beyond 2D representations. Due to its three-dimensional presentation mode, Virtual Reality (VR) is increasingly used to further approach real-world visual processing, yet it remains unresolved to what extent VR yields process comparable to real-world processes. Consequently, our study examined visuospatial processing by a triangular comparison of 2D objects, virtual 3D objects and real 3D objects. The theta band response (TBR) was analysed as an electrophysiological correlate of visual processing, allowing for the differentiation of predominantly stimulus-driven processes mirrored in the evoked response and internal, complex processing reflected in the induced response. Our results indicate that the differences between conditions driven by sensory features go beyond a binary division into 2D and 3D materials but are based on further sensory features: The evoked posterior TBR differentiated between all conditions but revealed fewer differences between processing of real-world and VR objects. Moreover, the induced midfrontal TBR indicated higher cognitive load for 2D objects compared to VR and real-world objects, while no difference between both latter conditions was revealed. In conclusion, our results demonstrate that the transferability of 2D- and VR-based findings to real-world processes depends to some degree on whether predominantly sensory stimulus features or higher cognitive processes are examined. Yet although VR and real-world processes are not to be equated based on our results, their comparison yielded fewer significant differences relative to the PC condition, advising the use of VR to examine visuospatial processing.
Collapse
Affiliation(s)
- Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Thomas Hofmann
- Industrial Design, Engineering and Computer Science, University of Applied Sciences Osnabrück, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Sevim EF, Yildirim Y, Ünsal E, Dalmizrak E, Güntekin B. Distinctive Delta and Theta Responses in Deductive and Probabilistic Reasoning. Brain Behav 2025; 15:e70179. [PMID: 39778028 PMCID: PMC11706720 DOI: 10.1002/brb3.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION The neural substrates of reasoning, a cognitive ability we use constantly in daily life, are still unclear. Reasoning can be divided into two types according to how the inference process works and the certainty of the conclusions. In deductive reasoning, certain conclusions are drawn from premises by applying the rules of logic. On the other hand, in probabilistic reasoning, possible conclusions are drawn by interpreting the semantic content of arguments. METHODS We examined event-related oscillations associated with deductive and probabilistic reasoning. To better represent the natural use of reasoning, we adopted a design that required participants to choose what type of reasoning they would use. Twenty healthy participants judged the truth values of alternative conclusion propositions following two premises while the EEG was being recorded. We then analyzed event-related delta and theta power and phase-locking induced under two different conditions. RESULTS We found that the reaction time was shorter and the accuracy rate was higher in deductive reasoning than in probabilistic reasoning. High delta and theta power in the temporoparietal, parietal, and occipital regions of the brain were observed in deductive reasoning. As for the probabilistic reasoning, prolonged delta response in the right hemisphere and high frontal theta phase-locking were noted. CONCLUSION Our results suggest that the electrophysiological signatures of the two types of reasoning have distinct characteristics. There are significant differences in the delta and theta responses that are associated with deductive and probabilistic reasoning. Although our findings suggest that deductive and probabilistic reasoning have different neural substrates, consistent with most of the studies in the literature, there is not yet enough evidence to make a comprehensive claim on the subject. There is a need to diversify the growing literature on deductive and probabilistic reasoning with different methods and experimental paradigms.
Collapse
Affiliation(s)
- Emir Faruk Sevim
- Department of Neuroscience, Institute of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation LabIstanbul Medipol UniversityIstanbulTurkey
| | - Yasin Yildirim
- Department of Physical Therapy and Rehabilitation, Institute of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Department of Physiotherapy and RehabilitationFaculty of Health Sciences, Istanbul Gedik UniversityIstanbulTurkey
| | - Esra Ünsal
- Department of Neuroscience, Institute of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation LabIstanbul Medipol UniversityIstanbulTurkey
| | - Esra Dalmizrak
- Department of Neuroscience, Institute of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Department of Biophysics, School of MedicineMersin UniversityMersinTurkey
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation LabIstanbul Medipol UniversityIstanbulTurkey
- Department of Biophysics, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
5
|
Boetzel C, Stecher HI, Herrmann CS. Aligning Event-Related Potentials with Transcranial Alternating Current Stimulation for Modulation-a Review. Brain Topogr 2024; 37:933-946. [PMID: 38689065 PMCID: PMC11408541 DOI: 10.1007/s10548-024-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
This review aims to demonstrate the connections between event-related potentials (ERPs), event-related oscillations (EROs), and non-invasive brain stimulation (NIBS), with a specific focus on transcranial alternating current stimulation (tACS). We begin with a short examination and discussion of the relation between ERPs and EROs. Then, we investigate the diverse fields of NIBS, highlighting tACS as a potent tool for modulating neural oscillations and influencing cognitive performance. Emphasizing the impact of tACS on individual ERP components, this article offers insights into the potential of conventional tACS for targeted stimulation of single ERP components. Furthermore, we review recent articles that explore a novel approach of tACS: ERP-aligned tACS. This innovative technique exploits the temporal precision of ERP components, aligning tACS with specific neural events to optimize stimulation effects and target the desired neural response. In conclusion, this review combines current knowledge to explore how ERPs, EROs, and NIBS interact, particularly highlighting the modulatory possibilities offered by tACS. The incorporation of ERP-aligned tACS introduces new opportunities for future research, advancing our understanding of the complex connection between neural oscillations and cognitive processes.
Collapse
Affiliation(s)
- Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University, Ammerländer Heerstr. 114 - 118, 26129, Oldenburg, Germany
| | - Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University, Ammerländer Heerstr. 114 - 118, 26129, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University, Ammerländer Heerstr. 114 - 118, 26129, Oldenburg, Germany.
- Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
6
|
Hebron H, Lugli B, Dimitrova R, Jaramillo V, Yeh LR, Rhodes E, Grossman N, Dijk DJ, Violante IR. A closed-loop auditory stimulation approach selectively modulates alpha oscillations and sleep onset dynamics in humans. PLoS Biol 2024; 22:e3002651. [PMID: 38889194 PMCID: PMC11185466 DOI: 10.1371/journal.pbio.3002651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024] Open
Abstract
Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.
Collapse
Affiliation(s)
- Henry Hebron
- School of Psychology, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Beatrice Lugli
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Radost Dimitrova
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Valeria Jaramillo
- School of Psychology, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Lisa R. Yeh
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Edward Rhodes
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Imperial College London, United Kingdom
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Imperial College London, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| | - Ines R. Violante
- School of Psychology, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
7
|
Li H, Wang X, Hamalainen T, Meng Z. Effects of different speed-accuracy instructions on perception in psychology experiments: evidence from event-related potential and oscillation. Front Neurosci 2024; 18:1354051. [PMID: 38881749 PMCID: PMC11177619 DOI: 10.3389/fnins.2024.1354051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction In cognitive behavioral experiments, we often asked participants to make judgments within a deadline. However, the most common instruction of "do the task quickly and accurately" does not highlight the importance of the balance between being fast and accurate. Methods Our research aimed to explore how instructions about speed or accuracy affect perceptual process, focus on event-related potentials (ERPs) and event-related oscillations (EROs) of two brain responses for visual stimuli, known as P1 and N1. Additionally, we compared the conventional analysis approach with principal component analysis (PCA) based methods to analyze P1 and N1 ERP amplitude and ERO power. Results The results showed that individuals instructed to respond quickly had lower P1 amplitude and alpha ERO than those who prioritized accuracy, using the PCA-based approach. However, these two groups had no differences between groups in the N1 theta band using both methods. The traditional time-frequency analysis method could not detect any ERP or ERO distinctions between groups due to limitations in detecting specific components in time or frequency domains. That means PCA is effective in separating these components. Discussion Our findings indicate that the instructions given regarding speed and accuracy impact perceptual process of subjects during cognitive behavioral experiments. We suggest that future researchers should choose their instructions carefully, considering the purpose of study.
Collapse
Affiliation(s)
- Haijian Li
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Xiaoshuang Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Timo Hamalainen
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Zhaoli Meng
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Mokhtarinejad E, Tavakoli M, Ghaderi AH. Exploring the correlation and causation between alpha oscillations and one-second time perception through EEG and tACS. Sci Rep 2024; 14:8035. [PMID: 38580671 PMCID: PMC10997657 DOI: 10.1038/s41598-024-57715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Alpha oscillations have been implicated in time perception, yet a consensus on their precise role remains elusive. This study directly investigates this relationship by examining the impact of alpha oscillations on time perception. Resting-state EEG recordings were used to extract peak alpha frequency (PAF) and peak alpha power (PAP) characteristics. Participants then performed a time generalization task under transcranial alternating current stimulation (tACS) at frequencies of PAF-2, PAF, and PAF+2, as well as a sham condition. Results revealed a significant correlation between PAP and accuracy, and between PAF and precision of one-second time perception in the sham condition. This suggests that alpha oscillations may influence one-second time perception by modulating their frequency and power. Interestingly, these correlations weakened with real tACS stimulations, particularly at higher frequencies. A second analysis aimed to establish a causal relationship between alpha peak modulation by tACS and time perception using repeated measures ANOVAs, but no significant effect was observed. Results were interpreted according to the state-dependent networks and internal clock model.
Collapse
Affiliation(s)
- Ehsan Mokhtarinejad
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
| | - Mahgol Tavakoli
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran.
| | - Amir Hossein Ghaderi
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
- Center for Affective Neuroscience, Development, Learning and Education, University of Southern California (USC), Los Angeles, USA
| |
Collapse
|
9
|
Trajkovic J, Di Gregorio F, Thut G, Romei V. Transcranial magnetic stimulation effects support an oscillatory model of ERP genesis. Curr Biol 2024; 34:1048-1058.e4. [PMID: 38377998 DOI: 10.1016/j.cub.2024.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Francesco Di Gregorio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, MVLS, University of Glasgow, Glasgow G128QB, UK
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid 28015, Spain.
| |
Collapse
|
10
|
Xia C, Li J, Yan R, Su W, Liu Y. Contribution of inter-trial phase coherence at theta, alpha, and beta frequencies in auditory change detection. Front Neurosci 2023; 17:1224479. [PMID: 38027496 PMCID: PMC10665517 DOI: 10.3389/fnins.2023.1224479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Auditory change detection is a pre-attentive cortical auditory processing ability. Many neurological and psychological disorders can lead to defects in this process. Some studies have shown that phase synchronization may be related to auditory discrimination. However, the specific contributions of phase synchronization at different frequencies remain unclear. Methods We analyzed the electroencephalogram (EEG) data of 29 healthy adults using an oddball paradigm consisting of a standard stimulus and five deviant stimuli with varying frequency modulation patterns, including midpoint frequency transitions and linear frequency modulation. We then compared the peak amplitude and latency of inter-trial phase coherence (ITC) at the theta(θ), alpha(α), and beta(β) frequencies, as well as the N1 component, and their relationships with stimulus changes. At the same time, the characteristics of inter-trial phase coherence in response to the pure tone stimulation and chirp sound with a fine time-frequency structure were also assessed. Result When the stimulus frequency did not change relative to the standard stimulus, the peak latency of phase coherence at β and α frequencies was consistent with that of the N1 component. The inter-trial phase coherence at β frequency (β-ITC)served as a faster indicator for detecting frequency transition when the stimulus frequency was changed relative to the standard stimulus. β-ITC demonstrates temporal stability when detecting pure sinusoidal tones and their frequency changes, and is less susceptible to interference from other neural activities. The phase coherence at θ frequency could integrate the frequency and temporal characteristics of deviant into a single representation, which can be compared with the memory trace formed by the standard stimulus, thus effectively identifying auditory changes. Pure sinusoidal tone stimulation could induce higher inter-trial phase coherence in a smaller time window, but chirp sounds with a fine time-frequency structure required longer latencies to achieve phase coherence. Conclusion Phase coherence at theta, alpha, and beta frequencies are all involved in auditory change detection, but play different roles in this automatic process. Complex time-frequency modulated stimuli require longer processing time for effective change detection.
Collapse
Affiliation(s)
- Caifeng Xia
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Jinhong Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Rong Yan
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Wenwen Su
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yuhe Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Boetzel C, Stecher HI, Herrmann CS. ERP-aligned delta transcranial alternating current stimulation modulates the P3 amplitude. Int J Psychophysiol 2023; 193:112247. [PMID: 37769997 DOI: 10.1016/j.ijpsycho.2023.112247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The underlying mechanisms of the event-related potential (ERP) generation are still under debate. One popular model considers the ERP as a superposition of phase-resets of ongoing endogenous oscillations of different frequencies. Brain oscillations have been shown to be modulated by transcranial alternating current stimulation (tACS). Thus, it seems feasible, that an ERP could be altered by modulating the contributing oscillations using tACS. One possible approach would be to target a frequency-matched stimulation signal to a specific ERP-component. One possible target for such an approach is the P3, which appears as delta/theta oscillations in the frequency-domain. Thus, an ERP-aligned stimulation in the delta/theta-range might be suitable to force synchronization in the stimulated frequency band and thus increase the amplitude of the P3 component. Building on an existing paradigm, in the present study 21 healthy participants received individualized ERP-aligned delta tACS and control stimulation while performing a visual task. The visual stimulation was matched to the continuous tACS in order to align the tACS peak with the P3 peak. Both the P3 amplitude and the evoked delta power were significantly increased after ERP-aligned tACS but not after control stimulation. The investigated behavioral parameter showed no stimulation dependent effect. Our results may provide new insights into the debate on the contribution of phase-reset mechanisms to the generation of ERPs and offer new opportunities for clinical trials.
Collapse
Affiliation(s)
- Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany; Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
12
|
Michael E, Covarrubias LS, Leong V, Kourtzi Z. Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions. Cereb Cortex 2023; 33:5382-5394. [PMID: 36352510 PMCID: PMC10152088 DOI: 10.1093/cercor/bhac426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Training is known to improve our ability to make decisions when interacting in complex environments. However, individuals vary in their ability to learn new tasks and acquire new skills in different settings. Here, we test whether this variability in learning ability relates to individual brain oscillatory states. We use a visual flicker paradigm to entrain individuals at their own brain rhythm (i.e. peak alpha frequency) as measured by resting-state electroencephalography (EEG). We demonstrate that this individual frequency-matched brain entrainment results in faster learning in a visual identification task (i.e. detecting targets embedded in background clutter) compared to entrainment that does not match an individual's alpha frequency. Further, we show that learning is specific to the phase relationship between the entraining flicker and the visual target stimulus. EEG during entrainment showed that individualized alpha entrainment boosts alpha power, induces phase alignment in the pre-stimulus period, and results in shorter latency of early visual evoked potentials, suggesting that brain entrainment facilitates early visual processing to support improved perceptual decisions. These findings suggest that individualized brain entrainment may boost perceptual learning by altering gain control mechanisms in the visual cortex, indicating a key role for individual neural oscillatory states in learning and brain plasticity.
Collapse
Affiliation(s)
- Elizabeth Michael
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| | | | - Victoria Leong
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
- Psychology, School of Social Sciences, Nanyang Technological University (NTU), Singapore 6398818, Singapore
- Lee Kong Chian School of Medicine, NTU, Singapore 308232, Singapore
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
13
|
One-year-later spontaneous EEG features predict visual exploratory human phenotypes. Commun Biol 2022; 5:1361. [PMID: 36509841 PMCID: PMC9744741 DOI: 10.1038/s42003-022-04294-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
During visual exploration, eye movements are controlled by multiple stimulus- and goal-driven factors. We recently showed that the dynamics of eye movements -how/when the eye move- during natural scenes' free viewing were similar across individuals and identified two viewing styles: static and dynamic, characterized respectively by longer or shorter fixations. Interestingly, these styles could be revealed at rest, in the absence of any visual stimulus. This result supports a role of intrinsic activity in eye movement dynamics. Here we hypothesize that these two viewing styles correspond to different spontaneous patterns of brain activity. One year after the behavioural experiments, static and dynamic viewers were called back to the lab to record high density EEG activity during eyes open and eyes closed. Static viewers show higher cortical inhibition, slower individual alpha frequency peak, and longer memory of alpha oscillations. The opposite holds for dynamic viewers. We conclude that some properties of spontaneous activity predict exploratory eye movement dynamics during free viewing.
Collapse
|
14
|
Frequency modulation of cortical rhythmicity governs behavioral variability, excitability and synchrony of neurons in the visual cortex. Sci Rep 2022; 12:20914. [PMID: 36463385 PMCID: PMC9719482 DOI: 10.1038/s41598-022-25264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research in cognitive neuroscience has renewed the idea that brain oscillations are a core organization implicated in fundamental brain functions. Growing evidence reveals that the characteristic features of these oscillations, including power, phase and frequency, are highly non-stationary, fluctuating alongside alternations in sensation, cognition and behavior. However, there is little consensus on the functional implications of the instantaneous frequency variation in cortical excitability and concomitant behavior. Here, we capitalized on intracortical electrophysiology in the macaque monkey's visual area MT performing a visuospatial discrimination task with visual cues. We observed that the instantaneous frequency of the theta-alpha oscillations (4-13 Hz) is modulated among specific neurons whose RFs overlap with the cued stimulus location. Interestingly, we found that such frequency modulation is causally correlated with MT excitability at both scales of individual and ensemble of neurons. Moreover, studying the functional relevance of frequency variations indicated that the average theta-alpha frequencies foreshadow the monkey's reaction time. Our results also revealed that the neural synchronization strength alters with the average frequency shift in theta-alpha oscillations, suggesting frequency modulation is critical for mutually adjusting MTs' rhythms. Overall, our findings propose that theta-alpha frequency variations modulate MT's excitability, regulate mutual neurons' rhythmicity and indicate variability in behavior.
Collapse
|
15
|
Oscillatory delta and theta frequencies differentially support multiple items encoding to optimize memory performance during the digit span task. Neuroimage 2022; 263:119650. [PMID: 36167270 DOI: 10.1016/j.neuroimage.2022.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The human brain has limited storage capacity often challenging the encoding and recall of a long series of multiple items. Different encoding strategies are therefore employed to optimize performance in memory processes such as chunking where particular items are 'grouped' to reduce the number of items to store artificially. Additionally, related to the position of an item within a series, there is a tendency to remember the first and last items on the list better than the middle ones, which calls the "serial position effect". Although relatively well-established in behavioral research, the neuronal mechanisms underlying such encoding strategies and memory effects remain poorly understood. Here, we used event-related EEG oscillation analyses to unravel the neuronal substrates of serial encoding strategies and effects during the behaviorally controlled execution of the digit span task. We recorded EEG in forty-four healthy young-adult participants during a backward digit span (ds) task with two difficulty levels (i.e., 3-ds and 5-ds). Participants were asked to recall the digits in reverse order after the presentation of each set. We analyzed the pattern of event-related delta and theta oscillatory power in the time-frequency domain over fronto-central and parieto-occipital areas during the item (digit) list encoding, focusing on how these oscillatory responses changed with each subsequent digit being encoded in the series. Results showed that the development of event-related delta power evoked by digits in each series matched the 'serial position curve', with higher delta power being present during the first, and especially last, digits as compared to digits presented in the middle of a set, for both difficulty levels. Event-related theta power, in contrast, rather resembled a neural correlate of a chunking pattern where, during the 5-ds encoding, a clear change in event-related theta occurred around the third/fourth positions, with decreasing power values for later digits. This suggests that different oscillatory mechanisms linked to different frequency bands may code for the different encoding strategies and effects in serial item presentation. Furthermore, recall-EEG correlations suggested that participants with higher fronto-central delta responses during digit encoding showed also higher recall scores. The here presented findings contribute to our understanding of the neural oscillatory mechanisms underlying multiple item encoding, directly informing recent efforts towards memory enhancement through targeted oscillation-based neuromodulation.
Collapse
|
16
|
Hudson MR, Jones NC. Deciphering the code: Identifying true gamma neural oscillations. Exp Neurol 2022; 357:114205. [PMID: 35985554 DOI: 10.1016/j.expneurol.2022.114205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
Neural oscillatory activity occurring in the gamma frequency range (30-80 Hz) has been proposed to play essential roles in sensory and cognitive processing. Supporting this, abnormalities in gamma oscillations have been reported in patients with diverse neurological and neuropsychiatric disorders in which cognitive impairment is prominent. Understanding the mechanisms underpinning this relationship is the focus of extensive research. But while an increasing number of studies are investigating the intricate relationship between gamma oscillations and cognition, interpretation and generalisation of these studies is limited by the diverse, and at times questionable, methodologies used to analyse oscillatory activity. For example, a variety of different types of gamma oscillatory activity have been characterised, but all are generalised non-specifically as 'gamma oscillations'. This creates confusion, since distinct cellular and network mechanisms are likely responsible for generating these different types of rhythm. Moreover, in some instances, certain analytical measures of electrophysiological data are overinterpreted, with researchers pushing the boundaries of what would be considered rhythmic or oscillatory in nature. Here, we provide clarity on these issues, firstly presenting an overview of the different measures of gamma oscillatory activity, and describing common signal processing techniques used for analysis. Limitations of these techniques are discussed, and recommendations made on how future studies should optimise analyses, presentation and interpretation of gamma frequency oscillations. This is an essential progression in order to harmonise future studies, allowing us to gain a clearer understanding of the role of gamma oscillations in cognition, and in cognitive disorders.
Collapse
Affiliation(s)
- Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, 3004, Victoria, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
17
|
Marusic U, Peskar M, De Pauw K, Omejc N, Drevensek G, Rojc B, Pisot R, Kavcic V. Neural Bases of Age-Related Sensorimotor Slowing in the Upper and Lower Limbs. Front Aging Neurosci 2022; 14:819576. [PMID: 35601618 PMCID: PMC9119024 DOI: 10.3389/fnagi.2022.819576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
With advanced age, there is a loss of reaction speed that may contribute to an increased risk of tripping and falling. Avoiding falls and injuries requires awareness of the threat, followed by selection and execution of the appropriate motor response. Using event-related potentials (ERPs) and a simple visual reaction task (RT), the goal of our study was to distinguish sensory and motor processing in the upper- and lower-limbs while attempting to uncover the main cause of age-related behavioral slowing. Strength (amplitudes) as well as timing and speed (latencies) of various stages of stimulus- and motor-related processing were analyzed in 48 healthy individuals (young adults, n = 24, mean age = 34 years; older adults, n = 24, mean age = 67 years). The behavioral results showed a significant age-related slowing, where the younger compared to older adults exhibited shorter RTs for the upper- (222 vs. 255 ms; p = 0.006, respectively) and the lower limb (257 vs. 274 ms; p = 0.048, respectively) as well as lower variability in both modalities (p = 0.001). Using ERP indices, age-related slowing of visual stimulus processing was characterized by overall larger amplitudes with delayed latencies of endogenous potentials in older compared with younger adults. While no differences were found in the P1 component, the later components of recorded potentials for visual stimuli processing were most affected by age. This was characterized by increased N1 and P2 amplitudes and delayed P2 latencies in both upper and lower extremities. The analysis of motor-related cortical potentials (MRCPs) revealed stronger MRCP amplitude for upper- and a non-significant trend for lower limbs in older adults. The MRCP amplitude was smaller and peaked closer to the actual motor response for the upper- than for the lower limb in both age groups. There were longer MRCP onset latencies for lower- compared to upper-limb in younger adults, and a non-significant trend was seen in older adults. Multiple regression analyses showed that the onset of the MRCP peak consistently predicted reaction time across both age groups and limbs tested. However, MRCP rise time and P2 latency were also significant predictors of simple reaction time, but only in older adults and only for the upper limbs. Our study suggests that motor cortical processes contribute most strongly to the slowing of simple reaction time in advanced age. However, late-stage cortical processing related to sensory stimuli also appears to play a role in upper limb responses in the elderly. This process most likely reflects less efficient recruitment of neuronal resources required for the upper and lower extremity response task in older adults.
Collapse
Affiliation(s)
- Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea – ECM, Maribor, Slovenia
| | - Manca Peskar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
| | - Nina Omejc
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Gorazd Drevensek
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Rojc
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
- Department of Neurology, Izola General Hospital, Izola, Slovenia
| | - Rado Pisot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
18
|
Porcaro C, Marino M, Carozzo S, Russo M, Ursino M, Valentinaruggiero, Ragno C, Proto S, Tonin P. Fractal Dimension Feature as a Signature of Severity in Disorders of Consciousness: An EEG Study. Int J Neural Syst 2022; 32:2250031. [DOI: 10.1142/s0129065722500319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Warsi NM, Yan H, Suresh H, Wong SM, Arski ON, Gorodetsky C, Zhang K, Gouveia FV, Ibrahim GM. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy. Epilepsy Res 2022; 182:106913. [DOI: 10.1016/j.eplepsyres.2022.106913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
|
20
|
Moore M, Katsumi Y, Dolcos S, Dolcos F. Electrophysiological Correlates of Social Decision-making: An EEG Investigation of a Modified Ultimatum Game. J Cogn Neurosci 2021; 34:54-78. [PMID: 34673955 DOI: 10.1162/jocn_a_01782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cooperation behaviors during social decision-making have been shown to be sensitive to manipulations of context. However, it remains unclear how aspects of context in dynamic social interactions, such as observed nonverbal behaviors, may modulate cooperation decisions and the associated neural mechanisms. In this study, participants responded to offers from proposers to split $10 in an Ultimatum Game following observation of proposer approach (friendly) or avoidance (nonfriendly) behaviors, displayed by dynamic whole-body animated avatars, or following a nonsocial interaction control condition. As expected, behavioral results showed that participants tended to have greater acceptance rates for unfair offers following observed nonverbal social interactions with proposers compared with control, suggesting an enhancing effect of social interactions on cooperative decisions. ERP results showed greater N1 and N2 responses at the beginning of social interaction conditions compared with control, and greater sustained and late positivity responses for observed approach and avoidance proposer behaviors compared with control. Event-related spectral perturbation (ERSP) results showed differential sensitivity within theta, alpha, and beta bands during observation of social interactions and offers that was associated with subsequent decision behaviors. Together, these results point to the impact of proposers' nonverbal behaviors on subsequent cooperation decisions at both behavioral and neural levels. The ERP and ERSP findings suggest modulated attention, monitoring, and processing of biological motion during the observed nonverbal social interactions, influencing the participants' responses to offers. These findings shed light on electrophysiological correlates of response to observed social interactions that predict subsequent social decisions.
Collapse
Affiliation(s)
| | - Yuta Katsumi
- University of Illinois at Urbana-Champaign.,Northeastern University
| | | | | |
Collapse
|
21
|
van Noordt S, Heffer T, Willoughby T. A developmental examination of medial frontal theta dynamics and inhibitory control. Neuroimage 2021; 246:118765. [PMID: 34875380 DOI: 10.1016/j.neuroimage.2021.118765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Medial frontal theta-band oscillations are a robust marker of action-outcome monitoring. In a large developmental sample (n = 432, 9-16 years), we examined whether phase and non-phase locked medial frontal theta power were related to inhibitory control among children and adolescents. Our results showed that the well-established increase in medial frontal theta power during inhibitory control was captured largely by non-phase locked dynamics, which partially mediated the positive effect of age on task performance. A person-centered approach also revealed latent classes of individuals based on their multivariate theta power dynamics (phase locked/non-phase locked, GO/NOGO). The class of individuals showing low phase locked and high non-phase locked medial frontal theta were significantly older, had better inhibitory control, scored higher on measures of general cognitive function, and were more efficient in their behavioural responses. The functional significance of phase and non-phase locked theta dynamics, and their potential changes, could have important implications for action-outcome monitoring and cognitive function in both typical and atypical development, as well as related psychopathology .
Collapse
Affiliation(s)
- Stefon van Noordt
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada; Department of Psychology, Brock University, St. Catharines, Ontario, Canada.
| | - Taylor Heffer
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| | - Teena Willoughby
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
22
|
Alejandro RJ, Packard PA, Steiger TK, Fuentemilla L, Bunzeck N. Semantic Congruence Drives Long-Term Memory and Similarly Affects Neural Retrieval Dynamics in Young and Older Adults. Front Aging Neurosci 2021; 13:683908. [PMID: 34594212 PMCID: PMC8477023 DOI: 10.3389/fnagi.2021.683908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Learning novel information can be promoted if it is congruent with already stored knowledge. This so-called semantic congruence effect has been broadly studied in healthy young adults with a focus on neural encoding mechanisms. However, the impacts on retrieval, and possible impairments during healthy aging, which is typically associated with changes in declarative long-term memory, remain unclear. To investigate these issues, we used a previously established paradigm in healthy young and older humans with a focus on the neural activity at a final retrieval stage as measured with electroencephalography (EEG). In both age groups, semantic congruence at encoding enhanced subsequent long-term recognition memory of words. Compatible with this observation, semantic congruence led to differences in event-related potentials (ERPs) at retrieval, and this effect was not modulated by age. Specifically, congruence modulated old/new ERPs at a fronto-central (Fz) and left parietal (P3) electrode in a late (400–600 ms) time window, which has previously been associated with recognition memory processes. Importantly, ERPs to old items also correlated with the positive effect of semantic congruence on long-term memory independent of age. Together, our findings suggest that semantic congruence drives subsequent recognition memory across the lifespan through changes in neural retrieval processes.
Collapse
Affiliation(s)
- Ricardo J Alejandro
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Pau A Packard
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra Roc Boronat, Barcelona, Spain
| | | | - Lluis Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck Ratzeburger Allee, Lübeck, Germany
| |
Collapse
|
23
|
Wisniewski MG, Zakrzewski AC, Bell DR, Wheeler M. EEG power spectral dynamics associated with listening in adverse conditions. Psychophysiology 2021; 58:e13877. [PMID: 34161612 DOI: 10.1111/psyp.13877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Adverse listening conditions increase the demand on cognitive resources needed for speech comprehension. In an exploratory study, we aimed to identify independent power spectral features in the EEG useful for studying the cognitive processes involved in this effortful listening. Listeners performed the coordinate response measure task with a single-talker masker at a 0-dB signal-to-noise ratio. Sounds were left unfiltered or degraded with low-pass filtering. Independent component analysis (ICA) was used to identify independent components (ICs) in the EEG data, the power spectral dynamics of which were then analyzed. Frontal midline theta, left frontal, right frontal, left mu, right mu, left temporal, parietal, left occipital, central occipital, and right occipital clusters of ICs were identified. All IC clusters showed some significant listening-related changes in their power spectrum. This included sustained theta enhancements, gamma enhancements, alpha enhancements, alpha suppression, beta enhancements, and mu rhythm suppression. Several of these effects were absent or negligible using traditional channel analyses. Comparison of filtered to unfiltered speech revealed a stronger alpha suppression in the parietal and central occipital clusters of ICs for the filtered speech condition. This not only replicates recent findings showing greater alpha suppression as listening difficulty increases but also suggests that such alpha-band effects can stem from multiple cortical sources. We lay out the advantages of the ICA approach over the restrictive analyses that have been used as of late in the study of listening effort. We also make suggestions for moving into hypothesis-driven studies regarding the power spectral features that were revealed.
Collapse
Affiliation(s)
- Matthew G Wisniewski
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Destiny R Bell
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Michelle Wheeler
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
24
|
Riganello F, Vatrano M, Carozzo S, Russo M, Lucca LF, Ursino M, Ruggiero V, Cerasa A, Porcaro C. The Timecourse of Electrophysiological Brain-Heart Interaction in DoC Patients. Brain Sci 2021; 11:750. [PMID: 34198911 PMCID: PMC8228557 DOI: 10.3390/brainsci11060750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Disorders of Consciousness (DOC) are a spectrum of pathologies affecting one's ability to interact with the external world. Two possible conditions of patients with DOC are Unresponsive Wakefulness Syndrome/Vegetative State (UWS/VS) and Minimally Conscious State (MCS). Analysis of spontaneous EEG activity and the Heart Rate Variability (HRV) are effective techniques in exploring and evaluating patients with DOC. This study aims to observe fluctuations in EEG and HRV parameters in the morning/afternoon resting-state recording. The study enrolled 13 voluntary Healthy Control (HC) subjects and 12 DOC patients (7 MCS, 5 UWS/VS). EEG and EKG were recorded. PSDalpha, PSDtheta powerband, alpha-blocking, alpha/theta of the EEG, Complexity Index (CI) and SDNN of EKG were analyzed. Higher values of PSDalpha, alpha-blocking, alpha/theta and CI values and lower values of PSD theta characterized HC individuals in the morning with respect to DOC patients. In the afternoon, we detected a significant difference between groups in the CI, PSDalpha, PSDtheta, alpha/theta and SDNN, with lower PSDtheta value for HC. CRS-R scores showed a strong correlation with recorded parameters mainly during evaluations in the morning. Our finding put in evidence the importance of the assessment, as the stimulation of DOC patients in research for behavioural response, in the morning.
Collapse
Affiliation(s)
- Francesco Riganello
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Martina Vatrano
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Simone Carozzo
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Miriam Russo
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Lucia Francesca Lucca
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Maria Ursino
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Valentina Ruggiero
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Antonio Cerasa
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
- Institute for Biomedical Research and Innovation (IRIB)—National Research Council of Italy (CNR), 87050 Mangone, Italy
| | - Camillo Porcaro
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), 00185 Rome, Italy
| |
Collapse
|
25
|
Neurophysiological basis of the N400 deflection, from Mismatch Negativity to Semantic Prediction Potentials and late positive components. Int J Psychophysiol 2021; 166:134-150. [PMID: 34097935 DOI: 10.1016/j.ijpsycho.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
The first theoretical model on the neurophysiological basis of the N400: the deflection reflects layer I dendritic plateaus on a preparatory state of synaptic integration that precedes layer V somatic burst firing for conscious identification of the higher-order features of the stimulus (a late positive shift). Plateaus ensue from apical disinhibition by vasoactive intestinal polypeptide-positive interneurons (VIPs) through suppression of Martinotti cells, opening the gates for glutamatergic feedback to trigger dendritic regenerative potentials. Cholinergic transients contribute to these dynamics directly, holding a central role in the N400 deflection. The stereotypical timing of the (frontal) glutamatergic feedback and the accompanying cholinergic transients account for the enigmatic "invariability" of the peak latency in the face of a gamut of different stimuli and paradigms. The theoretical postulations presented here may bring about unprecedented level of detail for the N400 deflection to be used in the study of schizophrenia, Alzheimer's disease and other higher-order pathologies. The substrates of a late positive component, the Mismatch Negativity and the Semantic Prediction Potentials are also surveyed.
Collapse
|
26
|
Ahmadi M, Schoenfeld MA, Hillyard SA, Quian Quiroga R. A simple metric to study the mechanisms generating event-related potentials. J Neurosci Methods 2021; 360:109230. [PMID: 34052290 DOI: 10.1016/j.jneumeth.2021.109230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is an active debate about the mechanism underlying the generation of event-related potentials, and, particularly, whether these are generated by additive components, independent of the background EEG, or the phase-resetting of ongoing oscillations. METHOD We present a new metric to evaluate trial-by-trial covariations of successive ERP components. Our main assumption is that if two successive ERP components are generated by phase-resetting of a unitary oscillation, they should be time-locked to each other and their single-trial latencies should covary. In contrast, if the components are generated by independent additive components, single-trial latency covariations should not be observed. To quantify the covariance between the single-trial latencies, we define a metric based on latency-corrected averages, which we applied to both simulated and real ERPs. RESULTS For the simulated data, there was a clear distinction in latency covariation between the ERPs generated with unitary phase-resetting versus additive models. For real visual and auditory ERPs, we observed a lack of latency covariation of successive components. COMPARISON WITH EXISTING METHODS The new metric is complementary to other approaches to study the mechanisms underlying ERP generation, and does not suffer from potential caveats due to filtering artifacts. Moreover, the method proved to be more sensitive than another estimation of single-trial latency covariations using the cross-correlation function. CONCLUSION The observed lack of latency covariation shows the presence of parallel, independent processing within each cortical sensory pathway.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Centre for Systems Neuroscience, University of Leicester, United Kingdom
| | - Mircea Ariel Schoenfeld
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Experimental Neurology, University of Magdeburg, Germany; Kliniken Schmieder Heidelberg, Heidelberg, Germany
| | - Steven A Hillyard
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Neurosciences, University of California, San Diego, United States
| | - Rodrigo Quian Quiroga
- Centre for Systems Neuroscience, University of Leicester, United Kingdom; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
27
|
Labounek R, Wu Z, Bridwell DA, Brázdil M, Jan J, Nestrašil I. Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model? Front Neurol 2021; 12:644874. [PMID: 33981283 PMCID: PMC8107237 DOI: 10.3389/fneur.2021.644874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ 4 band and low β 1 band) demonstrated significant negative linear relationship (p FWE < 0.05) to the frequent stimulus and three patterns (two low δ 2 and δ 3 bands, and narrow θ 1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ 4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ 4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β 1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ 1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ 1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ 4, β 1, and θ 1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI associations were observed for ASM and RSSM.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Zhuolin Wu
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | - Milan Brázdil
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jiří Jan
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
28
|
Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev 2021; 126:146-158. [PMID: 33737103 DOI: 10.1016/j.neubiorev.2021.02.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Dept. of Neurology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| | - Lars Buentjen
- Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Tino Zaehle
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA
| | - Jörn Kaufmann
- Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hermann Hinrichs
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|
29
|
Okazaki YO, Nakagawa Y, Mizuno Y, Hanakawa T, Kitajo K. Frequency- and Area-Specific Phase Entrainment of Intrinsic Cortical Oscillations by Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci 2021; 15:608947. [PMID: 33776666 PMCID: PMC7994763 DOI: 10.3389/fnhum.2021.608947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Synchronous oscillations are ubiquitous throughout the cortex, but the frequency of oscillations differs from area to area. To elucidate the mechanistic architectures underlying various rhythmic activities, we tested whether spontaneous neural oscillations in different local cortical areas and large-scale networks can be phase-entrained by direct perturbation with distinct frequencies of repetitive transcranial magnetic stimulation (rTMS). While recording the electroencephalogram (EEG), we applied single-pulse TMS (sp-TMS) and rTMS at 5, 11, and 23 Hz over the motor or visual cortex. We assessed local and global modulation of phase dynamics using the phase-locking factor (PLF). sp-TMS to the motor and the visual cortex triggered a transient increase in PLF in distinct frequencies that peaked at 21 and 8 Hz, respectively. rTMS at 23 Hz over the motor cortex and 11 Hz over the visual cortex induced a prominent and progressive increase in PLF that lasted for a few cycles after the termination of rTMS. Moreover, the local increase in PLF propagated to other cortical areas. These results suggest that distinct cortical areas have area-specific oscillatory frequencies, and the manipulation of oscillations in local areas impacts other areas through the large-scale oscillatory network with the corresponding frequency specificity. We speculate that rTMS that is close to area-specific frequencies (natural frequencies) enables direct manipulation of brain dynamics and is thus useful for investigating the causal roles of synchronous neural oscillations. Moreover, this technique could be used to treat clinical symptoms associated with impaired oscillations and synchrony.
Collapse
Affiliation(s)
- Yuka O Okazaki
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan.,Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yumi Nakagawa
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Yuji Mizuno
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan.,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Hanakawa
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan.,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichi Kitajo
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan.,Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
30
|
Çelik S, Doğan RB, Parlatan CS, Güntekin B. Distinct brain oscillatory responses for the perception and identification of one's own body from other's body. Cogn Neurodyn 2021; 15:609-620. [PMID: 34367363 DOI: 10.1007/s11571-020-09660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/25/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
The body recognition process includes complex visual processing, the sensation, perception, and distinction stages of the stimulus. This study examined this process by using the time-frequency analysis of EEG signals and analyzed the obtained data by using the event-related oscillations method. This study aimed to examine the oscillatory brain responses and distinguish one's own body from other's body. In the present study, 17 young adults were included and the EEGs were recorded with 32 electrodes placed in different locations. Event-related power spectrum and phase-locking analyzes were performed. ITC and ERSP data were analyzed using 2 (condition) × 11 (location) × 2 (hemisphere) ANOVA Design. As we observed a prolonged response in the theta band in the grand averages, we included the time variable in the overall model. As a result, we found that the phase-locking and the event-related power spectrum of the theta response in recognizing one's own body were higher when compared to the phase-locking and the event-related power spectrum of the theta response in recognizing others' body (p < 0.05). When the time variable was included, the early theta response was more phase-locked and had a higher power spectrum compared to the late theta response (p < 0.05). As a result of the power spectrum analysis, the condition × hemisphere interaction effect in the beta band was higher in the left hemisphere regarding increased responses in recognizing one's own body (p < 0.05). As a result of ITC, the main effect of the condition was higher in the recognition of the stimulus of one's own body (p < 0.05). Finally, the theta oscillator response stood out in distinguishing one's own body from other's body. Similarly, the power spectrum in the beta response was higher in the left hemisphere, and this finding is consistent with the literature.
Collapse
Affiliation(s)
- Samet Çelik
- Graduate School of Health Sciences, Program of Neuroscience Ph.D, Istanbul Medipol University, Istanbul, Turkey.,Health Application, and Research Center, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Rümeysa Büşra Doğan
- Graduate School of Health Sciences, Program of Neuroscience Ph.D, Istanbul Medipol University, Istanbul, Turkey
| | - Cennet Sena Parlatan
- Graduate School of Health Sciences, Program of Neuroscience Ph.D, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Güntekin
- Graduate School of Health Sciences, Program of Neuroscience Ph.D, Istanbul Medipol University, Istanbul, Turkey.,Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
31
|
Hilla Y, von Mankowski J, Föcker J, Sauseng P. Faster Visual Information Processing in Video Gamers Is Associated With EEG Alpha Amplitude Modulation. Front Psychol 2020; 11:599788. [PMID: 33363498 PMCID: PMC7753097 DOI: 10.3389/fpsyg.2020.599788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Video gaming, specifically action video gaming, seems to improve a range of cognitive functions. The basis for these improvements may be attentional control in conjunction with reward-related learning to amplify the execution of goal-relevant actions while suppressing goal-irrelevant actions. Given that EEG alpha power reflects inhibitory processing, a core component of attentional control, it might represent the electrophysiological substrate of cognitive improvement in video gaming. The aim of this study was to test whether non-video gamers (NVGs), non-action video gamers (NAVGs) and action video gamers (AVGs) exhibit differences in EEG alpha power, and whether this might account for differences in visual information processing as operationalized by the theory of visual attention (TVA). Forty male volunteers performed a visual short-term memory paradigm where they memorized shape stimuli depicted on circular stimulus displays at six different exposure durations while their EEGs were recorded. Accuracy data was analyzed using TVA-algorithms. There was a positive correlation between the extent of post-stimulus EEG alpha power attenuation (10–12 Hz) and speed of information processing across all participants. Moreover, both EEG alpha power attenuation and speed of information processing were modulated by an interaction between group affiliation and time on task, indicating that video gamers showed larger EEG alpha power attenuations and faster information processing over time than NVGs – with AVGs displaying the largest increase. An additional regression analysis affirmed this observation. From this we concluded that EEG alpha power might be a promising neural substrate for explaining cognitive improvement in video gaming.
Collapse
Affiliation(s)
- Yannik Hilla
- Research Unit of Biological Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jörg von Mankowski
- Chair of Communication Networks, Technische Universität München, Munich, Germany
| | - Julia Föcker
- School of Psychology, College of Social Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Paul Sauseng
- Research Unit of Biological Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
32
|
Güntekin B, Uzunlar H, Çalışoğlu P, Eroğlu-Ada F, Yıldırım E, Aktürk T, Atay E, Ceran Ö. Theta and alpha oscillatory responses differentiate between six-to seven-year-old children and adults during successful visual and auditory memory encoding. Brain Res 2020; 1747:147042. [PMID: 32758480 DOI: 10.1016/j.brainres.2020.147042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
The healthy maturation of the brain is one of the intriguing topics that need to be investigated to understand human brain and child development. The present study aimed to investigate the development of memory processes both for auditory and visual memory using electroencephalography (EEG)-Brain Dynamics methodologies. Sixteen healthy children between the ages of 6 and 7 years and eighteen healthy young adults (age: 21.32 ± 3.28 years) were included in the study. EEG was recorded from 18 channels during the visual and auditory memory paradigms. Two different subtests of the WISC-IV IQ test were applied to all children. Event-related theta (4-7 Hz), alpha (8-13 Hz) power and phase-locking were analyzed. The young adults had higher memory performance than the children for both auditory and visual paradigms. The children had increased theta phase-locking and left alpha power in response to the remembered objects in comparison to the forgotten objects. The young adults had higher theta and alpha phase-locking than the children over the frontal and central locations (p < 0.05), and the children had higher parietal-occipital alpha phase-locking than the young adults. There was an increase in alpha power in children, whereas young adults had decreased post-stimulus alpha power in response to memory paradigms. The present study showed that frontocentral theta and alpha phase-locking had an essential role in brain maturation and successful memory performance. Event-related theta and alpha responses could be one of the important indicators of the mature and healthy brain, and these responses could change depending on the maturation state and age.
Collapse
Affiliation(s)
- Bahar Güntekin
- Istanbul Medipol University, School of Medicine, Department of Biophysics, Istanbul, Turkey; Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey.
| | - Hakan Uzunlar
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Pervin Çalışoğlu
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Figen Eroğlu-Ada
- Istanbul Medipol University, Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Ebru Yıldırım
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Tuba Aktürk
- Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey
| | - Enver Atay
- Istanbul Medipol University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Ömer Ceran
- Istanbul Medipol University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| |
Collapse
|
33
|
Karakaş S. A review of theta oscillation and its functional correlates. Int J Psychophysiol 2020; 157:82-99. [DOI: 10.1016/j.ijpsycho.2020.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
|
34
|
Kumari E, Li K, Yang Z, Zhang T. Tacrine accelerates spatial long-term memory via improving impaired neural oscillations and modulating GAD isomers including neuro-receptors in the hippocampus of APP/PS1 AD mice. Brain Res Bull 2020; 161:166-176. [DOI: 10.1016/j.brainresbull.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 12/27/2022]
|
35
|
Zhang W, Tang F, Liu X, Liao C, Sun B, Li H. Adolescents Exhibit Late Maturation of Long-Range Beta Coherences in Affective Processing. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2020; 30:334-344. [PMID: 31469488 DOI: 10.1111/jora.12527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated whether intra-/interhemispheric long-range beta coherences mirror developmental changes in affective functional integration during adolescence. Electroencephalogram data were gathered from 15 young adolescents, 16 old adolescents, and 16 young adults during viewing affective pictures. The results indicated that both positive and negative pictures induced greater intra- and interhemispheric long-distance beta coherences than neutral pictures. However, opposite results were observed between young and old adolescents in terms of negative phase differences. Old adolescents exhibited greater beta coherences for positive and negative pictures than both young adolescents and young adults, but there was no difference between the groups for neutral pictures. These observations suggest that long-range beta coherence might reflect the late maturation of affective functional integration in adolescents.
Collapse
|
36
|
Tran TT, Rolle CE, Gazzaley A, Voytek B. Linked Sources of Neural Noise Contribute to Age-related Cognitive Decline. J Cogn Neurosci 2020; 32:1813-1822. [PMID: 32427069 DOI: 10.1162/jocn_a_01584] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Healthy aging is associated with a multitude of structural changes in the brain. These physical age-related changes are accompanied by increased variability in neural activity of all kinds, and this increased variability, collectively referred to as "neural noise," is argued to contribute to age-related cognitive decline. In this study, we examine the relationship between two particular types of neural noise in aging. We recorded scalp EEG from younger (20-30 years old) and older (60-70 years old) adults performing a spatial visual discrimination task. First, we used the 1/f-like exponent of the EEG power spectrum, a putative marker of neural noise, to assess baseline shifts toward a noisier state in aging. Next, we examined age-related decreases in the trial-by-trial consistency of visual stimulus processing. Finally, we examined to what extent these two age-related noise markers are related, hypothesizing that greater baseline noise would increase the variability of stimulus-evoked responses. We found that visual cortical baseline noise was higher in older adults, and the consistency of older adults' oscillatory alpha (8-12 Hz) phase responses to visual targets was also lower than that of younger adults. Crucially, older adults with the highest levels of baseline noise also had the least consistent alpha phase responses, whereas younger adults with more consistent phase responses achieved better behavioral performance. These results establish a link between tonic neural noise and stimulus-associated neural variability in aging. Moreover, they suggest that tonic age-related increases in baseline noise might diminish sensory processing and, as a result, subsequent cognitive performance.
Collapse
|
37
|
Spatiotemporal dynamics of auditory information processing in the insular cortex: an intracranial EEG study using an oddball paradigm. Brain Struct Funct 2020; 225:1537-1559. [DOI: 10.1007/s00429-020-02072-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
|
38
|
Smieja DA, Dunkley BT, Papsin BC, Easwar V, Yamazaki H, Deighton M, Gordon KA. Interhemispheric auditory connectivity requires normal access to sound in both ears during development. Neuroimage 2020; 208:116455. [DOI: 10.1016/j.neuroimage.2019.116455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022] Open
|
39
|
Rawls E, Miskovic V, Lamm C. Delta phase reset predicts conflict-related changes in P3 amplitude and behavior. Brain Res 2020; 1730:146662. [PMID: 31930997 DOI: 10.1016/j.brainres.2020.146662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 11/28/2022]
Abstract
When multiple competing responses are activated, we respond more slowly than if only one response is activated (response conflict). Conflict-induced slowing is reduced for consecutive high-conflict stimuli, an effect known as conflict adaptation. Verguts and Notebaert's (2009) adaptation by binding theory suggests this is due to Hebbian learning of cognitive control, potentiated by the response of the locus coeruleus norepinephrine (NE) system. Phasic activity of the NE system can potentially be measured non-invasively in humans by recording the P3 component of the event-related potential (ERP), and the P3 is sensitive to conflict adaptation. Bouret and Sara's (2005) network reset theory suggests that phasic NE might functionally reset ongoing large-scale network activity, generating synchronous neural population activity like the P3. To examine the possibility that network reset contributes to conflict effects in the P3, we recorded high-density EEG data while subjects performed a flanker task. As expected, conflict and conflict adaptation modulated P3 amplitudes. Brain-behavior correlation analyses indicated that activity during the rise of the P3 was related to RT and predicted RT differences due to conflict. More importantly, phase of delta oscillations not only predicted reaction time differences between low-conflict and high-conflict conditions, but delta phase reset also predicted the amplitude of the P3. Delta oscillations exhibited dominant peaks both pre and post-stimulus, and delta at stimulus onset predicted the post-stimulus ERP, in particular the N2 and P3. This result bridges human EEG with basic mechanisms suggested by computational neural models and invasive patient recordings, namely that salient cognitive events might reset ongoing oscillations leading to the generation of the phase-locked evoked potential. We conclude that partial phase reset is a cortical mechanism involved in monitoring the environment for unexpected events, and this response contributes to conflict effects in the ERP. These results are in line with theories that phasic NE release might reset ongoing cortical activity, leading to the generation of ERP components like the P3.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States.
| | | | - Connie Lamm
- Department of Psychological Sciences, University of Arkansas, United States.
| |
Collapse
|
40
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|
41
|
Nikolin S, Martin D, Loo CK, Iacoviello BM, Boonstra TW. Assessing neurophysiological changes associated with combined transcranial direct current stimulation and cognitive-emotional training for treatment-resistant depression. Eur J Neurosci 2020; 51:2119-2133. [PMID: 31859397 DOI: 10.1111/ejn.14656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, is a promising treatment for depression. Recent research suggests that tDCS efficacy can be augmented using concurrent cognitive-emotional training (CET). However, the neurophysiological changes associated with this combined intervention remain to be elucidated. We therefore examined the effects of tDCS combined with CET using electroencephalography (EEG). A total of 20 participants with treatment-resistant depression took part in this open-label study and received 18 sessions over 6 weeks of tDCS and concurrent CET. Resting-state and task-related EEG during a 3-back working memory task were acquired at baseline and immediately following the treatment course. Results showed an improvement in mood and working memory accuracy, but not response time, following the intervention. We did not find significant effects of the intervention on resting-state power spectral density (frontal theta and alpha asymmetry), time-frequency power (alpha event-related desynchronisation and theta event-related synchronisation) or event-related potentials (P2 and P3 components). We therefore identified little evidence of neurophysiological changes associated with treatment using tDCS and concurrent CET, despite significant improvements in mood and near-transfer effects of cognitive training to working memory accuracy. Further research incorporating a sham-controlled group may be necessary to identify the neurophysiological effects of the intervention.
Collapse
Affiliation(s)
- Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Sydney, NSW, Australia
| | - Donel Martin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Sydney, NSW, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Sydney, NSW, Australia.,St. George Hospital, Sydney, NSW, Australia
| | - Brian M Iacoviello
- Click Therapeutics, Inc., New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tjeerd W Boonstra
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
42
|
Effects of parietal exogenous oscillatory field potentials on subjectively perceived memory confidence. Neurobiol Learn Mem 2019; 168:107140. [PMID: 31843652 DOI: 10.1016/j.nlm.2019.107140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022]
Abstract
Previous research suggests involvement of parietal theta (3-7 Hz) power in subjectively perceived memory confidence during retrieval. To obtain further insights into the role of parietal theta activity during retrieval in processes associated with performance and confidence, fifty-four healthy volunteers performed a recognition memory task in a within-subject sham controlled transcranial alternating current stimulation (tACS) study. Participants encoded a subset of words at specific on-screen locations. During the retrieval phase accuracy and subjectively perceived confidence on item and source memory were evaluated while administering exogenous alternating field potentials. Results showed that 3.5 Hz tACS decreased subjectively perceived memory confidence as compared to sham and 8 Hz tACS. No tACS effects were found on accuracy regarding item and source memory. Our findings suggest that theta activity in the parietal cortex is implicated in subjectively perceived confidence in word recognition.
Collapse
|
43
|
Eidelman-Rothman M, Ben-Simon E, Freche D, Keil A, Hendler T, Levit-Binnun N. Sleepless and desynchronized: Impaired inter trial phase coherence of steady-state potentials following sleep deprivation. Neuroimage 2019; 202:116055. [PMID: 31351165 DOI: 10.1016/j.neuroimage.2019.116055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
Sleep loss has detrimental effects on cognitive and emotional functioning. These impairments have been associated with alterations in EEG measures of power spectrum and event-related potentials, however the impact of sleep loss on inter trial phase coherence (ITPC), a measure of phase consistency over experimental trials, remains mostly unknown. ITPC is thought to reflect the ability of the neural response to temporally synchronize with relevant events, thus optimizing information processing. In the current study we investigated the effects of sleep deprivation on information processing by evaluating the phase consistency of steady-state visual evoked potentials (ssVEPs) as well as amplitude-based measures of ssVEPs, obtained from a group of 18 healthy individuals following 24 h of total sleep deprivation and after a night of habitual sleep. An ssVEP task was utilized, which included the presentation of dots flickering at 7.5 Hz, along with a cognitive-emotional task. Our results show that ITPC is significantly reduced under sleep deprivation relative to habitual sleep. Interestingly, decreased ITPC under sleep deprivation was associated with decreased behavioral performance in the psychomotor vigilance task (PVT), a validated measure of reduced vigilance following a lack of sleep. The results suggest that the capability of the brain to synchronize with rhythmic stimuli is disrupted without sleep. Thus, decreased ITPC may represent an objective and mechanistic measure of sleep loss, allowing future work to study the relation between brain-world synchrony and the specific functional impairments associated with sleep deprivation.
Collapse
Affiliation(s)
- M Eidelman-Rothman
- Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya, Israel.
| | - E Ben-Simon
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - D Freche
- Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya, Israel; Physics of Complex Systems, Weizmann Institute of Science, Israel
| | - A Keil
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida
| | - T Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Israel; School of Psychological Sciences, Tel Aviv University, Israel
| | - N Levit-Binnun
- Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya, Israel
| |
Collapse
|
44
|
Transcranial alternating current stimulation of α but not β frequency sharpens multiple visual functions. Brain Stimul 2019; 13:343-352. [PMID: 31711878 DOI: 10.1016/j.brs.2019.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) can entrain and enhance cortical oscillatory activity in a frequency-dependent manner. In our previous study (Nakazono et al., 2016), 20 Hz (β) tACS significantly increased excitability of primary motor cortex compared with 10 Hz (α) tACS. α oscillations are a prominent feature of the primary visual cortex (V1) in a resting electroencephalogram. Hence, we investigated whether α and β tACS can differentially influence multiple visual functions. METHODS Firstly, we evaluated the after-effects of α and β tACS on pattern-reversal (PR) and focal-flash (FF) visual evoked potentials (VEPs). Secondly, we determined the relationship between resting α oscillations and PR-VEPs modulated by tACS. Thirdly, the behavioral effects of tACS were assessed by contrast sensitivity. RESULTS α tACS modulated the amplitudes of PR-VEPs, compared with β tACS, but did not modulate the FF-VEPs. Time-frequency analysis revealed that α tACS facilitated event-related α phase synchronizations without increasing power, which consequently increased the PR-VEP amplitudes. There was a significant positive correlation between PR-VEP amplitudes and resting α oscillations. These findings suggested that α tACS modulated α oscillations, and affected visual functions of contrast and spatial frequency. Indeed, α tACS also improved subjects' contrast sensitivity at the behavioral level. Conversely, β tACS increased posterior α activity, but did not change VEP amplitudes. CONCLUSIONS α tACS can influence different neuronal populations from those influenced by β tACS. Thus, our results provide evidence that α tACS sharpens multiple visual functions by modulating α oscillations in V1.
Collapse
|
45
|
Reiss S, Klackl J, Proulx T, Jonas E. Strength of socio-political attitudes moderates electrophysiological responses to perceptual anomalies. PLoS One 2019; 14:e0220732. [PMID: 31381605 PMCID: PMC6681971 DOI: 10.1371/journal.pone.0220732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
People with strong (vs. moderate) political attitudes have been shown to exhibit less phasic reactivity to perceptual anomalies, presumably to prevent their committed meaning systems from being challenged by novel experiences. Several researchers have proposed that (but not tested whether) firmly committed individuals also engage in more attentional suppression of anomalies, likely mediated by prestimulus alpha power. We expected participants with strong (vs. moderate) political attitudes to display increased pre-stimulus alpha power when processing perceptual anomalies. We recorded electrophysiological activity during the presentation of normal cards (control group) or both normal and anomalous playing cards (experimental group; total N = 191). In line with our predictions, the presence of anomalous playing cards in the stimulus set increased prestimulus alpha power only among individuals with strong but not moderate political attitudes. As potential markers of phasic reactivity, we also analyzed the late positive potential (LPP) and earlier components of the event-related potential, namely P1, N1, and P300. The moderating effect of extreme attitudes on ERP amplitudes remained inconclusive. Altogether, our findings support the idea that ideological conviction is related to increased tonic responses to perceptual anomalies.
Collapse
Affiliation(s)
- Stefan Reiss
- Dept. of Psychology, University of Salzburg, Salzburg, Austria
| | - Johannes Klackl
- Dept. of Psychology, University of Salzburg, Salzburg, Austria
| | - Travis Proulx
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Eva Jonas
- Dept. of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
46
|
Wiegand I, Sander MC. Cue-related processing accounts for age differences in phasic alerting. Neurobiol Aging 2019; 79:93-100. [DOI: 10.1016/j.neurobiolaging.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
47
|
Iemi L, Busch NA, Laudini A, Haegens S, Samaha J, Villringer A, Nikulin VV. Multiple mechanisms link prestimulus neural oscillations to sensory responses. eLife 2019; 8:e43620. [PMID: 31188126 PMCID: PMC6561703 DOI: 10.7554/elife.43620] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.
Collapse
Affiliation(s)
- Luca Iemi
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
| | - Niko A Busch
- Institute of PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Annamaria Laudini
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Saskia Haegens
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Jason Samaha
- Department of PsychologyUniversity of California, Santa CruzSanta CruzUnited States
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Vadim V Nikulin
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyCharité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| |
Collapse
|
48
|
Kohl MC, Schebsdat E, Schneider EN, Niehl A, Strauss DJ, Özdamar Ö, Bohórquez J. Fast acquisition of full-range auditory event-related potentials using an interleaved deconvolution approach. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:540. [PMID: 30710975 DOI: 10.1121/1.5087825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
This work relates to recent advances in the field of auditory event-related potentials (ERP), specifically deconvolution-based ERP acquisition and single-trial processing. An efficient stimulus sequence optimization method for ERP deconvolution is proposed, achieving consistent noise attenuation within a broad designated frequency range. Furthermore, a stimulus presentation paradigm for the fast, interleaved acquisition of auditory brainstem, middle-latency and late responses featuring alternating periods of high-rate deconvolution sequences, and subsequent low-rate stimulation is investigated in 20 normal hearing subjects. Deconvolved sequence responses containing early and middle-latency ERP components are fused with subsequent late responses using a time-frequency resolved weighted averaging method based on cross-trial regularity, yielding a uniform signal-to-noise ratio of the full-range auditory ERP across investigated timescales. Obtained average ERP waveforms exhibit morphologies consistent with both literature values and reference recordings acquired in 15 normal hearing subjects using a prior art approach to full-range auditory ERP acquisition, with all prominent waves being visible in the grand average waveforms. Results suggest the proposed interleaved stimulus presentation and associated ERP processing methodology to be suitable for the fast, reliable extraction of full-range auditory processing correlates in future ERP studies.
Collapse
Affiliation(s)
- Manuel C Kohl
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Erik Schebsdat
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Elena N Schneider
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Annika Niehl
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Daniel J Strauss
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Özcan Özdamar
- Department of Biomedical Engineering, College of Engineering, University of Miami, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, Florida 33124, USA
| | - Jorge Bohórquez
- Department of Biomedical Engineering, College of Engineering, University of Miami, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, Florida 33124, USA
| |
Collapse
|
49
|
Klimesch W. The frequency architecture of brain and brain body oscillations: an analysis. Eur J Neurosci 2018; 48:2431-2453. [PMID: 30281858 PMCID: PMC6668003 DOI: 10.1111/ejn.14192] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.
Collapse
Affiliation(s)
- Wolfgang Klimesch
- Centre of Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
50
|
Resting-state theta/beta EEG ratio is associated with reward- and punishment-related reversal learning. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:754-763. [PMID: 28585018 PMCID: PMC5548847 DOI: 10.3758/s13415-017-0510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prior research has shown that the ratio between resting-state theta (4–7 Hz)-beta (13–30 Hz) oscillations in the electroencephalogram (EEG) is associated with reward- and punishment-related feedback learning and risky decision making. However, it remains unclear whether the theta/beta EEG ratio is also an electrophysiological index for poorer behavioral adaptation when reward and punishment contingencies change over time. The aim of the present study was to investigate whether resting-state theta (4–7 Hz)-beta (13–30 Hz) EEG ratio correlated with reversal learning. A 4-min resting-state EEG was recorded and a gambling task with changing reward-punishment contingencies was administered in 128 healthy volunteers. Results showed an inverse relationship between theta/beta EEG ratio and reversal learning. Our findings replicate and extend previous findings by showing that higher midfrontal theta/beta EEG ratios are associated with poorer reversal learning and behavioral adaptive responses under changing environmental demands.
Collapse
|