1
|
Gu X, Li D, Wu P, Zhang C, Cui X, Shang D, Ma R, Liu J, Sun N, He J. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett 2024; 605:217278. [PMID: 39332588 DOI: 10.1016/j.canlet.2024.217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
As one of the important members of the family of chemokines and their receptors, the CXCL13/CXCR5 axis is involved in follicle formation in normal lymphoid tissues and the establishment of somatic cavity immunity under physiological conditions, as well as being associated with a wide range of infectious, autoimmune, and tumoral diseases. Here in this review, we focus on its role in tumors. Traditional studies have found the axis to be both pro- and anti-tumorigenic, involving a variety of immune cells, including the tumor cells themselves and those in the tumor microenvironment (TME), and the prognostic significance of this axis is clinical context-dependent. With the development of techniques at the single-cell level, we were able to explain in detail the status of the CXCL13/CXCR5 axis in the TME based on real clinical samples and found that it involves a range of crucial intrinsic anti-tumor immune processes in the TME and is therefore important in tumor immunotherapy. We summarize the cellular subsets, physiological functions, and prognostic significance associated with this axis in the most promising immune checkpoint inhibitor (ICI) therapies of the day and summarize possible therapeutic ideas based on this axis. As with any TME study, the most important takeaway is that the complexity of the CXCL13/CXCR5 axis in TME suggests the importance of personalized therapy in tumor therapy.
Collapse
Affiliation(s)
- Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dexin Shang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Hou L, Zhang S, Yu W, Yang X, Shen M, Hao X, Ren X, Sun Q. Single-cell transcriptomics reveals tumor-infiltrating B cell function after neoadjuvant pembrolizumab and chemotherapy in non-small cell lung cancer. J Leukoc Biol 2024; 116:555-564. [PMID: 37931147 DOI: 10.1093/jleuko/qiad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most pervasive lung cancer subtype. Recent studies have shown that immune checkpoint inhibitors achieved favorable clinical benefits in resectable NSCLC; however, the associated mechanism remains unclear. The role of T cells in antitumor immunity has received considerable attention, while the antitumor effects of tumor-infiltrating B cells (TIBs) in NSCLC remain poorly understood. Here, we conducted a single-cell RNA sequencing analysis of immune cells isolated from 12 patients with stage IIIA NSCLC to investigate B cell subtypes and their functions following neoadjuvant chemoimmunotherapy. We confirmed the simultaneous existence of the 4 B cell subtypes. Among them, memory B cells were found to be associated with a positive therapeutic effect to neoadjuvant chemoimmunotherapy. Furthermore, we found that G protein-coupled receptor 183 was most prevalent in memory B cells and associated with a positive therapeutic response. Multiplex immunofluorescence and flow cytometry experiments in an additional cohort of 22 treatment-naïve and 30 stage IIIA/IIIB NSCLC patients treated with neoadjuvant chemoimmunotherapy verified these findings. Overall, our analysis revealed the functions of TIBs and their potential effect on clinical treatment in NSCLC.
Collapse
Affiliation(s)
- Lingjie Hou
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Siyuan Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Wenwen Yu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Xuena Yang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Meng Shen
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Xishan Hao
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| | - Xiubao Ren
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| | - Qian Sun
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| |
Collapse
|
3
|
Liu M. Effector and regulatory B-cell imbalance in systemic sclerosis: cooperation or competition? Clin Rheumatol 2024; 43:2783-2789. [PMID: 39080112 PMCID: PMC11330388 DOI: 10.1007/s10067-024-07086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024]
Abstract
B cells play a central role in the pathogenesis of systemic sclerosis (SSc). Most B-cell studies have focused on their pathological role as antibody producers. However, in addition to immunoglobulin secretion, these cells have a wide range of functions in the immune response, including antigen presentation to T cells and cytokine production. Importantly, not all B-cell subsets promote the immune response. Regulatory B cells (Bregs) attenuate inflammation and contribute to the maintenance of immune tolerance. However, effector B cells (Beffs) positively modulate the immune response through the production of various cytokines. In SSc, Bregs are insufficient and/or dysfunctional. B-cell-targeting biologics have been trialled with promising results in the treatment of SSc. These therapies can affect Bregs or Beffs, which can potentially limit their long-term efficacy. Future strategies might involve the modulation of effector B cells in combination with the stimulation of regulatory subsets. Additionally, the monitoring of individual B-cell subsets in patients may lead to the discovery of novel biomarkers that could help predict disease relapse or progression. The purpose of this review is to summarize the relevant literatures and explain how Bregs and Beffs jointly participate in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12Th Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
4
|
'Adani SN, Mohd Ashari NS, Johan MF, Edinur HA, Mohd Noor NH, Hassan MN. Red Blood Cell Alloimmunization in Pregnancy: A Review of the Pathophysiology, Prevalence, and Risk Factors. Cureus 2024; 16:e60158. [PMID: 38868295 PMCID: PMC11167514 DOI: 10.7759/cureus.60158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
This review paper provides an overview of the risk factors and laboratory testing for red blood cell (RBC) alloimmunization in pregnancy. RBC alloimmunization is a significant medical issue that can cause haemolytic disease of the fetus and newborn (HDFN), leading to neonatal morbidity and mortality. Current HDFN prophylaxis targets only Rhesus D (RhD) alloimmunization, with no effective measures to prevent alloimmunization to other RBC antigen groups. Several factors can increase the risk of developing RBC alloimmunization during pregnancy, including fetomaternal haemorrhage, RBC and maternal genetic status, and previous transfusions. Identifying these risk factors is essential to execute the appropriate management strategies to minimize the risk of HDFN. The review also discusses the laboratory methods and overview of pregnancy management. The paper highlights the importance of identifying and managing the risk factors for RBC alloimmunization in pregnancy to minimize the risk of HDFN and improve neonatal outcomes.
Collapse
Affiliation(s)
- Sanusi Nurul 'Adani
- Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, MYS
| | | | - Muhammad Farid Johan
- Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, MYS
| | - Hisham Atan Edinur
- Forensic Programme, School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, MYS
| | | | - Mohd Nazri Hassan
- Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, MYS
| |
Collapse
|
5
|
Bozhkova M, Gardzheva P, Rangelova V, Taskov H, Murdjeva M. Cutting-edge assessment techniques for B cell immune memory: an overview. BIOTECHNOL BIOTEC EQ 2024; 38. [DOI: 10.1080/13102818.2024.2345119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 10/31/2024] Open
Affiliation(s)
- Martina Bozhkova
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Petya Gardzheva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University–Plovdiv, Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Luo Y, Wu X, Cai Z, Liu F, Li L, Tu Y. The Effect of Splenic Irradiation on Mean Fluorescence Intensity Values of HLA Antibody in Presensitized Patients Waiting for Kidney Transplantation. Transplant Proc 2023; 55:2362-2371. [PMID: 37891022 DOI: 10.1016/j.transproceed.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
To explore the desensitization treatment of patients waiting for kidney transplantation, this article comparative analysis of the effect of splenic irradiation on mean fluorescence intensity (MFI) values of HLA antibodies of 4 presensitized patients. After splenic irradiation, the mean MFI values of HLA-I antibody in 4 patients all decreased (P ≤ .001, P ≤ .001, P ≤ .001, P ≤ .001), and 3 patients had a decrease in intensity level (P ≤ .001, P = .001, P ≤ .001); as for HLA-II antibody, the mean MFI values in 3 patients also decreased (P ≤ .001, P = .025, P = .016), 1 patient had a decrease in intensity level (P ≤ .001) and the other 2 cases had no significant changes (P = 1.000, P = .564). On the other hand, splenic irradiation reduces MFI values in different levels of HLA antibody. So, splenic irradiation can reduce the MFI values of HLA antibodies.
Collapse
Affiliation(s)
- Yu Luo
- Department of Urology, Wuhan Sixth Hospital Affiliated Hospital of Jianghan University, Wuhan, China; Department of Nephropathy & Dialysis & Kidney Transplantation, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiongfei Wu
- Department of Nephropathy & Dialysis & Kidney Transplantation, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhitao Cai
- Department of Nephropathy & Dialysis & Kidney Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Liu
- Department of Urology, Wuhan Sixth Hospital Affiliated Hospital of Jianghan University, Wuhan, China; Department of Nephropathy & Dialysis & Kidney Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lian Li
- Department of Nephropathy & Dialysis & Kidney Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yafang Tu
- Department of Nephropathy & Dialysis & Kidney Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Li Y, Ruan GX, Chen W, Huang H, Zhang R, Wang J, Ouyang Y, Zhu Z, Meng L, Wang R, Huo J, Xu S, Ou X. The histone H2B ubiquitination regulator Wac is essential for plasma cell differentiation. FEBS Lett 2023; 597:1748-1760. [PMID: 37171241 DOI: 10.1002/1873-3468.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Naïve B cells become activated and differentiate into antibody-secreting plasma cells (PCs) when encountering antigens. Here, we reveal that the WW domain-containing adapter protein with coiled-coil (Wac), which is important for histone H2B ubiquitination (ubH2B), is essential for PC differentiation. We demonstrate that B cell-specific Wac knockout mice have severely compromised T cell-dependent and -independent antibody responses. PC differentiation is drastically compromised despite undisturbed germinal center B cell response in the mutant mice. We also observe a significant reduction in global ubH2B in Wac-deficient B cells, which is correlated with downregulated expression of some genes critical for cell metabolism. Thus, our findings demonstrate an essential role of Wac-mediated ubH2B in PC differentiation and shed light on the epigenetic mechanisms underlying this process.
Collapse
Affiliation(s)
- Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Zhejiang, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Limin Meng
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruisi Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Fike AJ, Chodisetti SB, Wright NE, Bricker KN, Domeier PP, Maienschein-Cline M, Rosenfeld AM, Luckenbill SA, Weber JL, Choi NM, Luning Prak ET, Mandal M, Clark MR, Rahman ZSM. STAT3 signaling in B cells controls germinal center zone organization and recycling. Cell Rep 2023; 42:112512. [PMID: 37200190 PMCID: PMC10311431 DOI: 10.1016/j.celrep.2023.112512] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/05/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs). In an abundant antigenic environment, achieved here by prime-boost immunization, STAT3 is not required for GC initiation, maintenance, or proliferation but is important for sustaining GC zonal organization by regulating GC B cell recycling. Th cell-derived signals drive STAT3 tyrosine 705 and serine 727 phosphorylation in LZ B cells, regulating their recycling into the DZ. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses identified STAT3 regulated genes that are critical for LZ cell recycling and transiting through DZ proliferation and differentiation phases. Thus, STAT3 signaling in B cells controls GC zone organization and recycling, and GC egress of PCs, but negatively regulates MBC output.
Collapse
Affiliation(s)
- Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathaniel E Wright
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Phillip P Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara A Luckenbill
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Julia L Weber
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Zhang Y, He J, Yang Z, Zheng H, Deng H, Luo Z, Sun Q, Sun Q. Preventative effect of TSPO ligands on mixed antibody-mediated rejection through a Mitochondria-mediated metabolic disorder. J Transl Med 2023; 21:295. [PMID: 37131248 PMCID: PMC10152746 DOI: 10.1186/s12967-023-04134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Immune-mediated rejection was the major cause of graft dysfunction. Although the advances in immunosuppressive agents have markedly reduced the incidence of T-cell-mediated rejection after transplantation. However, the incidence of antibody-mediated rejection (AMR) remains high. Donor-specific antibodies (DSAs) were considered the major mediators of allograft loss. Previously, we showed that treatment with 18-kDa translocator protein (TSPO) ligands inhibited the differentiation and effector functions of T cells and reduced the rejection observed after allogeneic skin transplantation in mice. This study we further investigate the effect of TSPO ligands on B cells and DSAs production in the recipients of mixed-AMR model. METHODS In vitro, we explored the effect of treatment with TSPO ligands on the activation, proliferation, and antibody production of B cells. Further, we established a heart-transplantation mixed-AMR model in rats. This model was treated with the TSPO ligands, FGIN1-27 or Ro5-4864, to investigate the role of ligands in preventing transplant rejection and DSAs production in vivo. As TSPO was the mitochondrial membrane transporters, we then investigated the TSPO ligands effect on mitochondrial-related metabolic ability of B cells as well as expression of downstream proteins. RESULTS In vitro studies, treatment with TSPO ligands inhibited the differentiation of B cells into CD138+CD27+ plasma cells; reduced antibodies, IgG and IgM, secretion of B cells; and suppressed the B cell activation and proliferation. In the mixed-AMR rat model, treatment with FGIN1-27 or Ro5-4864 attenuated DSA-mediated cardiac-allograft injury, prolonged graft survival, and reduced the numbers of B cells, including IgG+ secreting B cells, T cells and macrophages infiltrating in grafts. For the further mechanism exploration, treatment with TSPO ligands inhibited the metabolic ability of B cells by downregulating expression of pyruvate dehydrogenase kinase 1 and proteins in complexes I, II, and IV of the electron transport chain. CONCLUSIONS We clarified the mechanism of action of TSPO ligands on B-cell functions and provided new ideas and drug targets for the clinical treatment of postoperative AMR.
Collapse
Affiliation(s)
- Yannan Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiannan He
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Haofeng Zheng
- Division of kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 2nd road Zhongshan, Yuexiu District, Guangzhou, 510080, China
| | - Haoxiang Deng
- Division of kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 2nd road Zhongshan, Yuexiu District, Guangzhou, 510080, China
| | - Zihuan Luo
- Division of kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 2nd road Zhongshan, Yuexiu District, Guangzhou, 510080, China
| | - Qipeng Sun
- Division of kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 2nd road Zhongshan, Yuexiu District, Guangzhou, 510080, China
| | - Qiquan Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Division of kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 2nd road Zhongshan, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Chen ST, Oliveira TY, Gazumyan A, Cipolla M, Nussenzweig MC. B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection. Immunity 2023; 56:547-561.e7. [PMID: 36882061 PMCID: PMC10424567 DOI: 10.1016/j.immuni.2023.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Germinal centers (GCs) are sites of B cell clonal expansion, diversification, and antibody affinity selection. This process is limited and directed by T follicular helper cells that provide helper signals to B cells that endocytose, process, and present cognate antigens in proportion to their B cell receptor (BCR) affinity. Under this model, the BCR functions as an endocytic receptor for antigen capture. How signaling through the BCR contributes to selection is not well understood. To investigate the role of BCR signaling in GC selection, we developed a tracker for antigen binding and presentation and a Bruton's tyrosine kinase drug-resistant-mutant mouse model. We showed that BCR signaling per se is necessary for the survival and priming of light zone B cells to receive T cell help. Our findings provide insight into how high-affinity antibodies are selected within GCs and are fundamental to our understanding of adaptive immunity and vaccine development.
Collapse
Affiliation(s)
- Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
11
|
The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages. J Clin Immunol 2023; 43:819-834. [PMID: 36790564 PMCID: PMC10110688 DOI: 10.1007/s10875-023-01442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. METHODS Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. RESULTS A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. CONCLUSION Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity.
Collapse
|
12
|
Mu P, Teng Y, Wu H, Li X, Huo J, Ao J, Chen X. Large yellow croaker (Lrimichthys crocea) IL-2 modulates humoral immunity via the conserved JAK-STAT5 signal pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108519. [PMID: 36608811 DOI: 10.1016/j.fsi.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The terminal differentiation of B cells into plasma cells is central to the generation of protective, long-lived humoral immune responses. In mammals, interleukin-2 (IL-2) has been shown to play a role in B cell proliferation and differentiation. However, it remains unclear whether fish IL-2 is involved in B cell proliferation and differentiation. To this end, we investigated the regulatory role of IL-2 in B cell proliferation and differentiation in large yellow croaker (Larimichthys crocea). We found that L. crocea IL-2 (LcIL-2) significantly increased IgM+ B cells proliferation both in vivo and in vitro and facilitated IgM+ B cells differentiation into plasma cells. Furthermore, LcIL-2 increased the production of specific antibodies after immunization with the Vibrio alginolyticus subunit vaccine, recombinant dihydrolipoamide dehydrogenase (rDLD); simultaneous administration of LcIL-2 and rDLD prior to challenge with Vibrio parahaemolyticus or V. alginolyticus significantly increased relative percent survival. Mechanistically, LcIL-2 promoted B cell proliferation and regulated B cell differentiation by triggering the JAK-STAT5 signaling pathway. Collectively, our results demonstrated that LcIL-2 improved B cell proliferation and specific antibody production via the conserved JAK-STAT5 signaling pathway in large yellow croaker, providing valuable insights into the mechanisms underlying the IL-2-mediated regulation of the humoral immune response in fish.
Collapse
Affiliation(s)
- Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Teng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyu Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinran Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieying Huo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
13
|
Khamyath M, Bonaud A, Balabanian K, Espéli M. [CXCR4 as a rheostat of humoral response]. Med Sci (Paris) 2023; 39:23-30. [PMID: 36692314 DOI: 10.1051/medsci/2022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CXCR4 is a chemokine receptor that plays a central role in cell migration but also in other essential processes such as the development of the immune system. Together with its ligand, the chemokine CXCL12, this signalling axis plays an important role in B lymphocyte biology from their early differentiation in the bone marrow to their activation and differentiation into antibody secreting cells, also called plasma cells. Gain-of-function mutations of CXCR4 are found in a rare immunodeficiency, the WHIM Syndrome. These mutations affect the desensitization of the receptor and lead to a gain of function in response to CXCL12. This review summarizes the role of CXCR4 in the humoral immune responses and using the WHIM Syndrome as a paradigm, highlights the critical regulatory role of CXCR4 desensitization in these processes. Indeed, recent works report that fine-tuning of CXCR4 signalling is essential to limit the extra-follicular immune response and support long term antibody-mediated protection.
Collapse
Affiliation(s)
- Mélanie Khamyath
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
14
|
Tang TF, Chan YT, Cheong HC, Cheok YY, Anuar NA, Looi CY, Gan GG, Wong WF. Regulatory network of BLIMP1, IRF4, and XBP1 triad in plasmacytic differentiation and multiple myeloma pathogenesis. Cell Immunol 2022; 380:104594. [PMID: 36081178 DOI: 10.1016/j.cellimm.2022.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
Antibody secreting plasma cell plays an indispensable role in humoral immunity. As activated B cell undergoes germinal center reaction and develops into plasma cell, it gradually loses B cell characteristics and embraces functional changes associated with immunoglobulins production. Differentiation of B cell into plasma cell involves drastic changes in cell structure, granularity, metabolism, gene expression and epigenetic regulation that couple with the mounting capacity for synthesis of a large quantity of antigen-specific antibodies. The interplay between three hallmark transcriptional regulators IRF4, BLIMP1, and XBP1, is critical for supporting the cellular reprograming activities during B to plasma cell transition. IRF4 promotes plasma cell generation by directing immunoglobulin class switching, proliferation and survival; BLIMP1 serves as a transcriptional repressor that extinguishes B cell features; whereas XBP1 controls unfolded protein response that relieves endoplasmic reticulum stress and permits antibody release during terminal differentiation. Intriguingly, high expression of IRF4, BLIMP1, and XBP1 molecules have been reported in myeloma cells derived from multiple myeloma patients, which negatively impact treatment outcome, prognosis, and relapse frequency. Despite the introduction of immunomodulatory drugs in recent years, multiple myeloma is still an incurable disease with poor survival rate. An in-depth review of IRF4, BLIMP1, and XBP1 triad molecules in plasma cell generation and multiple myeloma tumorigenesis may provide clues to the possibility of targeting these molecules in disease management.
Collapse
Affiliation(s)
- Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Adila Anuar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Gin Gin Gan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Avalos A, Tietsort JT, Suwankitwat N, Woods JD, Jackson SW, Christodoulou A, Morrill C, Liggitt HD, Zhu C, Li QZ, Bui KK, Park H, Iritani BM. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 2022; 7:e153597. [PMID: 35531955 PMCID: PMC9090261 DOI: 10.1172/jci.insight.153597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Collapse
Affiliation(s)
- Alan Avalos
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Jacob T. Tietsort
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Christopher Morrill
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin K. Bui
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Jing Z, McCarron MJ, Dustin ML, Fooksman DR. Germinal center expansion but not plasmablast differentiation is proportional to peptide-MHCII density via CD40-CD40L signaling strength. Cell Rep 2022; 39:110763. [PMID: 35508132 PMCID: PMC9178878 DOI: 10.1016/j.celrep.2022.110763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
T follicular helper (TFH) cells promote expansion of germinal center (GC) B cells and plasma cell differentiation. Whether cognate peptide-MHCII (pMHCII) density instructs selection and cell fate decisions in a quantitative manner remains unclear. Using αDEC205-OVA to differentially deliver OVA peptides to GC B cells on the basis of DEC205 allelic copy number, we find DEC205+/+ B cells take up 2-fold more antigen than DEC205+/- cells, leading to proportional TFH cell help and B cell expansion. To validate these results, we establish a caged OVA peptide, which is readily detected by OVA-specific TFH cells after photo-uncaging. In situ uncaging of peptides leads to multiple serial B-T contacts and cell activation. Differential CD40 signaling, is both necessary and sufficient to mediate 2-fold differences in B cell expansion. While plasmablast numbers are increased, pMHCII density does not directly control the output or quality of plasma cells. Thus, we distinguish the roles TFH cells play in expansion versus differentiation.
Collapse
Affiliation(s)
- Zhixin Jing
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark J McCarron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3-7FY, UK
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Seeley-Fallen MK, Lazzaro M, Liu C, Li QZ, Upadhyaya A, Song W. Non-Muscle Myosin II Is Essential for the Negative Regulation of B-Cell Receptor Signaling and B-Cell Activation. Front Immunol 2022; 13:842605. [PMID: 35493485 PMCID: PMC9047714 DOI: 10.3389/fimmu.2022.842605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Antigen (Ag)-triggered B-cell receptor (BCR) signaling initiates antibody responses. However, prolonged or uncontrolled BCR signaling is associated with the development of self-reactive B-cells and autoimmune diseases. We previously showed that actin-mediated B-cell contraction on Ag-presenting surfaces negatively regulates BCR signaling. Non-muscle myosin II (NMII), an actin motor, is involved in B-cell development and antibody responses by mediating B-cell migration, cytokinesis, and Ag extraction from Ag-presenting cells. However, whether and how NMII regulates humoral responses through BCR signaling remains elusive. Utilizing a B-cell-specific, partial NMIIA knockout (cIIAKO) mouse model and NMII inhibitors, this study examined the role of NMII in BCR signaling. Upon BCR binding to antibody-coated planar lipid bilayers (PLB), NMIIA was recruited to the B-cell contact membrane and formed a ring-like structure during B-cell contraction. NMII recruitment depended on phosphatidylinositol 5-phosphatase (SHIP1), an inhibitory signaling molecule. NMII inhibition by cIIAKO did not affect B-cell spreading on PLB but delayed B-cell contraction and altered BCR clustering. Surface BCR “cap” formation induced by soluble stimulation was enhanced in cIIAKO B-cells. Notably, NMII inhibition by cIIAKO and inhibitors up-regulated BCR signaling in response to both surface-associated and soluble stimulation, increasing phosphorylated tyrosine, CD79a, BLNK, and Erk and decreasing phosphorylated SHIP1. While cIIAKO did not affect B-cell development, the number of germinal center B-cells was significantly increased in unimmunized cIIAKO mice, compared to control mice. While cIIAKO mice mounted similar antibody responses when compared to control mice upon immunization, the percentages of high-affinity antibodies, Ag-specific germinal center B-cells and isotype switched B-cells were significantly lower in cIIAKO mice than in control mice. Furthermore, autoantibody levels were elevated in cIIAKO mice, compared to control mice. Collectively, our results reveal that NMII exerts a B-cell-intrinsic inhibition on BCR signaling by regulating B-cell membrane contraction and surface BCR clustering, which curtails the activation of non-specific and self-reactive B-cells.
Collapse
Affiliation(s)
- Margaret K. Seeley-Fallen
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Michelle Lazzaro
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
- *Correspondence: Wenxia Song,
| |
Collapse
|
19
|
Bach2: A Key Regulator in Th2-Related Immune Cells and Th2 Immune Response. J Immunol Res 2022; 2022:2814510. [PMID: 35313725 PMCID: PMC8934237 DOI: 10.1155/2022/2814510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Th2 immune response is essential for providing protection against pathogens and orchestrating humoral immunity. However, excessive Th2 immune response leads to the pathogenesis of Th2 inflammation diseases, including asthma, allergic rhinitis, and atopic dermatitis. Emerging evidence suggest a critical role of the transcription factor Bach2 in regulating Th2 immune responses. Bach2 serves as a super enhancer and transcriptional repressor to control the differentiation and maturation of Th2-related immune cells such as B cell lineages and T cell lineages. In B cells, Bach2 is required for every stage of B cell development and can delay the class switch recombination and antibody-producing plasma cell differentiation. In T cell lineages, Bach2 suppresses the CD4+ T cell differentiation into Th2 cells, restrains Th2 cytokine production, and promotes the generation and function of regulatory T (Treg) cells to balance the immune activity. Furthermore, studies in various animal models show that Bach2 knockout animals spontaneously develop Th2 inflammation in the airway and gastrointestinal tract. Genome-wide association studies have identified various susceptibility loci of Bach2 which are linked with Th2 inflammatory diseases such as asthma and inflammatory bowel disease. Here, we discuss the critical role of Bach2 involved in the Th2 immune response and associated inflammatory diseases.
Collapse
|
20
|
Lee MSJ, Inoue T, Ise W, Matsuo-Dapaah J, Wing JB, Temizoz B, Kobiyama K, Hayashi T, Patil A, Sakaguchi S, Simon AK, Bezbradica JS, Nagatoishi S, Tsumoto K, Inoue JI, Akira S, Kurosaki T, Ishii KJ, Coban C. B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. J Exp Med 2022; 219:212912. [PMID: 34910106 PMCID: PMC8679780 DOI: 10.1084/jem.20211336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.
Collapse
Affiliation(s)
- Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - A Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Satoru Nagatoishi
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Abstract
Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA;
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA;
| |
Collapse
|
22
|
Law H, Mach M, Howe A, Obeid S, Milner B, Carey C, Elfis M, Fsadni B, Ognenovska K, Phan TG, Carey D, Xu Y, Venturi V, Zaunders J, Kelleher AD, Munier CML. Early expansion of CD38+ICOS+ GC Tfh in draining lymph nodes during influenza vaccination immune response. iScience 2022; 25:103656. [PMID: 35028536 PMCID: PMC8741621 DOI: 10.1016/j.isci.2021.103656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
T follicular helper (Tfh) cells provide critical help to B cells during the germinal center (GC) reaction to facilitate generation of protective humoral immunity. Accessing the human lymph node (LN) to study the commitment of CD4 T cells to GC Tfh cell differentiation during in vivo vaccine responses is difficult. We used ultrasound guided fine needle biopsy to monitor recall responses in axillary LNs to seasonal influenza vaccination in healthy volunteers. Specific expansion of GC cell subsets occurred exclusively within draining LNs five days postvaccination. Draining LN GC Tfh and precursor-Tfh cells express higher levels of CD38, ICOS, and Ki67, indicating they were significantly more activated, motile, and proliferating, compared to contralateral LN cells. These observations provide insight into the early expansion phase of the human Tfh lineage within LNs during a vaccine induced memory response and highlights early LN immune responses may not be reflected in the periphery. Early response to influenza vaccine is characterized by expansion of GC cell subsets Specific expansion of CD38+ ICOS+ GC Tfh and Pre-Tfh occurs in draining LNs only Activated GC Tfh and Pre-Tfh are also proliferating, expressing high levels of Ki67 Correlation between activated Pre-Tfh and activated c-Tfh suggests a potential origin
Collapse
Affiliation(s)
- Hannah Law
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Melanie Mach
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,The University of Sydney, Sydney 2006, NSW, Australia
| | - Annett Howe
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Solange Obeid
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Brad Milner
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Cate Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Maxine Elfis
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Bertha Fsadni
- St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney 2010, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2010, NSW, Australia
| | - Diane Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Yin Xu
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Vanessa Venturi
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - John Zaunders
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | - Anthony D Kelleher
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | |
Collapse
|
23
|
Santamaria K, Desmots F, Leonard S, Caron G, Haas M, Delaloy C, Chatonnet F, Rossille D, Pignarre A, Monvoisin C, Seffals M, Lamaison C, Cogné M, Tarte K, Fest T. Committed Human CD23-Negative Light-Zone Germinal Center B Cells Delineate Transcriptional Program Supporting Plasma Cell Differentiation. Front Immunol 2021; 12:744573. [PMID: 34925321 PMCID: PMC8674954 DOI: 10.3389/fimmu.2021.744573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
B cell affinity maturation occurs in the germinal center (GC). Light-zone (LZ) GC B cells (BGC-cells) interact with follicular dendritic cells (FDCs) and compete for the limited, sequential help from T follicular helper cells needed to escape from apoptosis and complete their differentiation. The highest-affinity LZ BGC-cells enter the cell cycle and differentiate into PCs, following a dramatic epigenetic reorganization that induces transcriptome changes in general and the expression of the PRDM1 gene in particular. Human PC precursors are characterized by the loss of IL-4/STAT6 signaling and the absence of CD23 expression. Here, we studied the fate of human LZ BGC-cells as a function of their CD23 expression. We first showed that CD23 expression was restricted to the GC LZ, where it was primarily expressed by FDCs; less than 10% of tonsil LZ BGC-cells were positive. Sorted LZ BGC-cells left in culture and stimulated upregulated CD23 expression but were unable to differentiate into PCs – in contrast to cells that did not upregulate CD23 expression. An in-depth analysis (including single-cell gene expression) showed that stimulated CD23-negative LZ BGC-cells differentiated into plasmablasts and time course of gene expression changes delineates the transcriptional program that sustains PC differentiation. In particular, we identified a B cell proliferation signature supported by a transient MYC gene expression. Overall, the CD23 marker might be of value in answering questions about the differentiation of normal BGC-cells and allowed us to propose an instructive LZ BGC-cells maturation and fate model.
Collapse
Affiliation(s)
- Kathleen Santamaria
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Fabienne Desmots
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Simon Leonard
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gersende Caron
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Marion Haas
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Céline Delaloy
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Fabrice Chatonnet
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Delphine Rossille
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Amandine Pignarre
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Céline Monvoisin
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Marine Seffals
- University of Rennes 1, UMS Biosit, H2P2 Platform, Rennes, France
| | - Claire Lamaison
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Michel Cogné
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Karin Tarte
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.,Pôle de Biologie, Rennes University Medical Center, Rennes, France
| |
Collapse
|
24
|
Ciardullo C, Szoltysek K, Zhou P, Pietrowska M, Marczak L, Willmore E, Enshaei A, Walaszczyk A, Ho JY, Rand V, Marshall S, Hall AG, Harrison CJ, Soundararajan M, Eswaran J. Low BACH2 Expression Predicts Adverse Outcome in Chronic Lymphocytic Leukaemia. Cancers (Basel) 2021; 14:23. [PMID: 35008187 PMCID: PMC8750551 DOI: 10.3390/cancers14010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogeneous disease with a highly variable clinical outcome. There are well-established CLL prognostic biomarkers that have transformed treatment and improved the understanding of CLL biology. Here, we have studied the clinical significance of two crucial B cell regulators, BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) and BCL6 (B-cell CLL/lymphoma 6), in a cohort of 102 CLL patients and determined the protein interaction networks that they participate in using MEC-1 CLL cells. We observed that CLL patients expressing low levels of BCL6 and BACH2 RNA had significantly shorter overall survival (OS) than high BCL6- and BACH2-expressing cases. Notably, their low expression specifically decreased the OS of immunoglobulin heavy chain variable region-mutated (IGHV-M) CLL patients, as well as those with 11q and 13q deletions. Similar to the RNA data, a low BACH2 protein expression was associated with a significantly shorter OS than a high expression. There was no direct interaction observed between BACH2 and BCL6 in MEC-1 CLL cells, but they shared protein networks that included fifty different proteins. Interestingly, a prognostic index (PI) model that we generated, using integrative risk score values of BACH2 RNA expression, age, and 17p deletion status, predicted patient outcomes in our cohort. Taken together, these data have shown for the first time a possible prognostic role for BACH2 in CLL and have revealed protein interaction networks shared by BCL6 and BACH2, indicating a significant role for BACH2 and BCL6 in key cellular processes, including ubiquitination mediated B-cell receptor functions, nucleic acid metabolism, protein degradation, and homeostasis in CLL biology.
Collapse
Affiliation(s)
- Carmela Ciardullo
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.); (M.S.)
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Katarzyna Szoltysek
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Warszawa, Poland;
| | - Peixun Zhou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Monika Pietrowska
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Warszawa, Poland;
| | - Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Elaine Willmore
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Amir Enshaei
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Anna Walaszczyk
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jia Yee Ho
- Newcastle University Medicine Malaysia, EduCity Iskandar, Johor 79200, Malaysia;
| | - Vikki Rand
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK;
| | - Andrew G. Hall
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Christine J. Harrison
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.); (M.S.)
| | - Jeyanthy Eswaran
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
- Newcastle University Medicine Malaysia, EduCity Iskandar, Johor 79200, Malaysia;
| |
Collapse
|
25
|
Immune checkpoints and the multiple faces of B cells in systemic lupus erythematosus. Curr Opin Rheumatol 2021; 33:592-597. [PMID: 34402453 DOI: 10.1097/bor.0000000000000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW B-lymphocytes are crucial in the pathogenesis of systemic lupus erythematosus (SLE), including autoantibody production, antigen presentation, co-stimulation, and cytokine secretion. Co-stimulatory and co-inhibitory molecules control interactions between B and T cells during an inflammatory response, which is essential for an appropriate host protection and maintenance of self-tolerance. Here, we review recent findings about checkpoint molecules and SLE B cells including their potential therapeutic implications and experiences from clinical trials. RECENT FINDINGS Most prominent checkpoint molecules involved in pathologic B and T cell interaction in SLE are CD40/CD40L and inducible co-stimulator/ICOSL, both also intimately involved in the formation of germinal centers and ectopic lymphoid tissue. Dysregulations of inhibitory checkpoint molecules, like programmed death-1/programmed death-ligand 1 and B- and T-lymphocyte attenuator have been suggested to impair B cell functions in SLE recently. SUMMARY Accumulating evidence indicates that dampening immune responses by either blocking co-activating signals or enhancing co-inhibitory signals in different cell types is a promising approach to treat autoimmune diseases to better control active disease but may also allow resolution of chronic autoimmunity.
Collapse
|
26
|
Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR Affinity Influences T-B Interactions and B Cell Development in Secondary Lymphoid Organs. Front Immunol 2021; 12:703918. [PMID: 34381455 PMCID: PMC8350505 DOI: 10.3389/fimmu.2021.703918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).
Collapse
Affiliation(s)
- Alec J Wishnie
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Bao Q Vuong
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| |
Collapse
|
27
|
Song S, Manook M, Kwun J, Jackson AM, Knechtle SJ, Kelsoe G. Allo-Specific Humoral Responses: New Methods for Screening Donor-Specific Antibody and Characterization of HLA-Specific Memory B Cells. Front Immunol 2021; 12:705140. [PMID: 34326847 PMCID: PMC8313870 DOI: 10.3389/fimmu.2021.705140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) causes more kidney transplant failure than any other single cause. AMR is mediated by antibodies recognizing antigens expressed by the graft, and antibodies generated against major histocompatibility complex (MHC) mismatches are especially problematic. Most research directed towards the management of clinical AMR has focused on identifying and characterizing circulating donor-specific HLA antibody (DSA) and optimizing therapies that reduce B-cell activation and/or block antibody secretion by inhibiting plasmacyte survival. Here we describe a novel set of reagents and techniques to allow more specific measurements of MHC sensitization across different animal transplant models. Additionally, we have used these approaches to isolate and clone individual HLA-specific B cells from patients sensitized by pregnancy or transplantation. We have identified and characterized the phenotypes of individual HLA-specific B cells, determined the V(D)J rearrangements of their paired H and L chains, and generated recombinant antibodies to determine affinity and specificity. Knowledge of the BCR genes of individual HLA-specific B cells will allow identification of clonally related B cells by high-throughput sequence analysis of peripheral blood mononuclear cells and permit us to re-construct the origins of HLA-specific B cells and follow their somatic evolution by mutation and selection.
Collapse
Affiliation(s)
- Shengli Song
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Miriam Manook
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Annette M. Jackson
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stuart J. Knechtle
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
28
|
Wade-Vallance AK, Allen CDC. Intrinsic and extrinsic regulation of IgE B cell responses. Curr Opin Immunol 2021; 72:221-229. [PMID: 34216934 DOI: 10.1016/j.coi.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/23/2023]
Abstract
Stringent regulation of IgE antibody production is critical for constraining allergic responses. This review discusses recent advances in understanding cell-intrinsic and extrinsic mechanisms that regulate the genesis and fate of IgE B cells. B cell-intrinsic regulation of IgE is orchestrated by the IgE B Cell Receptor (BCR). Through its antigen-independent signaling and low surface expression, the IgE BCR drives IgE B cells to differentiate into short-lived plasma cells and/or undergo apoptosis, restricting IgE-expressing cells from entering long-lived compartments. The pivotal extrinsic regulators of IgE responses are T follicular helper cells (TFH). TFH produce IL-4 and IL-21, which, respectively, are the major activating and inhibitory cytokines for IgE class-switching. Other newly identified T follicular subsets also contribute to IgE regulation. Although IgE responses are normally constrained, recent studies suggest that specific conditions can induce the formation of IgE responses with enhanced affinity or longevity, effectively 'breaking the rules' of IgE regulation.
Collapse
Affiliation(s)
- Adam K Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Perini T, Materozzi M, Milan E. The Immunity-malignancy equilibrium in multiple myeloma: lessons from oncogenic events in plasma cells. FEBS J 2021; 289:4383-4397. [PMID: 34117720 DOI: 10.1111/febs.16068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells (PC) that grow within the bone marrow and maintain massive immunoglobulin (Ig) production. Disease evolution is driven by genetic lesions, whose effects on cell biology and fitness underlie addictions and vulnerabilities of myeloma cells. Several genes mutated in myeloma are strictly involved in dictating PC identity and antibody factory function. Here, we evaluate the impact of mutations in IRF4, PRDM1, and XBP1, essential transcription factors driving the B to PC differentiation, on MM cell biology and homeostasis. These factors are highly specialized, with limited overlap in their downstream transcriptional programs. Indeed, IRF4 sustains metabolism, survival, and proliferation, while PRDM1 and XBP1 are mainly responsible for endoplasmic reticulum expansion and sustained Ig secretion. Interestingly, IRF4 undergoes activating mutations and translocations, while PRDM1 and XBP1 are hit by loss-of-function events, raising the hypothesis that containment of the secretory program, but not its complete extinction, may be beneficial to malignant PCs. Finally, recent studies unveiled that also the PRDM1 target, FAM46C/TENT5C, an onco-suppressor uniquely and frequently mutated or deleted in myeloma, is directly and potently involved in orchestrating ER homeostasis and secretory activity. Inactivating mutations found in this gene and its interactors strengthen the notion that reduced secretory capacity confers advantage to myeloma cells. We believe that dissection of the evolutionary pressure on genes driving PC-specific functions in myeloma will disclose the cellular strategies by which myeloma cells maintain an equilibrium between antibody production and survival, thus unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Tommaso Perini
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Materozzi
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Enrico Milan
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
30
|
Dörner T, Szelinski F, Lino AC, Lipsky PE. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open 2021; 6:rmdopen-2020-001258. [PMID: 32675278 PMCID: PMC7425190 DOI: 10.1136/rmdopen-2020-001258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.
Collapse
Affiliation(s)
| | | | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Huang J, Yuen D, Mintern JD, Johnston APR. Opportunities for innovation: Building on the success of lipid nanoparticle vaccines. Curr Opin Colloid Interface Sci 2021; 55:101468. [PMID: 34093062 PMCID: PMC8164502 DOI: 10.1016/j.cocis.2021.101468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.
Collapse
Affiliation(s)
- Jessica Huang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| |
Collapse
|
32
|
Schnaack OH, Nourmohammad A. Optimal evolutionary decision-making to store immune memory. eLife 2021; 10:61346. [PMID: 33908347 PMCID: PMC8116052 DOI: 10.7554/elife.61346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The adaptive immune system provides a diverse set of molecules that can mount specific responses against a multitude of pathogens. Memory is a key feature of adaptive immunity, which allows organisms to respond more readily upon re-infections. However, differentiation of memory cells is still one of the least understood cell fate decisions. Here, we introduce a mathematical framework to characterize optimal strategies to store memory to maximize the utility of immune response over an organism's lifetime. We show that memory production should be actively regulated to balance between affinity and cross-reactivity of immune receptors for an effective protection against evolving pathogens. Moreover, we predict that specificity of memory should depend on the organism's lifespan, and shorter lived organisms with fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a baseline to gauge the efficacy of immune memory in light of an organism's coevolutionary history with pathogens.
Collapse
Affiliation(s)
- Oskar H Schnaack
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, United States
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, United States.,Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
33
|
Abstract
In this issue of Immunity, Kato et al. show that high-affinity vaccines targeting rare B cells capable of broadly protective antibody responses are not hindered by promotion of terminal plasmacytic differentiation. These findings provide new understanding into vaccine design and offer important insight into B cell fate decisions.
Collapse
|
34
|
Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity. Trends Immunol 2021; 42:367-368. [PMID: 33795204 DOI: 10.1016/j.it.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
Animal studies and explant cultures of human lymphoid tissues do not reliably model human vaccine responses. A remarkable strategy for reassociation of human tonsillar cells in ex vivo culture leads to organoid formation and provides an exciting new tool to probe human humoral immune responses to infection.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA.
| | - Justin M Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| |
Collapse
|
35
|
The ubiquitin ligase Peli1 inhibits ICOS and thereby Tfh-mediated immunity. Cell Mol Immunol 2021; 18:969-978. [PMID: 33707688 PMCID: PMC8115645 DOI: 10.1038/s41423-021-00660-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 11/11/2022] Open
Abstract
T follicular helper (Tfh) cells are crucial for regulating autoimmune inflammation and protective immunity against viral infection. However, the molecular mechanism controlling Tfh cell differentiation is poorly understood. Here, through two mixed bone marrow chimeric experiments, we identified Peli1, a T cell-enriched E3 ubiquitin ligase, as an intrinsic regulator that inhibits Tfh cell differentiation. Peli1 deficiency significantly promoted c-Rel-mediated inducible T-cell costimulator (ICOS) expression, and PELI1 mRNA expression was negatively associated with ICOS expression on human CD4+ T cells. Mechanistically, increased ICOS expression on Peli1-KO CD4+ T cells enhanced the activation of PI3K-AKT signaling and thus suppressed the expression of Klf2, a transcription factor that inhibits Tfh differentiation. Therefore, reconstitution of Klf2 abolished the differences in Tfh differentiation and germinal center reaction between WT and Peli1-KO cells. As a consequence, Peli1-deficient CD4+ T cells promoted lupus-like autoimmunity but protected against H1N1 influenza virus infection in mouse models. Collectively, our findings established Peli1 as a critical negative regulator of Tfh differentiation and indicated that targeting Peli1 may have beneficial therapeutic effects in Tfh-related autoimmunity or infectious diseases.
Collapse
|
36
|
Keller EJ, Patel NB, Patt M, Nguyen JK, Jørgensen TN. Partial Protection From Lupus-Like Disease by B-Cell Specific Type I Interferon Receptor Deficiency. Front Immunol 2021; 11:616064. [PMID: 33488628 PMCID: PMC7821742 DOI: 10.3389/fimmu.2020.616064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that can present with many different permutations of symptom presentation. A large subset of SLE patients have been shown to present with elevated interferon stimulated gene (ISG) expression, and Type I IFNs (IFNαβ) have been shown to drive disease in murine models through global IFNα Receptor (IFNAR) knockouts. However, the disease contribution of distinct immune cell subsets in response to constitutively increased levels of IFNαβ is not fully understood. We utilized a B-cell specific IFNAR knockout (BΔIFNAR) on the B6.Nba2 spontaneous-lupus background to determine the contribution of IFNαβ stimulated B cells in disease. We found that IFNαβ signaling in B cells is driving increased splenomegaly, increased populations of activated B cells, and increased populations of germinal center (GC) B cells, memory B cells, and plasma blasts/cells, but did not affect the development of glomerulonephritis and immune-complex deposition. IFNAR expression by B cells also drove production of anti-chromatin IgG, and anti-dsDNA and -nRNP IgG and IgG2C auto-antibody levels, as well as increased Bcl2 expression, affecting GC B cell survival in B6.Nba2 mice.
Collapse
Affiliation(s)
- Emma J. Keller
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States,Cleveland Clinic Lerner College of Medicine, Dept. of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Neeva B. Patel
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Madeline Patt
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Jane K. Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Trine N. Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States,*Correspondence: Trine N. Jørgensen,
| |
Collapse
|
37
|
Maus MV, Alexander S, Bishop MR, Brudno JN, Callahan C, Davila ML, Diamonte C, Dietrich J, Fitzgerald JC, Frigault MJ, Fry TJ, Holter-Chakrabarty JL, Komanduri KV, Lee DW, Locke FL, Maude SL, McCarthy PL, Mead E, Neelapu SS, Neilan TG, Santomasso BD, Shpall EJ, Teachey DT, Turtle CJ, Whitehead T, Grupp SA. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J Immunother Cancer 2020; 8:jitc-2020-001511. [PMID: 33335028 PMCID: PMC7745688 DOI: 10.1136/jitc-2020-001511] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Immune effector cell (IEC) therapies offer durable and sustained remissions in significant numbers of patients with hematological cancers. While these unique immunotherapies have improved outcomes for pediatric and adult patients in a number of disease states, as 'living drugs,' their toxicity profiles, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), differ markedly from conventional cancer therapeutics. At the time of article preparation, the US Food and Drug Administration (FDA) has approved tisagenlecleucel, axicabtagene ciloleucel, and brexucabtagene autoleucel, all of which are IEC therapies based on genetically modified T cells engineered to express chimeric antigen receptors (CARs), and additional products are expected to reach marketing authorization soon and to enter clinical development in due course. As IEC therapies, especially CAR T cell therapies, enter more widespread clinical use, there is a need for clear, cohesive recommendations on toxicity management, motivating the Society for Immunotherapy of Cancer (SITC) to convene an expert panel to develop a clinical practice guideline. The panel discussed the recognition and management of common toxicities in the context of IEC treatment, including baseline laboratory parameters for monitoring, timing to onset, and pharmacological interventions, ultimately forming evidence- and consensus-based recommendations to assist medical professionals in decision-making and to improve outcomes for patients.
Collapse
Affiliation(s)
- Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Sara Alexander
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael R Bishop
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | - Colleen Callahan
- Cancer Immunotherapy Program, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marco L Davila
- Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Claudia Diamonte
- Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew J Frigault
- Bone Marrow Transplant and Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Terry J Fry
- Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Jennifer L Holter-Chakrabarty
- Department of Hematology/Oncology/Bone Marrow Transplant and Cellular Therapy, The University of Oklahoma Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Krishna V Komanduri
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Daniel W Lee
- Department of Pediatrics, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shannon L Maude
- Cancer Immunotherapy Program, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Elena Mead
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David T Teachey
- Cancer Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cameron J Turtle
- Clinical Research Division, Fred Hutchinson Cancer Research Center Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Tom Whitehead
- Emily Whitehead Foundation, Phillipsburg, Pennsylvania, USA
| | - Stephan A Grupp
- Cancer Immunotherapy Program, Division of Oncology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
He S, Wang LH, Liu Y, Li YQ, Chen HT, Xu JH, Peng W, Lin GW, Wei PP, Li B, Xia X, Wang D, Bei JX, He X, Guo Z. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol 2020; 21:294. [PMID: 33287869 PMCID: PMC7720616 DOI: 10.1186/s13059-020-02210-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As core units of organ tissues, cells of various types play their harmonious rhythms to maintain the homeostasis of the human body. It is essential to identify the characteristics of cells in human organs and their regulatory networks for understanding the biological mechanisms related to health and disease. However, a systematic and comprehensive single-cell transcriptional profile across multiple organs of a normal human adult is missing. RESULTS We perform single-cell transcriptomes of 84,363 cells derived from 15 tissue organs of one adult donor and generate an adult human cell atlas. The adult human cell atlas depicts 252 subtypes of cells, including major cell types such as T, B, myeloid, epithelial, and stromal cells, as well as novel COCH+ fibroblasts and FibSmo cells, each of which is distinguished by multiple marker genes and transcriptional profiles. These collectively contribute to the heterogeneity of major human organs. Moreover, T cell and B cell receptor repertoire comparisons and trajectory analyses reveal direct clonal sharing of T and B cells with various developmental states among different tissues. Furthermore, novel cell markers, transcription factors, and ligand-receptor pairs are identified with potential functional regulations in maintaining the homeostasis of human cells among tissues. CONCLUSIONS The adult human cell atlas reveals the inter- and intra-organ heterogeneity of cell characteristics and provides a useful resource in uncovering key events during the development of human diseases in the context of the heterogeneity of cells and organs.
Collapse
Affiliation(s)
- Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Lin-He Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Yang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Yi-Qi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Hai-Tian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Jing-Hong Xu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Wan Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Guo-Wang Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 People’s Republic of China
| | - Xiaojun Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
39
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
40
|
Molari M, Eyer K, Baudry J, Cocco S, Monasson R. Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers. eLife 2020; 9:e55678. [PMID: 32538783 PMCID: PMC7360369 DOI: 10.7554/elife.55678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities across the antibody population in germinal centers. The model is amenable to detailed mathematical analysis and gives insight on the mechanisms through which antigen availability controls the rate of maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage, delay between injections). Both model and experiments show that the average population affinity depends non-monotonically on the antigen dosage. We show that combining quantitative modeling and statistical inference is a concrete way to investigate biological processes underlying affinity maturation (such as selection permissiveness), hardly accessible through measurements.
Collapse
Affiliation(s)
- Marco Molari
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Jean Baudry
- Laboratoire Colloides et Materiaux Divises (LCMD), Chemistry, Biology and Innovation (CBI), ESPCI, PSL Research and CNRSParisFrance
| | - Simona Cocco
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| | - Rémi Monasson
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| |
Collapse
|
41
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Laramée AS, Raczkowski H, Shao P, Batista C, Shukla D, Xu L, Haeryfar SMM, Tesfagiorgis Y, Kerfoot S, DeKoter R. Opposing Roles for the Related ETS-Family Transcription Factors Spi-B and Spi-C in Regulating B Cell Differentiation and Function. Front Immunol 2020; 11:841. [PMID: 32457757 PMCID: PMC7225353 DOI: 10.3389/fimmu.2020.00841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Generation of specific antibodies during an immune response to infection or vaccination depends on the ability to rapidly and accurately select clones of antibody-secreting B lymphocytes for expansion. Antigen-specific B cell clones undergo the cell fate decision to differentiate into antibody-secreting plasma cells, memory B cells, or germinal center B cells. The E26-transformation-specific (ETS) transcription factors Spi-B and Spi-C are important regulators of B cell development and function. Spi-B is expressed throughout B cell development and is downregulated upon plasma cell differentiation. Spi-C is highly related to Spi-B and has similar DNA-binding specificity. Heterozygosity for Spic rescues B cell development and B cell proliferation defects observed in Spi-B knockout mice. In this study, we show that heterozygosity for Spic rescued defective IgG1 secondary antibody responses in Spib–/– mice. Plasma cell differentiation was accelerated in Spib–/– B cells. Gene expression, ChIP-seq, and reporter gene analysis showed that Spi-B and Spi-C differentially regulated Bach2, encoding a key regulator of plasma cell and memory B cell differentiation. These results suggest that Spi-B and Spi-C oppose the function of one another to regulate B cell differentiation and function.
Collapse
Affiliation(s)
- Anne-Sophie Laramée
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Hannah Raczkowski
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Peng Shao
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Carolina Batista
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Devanshi Shukla
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Li Xu
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada
| | - Yodit Tesfagiorgis
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rodney DeKoter
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| |
Collapse
|
43
|
Cui ZW, Zhang XY, Wu CS, Zhang YA, Zhou Y, Zhang XJ. Membrane IgM + plasma cells in grass carp (Ctenopharyngodon idella): Insights into the conserved evolution of IgM + plasma cells in vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103613. [PMID: 31935401 DOI: 10.1016/j.dci.2020.103613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Teleost fish are the most primitive bony vertebrates that contain B cells; thus, comparative analysis of teleost naïve/mature B cells and plasma cells can provide helpful evidence for understanding the evolution paradigms of these two B-cell subpopulations in vertebrates. In this study, we developed monoclonal antibody against grass carp IgM and identified two different IgM+ cell subsets: IgM+ lymphocytes (Lym), resembling naïve/mature B cells, and IgM+ myeloid cells (Mye), resembling plasma cells. Like plasma cells in mammals, the size of IgM+ Mye is significantly larger than that of IgM+ Lym, as revealed by flow cytometric analysis and transmission electron microscopy. The IgM+ Mye were further verified as plasma cells because they showed gene expression patterns similar with those of human plasma cells and a great capacity to secrete IgM. Like mammalian IgM+ and IgA+ plasma cells, not IgG+ plasma cells, grass carp IgM+ Mye also expressed membrane immunoglobulins, a feature conserved in IgM+ plasma cells in vertebrates. Furthermore, recombinant CD40L or IL-21 alone could induce the plasma cell generation and IgM secretion, while the combination of CD40L and IL-21 had greater effect on IgM secretion, but not on plasma cell generation. This study fills an important gap in the knowledge of plasma cells in teleost fish and provides critical insights into the conserved evolution of IgM+ plasma cells in vertebrates.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Fishery Drug Development, Ministry of Agriculture, China, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Dieter C, Lemos NE, Dorfman LE, Duarte GCK, Assmann TS, Crispim D. The rs11755527 polymorphism in the BACH2 gene and type 1 diabetes mellitus: case control study in a Brazilian population. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:138-143. [PMID: 32236312 PMCID: PMC10118942 DOI: 10.20945/2359-3997000000214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/02/2019] [Indexed: 11/23/2022]
Abstract
Objective Type 1 diabetes mellitus (T1DM) is an autoimmune disorder caused by a complex interaction between environmental and genetic risk factors. BTB domain and CNC homolog 2 (BACH2) gene encodes a transcription factor that acts on the differentiation and formation of B and T lymphocytes. BACH2 is also involved in the suppression of apoptosis and inflammation in pancreatic beta-cells, indicating a role for it in the development of T1DM. Therefore, the aim of this study was to evaluate the association of the BACH2 rs11755527 single nucleotide polymorphism (SNP) with T1DM. Subjects and methods This case-control study comprised 475 patients with T1DM and 598 nondiabetic individuals. The BACH2 rs11755527 (C/G) SNP was genotyped using real-time PCR with TaqMan MGB probes. Results Genotype distributions of rs11755527 SNP were in accordance with frequencies predicted by the Hardy-Weinberg equilibrium in case and control groups and were similar between groups (P = 0.729). The minor allele frequency was 43.6% in cases and 42.5% in controls (P = 0.604). Moreover, the G allele frequency did not differ between groups when considering different inheritance models and adjusting for age, gender, body mass index, and HLA DR/DQ genotypes of high-risk for T1DM. Although, well-known high-risk T1DM HLA DR/DQ genotypes were associated with T1DM in our population [OR= 7.42 (95% CI 3.34 - 17.0)], this association was not influenced by the rs11755527 SNP. Conclusion The BACH2 rs11755527 SNP seems not to be associated with T1DM in a Brazilian population.
Collapse
Affiliation(s)
- Cristine Dieter
- Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Natália Emerim Lemos
- Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | | | | | - Taís Silveira Assmann
- Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
45
|
Nicoli F, Mantelli B, Gallerani E, Telatin V, Bonazzi I, Marconi P, Gavioli R, Gabrielli L, Lazzarotto T, Barzon L, Palù G, Caputo A. HPV-Specific Systemic Antibody Responses and Memory B Cells are Independently Maintained up to 6 Years and in a Vaccine-Specific Manner Following Immunization with Cervarix and Gardasil in Adolescent and Young Adult Women in Vaccination Programs in Italy. Vaccines (Basel) 2020; 8:vaccines8010026. [PMID: 31947611 PMCID: PMC7175219 DOI: 10.3390/vaccines8010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Human papillomavirus (HPV) persistent infections are associated with cervical cancer and other HPV-related diseases and tumors. Thus, the characterization of long lasting immunity to currently available HPV vaccines is important. A total of 149 female subjects vaccinated with Cervarix or Gardasil participated to the study and they were stratified according to age (10–12-year-old and 16–20-year-old). Humoral immune responses (IgG and neutralizing antibody titers, antibody avidity) and circulating memory B cells were analyzed after an average of 4–6 years from the third immunization. The humoral responses against HPV-16 and HPV-18 (and HPV-6 and HPV-11 for Gardasil) were high in both age groups and vaccines up to six years from the third dose. However, Cervarix induced significantly higher and more persistent antibody responses, while the two vaccines were rather equivalent in inducing memory B cells against HPV-16 and HPV-18. Moreover, the percentage of subjects with vaccine-specific memory B cells was even superior among Gardasil vaccinees and, conversely, Cervarix vaccinated individuals with circulating antibodies, but undetectable memory B cells were found. Finally, a higher proportion of Cervarix-vaccinated subjects displayed cross-neutralizing responses against non-vaccine types HPV-31 and HPV-45. Gardasil and Cervarix may, thus, differently affect long-lasting humoral immunity from both the quantitative and qualitative point of view.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.N.); (E.G.); (P.M.); (R.G.)
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
| | - Barbara Mantelli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
| | - Eleonora Gallerani
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.N.); (E.G.); (P.M.); (R.G.)
| | - Valentina Telatin
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
| | - Irene Bonazzi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.N.); (E.G.); (P.M.); (R.G.)
| | - Riccardo Gavioli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.N.); (E.G.); (P.M.); (R.G.)
| | - Liliana Gabrielli
- Operative Unit of Clinical Microbiology, St Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Tiziana Lazzarotto
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
| | - Antonella Caputo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.N.); (E.G.); (P.M.); (R.G.)
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (B.M.); (V.T.); (I.B.); (L.B.); (G.P.)
- Correspondence: ; Tel.: +39-0532-974410
| |
Collapse
|
46
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
47
|
Koutsakos M, Nguyen THO, Kedzierska K. With a Little Help from T Follicular Helper Friends: Humoral Immunity to Influenza Vaccination. THE JOURNAL OF IMMUNOLOGY 2019; 202:360-367. [PMID: 30617117 DOI: 10.4049/jimmunol.1800986] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Influenza remains a global and unpredictable threat. Annual vaccination against influenza A and B viruses promotes the induction of Abs and memory B cells, which can provide strain-specific protection against subsequent infections. The formation of effective memory B cell and Ab responses is highly dependent on the germinal center reaction, a well-orchestrated process involving B cells and a specialized CD4+ T cell subset called T follicular helper (Tfh) cells. As Tfh cells predominantly reside within B cell follicles in secondary lymphoid organs, they are challenging to study in humans. Recent identification of a circulating counterpart of Tfh cells has allowed us to better understand the contribution of these circulating Tfh cells during human immune responses. In this article, we summarize the role of human Tfh cells during humoral immune responses and discuss the contribution of Tfh cells in promoting immunity to influenza viruses in healthy cohorts and high-risk groups.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville 3010, Victoria, Australia
| |
Collapse
|
48
|
Weißenberg SY, Szelinski F, Schrezenmeier E, Stefanski AL, Wiedemann A, Rincon-Arevalo H, Welle A, Jungmann A, Nordström K, Walter J, Imgenberg-Kreuz J, Nordmark G, Rönnblom L, Bachali P, Catalina MD, Grammer AC, Lipsky PE, Lino AC, Dörner T. Identification and Characterization of Post-activated B Cells in Systemic Autoimmune Diseases. Front Immunol 2019; 10:2136. [PMID: 31616406 PMCID: PMC6768969 DOI: 10.3389/fimmu.2019.02136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (AID) such as systemic lupus erythematosus (SLE), primary Sjögren's syndrome (pSS), and rheumatoid arthritis (RA) are chronic inflammatory diseases in which abnormalities of B cell function play a central role. Although it is widely accepted that autoimmune B cells are hyperactive in vivo, a full understanding of their functional status in AID has not been delineated. Here, we present a detailed analysis of the functional capabilities of AID B cells and dissect the mechanisms underlying altered B cell function. Upon BCR activation, decreased spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk) phosphorylation was noted in AID memory B cells combined with constitutive co-localization of CD22 and protein tyrosine phosphatase (PTP) non-receptor type 6 (SHP-1) along with hyporesponsiveness to TLR9 signaling, a Syk-dependent response. Similar BCR hyporesponsiveness was also noted specifically in SLE CD27− B cells together with increased PTP activities and increased transcripts for PTPN2, PTPN11, PTPN22, PTPRC, and PTPRO in SLE B cells. Additional studies revealed that repetitive BCR stimulation of normal B cells can induce BCR hyporesponsiveness and that tissue-resident memory B cells from AID patients also exhibited decreased responsiveness immediately ex vivo, suggesting that the hyporesponsive status can be acquired by repeated exposure to autoantigen(s) in vivo. Functional studies to overcome B cell hyporesponsiveness revealed that CD40 co-stimulation increased BCR signaling, induced proliferation, and downregulated PTP expression (PTPN2, PTPN22, and receptor-type PTPs). The data support the conclusion that hyporesponsiveness of AID and especially SLE B cells results from chronic in vivo stimulation through the BCR without T cell help mediated by CD40–CD154 interaction and is manifested by decreased phosphorylation of BCR-related proximal signaling molecules and increased PTPs. The hyporesponsiveness of AID B cells is similar to a form of functional anergy.
Collapse
Affiliation(s)
- Sarah Y Weißenberg
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Eva Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.,Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Anna Welle
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Annemarie Jungmann
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Juliana Imgenberg-Kreuz
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Amrie C Grammer
- RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, VA, United States
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| |
Collapse
|
49
|
Kwak K, Quizon N, Sohn H, Saniee A, Manzella-Lapeira J, Holla P, Brzostowski J, Lu J, Xie H, Xu C, Spillane KM, Tolar P, Pierce SK. Intrinsic properties of human germinal center B cells set antigen affinity thresholds. Sci Immunol 2019; 3:3/29/eaau6598. [PMID: 30504208 DOI: 10.1126/sciimmunol.aau6598] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with naïve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity- and Tfh cell-dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic, actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens, whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of naïve B cells. Thus, intrinsic properties of human GC B cells set thresholds for affinity selection.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nicolas Quizon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Avva Saniee
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - HengYi Xie
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Katelyn M Spillane
- Department of Physics, King's College London, London WC2R 2LS, UK.,Immune Receptor Activation Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Division of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Division of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
50
|
Kwak K, Akkaya M, Pierce SK. B cell signaling in context. Nat Immunol 2019; 20:963-969. [PMID: 31285625 DOI: 10.1038/s41590-019-0427-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Over the past several decades, B cell antigen receptor (BCR)-induced signaling pathways have been described in extraordinary molecular detail, mainly from studies of B cell responses to antigens in vitro. BCR signaling has been shown to govern the initiation of transcriptional programs associated with B cell activation and fate decisions, as well as the BCR-dependent processing of antigen and presentation of antigen to T cells. However, although the potential of the BCR to orchestrate B cell behavior was known, there was no clear appreciation of the context in which B cells signal in secondary lymphoid organs in vivo or how that context influences signaling. In this Review, we describe the current view of the cellular consequences of BCR signaling and advances in the understanding of B cell signaling in context in vivo.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|