1
|
Zhang XY, Wang CJ, Shen HH, Jiang F, Shi JL, Wang WJ, Li MQ. Impaired IL-27 signaling aggravates macrophage senescence and sensitizes premature ovarian insufficiency induction by high-fat diet. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167469. [PMID: 39153664 DOI: 10.1016/j.bbadis.2024.167469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Premature ovarian insufficiency (POI) critically affects female reproductive health, with obesity being a significant and recognized risk factor. Interleukin-27 (IL-27), known for its role in immune modulation and inflammation, has garnered attention in metabolic syndrome research. Nonetheless, the role of these immunometabolic factors on the initiation of POI remains to be unraveled. Our investigation delves into the influence of impaired IL-27 signaling on POI induction, particularly under the challenge of a high-fat diet (HFD). We analyzed patients' serum profiles and established a correlation of increased serum triglycerides with decreased IL-27 levels in POI cases. Experiments on C57BL/6 mice lacking the IL-27 receptor alpha (Il27ra-/-) revealed that when subjected to HFD, these mice developed hallmark POI symptoms. This includes escalated lipid deposition in both liver and ovarian tissues, increased ovarian macrophages cellular aging, and diminished follicle count, all pointing to compromised ovarian function. These findings unveil a novel pathway wherein impaired IL-27 signaling potentiates the onset of POI in the presence of HFD. Understanding the intricate interplay between IL-27, metabolic alterations, and immune dysregulation sheds light on potential therapeutic avenues for managing POI, offering hope for improved reproductive health outcomes.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200433, People's Republic of China
| | - Jia-Lu Shi
- Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China
| | - Wen-Jun Wang
- Hospital of Obstetrics and Gynecology, Fudan University, 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
2
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
3
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 PMCID: PMC11467914 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
4
|
Liu S, Hu H, Zhang M, Zhang Y, Geng R, Jin Y, Cao Y, Guo W, Liu J, Fu S. Puerarin Delays Mammary Gland Aging by Regulating Gut Microbiota and Inhibiting the p38MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10879-10896. [PMID: 38686994 DOI: 10.1021/acs.jafc.3c09444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-β-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijie Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Meng Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ruiqi Geng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuhang Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Shimi G, Sohouli MH, Ghorbani A, Shakery A, Zand H. The interplay between obesity, immunosenescence, and insulin resistance. Immun Ageing 2024; 21:13. [PMID: 38317257 PMCID: PMC10840211 DOI: 10.1186/s12979-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Obesity, which is the accumulation of fat in adipose tissue, has adverse impacts on human health. Obesity-related metabolic dysregulation has similarities to the metabolic alterations observed in aging. It has been shown that the adipocytes of obese individuals undergo cellular aging, known as senescence. Senescence can be transmitted to other normal cells through a series of chemical factors referred to as the senescence-associated secretory phenotype (SASP). Most of these factors are pro-inflammatory compounds. The immune system removes these senescent T-cells, but immunosenescence, which is the senescence of immune cells, disrupts the clearance of senescent T-cells. Immunosenescence occurs as a result of aging or indirectly through transmission from senescent tissues. The significant occurrence of senescence in obesity is expected to cause immunosenescence and impairs the immune response to resolve inflammation. The sustained and chronic inflammation disrupts insulin's metabolic actions in metabolic tissues. Therefore, this review focuses on the role of senescent adipocyte cells in obesity-associated immunosenescence and subsequent metabolic dysregulation. Moreover, the article suggests novel therapeutic approaches to improve metabolic syndrome by targeting senescent T-cells or using senotherapeutics.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Mohammad Hassan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
6
|
Kakuda T, Suzuki J, Matsuoka Y, Kikugawa T, Saika T, Yamashita M. Senescent CD8 + T cells acquire NK cell-like innate functions to promote antitumor immunity. Cancer Sci 2023. [PMID: 37186472 DOI: 10.1111/cas.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
It has been suggested that aging of the immune system (immunosenescence) results in a decline in the acquired immune response, which is associated with an increase in age-related tumorigenesis. T-cell senescence plays a critical role in immunosenescence and is involved in the age-related decline of the immune function, which increases susceptibility to certain cancers. However, it has been shown that CD8+ T cells with the senescent T-cell phenotype acquire an natural killer (NK) cell-like function and are involved in tumor elimination. Therefore, the role of senescent CD8+ T cells in tumor immunity remains to be elucidated. In this study, we investigated the role of senescent CD8+ T cells in tumor immunity. In a murine model of transferred with B16 melanoma, lung metastasis was significantly suppressed in aged mice (age ≥30 weeks) in comparison to young mice (age 6-10 weeks). We evaluated the cytotoxic activity of CD8+ T cells in vitro and found that CD8+ T cells from aged mice activated in vitro exhibited increased cytotoxic activity in comparison to those from young mice. We used Menin-deficient effector T cells as a model for senescent CD8+ T cells and found that cytotoxic activity and the expression of NK receptors were upregulated in Menin-deficient senescent CD8+ T cells. Furthermore, Menin-deficient CD8+ T cells can eliminate tumor cells in an antigen-independent manner. These results suggest that senescent effector CD8+ T cells may contribute to tumor immunity in the elderly by acquiring NK-like innate immune functions, such as antigen-independent cytotoxic activity.
Collapse
Affiliation(s)
- Toshio Kakuda
- Department of Urologye, Graduate School of Medicin, Ehime University, Toon, Japan
- Department of Immunology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Yuko Matsuoka
- Translational Research Center, Ehime University Hospital, Ehime University, Toon, Japan
| | - Tadahiko Kikugawa
- Department of Urologye, Graduate School of Medicin, Ehime University, Toon, Japan
| | - Takashi Saika
- Department of Urologye, Graduate School of Medicin, Ehime University, Toon, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Toon, Japan
| |
Collapse
|
7
|
Hakura A, Sui H, Seki Y, Sonoda J, Yoshida Y, Takagi H, Yokose S, Matsuda T, Asakura S, Nohmi T. DNA polymerase κ suppresses inflammation and inflammation-induced mutagenesis and carcinogenic potential in the colon of mice. Genes Environ 2023; 45:15. [PMID: 37087526 PMCID: PMC10122296 DOI: 10.1186/s41021-023-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Chronic inflammation induces DNA damage and promotes cell proliferation, thereby increasing the risk of cancer. DNA polymerase κ (Pol κ), involved in translesion DNA synthesis, counteracts mutagenesis induced by inflammation in the colon of mice. In the present study, we examined whether Pol κ suppressed inflammation-induced colon tumorigenesis by treating inactivated Polk knock-in (Polk-/-) mice with dextran sulfate sodium (DSS), an inducer of colon inflammation. RESULTS Male and female Polk-/- and Polk+/+ mice were administered 2% DSS in drinking water for six consecutive days, succeeded via a recovery period of 16 days, followed by 2% DSS for another two days. DSS treatment strongly induced colitis, and the severity of colitis was higher in Polk-/- mice than in Polk+/+ mice. The mice were sacrificed after 19 weeks from the initiation of the first DSS treatment and subjected to pathological examination and mutation analysis. DSS treatment induced colonic dysplasia, and the multiplicity of dysplasia was higher in Polk-/- mice than in Polk+/+mice. Some of the dysplasias in Polk-/- mice exhibited β-catenin-stained nucleus and/or cytoplasm. Mutation frequencies in the gpt reporter gene were increased by DSS treatment in Polk-/- mice, and were higher than those in Polk+/+ mice. CONCLUSIONS Pol κ suppresses inflammation and inflammation-induced dysplasia as well as inflammation-induced mutagenesis. The possible mechanisms by which Pol κ suppresses colitis- and colitis-induced dysplasia are discussed.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan.
| | - Hajime Sui
- Division of Safety Testing, Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, 257-0025, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
- Present Address: Operations Department, Global Safety HQS, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-Ku, Tokyo, 112-8088, Japan
| | - Yusaku Yoshida
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Hisayoshi Takagi
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
8
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
9
|
Bouzzine SM, Abdelaaziz A, Hamidi M, Al-Zahrani FAM, Zayed MEM, El-Shishtawy RM. The Impact of TPA Auxiliary Donor and the π-Linkers on the Performance of Newly Designed Dye-Sensitized Solar Cells: Computational Investigation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1611. [PMID: 36837251 PMCID: PMC9965092 DOI: 10.3390/ma16041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The efficiency of the newly designed dye-sensitized solar cells (DSSCs) containing triphenylamine, diphenylamine (TPA), phenothiazine, and phenoxazine as donors and triazine, phenyl with D1-D2-π-linker-π-(A)2 architecture has been investigated using density functional theory (DFT) and time-dependent (TD-DFT) methods. These methods were used to investigate the geometrical structures, electronic properties, absorption, photovoltaic properties, and chemical reactivity. Furthermore, the calculated results indicate that different architectures can modify the energy levels of HOMO and LUMO and reduce the energy gap. The absorption undergoes a redshift displacement. This work aims at calculating the structural geometries and the electronic and optical properties of the designed dyes. Furthermore, the dye adsorption characteristics, such as the optoelectronic properties and the adsorption energies in the TiO2 clusters, were calculated with counterpoise correction and discussed.
Collapse
Affiliation(s)
- Si Mohamed Bouzzine
- Regional Center for Education and Training Professional, B.P. 8 Errachidia, Morocco
- Equipe de Chimie-Physique, Electrochimie et Environnement, Laboratoire de Chimie-Physique, Environnement et Matériaux, Université Moulay Ismaïl, B.P. 509 Boutalamine, Errachidia, Morocco
| | - Alioui Abdelaaziz
- Equipe de Chimie-Physique, Electrochimie et Environnement, Laboratoire de Chimie-Physique, Environnement et Matériaux, Université Moulay Ismaïl, B.P. 509 Boutalamine, Errachidia, Morocco
| | - Mohamed Hamidi
- Equipe de Chimie-Physique, Electrochimie et Environnement, Laboratoire de Chimie-Physique, Environnement et Matériaux, Université Moulay Ismaïl, B.P. 509 Boutalamine, Errachidia, Morocco
| | - Fatimah A. M. Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohie E. M. Zayed
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
10
|
Muyayalo KP, Tao D, Lin XX, Zhang YJ. Age-related changes in CD4 + T and NK cell compartments may contribute to the occurrence of pregnancy loss in advanced maternal age. J Reprod Immunol 2023; 155:103790. [PMID: 36621090 DOI: 10.1016/j.jri.2022.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A recent study characterized novel immune cell subsets (T, NK, and γδ T cell subsets) related to recurrent pregnancy loss (RPL). This study aims to assess whether these RPL-related immune cell subsets are affected by aging. The percentages of peripheral blood immunes cells from nulligravida women (NGW), women with a history of normal pregnancy (NP), and women with a history of pregnancy loss (PL) were detected by flow cytometry. The correlations between maternal age and cell percentages were assessed. We found a significant positive correlation between PL and maternal age. The percentages of effector memory CD4+ T (CD3+ CD4+ CD45RA¯ CCR7¯), terminally differentiated CD4+ T (CD3+ CD4+ CD45RA+ CCR7¯), and mature NK cells (CD3¯ CD56+lo) significantly increased with maternal age. A significant decrease in the percentage of Naïve CD4+ T cells (CD3+ CD4+ CD45RA+ CCR7+) with age was observed in women from the NP group. Women aged 35 or older had significantly higher percentages of effector memory CD4+ T cells, terminally differentiated CD4+ T cells, and mature NK cells than younger women. Maternal age positively correlates with terminally differentiated CD4+ T, effector memory CD4+ T, and mature NK cell percentages. In contrast, an inverse correlation was observed between Naïve CD4+ T cell and age among women from the NP group. Our findings indicate that age-related CD4+ T and NK cell dysregulation might be involved in the pathogenesis of PL in women with advanced maternal age. The underlying mechanism needs further investigation.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Ding Tao
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
11
|
Olsen MB, Huse C, de Sousa MML, Murphy SL, Sarno A, Obermann TS, Yang K, Holter JC, Jørgensen MJ, Christensen EE, Wang W, Ji P, Heggelund L, Hoel H, Dyrhol-Riise AM, Gregersen I, Aukrust P, Bjørås M, Halvorsen B, Dahl TB. DNA Repair Mechanisms are Activated in Circulating Lymphocytes of Hospitalized Covid-19 Patients. J Inflamm Res 2022; 15:6629-6644. [PMID: 36514358 PMCID: PMC9741826 DOI: 10.2147/jir.s379331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Reactive oxygen species (ROS) are an important part of the inflammatory response during infection but can also promote DNA damage. Due to the sustained inflammation in severe Covid-19, we hypothesized that hospitalized Covid-19 patients would be characterized by increased levels of oxidative DNA damage and dysregulation of the DNA repair machinery. Patients and Methods Levels of the oxidative DNA lesion 8-oxoG and levels of base excision repair (BER) proteins were measured in peripheral blood mononuclear cells (PBMC) from patients (8-oxoG, n = 22; BER, n = 17) and healthy controls (n = 10) (Cohort 1). Gene expression related to DNA repair was investigated in two independent cohorts of hospitalized Covid-19 patients (Cohort 1; 15 patents and 5 controls, Cohort 2; 15 patients and 6 controls), and by publicly available datasets. Results Patients and healthy controls showed comparable amounts of oxidative DNA damage as assessed by 8-oxoG while levels of several BER proteins were increased in Covid-19 patients, indicating enhanced DNA repair in acute Covid-19 disease. Furthermore, gene expression analysis demonstrated regulation of genes involved in BER and double strand break repair (DSBR) in PBMC of Covid-19 patients and expression level of several DSBR genes correlated with the degree of respiratory failure. Finally, by re-analyzing publicly available data, we found that the pathway Hallmark DNA repair was significantly more regulated in circulating immune cells during Covid-19 compared to influenza virus infection, bacterial pneumonia or acute respiratory infection due to seasonal coronavirus. Conclusion Although beneficial by protecting against DNA damage, long-term activation of the DNA repair machinery could also contribute to persistent inflammation, potentially through mechanisms such as the induction of cellular senescence. However, further studies that also include measurements of additional markers of DNA damage are required to determine the role and precise molecular mechanisms for DNA repair in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway,Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU, Trondheim, Norway
| | - Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway,Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Tobias Sebastian Obermann
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Jan Cato Holter
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marte Jøntvedt Jørgensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Erik Egeland Christensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ping Ji
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Vestre Viken Hospital Trust, Drammen, Norway,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anne Margarita Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway,Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Division of Critical Care and Emergencies, Oslo University Hospital, Oslo, Norway,Correspondence: Tuva Børresdatter Dahl, Division of Critical Care and Emergencies and Research Institute of Internal Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo, Norway, Tel +4723072786, Email
| |
Collapse
|
12
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|
13
|
Fadili D, Fahim ZME, Bouzzine SM, Alaoui OT, Hamidi M. Effects of auxiliary electron-withdrawing moieties on the photovoltaic properties of D-π-A’-π-A phosphonic acid-based DSSCs. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Phenothiazine-based dyes containing imidazole with π-linkers of benzene, furan and thiophene: Synthesis, photophysical, electrochemical and computational investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wang L, Lu Z, Zhao J, Schank M, Cao D, Dang X, Nguyen LN, Nguyen LNT, Khanal S, Zhang J, Wu XY, El Gazzar M, Ning S, Moorman J, Yao ZQ. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell 2021; 20:e13513. [PMID: 34752684 PMCID: PMC8672791 DOI: 10.1111/acel.13513] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress‐mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells—the major effectors of host adaptive immunity against infection and malignancy—is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1O2) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X‐ray repair cross‐complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging‐associated diseases.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Hepatitis (HCV/HBV/HIV) Program Department of Veterans Affairs James H. Quillen VA Medical Center Johnson City Tennessee USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Division of Infectious, Inflammatory and Immunologic Diseases Department of Internal Medicine Quillen College of Medicine East Tennessee State University Johnson City Tennessee USA
- Hepatitis (HCV/HBV/HIV) Program Department of Veterans Affairs James H. Quillen VA Medical Center Johnson City Tennessee USA
| |
Collapse
|
16
|
The Association of Anti-Inflammatory Diet Ingredients and Lifestyle Exercise with Inflammaging. Nutrients 2021; 13:nu13113696. [PMID: 34835952 PMCID: PMC8621229 DOI: 10.3390/nu13113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
One of the latest theories on ageing focuses on immune response, and considers the activation of subclinical and chronic inflammation. The study was designed to explain whether anti-inflammatory diet and lifestyle exercise affect an inflammatory profile in the Polish elderly population. Sixty individuals (80.2 ± 7.9 years) were allocated to a low-grade inflammation (LGI n = 33) or high-grade inflammation (HGI n = 27) group, based on C-reactive protein concentration (<3 or ≥3 mg/L) as a conventional marker of systemic inflammation. Diet analysis focused on vitamins D, C, E, A, β-carotene, n-3 and n-6 PUFA using single 24-h dietary recall. LGI demonstrated a lower n-6/n-3 PUFA but higher vitamin D intake than HGI. Physical performance based on 6-min walk test (6MWT) classified the elderly as physically inactive, whereby LGI demonstrated a significantly higher gait speed (1.09 ± 0.26 m/s) than HGI (0.72 ± 0.28 m/s). Circulating interleukins IL-1β, IL-6, IL-13, TNFα and cfDNA demonstrated high concentrations in the elderly with low 6MWT, confirming an impairment of physical performance by persistent systemic inflammation. These findings reveal that increased intake of anti-inflammatory diet ingredients and physical activity sustained throughout life attenuate progression of inflammaging in the elderly and indicate potential therapeutic strategies to counteract pathophysiological effects of ageing.
Collapse
|
17
|
Liu Y, Chen W, Chen J, Ma Y, Cen Y, Wang S, He X, You M, Yang G. miR-122-5p regulates hepatocytes damage caused by BaP and DBP co-exposure through SOCS1/STAT3 signaling in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112570. [PMID: 34352581 DOI: 10.1016/j.ecoenv.2021.112570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BaP and DBP are ubiquitously and contemporaneously present in the environment. However, Current studies largely concentrate on the effects of a single pollutant (BaP or DBP). The liver is vital for biogenic activities. The effects of BaP and DBP co-exposure on liver remain unclear. Thus, we treated human normal liver cell (L02 cell) with BaP or/and DBP. We found that compared to individual exposure, co-exposure to BaP and DBP induced further increased levels of AST and ALT. BaP and DBP co-exposure caused further increased levels of IL-2, IL-6, and TNF-α, decreased IL-10 level, and a higher percentage of apoptotic cells and S-phase arrest cells. BaP and DBP co-exposure worsen the decrease of miR-122-5p level and chaos of SOCS1/STAT3 signaling. Dual-luciferase reporter gene assays showed that SOCS1 was a validated target of miR-122-5p. miR-122-5p overexpression alleviated the increased SOCS1 expression, decreased phospho-STAT3 expression, decreased IL-10 level, increased TNF-α levels, increased percentage of apoptosis and S-phase arrest, and cytotoxicity induced by BaP and DBP co-exposure in hepatocytes. These results suggested that miR-122-5p negatively regulated the synergistic effects on apoptosis and disorder of inflammatory factor secretion involved in hepatocyte injury caused by BaP and DBP co-exposure through targeting SOCS1/STAT3 signaling.
Collapse
Affiliation(s)
- Yining Liu
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wenyan Chen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Chen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yemei Ma
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanli Cen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shengli Wang
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiu He
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingdan You
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| |
Collapse
|
18
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
19
|
Martin K, Tan SJ, Toussaint ND. Magnetic resonance imaging determination of tissue sodium in patients with chronic kidney disease. Nephrology (Carlton) 2021; 27:117-125. [PMID: 34510658 DOI: 10.1111/nep.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Excess sodium is a major modifiable contributor to hypertension and cardiovascular risk. Knowledge of sodium storage and metabolism has derived mainly from indirect measurements of dietary sodium intake and urinary sodium excretion, however both attempt to measure body sodium and fluid in a two-compartment model of intracellular and extracellular spaces. Our understanding of total body sodium has recently included a storage pool in tissues. In the last two decades, sodium-23 magnetic resonance imaging (23 Na MRI) has allowed dynamic quantification of tissue sodium in vivo. Tissue sodium is independently associated with cardiovascular dysfunction and inflammation. This review explores (i) The revolution of our understanding of sodium physiology, (ii) The development and potential clinical adoption of 23 Na MRI to provide improved measurement of total body sodium in CKD and (iii) How we can better understand mechanistic and clinical implications of tissue sodium in hypertension, cardiovascular disease and immune dysregulation, especially in the CKD population.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021; 9:121. [PMID: 34564326 PMCID: PMC8472997 DOI: 10.3390/sports9090121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unmasked mankind's vulnerability to biological threats. Although higher age is a major risk factor for disease severity in COVID-19, several predisposing risk factors for mortality are related to low cardiorespiratory and metabolic fitness, including obesity, cardiovascular disease, diabetes, and hypertension. Reaching physical activity (PA) guideline goals contribute to protect against numerous immune and inflammatory disorders, in addition to multi-morbidities and mortality. Elevated levels of cardiorespiratory fitness, being non-obese, and regular PA improves immunological function, mitigating sustained low-grade systemic inflammation and age-related deterioration of the immune system, or immunosenescence. Regular PA and being non-obese also improve the antibody response to vaccination. In this review, we highlight potential physiological, cellular, and molecular mechanisms that are affected by regular PA, increase the host antiviral defense, and may determine the course and outcome of COVID-19. Not only are the immune system and regular PA in relation to COVID-19 discussed, but also the cardiovascular, respiratory, renal, and hormonal systems, as well as skeletal muscle, epigenetics, and mitochondrial function.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| | - Ian Cotgreave
- Division of Biomaterials and Health, Department of Pharmaceutical and Chemical Safety, Research Institutes of Sweden, 151 36 Södertälje, Sweden;
| | - Maria Furberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Michael Svensson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
21
|
Karantanos T, DeZern AE. Biology and clinical management of hypoplastic MDS: MDS as a bone marrow failure syndrome. Best Pract Res Clin Haematol 2021; 34:101280. [PMID: 34404534 DOI: 10.1016/j.beha.2021.101280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023]
Abstract
Hypoplastic MDS is a subset of MDS characterized by marrow hypocellularity diagnosed in 10-15% of MDS patients. The pathogenesis of this disease shares features of aplastic anemia with activation of the effector T cells against hematopoietic stem and progenitor cells and high-risk MDS with acquisition of somatic mutations that provide survival and growth advantage of these cells in the inflammatory bone marrow microenvironment. Clonal evolution in hypoplastic MDS may be associated with accumulation of DNA damage and progression to AML while clonal hematopoiesis in aplastic anemia is strongly related to immune escape of the hematopoietic cells. Distinction of hypoplastic MDS from other acquired and inherited bone marrow failure syndromes is frequently challenging but it is critical for the appropriate clinical management of the patients. Treatment with immunosuppression is an important component of the clinical approach to patients with hypoplastic MDS while hypomethylating agents and early allogeneic bone marrow transplantation are also considerations in some patients. In this review, we summarize the current literature on the biology of hypoplastic MDS, the differences between this disease and other bone marrow failure syndromes, and the treatment algorithm for patients with this subtype of MDS.
Collapse
Affiliation(s)
- Theodoros Karantanos
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Amy E DeZern
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| |
Collapse
|
22
|
Zhong G, Yang Y, Huang X, Chen J, Feng D, Wei K, Chen J, Chen H. The Serum SIRT1 Protein is Associated with the Severity of Injury and Neurological Recovery in Mice with Traumatic Spinal Cord Injury. Neuroscience 2021; 469:103-109. [PMID: 34171408 DOI: 10.1016/j.neuroscience.2021.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the association between the serum SIRT1 protein and the severity of spinal cord injury (SCI) as well as the neurological recovery in mice. In this study, the wild-type (WT), Mx1-Cre+ SIRT1loxP/loxP (Mx1), and LCK-Cre+SIRT1loxP/loxP (LCK) mice were subjected to sham surgery, mild, moderate, or severe SCI, respectively. The serum was collected at intervals of 12 h, 1 day (d), 3 d, 5 d, 7 d, 10 d, 14 d, and 21 d after the injury. The locomotor function of all the animals was assessed using the Basso mouse scale (BMS) and the serum SIRT1 proteins were analyzed using enzyme-linked immunosorbent assay (ELISA). The results demonstrated that about 7-10 d after SCI, the levels of SIRT1 protein in the serum correlated significantly with the severity of the injury and at 28 d post-injury, there was a distant neurological recovery (BMS score). The serum SIRT1 concentration in both the Mx1 and LCK mice in the sham group was significantly reduced compared to that in the WT mice, and there was a delayed increase in the serum SIRT1 levels after injury. These findings indicate that the SIRT1 concentrations in the serum of the SCI mice closely correlated with the acute severity and neurological outcome.
Collapse
Affiliation(s)
- Guibin Zhong
- Medical Department, Baoshan Branch Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200444, China; Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanqiu Yang
- Medical Department, Baoshan Branch Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200444, China
| | - Xiaodong Huang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, China
| | - Junling Chen
- Medical Department, Baoshan Branch Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200444, China
| | - Daming Feng
- Medical Department, Baoshan Branch Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200444, China
| | - Ke Wei
- Medical Department, Baoshan Branch Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200444, China
| | - Jianwei Chen
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haihong Chen
- Orthopedic Department, Minhang Center Hospital, Fudan University, Shanghai 201100, China.
| |
Collapse
|
23
|
Bocheva GS, Slominski RM, Slominski AT. Immunological Aspects of Skin Aging in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22115729. [PMID: 34072076 PMCID: PMC8198400 DOI: 10.3390/ijms22115729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
The cutaneous immune response is important for the regulation of skin aging well as for the development of immune-mediated skin diseases. Aging of the human skin undergoes immunosenescence with immunological alterations and can be affected by environmental stressors and internal factors, thus leading to various epidermal barrier abnormalities. The dysfunctional epidermal barrier, immune dysregulation, and skin dysbiosis in the advanced age, together with the genetic factors, facilitate the late onset of atopic dermatitis (AD) in the elderly, whose cases have recently been on the rise. Controversial to the healthy aged skin, where overproduction of many cytokines is found, the levels of Th2/Th22 related cytokines inversely correlated with age in the skin of older AD patients. As opposed to an endogenously aged skin, the expression of the terminal differentiation markers significantly increases with age in AD. Despite the atenuated barrier disturbances in older AD patients, the aged skin carries an impairment associated with the aging process, which reflects the persistence of AD. The chronicity of AD in older patients might not directly affect skin aging but does not allow spontaneous remission. Thus, adult- and elderly subtypes of AD are considered as a lifelong disease.
Collapse
Affiliation(s)
- Georgeta St. Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.S.B.); (A.T.S.)
| | - Radomir M. Slominski
- Division of Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.S.B.); (A.T.S.)
| |
Collapse
|
24
|
Mettelman RC, Thomas PG. Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038711. [PMID: 31964647 PMCID: PMC8091954 DOI: 10.1101/cshperspect.a038711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Influenza viruses are a persistent threat to global human health. Increased susceptibility to infection and the risk factors associated with progression to severe influenza-related disease are determined by a multitude of viral, host, and environmental conditions. Decades of epidemiologic research have broadly defined high-risk groups, while new genomic association studies have identified specific host factors impacting an individual's response to influenza. Here, we review and highlight both human susceptibility to influenza infection and the conditions that lead to severe influenza disease.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
25
|
La Rosa F, Agostini S, Saresella M, Costa AS, Piancone F, Miglioli R, Trecate F, Clerici M. Deregulation of IL-37 and its miRNAs modulators in sarcopenic patients after rehabilitation. J Transl Med 2021; 19:172. [PMID: 33902634 PMCID: PMC8077701 DOI: 10.1186/s12967-021-02830-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background sarcopenia is a highly prevalent condition in elderly individuals which is characterized by loss of muscle mass and functions; recent results showed that it is also associated with inflammation. Rehabilitation protocols for sarcopenia are designed to improve physical conditions, but very scarce data are available on their effects on inflammation We verified whether in sarcopenic patients the inflammation is reduced by rehabilitation and investigated the biological correlates of such effect. Methods Twenty-one sarcopenic patients undergoing a specifically-designed rehabilitation program were enrolled in the study. Physical, cognitive and nutritional parameters, as well as the concentration of C-Reactive Protein (CRP), pro-and anti-inflammatory cytokines and cytokine production-modulating miRNAs were measured at the beginning (T0) and at end (30-days; T1) of the rehabilitation. Results Rehabilitation resulted in a significant improvement of physical and cognitive conditions; this was accompanied by a significant reduction of CRP (p = 0.04) as well as of IL-18 (p = 0.008) and IL-37 (p = 0.009) concentration. Notably, the concentration of miR-335-3p (p = 0.007) and miR-657, the two known post-transcriptional regulators of IL-37 production, was increased by the rehabilitation protocol. Conclusions Results herein confirm that successful rehabilitation for sarcopenia results in a reduction of the inflammatory milieu, raise the possibility that IL-37 may be a key target to monitor the rehabilitation-associated improvement in sarcopenia, and suggest that this cytokine could be a therapeutic target in sarcopenic patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Rossella Miglioli
- Specialist Rehabilitation Unit, Istituto Palazzolo Don Carlo Gnocchi, Milano, Italy
| | - Fabio Trecate
- Specialist Rehabilitation Unit, Istituto Palazzolo Don Carlo Gnocchi, Milano, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi-ONLUS, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| |
Collapse
|
26
|
Lu RJ, Wang EK, Benayoun BA. Functional genomics of inflamm-aging and immunosenescence. Brief Funct Genomics 2021; 21:43-55. [PMID: 33690792 DOI: 10.1093/bfgp/elab009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The aging population is at a higher risk for age-related diseases and infections. This observation could be due to immunosenescence: the decline in immune efficacy of both the innate and the adaptive immune systems. Age-related immune decline also links to the concept of 'inflamm-aging,' whereby aging is accompanied by sterile chronic inflammation. Along with a decline in immune function, aging is accompanied by a widespread of 'omics' remodeling. Transcriptional landscape changes linked to key pathways of immune function have been identified across studies, such as macrophages having decreased expression of genes associated to phagocytosis, a major function of macrophages. Therefore, a key mechanism underlying innate immune cell dysfunction during aging may stem from dysregulation of youthful genomic networks. In this review, we discuss both molecular and cellular phenotypes of innate immune cells that contribute to age-related inflammation.
Collapse
Affiliation(s)
- Ryan J Lu
- Leonard Davis School of Gerontology at the University of Southern California
| | - Emily K Wang
- Leonard Davis School of Gerontology at the University of Southern California
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology at the University of Southern California
| |
Collapse
|
27
|
Effects of tart cherry and its metabolites on aging and inflammatory conditions: Efficacy and possible mechanisms. Ageing Res Rev 2021; 66:101254. [PMID: 33434683 DOI: 10.1016/j.arr.2021.101254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023]
Abstract
Inflammation is an underlying cause of or a contributing factor to a number of chronic conditions, including hypertension, insulin resistance, arthritis, and cognitive disorders. A chronic inflammatory state is also associated with aging. Tart cherry (TC) has been extensively studied for its ability to prevent or treat inflammatory diseases and their associated risk factors. TC contains active compounds, including polyphenols that may contribute to its antioxidant and anti-inflammatory effects. Inflammatory signaling pathways regulate the recruitment of inflammatory cells important for the pathogenesis of disease. Whole TC, individual compounds, and their metabolites may be viable treatment options because they can target molecules involved in inflammatory pathways. In this review, the effectiveness of TC in reducing inflammatory markers associated with chronic diseases and the effects of the active compounds in TC and their metabolites on inflammatory pathways are discussed. The main polyphenols present in TC include cyanidins, kaempferol, quercetin, melatonin, neochlorogenic acid, chlorogenic acid, and 3-coumaroylquinic acid. Evidence supports an association between TC intake and reduced risk for inflammatory disease, which may be due to the effects of active compounds in TC on inflammatory pathways, such as NF-κB and mitogen-activated protein kinase.
Collapse
|
28
|
Nadir Y, Brenner B. Relevance of Heparan Sulfate and Heparanase to Severity of COVID-19 in the Elderly. Semin Thromb Hemost 2021; 47:348-350. [PMID: 33429453 DOI: 10.1055/s-0040-1722293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Benjamin Brenner
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
29
|
Fadili D, Bouzzine SM, Hamidi M. Study of the structural and optoelectronic properties of dye solar cells based on phosphonic acid anchoring by DFT functionals. NEW J CHEM 2021. [DOI: 10.1039/d0nj03971c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The choice of the functional and an adequate basis set for reproducing the experimental data of T4-BTDA phosphonic acid-based dye is made by using six functionals and four atomic basis sets.
Collapse
Affiliation(s)
- Driss Fadili
- Laboratoire Chimie-Physique
- Matériaux et Environnement
- Faculty of Science and Technology
- University Moulay Ismaïl of Meknes
- Errachidia
| | - Si Mohamed Bouzzine
- Laboratoire Chimie-Physique
- Matériaux et Environnement
- Faculty of Science and Technology
- University Moulay Ismaïl of Meknes
- Errachidia
| | - Mohamed Hamidi
- Laboratoire Chimie-Physique
- Matériaux et Environnement
- Faculty of Science and Technology
- University Moulay Ismaïl of Meknes
- Errachidia
| |
Collapse
|
30
|
Inflammation and hematopoietic stem cells aging. BLOOD SCIENCE 2020; 3:1-5. [PMID: 35399205 PMCID: PMC8974904 DOI: 10.1097/bs9.0000000000000063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) replenish all lineages of blood cells throughout the lifespan. During aging, the repopulation capacity of HSCs declined, and aged HSCs display a tendency for myeloid differentiation. Several intrinsic and extrinsic factors have been identified to promote HSCs aging. In this review, we focus on the contribution of aging-associated inflammation in provoking HSCs aging and discuss the future research direction of inflammation and HSC aging.
Collapse
|
31
|
Tang D, Liu H, Zhao Y, Qian D, Luo S, Patz EF, Su L, Shen S, ChristianI DC, Gao W, Wei Q. Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival. Am J Cancer Res 2020; 10:2582-2595. [PMID: 32905523 PMCID: PMC7471354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023] Open
Abstract
The nod-like receptor protein 3 (NLRP3) is one of the most characterized inflammasomes, and its genetic variation and functional dysregulation are involved in pathogenesis of several cancers. To systematically evaluate the role of NLRP3 in predicting outcomes of patients with non-small cell lung cancer (NSCLC), we performed a two-phase analysis for associations between genetic variants in NLRP3 inflammasome pathway genes and NSCLC survival by using a published genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We used multivariate Cox proportional hazards regression analysis with Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 20,730 single-nucleotide polymorphisms (SNPs) in 176 genes and overall survival of 1,185 NSCLC patients from the PLCO trial. We further validated the identified significant SNPs in another GWAS dataset with survival data from 984 NSCLC patients of the Harvard Lung Cancer Susceptibility (HLCS) study. The results showed that two independent SNPs in two different genes (i.e., BIRC3 rs11225211 and NRG1 rs4733124) were significantly associated with the NSCLC overall survival, with a combined hazards ratio (HR) of 0.83 [95% confidence interval (CI) = 0.74-0.93 and P = 0.0009] and 1.18 (95% CI = 1.06-1.31) and P = 0.002], respectively. However, further expression quantitative trait loci (eQTL) analysis showed no evidence for correlations between the two SNPs and mRNA expression levels of corresponding genes. These results indicated that genetic variants in the NLRP3 imflammasome pathway gene-sets might be predictors of NSCLC survival, but the molecular mechanisms underlying the observed associations warrant further investigations.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Oncology, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Yuchen Zhao
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Danwen Qian
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Radiology and Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC 27710, USA
| | - Li Su
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public HealthBoston, MA 02115, USA
| | - Sipeng Shen
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public HealthBoston, MA 02115, USA
| | - David C ChristianI
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public HealthBoston, MA 02115, USA
- Department of Medicine, Massachusetts General HospitalBoston, MA 02114, USA
| | - Wen Gao
- Department of Thoracic Oncology, Huadong Hospital Affiliated to Fudan UniversityShanghai 200040, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
32
|
Churov AV, Mamashov KY, Novitskaia AV. Homeostasis and the functional roles of CD4 + Treg cells in aging. Immunol Lett 2020; 226:83-89. [PMID: 32717201 DOI: 10.1016/j.imlet.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE An upward trend in life expectancy has been observed in a majority of developed countries and leading to increasing in aging-related diseases. Aging is a risk factor for the development of widespread clinical conditions such as cardiovascular and autoimmune diseases, cancer, infections. Although studies have been very active, the problem of aging still remains one of the most obscure aspects of human biology. Regulatory T (Treg) cells with immunosuppressive properties have a pivotal role in the maintenance of immune homeostasis. Alterations in Treg cell functionality appear to be of great importance in the development of immune senescence and contribute to increased susceptibility to immune-mediated diseases with age. DESIGN This review highlights recent findings regarding the age-related changes in the numbers and functional activity of human Tregs. Some of the mechanisms that maintain the balance of Tregs during human aging are discussed. The possible roles of Tregs in the pathogenesis of diseases associated with advanced age are also considered. RESULTS Age-related systemic changes, such as thymic involution, hormonal status, and epigenetic modifications, may affect the state of the Treg population and trigger various diseases. These changes involve decline or amplification in the functional activity of Tregs, an increase in the memory Treg subset and shifting of a Th17/Treg balance. CONCLUSION Taken together, the reviewed data suggest equal or even increased Treg functionality with age. Thus, age-mediated Treg expansion and higher Treg activity may contribute to elevated immune suppression and increased risk of infections and cancer.
Collapse
Affiliation(s)
- Alexey V Churov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia.
| | | | - Anastasiia V Novitskaia
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
33
|
Arata Y, Watanabe A, Motosugi R, Murakami R, Goto T, Hori S, Hirayama S, Hamazaki J, Murata S. Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. Genes Cells 2019; 24:801-813. [PMID: 31621149 DOI: 10.1111/gtc.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
The proteasome degradation machinery is essential for a variety of cellular processes including senescence and T-cell immunity. Decreased proteasome activity is associated with the aging process; however, the regulation of the proteasome in CD4+ T cells in relation to aging is unclear. Here, we show that defects in the induction of the proteasome in CD4+ T cells upon T-cell receptor (TCR) stimulation underlie T-cell senescence. Proteasome dysfunction promotes senescence-associated phenotypes, including defective proliferation, cytokine production and increased levels of PD-1+ CD44High CD4+ T cells. Proteasome induction by TCR signaling via MEK-, IKK- and calcineurin-dependent pathways is attenuated with age and decreased in PD-1+ CD44High CD4+ T cells, the proportion of which increases with age. Our results indicate that defective induction of the proteasome is a hallmark of CD4+ T-cell senescence.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Watanabe
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Goto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
35
|
Rao T, Tan Z, Peng J, Guo Y, Chen Y, Zhou H, Ouyang D. The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacol Res 2019; 146:104283. [PMID: 31129178 DOI: 10.1016/j.phrs.2019.104283] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022]
Abstract
Natural products have represented attractive alternatives for disease prevention and treatment over the course of human history and have contributed to the development of modern drugs. These natural products possess beneficial efficacies as well as adverse efffects, which vary largely among individuals because of genetic variations in their pharmacokinetics and pharmacodynamics. As with other synthetic chemical drugs, the dosing of natural products can be optimized to improve efficacy and reduce toxicity according to the pharmacogenetic properties. With the emergence and development of pharmacogenomics, it is possible to discover and identify the targets/mechanisms of pharmacological effects and therapeutic responses of natural products effectively and efficiently on the whole genome level. This review covers the effects of genetic variations in drug metabolizing enzymes, drug transporters, and direct and indirect interactions with the pharmacological targets/pathways on the individual response to natural products, and provides suggestions on dosing regimen adjustments of natural products based on their pharmacokinetic and pharmacogenetic paratmeters. Finally, we provide our viewpoints on the importance and necessity of pharmacogenetic and pharmacogenomic research of natural products in natural medicine's rational development and clinical application of precision medicine.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.
| |
Collapse
|
36
|
Suzuki J, Yamada T, Inoue K, Nabe S, Kuwahara M, Takemori N, Takemori A, Matsuda S, Kanoh M, Imai Y, Yasukawa M, Yamashita M. The tumor suppressor menin prevents effector CD8 T-cell dysfunction by targeting mTORC1-dependent metabolic activation. Nat Commun 2018; 9:3296. [PMID: 30120246 PMCID: PMC6098065 DOI: 10.1038/s41467-018-05854-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2018] [Indexed: 01/01/2023] Open
Abstract
While menin plays an important role in preventing T-cell dysfunction, such as senescence and exhaustion, the regulatory mechanisms remain unclear. We found that menin prevents the induction of dysfunction in activated CD8 T cells by restricting the cellular metabolism. mTOR complex 1 (mTORC1) signaling, glycolysis, and glutaminolysis are augmented by menin deficiency. Rapamycin treatment prevents CD8 T-cell dysfunction in menin-deficient CD8 T cells. Limited glutamine availability also prevents CD8 T-cell dysfunction induced by menin deficiency, and its inhibitory effect is antagonized by α-ketoglutarate (α-KG), an intermediate metabolite of glutaminolysis. α-KG-dependent histone H3K27 demethylation seems to be involved in the dysfunction in menin-deficient CD8 T cells. We also found that α-KG activates mTORC1-dependent central carbon metabolism. These findings suggest that menin maintains the T-cell functions by limiting mTORC 1 activity and subsequent cellular metabolism. T cells can alter their metabolism during activation and differentiation. Here the authors show that the tumor suppressor menin regulates CD8 T-cell fate via the modulation of central carbon metabolism.
Collapse
Affiliation(s)
- Junpei Suzuki
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Takeshi Yamada
- Department of Infections and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Kazuki Inoue
- Division of Integrative Pathophysiology, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, 791-0295, Japan
| | - Shogo Nabe
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon City, Ehime, 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, 791-0295, Japan
| | - Nobuaki Takemori
- Division of Proteomics Research, Department of Proteo-Medicine, Proteo-Science Center, Ehime University, Toon City, Ehime, 791-0295, Japan
| | - Ayako Takemori
- Division of Proteomics Research, Department of Proteo-Medicine, Proteo-Science Center, Ehime University, Toon City, Ehime, 791-0295, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Makoto Kanoh
- Department of Infections and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, 791-0295, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan. .,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon City, Ehime, 791-0295, Japan. .,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, 791-0295, Japan.
| |
Collapse
|
37
|
Pala O, Diaz A, Blomberg BB, Frasca D. B Lymphocytes in Rheumatoid Arthritis and the Effects of Anti-TNF-α Agents on B Lymphocytes: A Review of the Literature. Clin Ther 2018; 40:1034-1045. [PMID: 29801753 DOI: 10.1016/j.clinthera.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE The aim of this article was to review published research related to B lymphocytes in rheumatoid arthritis, their role in the pathogenesis of the disease, the effects of tumor necrosis factor (TNF)-α inhibitors on B lymphocytes, the risk for infection, and responses to vaccines. METHODS A PubMed search was conducted to review recent advances related to B lymphocytes and the effects of anti-TNF-α on B lymphocytes in rheumatoid arthritis. FINDINGS B lymphocytes play an important role in the pathogenesis of rheumatoid arthritis. In this review, we summarize the major mechanisms by which B lymphocytes play a pathologic role in the development and propagation of the disease, as B lymphocytes are recruited to the synovial fluid, where they contribute to local inflammation through the secretion of pro-inflammatory mediators (cytokines, chemokines, micro-RNAs) and present antigens to T cells. We discuss the effects of TNF-α, either direct or indirect, on B lymphocytes expressing receptors for this cytokine. We also show that total B-cell numbers have been reported to be reduced in the blood of patients with rheumatoid arthritis versus healthy controls, but are significantly increased up to normal levels in patients undergoing anti-TNF-α therapy. As for B-cell subsets, controversial results have been reported, with studies showing decreased frequencies of total memory B cells (and memory subsets) and others showing no differences in patients versus healthy controls. Studies investigating the effects of anti-TNF-α therapy have also given controversial results, with therapy found to increase (or not) the frequency of memory B lymphocytes, in patients with rheumatoid arthritis versus healthy controls. Those highly variable results could have been due to differences in patient characteristics and limited numbers of subjects. Finally, we summarize the effects of blocking TNF-α with anti-TNF-α agents on possible infections that patients with rheumatoid arthritis may contract, as well as on responses to vaccination. IMPLICATIONS B lymphocytes play a significant role in the pathogenesis of rheumatoid arthritis, and B cell-depletion therapy has a major effect on the course of the disease. The advances in treatment of rheumatoid arthritis include the development of targeted therapies. Anti-TNF-α therapies are widely used despite potentially serious adverse events. The data on the effects of anti-TNF-α therapies on B lymphocytes are limited and conflicting. There is a need for larger studies to better understand the effects of newly discovered therapies on the different cells of the immune system.
Collapse
Affiliation(s)
- Ozlem Pala
- Division of Rheumatology, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Alain Diaz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
38
|
Grosicki GJ, Fielding RA, Lustgarten MS. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif Tissue Int 2018; 102:433-442. [PMID: 29058056 PMCID: PMC5858871 DOI: 10.1007/s00223-017-0345-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a highly plastic tissue that plays a central role in human health and disease. Aging is associated with a decrease in muscle mass and function (sarcopenia) that is associated with a loss of independence and reduced quality of life. Gut microbiota, the bacteria, archaea, viruses, and eukaryotic microbes residing in the gastrointestinal tract are emerging as a potential contributor to age-associated muscle decline. Specifically, advancing age is characterized by a dysbiosis of gut microbiota that is associated with increased intestinal permeability, facilitating the passage of endotoxin and other microbial products (e.g., indoxyl sulfate) into the circulation. Upon entering the circulation, LPS and other microbial factors promote inflammatory signaling and skeletal muscle changes that are hallmarks of the aging muscle phenotype. This review will summarize existing literature suggesting cross-talk between gut microbiota and skeletal muscle health, with emphasis on the significance of this axis for mediating changes in aging skeletal muscle size, composition, and function.
Collapse
Affiliation(s)
- Gregory J Grosicki
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
39
|
Go E, Tarnawsky SP, Shelley WC, Banno K, Lin Y, Gil CH, Blue EK, Haneline LS, O’Neil KM, Yoder MC. Mycophenolic acid induces senescence of vascular precursor cells. PLoS One 2018. [PMID: 29538431 PMCID: PMC5851606 DOI: 10.1371/journal.pone.0193749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Endothelial dysfunction is central to the pathogenesis of many rheumatic diseases, typified by vascular inflammation and damage. Immunosuppressive drugs induce disease remission and lead to improved patient survival. However, there remains a higher incidence of cardiovascular disease in these patients even after adequate disease control. The purpose of this study was to determine the effect of mycophenolic acid (MPA), a commonly used immunosuppressive drug in rheumatology, on blood vessel or circulating endothelial colony forming cell number and function. METHODS We tested whether mycophenolic acid exerts an inhibitory effect on proliferation, clonogenic potential and vasculogenic function of endothelial colony forming cell. We also studied potential mechanisms involved in the observed effects. RESULTS Treatment with MPA decreased endothelial colony forming cell proliferation, clonogenic potential and vasculogenic function in a dose-dependent fashion. MPA increased senescence-associated β-galactosidase expression, p21 gene expression and p53 phosphorylation, indicative of activation of cellular senescence. Exogenous guanosine supplementation rescued diminished endothelial colony forming cell proliferation and indices of senescence, consistent with the known mechanism of action of MPA. CONCLUSION Our findings show that clinically relevant doses of MPA have potent anti-angiogenic and pro-senescent effects on vascular precursor cells in vitro, thus indicating that treatment with MPA can potentially affect vascular repair and regeneration. This warrants further studies in vivo to determine how MPA therapy contributes to vascular dysfunction and increased cardiovascular disease seen in patients with inflammatory rheumatic disease.
Collapse
Affiliation(s)
- Ellen Go
- Division of Pediatric Rheumatology, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stefan P. Tarnawsky
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - W. Chris Shelley
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kimihiko Banno
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yang Lin
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chang-Hyun Gil
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Emily K. Blue
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Laura S. Haneline
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kathleen M. O’Neil
- Division of Pediatric Rheumatology, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mervin C. Yoder
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Collapse
|
41
|
DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 2017; 105:118-127. [PMID: 29101015 DOI: 10.1016/j.exger.2017.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
The aging process is the major driver of morbidity and mortality, steeply increasing the risk to succumb to cancer, cardiovascular disease, infection and neurodegeneration. Inflammation is a common denominator in age-related pathologies, identifying the immune system as a gatekeeper in aging overall. Among immune cells, T cells are long-lived and exposed to intense replication pressure, making them sensitive to aging-related abnormalities. In successful T cell aging, numbers of naïve cells, repertoire diversity and activation thresholds are preserved as long as possible; in maladaptive T cell aging, protective T cell functions decline and pro-inflammatory effector cells are enriched. Here, we review in the model system of rheumatoid arthritis (RA) how maladaptive T cell aging renders the host susceptible to chronic, tissue-damaging inflammation. In T cells from RA patients, known to be about 20years pre-aged, three interconnected functional domains are altered: DNA damage repair, metabolic activity generating energy and biosynthetic precursor molecules, and shaping of plasma membranes to promote T cell motility. In each of these domains, key molecules and pathways have now been identified, including the glycolytic enzymes PFKFB3 and G6PD; the DNA repair molecules ATM, DNA-PKcs and MRE11A; and the podosome marker protein TKS5. Some of these molecules may help in defining targetable pathways to slow the T cell aging process.
Collapse
|
42
|
Ridolo E, Rogkakou A, Ventura MT, Martignago I, Incorvaia C, Di Lorenzo G, Passalacqua G. How to fit allergen immunotherapy in the elderly. Clin Mol Allergy 2017; 15:17. [PMID: 29785175 PMCID: PMC5951166 DOI: 10.1186/s12948-017-0075-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Asthma, allergic rhinitis (AR) and atopic dermatitis are very common in young people, but in the latest decades it was increasingly recognized that also individuals of higher ages, including the population over 65 years, are concerned. Actually, it is now acknowledged the aging does not considerably alter the immune response to allergens. Allergen immunotherapy (AIT) is the only treatment that works on the causes of allergy, but elderly people are commonly excluded from AIT, except the cases of insect sting allergy. A number of recent studies showed that aged individuals also successfully respond to AIT for respiratory allergy. Therefore, there is no reason to exclude elder patients from AIT. Anyhow, clinical conditions that are considered absolute or relative contraindications are quite frequent in this aged population, thus the risk/benefit ratio must be carefully evaluated for each patient, taking into account that the more frequent occurrence of co-morbidities and the consequent need of daily-based multidrug regimen can favor adverse effects. An important issue concern the ability of AIT, and particularly of sublingual immunotherapy, to significantly improve the quality of life, that often is particularly impaired in the elderly, reducing symptoms and drugs consumption.
Collapse
Affiliation(s)
- Erminia Ridolo
- 1Medicine and Surgery Department, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Anti Rogkakou
- Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Irene Martignago
- 1Medicine and Surgery Department, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | | | - Gabriele Di Lorenzo
- 5Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), Università di Palermo, Palermo, Italy
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
43
|
Interleukin-7 and Immunosenescence. J Immunol Res 2017; 2017:4807853. [PMID: 28484723 PMCID: PMC5397725 DOI: 10.1155/2017/4807853] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 12/21/2022] Open
Abstract
The age of an individual is an important, independent risk factor for many of the most common diseases afflicting modern societies. Interleukin-7 (IL-7) plays a central, critical role in the homeostasis of the immune system. Recent studies support a critical role for IL-7 in the maintenance of a vigorous healthspan. We describe the role of IL-7 and its receptor in immunosenescence, the aging of the immune system. An understanding of the role that IL-7 plays in aging may permit parsimonious preventative or therapeutic solutions for diverse conditions. Perhaps IL-7 might be used to "tune" the immune system to optimize human healthspan and longevity.
Collapse
|
44
|
Lee GH, Lee WW. Unusual CD4 +CD28 - T Cells and Their Pathogenic Role in Chronic Inflammatory Disorders. Immune Netw 2016; 16:322-329. [PMID: 28035207 PMCID: PMC5195841 DOI: 10.4110/in.2016.16.6.322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
CD28 is a primary co-stimulatory receptor that is essential for successful T cell activation, proliferation, and survival. While ubiquitously expressed on naive T cells, the level of CD28 expression on memory T cells is largely dependent on the T-cell differentiation stage in humans. Expansion of circulating T cells lacking CD28 was originally considered a hallmark of age-associated immunological changes in humans, with a progressive loss of CD28 following replicative senescence with advancing age. However, an increasing body of evidence has revealed that there is a significant age-inappropriate expansion of CD4+CD28− T cells in patients with a variety of chronic inflammatory diseases, suggesting that these cells play a role in their pathogenesis. In fact, expanded CD4+CD28− T cells can produce large amounts of proinflammatory cytokines such as IFN-γ and TNF-α and also have cytotoxic potential, which may cause tissue damage and development of pathogenesis in many inflammatory disorders. Here we review the characteristics of CD4+CD28− T cells as well as the recent advances highlighting the contribution of these cells to several disease conditions.
Collapse
Affiliation(s)
- Ga Hye Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea.; Department of Microbiology and Immunology, Seoul National University College of Medicine; Ischemic/Hypoxic Disease Institute and Institute of Infectious Diseases, Seoul National University College of Medicine; Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
45
|
Ioannidou A, Goulielmaki E, Garinis GA. DNA Damage: From Chronic Inflammation to Age-Related Deterioration. Front Genet 2016; 7:187. [PMID: 27826317 PMCID: PMC5078321 DOI: 10.3389/fgene.2016.00187] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
To lessen the "wear and tear" of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression.
Collapse
Affiliation(s)
- Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Biology, University of CreteHeraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Biology, University of CreteHeraklion, Greece
| |
Collapse
|
46
|
Hamann L, Bustami J, Iakoubov L, Szwed M, Mossakowska M, Schumann RR, Puzianowska-Kuznicka M. TLR-6 SNP P249S is associated with healthy aging in nonsmoking Eastern European Caucasians - A cohort study. IMMUNITY & AGEING 2016; 13:7. [PMID: 26997964 PMCID: PMC4797164 DOI: 10.1186/s12979-016-0062-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND To investigate mechanisms that determine healthy aging is of major interest in the modern world marked by longer life expectancies. In addition to lifestyle and environmental factors genetic factors also play an important role in aging phenotypes. The aged immune system is characterized by a chronic micro-inflammation, known as inflamm-aging, that is suspected to trigger the onset of age-related diseases such as cardiovascular disease, Alzheimer's disease, cancer, and Diabetes Mellitus Type 2 (DMT2). We have recently shown that a Toll-like receptor 6 variant (P249S) is associated with susceptibility to cardiovascular disease and speculated that this variant may also be associated with healthy aging in general by decreasing the process of inflamm-aging. RESULTS Analyzing the PolSenior cohort we show here that nonsmoking S allele carriers are significantly protected from age-related diseases (P = 0.008, OR: 0.654). This association depends not only on the association with cardiovascular diseases (P = 0.018, OR: 0.483) for homozygous S allele carriers, but is also driven by a protection from Diabetes Mellitus type 2 (P = 0.010, OR: 0.486) for S allele carriers. In addition we detect a trend but no significant association of this allele with inflamm-aging in terms of baseline IL-6 levels. CONCLUSION We confirm our previous finding of the TLR-6 249S variant to be protective regarding cardiovascular diseases. Furthermore, we present first evidence of TLR-6 249S being involved in DMT2 susceptibility and may be in general associated with healthy aging possibly by reducing the process of inflamm-aging.
Collapse
Affiliation(s)
- Lutz Hamann
- Institute for Microbiology and Hygiene, Charité University Medical Center Berlin, Rahel-Hirsch-Weg 3, 10117 Berlin, Germany
| | - Jasmin Bustami
- Institute for Microbiology and Hygiene, Charité University Medical Center Berlin, Rahel-Hirsch-Weg 3, 10117 Berlin, Germany
| | | | - Malgorzata Szwed
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Mossakowska
- Polsenior Project, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ralf R Schumann
- Institute for Microbiology and Hygiene, Charité University Medical Center Berlin, Rahel-Hirsch-Weg 3, 10117 Berlin, Germany
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland ; Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
47
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
48
|
Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM. Naive T cell maintenance and function in human aging. THE JOURNAL OF IMMUNOLOGY 2015; 194:4073-80. [PMID: 25888703 DOI: 10.4049/jimmunol.1500046] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In studies of immune aging, naive T cells frequently take center stage. Describing the complexity of the human naive T cell repertoire remains a daunting task; however, emerging data suggest that homeostatic mechanisms are robust enough to maintain a large and diverse CD4 T cell repertoire with age. Compartment shrinkage and clonal expansions are challenges for naive CD8 T cells. In addition to population aspects, identification of potentially targetable cellular defects is receiving renewed interest. The last decade has seen remarkable progress in identifying genetic and biochemical pathways that are pertinent for aging in general and that are instructive to understand naive T cell dysfunction. One hallmark sets naive T cell aging apart from most other tissues except stem cells: they initiate but do not complete differentiation programs toward memory cells. Maintaining quiescence and avoiding differentiation may be the ultimate challenge to maintain the functions unique for naive T cells.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94306
| | - Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94306
| | - Mary M Cavanagh
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94306
| | - Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94306
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305; and Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94306
| |
Collapse
|
49
|
Abstract
Age-related changes in the immune system, commonly termed "immunosenescence," contribute to deterioration of the immune response and fundamentally impact the health and survival of elderly individuals. Immunosenescence affects both the innate and adaptive immune systems; however, the most notable changes are in T cell immunity and include thymic involution, the collapse of T cell receptor (TCR) diversity, an imbalance in T cell populations, and the clonal expansion of senescent T cells. Senescent T cells have the ability to produce large quantities of proinflammatory cytokines and cytotoxic mediators; thus, they have been implicated in the pathogenesis of many chronic inflammatory diseases. Recently, an increasing body of evidence has suggested that senescent T cells also have pathogenic potential in cardiovascular diseases, such as hypertension, atherosclerosis, and myocardial infarction, underscoring the detrimental roles of these cells in various chronic inflammatory responses. Given that cardiovascular disease is the number one cause of death worldwide, there is great interest in understanding the contribution of age-related immunological changes to its pathogenesis. In this review, we discuss general features of age-related alterations in T cell immunity and the possible roles of senescent T cells in the pathogenesis of cardiovascular disease.
Collapse
|
50
|
Hamann L, Kupcinskas J, Berrocal Almanza LC, Almanza B, Skieceviciene J, Franke A, Nöthlings U, Schumann RR. Less functional variants of TLR-1/-6/-10 genes are associated with age. IMMUNITY & AGEING 2015; 12:7. [PMID: 26157469 PMCID: PMC4495943 DOI: 10.1186/s12979-015-0034-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Determining the prerequisites for healthy aging is a major task in the modern world characterized by a longer lifespan of the individuals. Besides lifestyle and environmental influences genetic factors are involved as shown by several genome-wide association studies. Older individuals are known to have an impaired immune response, a condition recently termed "inflamm-aging". We hypothesize that the induction of this condition in the elderly is influenced by the sensitivity of the innate immune system. Therefore, we investigated genetic variants of the Toll-like receptor (TLR) family, one of the major family of innate immune receptors, for association with age in two cohorts of healthy, disease-free subjects. RESULTS According to sex we found a positive association of loss-of-function variants of TLR-1 and -6 with healthy aging with odds ratios of 1.54 in males for TLR-6 (249 S/S), and 1.41, 1.66, and 1.64 in females for TLR-1 prom., TLR-1 (248 S/S), and TLR-1 (602 S/S), respectively. Thus, the presence of these variants increases the probability of achieving healthy old age and indicates that a reduced TLR activity may be beneficial in the elderly. CONCLUSIONS This is the first report showing an association of TLR variants with age. While a loss of function of an important immune receptor may be a risk factor for acute infections as has been shown previously, in the setting of healthy ageing it appears to be protective, which may relate to "inflamm-aging". These first results should be reproduced in larger trials to confirm this hypothesis.
Collapse
Affiliation(s)
- Lutz Hamann
- Institute of Microbiology and Hygiene, Charité University Medical Center Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania ; Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Luis C Berrocal Almanza
- Institute of Microbiology and Hygiene, Charité University Medical Center Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andre Franke
- University Hospital Schleswig Holstein, Campus Kiel, Schittenhelmstr. 12, Kiel, Germany
| | - Ute Nöthlings
- Popgen Biobank, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Niemansweg 11, Kiel, Germany ; Present address: Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Ralf R Schumann
- Institute of Microbiology and Hygiene, Charité University Medical Center Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|