1
|
Timberlake TP, Tew N, Memmott J. Gardens reduce seasonal hunger gaps for farmland pollinators. Proc Biol Sci 2024; 291:20241523. [PMID: 39437845 PMCID: PMC11495956 DOI: 10.1098/rspb.2024.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Gardens can benefit pollinators living in surrounding farmland landscapes, but the reason for their value is not clear. Gardens are no different from many semi-natural farmland habitats in terms of the quantity of floral resources (pollen and nectar) they produce, but the timing of their resource supply is very different, which may explain their value. We show that gardens provide 15% of overall annual nectar in farmland landscapes in Southwest UK, but between 50% and 95% during early spring and late summer when farmland supplies are low. Gardens can therefore reduce seasonal nectar gaps experienced by farmland bumblebees. Consistent with this pattern, bumblebee activity increased in gardens relative to farmland during early spring and late summer. An agent-based model reinforces this point, showing that timing, not quantity, of garden nectar supply enhances bumblebee colony growth and survival in farmland. We show that over 90% of farmland in Great Britain is within 1 km of a garden and therefore positive actions by gardeners could have widespread spillover benefits for pollinators across the country. Given the widespread distribution of gardens around the world, we highlight their important interplay with surrounding landscapes for pollinator ecology and conservation.
Collapse
Affiliation(s)
- T. P. Timberlake
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| | - N.E. Tew
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| | - J. Memmott
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| |
Collapse
|
2
|
Jin XF, Ye ZM, He YD, Yang CF, Orr M, Luo A, Williams P, Zhu CD. Intraspecific and interspecific resource partitioning between bumblebee workers and males related to nectar quantity and quality. INSECT SCIENCE 2024. [PMID: 39099473 DOI: 10.1111/1744-7917.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024]
Abstract
Bumblebees are important pollinators for many natural and agricultural systems in temperate regions. Interspecific and intraspecific variation in floral resource preferences have been proposed to influence bumblebee community structure. In particular, sexual dimorphism is a major source of intraspecific niche variation. Although interspecific resource partitioning is well studied, few studies have explored the intraspecific dynamics between workers and males. Here, we report a study on a total of 11 528 workers and 2220 males of 14 bumblebee species recorded over 5 years in the Hengduan Mountains of Southwest China. We first compared the potential for interspecific and intraspecific competition between workers and males using visitation records and resource partitioning indices (overlap index). We then evaluated the influence of nectar traits on flower preference, including nectar volume and the levels of hexose, sucrose and 10 essential amino acids (EAAs). We found that the niche overlap between intraspecific workers and males was higher than that between different species, and temporal overlap alone did not strongly determine diet overlap. Males of most species preferred flowers with high levels of EAAs and hexose, whereas workers of some species preferred flowers with high nectar volume and sucrose levels. This study suggests that there is floral resource partitioning among bumblebee species, and between workers and males, which may play a key role in alleviating interspecific and intraspecific competition. These findings also provide a useful guide for which kinds of plants might be most valuable for bumblebees, especially the understudied males, in this biodiversity hotspot.
Collapse
Affiliation(s)
- Xiao-Fang Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhong-Ming Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yong-Deng He
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Chun-Feng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Boyes C, Rowntree JK, Coulthard E. A bee's-eye view of landscape change: differences in diet of 2 Andrena species (Hymenoptera: Andrenidae) between 1943 and 2021. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:27. [PMID: 39348595 PMCID: PMC11441578 DOI: 10.1093/jisesa/ieae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024]
Abstract
Declines in pollinating insects have been linked to changes in land cover, affecting the availability of nesting sites and floral resources. Our study is the first analysis of changes in pollen load composition of 2 mining bees, Andrena barbilabris (Kirby) and Andrena flavipes (Panzer) (Hymenoptera: Andrenidae), at the same sites in central England, over 75 years. This provides a unique opportunity to remove spatial variation and review temporal changes in pollen diet within the context of landscape change. We analyzed modern-day pollen load composition for these species and compared it with historical data from the same sites. We then examined potential links between land-use change and the bees' diets. Both bees showed dietary flexibility and lower diet breadth for A. barbilabris, and the bees' foraging strategies appear to have changed. Andrena flavipes collected more pollen taxa in a single load, while A. barbilabris appeared to source pollen from greater distances. Landscape changes at the studied sites have affected the nutritional environment for these bees. Our findings are supported by an existing assessment of floral resources, which found floral diversity has decreased overall in both the habitats used by these bees. However, more research is needed on the nutritional content of pollens used by these bees, both now and historically, to estimate how pollen diversity has changed. The bee's-eye view underlines the importance of understanding how species respond to local changes so that effective conservation strategies can be developed.
Collapse
Affiliation(s)
- Clare Boyes
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Emma Coulthard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
4
|
Grüter C, Segers FHID, Hayes L. Extensive loss of forage diversity in social bees owing to flower constancy in simulated environments. Proc Biol Sci 2024; 291:20241036. [PMID: 39082242 PMCID: PMC11289734 DOI: 10.1098/rspb.2024.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
Many bees visit just one flower species during a foraging trip, i.e. they show flower constancy. Flower constancy is important for plant reproduction but it could lead to an unbalanced diet, especially in biodiversity-depleted landscapes. It is assumed that flower constancy does not reduce dietary diversity in social bees, such as honeybees or bumblebees, but this has not yet been tested. We used computer simulations to investigate the effects of flower constancy on colony diet in plant species-rich and species-poor landscapes. We also explored if communication about food sources, which is used by many social bees, further reduces forage diversity. Our simulations reveal an extensive loss of forage diversity owing to flower constancy in both species-rich and species-poor environments. Small flower-constant colonies often discovered only 30-50% of all available plant species, thereby increasing the risk of nutritional deficiencies. Communication often interacted with flower constancy to reduce forage diversity further. Finally, we found that food source clustering, but not habitat fragmentation impaired dietary diversity. These findings highlight the nutritional challenges flower-constant bees face in different landscapes and they can aid in the design of measures to increase forage diversity and improve bee nutrition in human-modified landscapes.
Collapse
Affiliation(s)
- Christoph Grüter
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| | | | - Lucy Hayes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| |
Collapse
|
5
|
Wright EK, Timberlake TP, Baude M, Vaughan IP, Memmott J. Quantifying the production of plant pollen at the farm scale. THE NEW PHYTOLOGIST 2024; 242:2888-2899. [PMID: 38622779 DOI: 10.1111/nph.19763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Plant pollen is rich in protein, sterols and lipids, providing crucial nutrition for many pollinators. However, we know very little about the quantity, quality and timing of pollen availability in real landscapes, limiting our ability to improve food supply for pollinators. We quantify the floral longevity and pollen production of a whole plant community for the first time, enabling us to calculate daily pollen availability. We combine these data with floral abundance and nectar measures from UK farmland to quantify pollen and nectar production at the landscape scale throughout the year. Pollen and nectar production were significantly correlated at the floral unit, and landscape level. The species providing the highest quantity of pollen on farmland were Salix spp. (38%), Filipendula ulmaria (14%), Rubus fruticosus (10%) and Taraxacum officinale (9%). Hedgerows were the most pollen-rich habitats, but permanent pasture provided the majority of pollen at the landscape scale, because of its large area. Pollen and nectar were closely associated in their phenology, with both peaking in late April, before declining steeply in June and remaining low throughout the year. Our data provide a starting point for including pollen in floral resource assessments and ensuring the nutritional requirements of pollinators are met in farmland landscapes.
Collapse
Affiliation(s)
- Ellen K Wright
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Cabot Institute, University of Bristol, Royal Fort House, Bristol, BS8 1UH, UK
| | - Thomas P Timberlake
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Mathilde Baude
- Université d'Orléans, Château de la Source, BP 6749, Orléans Cedex 2, 45067, France
- Institut d'Ecologie et des Sciences de l'Environnement (iEES-Paris), Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Paris, 75005, France
| | - Ian P Vaughan
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
6
|
Glenny WR, Runyon JB, Burkle LA. Bumble bee diet breadth increases with local abundance and phenophase duration, not intraspecific variation in body size. Oecologia 2024; 205:149-162. [PMID: 38796612 PMCID: PMC11144151 DOI: 10.1007/s00442-024-05560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee-flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.
Collapse
Affiliation(s)
- Will R Glenny
- Department of Ecology, Montana State University, Bozeman, MT, USA.
| | - Justin B Runyon
- US Department of Agriculture Forest Service, Rocky Mountain Research Station, Bozeman, MT, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
7
|
Kortsch S, Timberlake TP, Cirtwill AR, Sapkota S, Rokoya M, Devkota K, Roslin T, Memmott J, Saville N. Decline in Honeybees and Its Consequences for Beekeepers and Crop Pollination in Western Nepal. INSECTS 2024; 15:281. [PMID: 38667412 PMCID: PMC11050100 DOI: 10.3390/insects15040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
In understudied regions of the world, beekeeper records can provide valuable insights into changes in pollinator population trends. We conducted a questionnaire survey of 116 beekeepers in a mountainous area of Western Nepal, where the native honeybee Apis cerana cerana is kept as a managed bee. We complemented the survey with field data on insect-crop visitation, a household income survey, and an interview with a local lead beekeeper. In total, 76% of beekeepers reported declines in honeybees, while 86% and 78% reported declines in honey yield and number of beehives, respectively. Honey yield per hive fell by 50% between 2012 and 2022, whilst the number of occupied hives decreased by 44%. Beekeepers ranked climate change and declining flower abundance as the most important drivers of the decline. This raises concern for the future food and economic security of this region, where honey sales contribute to 16% of total household income, and where Apis cerana cerana plays a major role in crop pollination, contributing more than 50% of all flower visits to apple, cucumber, and pumpkin. To mitigate further declines, we promote native habitat and wildflower preservation, and using well-insulated log hives to buffer bees against the increasingly extreme temperature fluctuations.
Collapse
Affiliation(s)
- Susanne Kortsch
- Spatial Foodweb Ecology Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland; (A.R.C.); (T.R.)
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | - Thomas P. Timberlake
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; (T.P.T.); (J.M.)
| | - Alyssa R. Cirtwill
- Spatial Foodweb Ecology Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland; (A.R.C.); (T.R.)
| | - Sujan Sapkota
- HERD International, Thapathali, Kathmandu 24144, Nepal;
| | - Manish Rokoya
- Nepal School of Public Health, Karnali Academy of Health Sciences, Jumla 21200, Nepal;
| | - Kedar Devkota
- Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan 44200, Nepal;
| | - Tomas Roslin
- Spatial Foodweb Ecology Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland; (A.R.C.); (T.R.)
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 18B, 75651 Uppsala, Sweden
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; (T.P.T.); (J.M.)
| | - Naomi Saville
- Institute for Global Health, University College London, 30 Guilford Street, London WC1N 1EH, UK;
| |
Collapse
|
8
|
Birkenbach M, Straub F, Kiesel A, Ayasse M, Wilfert L, Kuppler J. Land-use affects pollinator-specific resource availability and pollinator foraging behaviour. Ecol Evol 2024; 14:e11061. [PMID: 38455145 PMCID: PMC10918743 DOI: 10.1002/ece3.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Land-use management is a key factor causing pollinator declines in agricultural grasslands. This decline can not only be directly driven by land-use (e.g., habitat loss) but also be indirectly mediated through a reduction in floral resource abundance and diversity, which might in turn affect pollinator health and foraging. We conducted surveys of the abundance of flowering plant species and behavioural observations of two common generalist pollinator species, namely the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, in managed grasslands of variable land-use intensity (LUI) to investigate whether land-use affects (1) resource availability of the pollinators, (2) their host plant selection and (3) pollinator foraging behaviour. We have found that the floral composition of plant species that were used as resource by the investigated pollinator species depends on land-use intensity and practices such as mowing or grazing. We have also found that bumblebees, but not syrphid flies, visit different plants depending on LUI or management type. Furthermore, LUI indirectly changed pollinator behaviour via a reduction in plot-level flower diversity and abundance. For example, bumblebees show longer flight durations with decreasing flower cover indicating higher energy expenditure when foraging on land-use intensive plots. Syrphid flies were generally less affected by local land use, showing how different pollinator groups can differently react to land-use change. Overall, we show that land-use can change resource composition, abundance and diversity for pollinators, which can in turn affect pollinator foraging behaviour and potentially contribute to pollinator decline in agricultural grasslands.
Collapse
Affiliation(s)
- Markus Birkenbach
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Florian Straub
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Anna Kiesel
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| |
Collapse
|
9
|
Fischer N, Costa CP, Hur M, Kirkwood JS, Woodard SH. Impacts of neonicotinoid insecticides on bumble bee energy metabolism are revealed under nectar starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169388. [PMID: 38104805 DOI: 10.1016/j.scitotenv.2023.169388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Bumble bees are an important group of insects that provide essential pollination services as a consequence of their foraging behaviors. These pollination services are driven, in part, by energetic exchanges between flowering plants and individual bees. Thus, it is important to examine bumble bee energy metabolism and explore how it might be influenced by external stressors contributing to declines in global pollinator populations. Two stressors that are commonly encountered by bees are insecticides, such as the neonicotinoids, and nutritional stress, resulting from deficits in pollen and nectar availability. Our study uses a metabolomic approach to examine the effects of neonicotinoid insecticide exposure on bumble bee metabolism, both alone and in combination with nutritional stress. We hypothesized that exposure to imidacloprid disrupts bumble bee energy metabolism, leading to changes in key metabolites involved in central carbon metabolism. We tested this by exposing Bombus impatiens workers to imidacloprid according to one of three exposure paradigms designed to explore how chronic versus more acute (early or late) imidacloprid exposure influences energy metabolite levels, then also subjecting them to artificial nectar starvation. The strongest effects of imidacloprid were observed when bees also experienced nectar starvation, suggesting a combinatorial effect of neonicotinoids and nutritional stress on bumble bee energy metabolism. Overall, this study provides important insights into the mechanisms underlying the impact of neonicotinoid insecticides on pollinators, and underscores the need for further investigation into the complex interactions between environmental stressors and energy metabolism.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| | - Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Manhoi Hur
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Jay S Kirkwood
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
10
|
Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas‐Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ, Burgess KS, Suyama Y, de Vere N. Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding. Mol Ecol 2023; 32:6345-6362. [PMID: 36086900 PMCID: PMC10947134 DOI: 10.1111/mec.16689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.
Collapse
Affiliation(s)
- Karen L. Bell
- CSIRO Health & Biosecurity and CSIRO Land & WaterFloreatWAAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Katherine J. Turo
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | - Kevin Nota
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
| | - Alexander Keller
- Organismic and Cellular Networks, Faculty of BiologyBiocenter, Ludwig‐Maximilians‐Universität MünchenPlaneggGermany
| | - Francisco Encinas‐Viso
- Centre for Australian National Biodiversity ResearchCSIROBlack MountainAustralian Capital TerritoryAustralia
| | - Laura Parducci
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | - Rodney T. Richardson
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMarylandUSA
| | | | - Berry J. Brosi
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Kevin S. Burgess
- Department of BiologyCollege of Letters and Sciences, Columbus State University, University System of GeorgiaAtlantaGeorgiaUSA
| | - Yoshihisa Suyama
- Field Science CenterGraduate School of Agricultural Science, Tohoku UniversityOsakiMiyagiJapan
| | - Natasha de Vere
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Martinez A, Calhoun AC, Sadd BM. Investigating the influence of diet diversity on infection outcomes in a bumble bee ( Bombus impatiens) and microsporidian ( Nosema bombi) host-pathogen system. FRONTIERS IN INSECT SCIENCE 2023; 3:1207058. [PMID: 38469464 PMCID: PMC10926413 DOI: 10.3389/finsc.2023.1207058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 03/13/2024]
Abstract
Diet can have an array of both direct and indirect effects on an organism's health and fitness, which can influence the outcomes of host-pathogen interactions. Land use changes, which could impact diet quantity and quality, have imposed foraging stress on important natural and agricultural pollinators. Diet related stress could exacerbate existing negative impacts of pathogen infection. Accounting for most of its nutritional intake in terms of protein and many micronutrients, pollen can influence bee health through changes in immunity, infection, and various aspects of individual and colony fitness. We investigate how adult pollen consumption, pollen type, and pollen diversity influence bumble bee Bombus impatiens survival and infection outcomes for a microsporidian pathogen Nosema (Vairimorpha) bombi. Experimental pathogen exposures of larvae occurred in microcolonies and newly emerged adult workers were given one of three predominantly monofloral, polyfloral, or no pollen diets. Workers were assessed for size, pollen consumption, infection 8-days following adult-eclosion, survival, and the presence of extracellular microsporidian spores at death. Pollen diet treatment, specifically absence of pollen, and infection independently reduced survival, but we saw no effects of pollen, pollen type, or pollen diet diversity on infection outcomes. The latter suggests infection outcomes were likely already set, prior to differential diets. Although infection outcomes were not altered by pollen diet in our study, it highlights both pathogen infection and pollen availability as important for bumble bee health, and these factors may interact at different stages of bumble bee development, at the colony level, or under different dietary regimes.
Collapse
Affiliation(s)
| | | | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|
12
|
Pei C, Hovick TJ, Limb RF, Harmon JP, Geaumont BA. Invasive grass and litter accumulation constrain bee and plant diversity in altered grasslands. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2022.e02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Casanelles‐Abella J, Fontana S, Fournier B, Frey D, Moretti M. Low resource availability drives feeding niche partitioning between wild bees and honeybees in a European city. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2727. [PMID: 36054537 PMCID: PMC10077915 DOI: 10.1002/eap.2727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Cities are socioecological systems that filter and select species, therefore establishing unique species assemblages and biotic interactions. Urban ecosystems can host richer wild bee communities than highly intensified agricultural areas, specifically in resource-rich urban green spaces such as allotments and family gardens. At the same time, urban beekeeping has boomed in many European cities, raising concerns that the fast addition of a large number of managed bees could deplete the existing floral resources, triggering competition between wild bees and honeybees. Here, we studied the interplay between resource availability and the number of honeybees at local and landscape scales and how this relationship influences wild bee diversity. We collected wild bees and honeybees in a pollination experiment using four standardized plant species with distinct floral morphologies. We performed the experiment in 23 urban gardens in the city of Zurich (Switzerland), distributed along gradients of urban and local management intensity, and measured functional traits related to resource use. At each site, we quantified the feeding niche partitioning (calculated as the average distance in the multidimensional trait space) between the wild bee community and the honeybee population. Using multilevel structural equation models (SEM), we tested direct and indirect effects of resource availability, urban beekeeping, and wild bees on the community feeding niche partitioning. We found an increase in feeding niche partitioning with increasing wild bee species richness. Moreover, feeding niche partitioning tended to increase in experimental sites with lower resource availability at the landscape scale, which had lower abundances of honeybees. However, beekeeping intensity at the local and landscape scales did not directly influence community feeding niche partitioning or wild bee species richness. In addition, wild bee species richness was positively influenced by local resource availability, whereas local honeybee abundance was positively affected by landscape resource availability. Overall, these results suggest that direct competition for resources was not a main driver of the wild bee community. Due to the key role of resource availability in maintaining a diverse bee community, our study encourages cities to monitor floral resources to better manage urban beekeeping and help support urban pollinators.
Collapse
Affiliation(s)
- Joan Casanelles‐Abella
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Terrestrial Ecosystems, ETH ZurichZurichSwitzerland
| | - Simone Fontana
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Nature Conservation and Landscape EcologyUniversity of FreiburgFreiburgGermany
| | - Bertrand Fournier
- Institute of Environmental Sciences and Geography, University of PotsdamPotsdamGermany
| | - David Frey
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco Moretti
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
14
|
Ogilvie JE, CaraDonna PJ. The shifting importance of abiotic and biotic factors across the life cycles of wild pollinators. J Anim Ecol 2022; 91:2412-2423. [PMID: 36268682 DOI: 10.1111/1365-2656.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Organisms living in seasonal environments are exposed to different environmental conditions as they transition from one life stage to the next across their life cycle. How different life stages respond to these varying conditions, and the extent to which different life stages are linked, are fundamental components of the ecology of an organism. Nevertheless, the influence of abiotic and biotic factors on different parts of an organism's life cycle is often not accounted for, which limits our understanding of the ecological consequences of environmental change. We investigated the relative importance of climate conditions, food availability, and previous life-stage abundance in an assemblage of seven wild bumble bee species, asking: how do these three factors directly influence bee abundance at each life stage? To do so, we used a 7-year dataset where we monitored climate conditions, floral resources, and abundances of bees in each life stage across the active colony life cycle in a highly seasonal subalpine ecosystem in the Colorado Rocky Mountains, USA. Bee abundance at different life stages responded to abiotic and biotic conditions in a broadly consistent manner across the seven species: the survival and recruitment stage of the life cycle (overwintered queens) responded negatively to longer winters; the growth stage (workers) responded positively to floral resource availability; and the reproductive stage (males) was positively related to the abundance of the previous life stage (workers). Most species also exhibited some idiosyncratic responses. Our long-term examination of annual bumble bees reveals a general set of responses in the abundance of each life stage to climate conditions, floral resource availability, and previous life stage. Across species, these three factors each directly influenced a distinct life stage, illustrating how their relative importance can shift throughout the life cycle. The life-cycle approach that we have taken highlights that important details about demography can be overlooked without considering life-stage-specific responses. Ultimately, it is these life-stage-specific responses that shape population outcomes, not only for animal pollinators but also for many organisms living in seasonal environments.
Collapse
Affiliation(s)
- Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Paul J CaraDonna
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA.,Plant Biology and Conservation, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
15
|
Gonzales D, Hempel de Ibarra N, Anderson K. Remote Sensing of Floral Resources for Pollinators – New Horizons From Satellites to Drones. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect pollinators are affected by the spatio-temporal distribution of floral resources, which are dynamic across time and space, and also influenced heavily by anthropogenic activities. There is a need for spatial data describing the time-varying spatial distribution of flowers, which can be used within behavioral and ecological studies. However, this information is challenging to obtain. Traditional field techniques for mapping flowers are often laborious and limited to relatively small areas, making it difficult to assess how floral resources are perceived by pollinators to guide their behaviors. Conversely, remote sensing of plant traits is a relatively mature technique now, and such technologies have delivered valuable data for identifying and measuring non-floral dynamics in plant systems, particularly leaves, stems and woody biomass in a wide range of ecosystems from local to global scales. However, monitoring the spatial and temporal dynamics of plant floral resources has been notably scarce in remote sensing studies. Recently, lightweight drone technology has been adopted by the ecological community, offering a capability for flexible deployment in the field, and delivery of centimetric resolution data, providing a clear opportunity for capturing fine-grained information on floral resources at key times of the flowering season. In this review, we answer three key questions of relevance to pollination science – can remote sensing deliver information on (a) how isolated are floral resources? (b) What resources are available within a flower patch? And (c) how do floral patches change over time? We explain how such information has potential to deepen ecological understanding of the distribution of floral resources that feed pollinators and the parameters that determine their navigational and foraging choices based on the sensory information they extract at different spatial scales. We provide examples of how such data can be used to generate new insights into pollinator behaviors in distinct landscape types and their resilience to environmental change.
Collapse
|
16
|
Filipiak ZM, Denisow B, Stawiarz E, Filipiak M. Unravelling the dependence of a wild bee on floral diversity and composition using a feeding experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153326. [PMID: 35074369 DOI: 10.1016/j.scitotenv.2022.153326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
We investigated nutrition as a potential mechanism underlying the link between floral diversity/composition and wild bee performance. The health, resilience, and fitness of bees may be limited by a lack of nutritionally balanced larval food (pollen), influencing the entire population, even if adults are not limited nutritionally by the availability and quality of their food (mainly nectar). We hypothesized that the nutritional quality of bee larval food is indirectly connected to the species diversity of pollen provisions and is directly driven by the pollen species composition. Therefore, the accessibility of specific, nutritionally desirable key plant species for larvae might promote bee populations. Using a fully controlled feeding experiment, we simulated different pollen resources that could be available to bees in various environments, reflecting potential changes in floral species diversity and composition that could be caused by landscape changes. Suboptimal concentrations of certain nutrients in pollen produced by specific plant species resulted in reduced bee fitness. The negative effects were alleviated when scarce nutrients were added to these pollen diets. The scarcity of specific nutrients was associated with certain plant species but not with plant diversity. Thus, one of the mechanisms underlying the decreased fitness of wild bees in homogenous landscapes may be nutritional imbalance, i.e., the scarcity of specific nutrients associated with the presence of certain plant species and not with species diversity in pollen provisions eaten by larvae. Accordingly, we provide a conceptual representation of how the floral species composition and diversity can impact bee populations by affecting fitness-related life history traits. Additionally, we suggest that mixes of 'bee-friendly' plants used to improve the nutritional base for wild bees should be composed considering the local flora to supplement bees with vital nutrients that are scarce in the considered environment.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Bożena Denisow
- Laboratory of Plant Biology, Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Ernest Stawiarz
- Laboratory of Plant Biology, Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Michał Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
17
|
Bumble bees exhibit body size clines across an urban gradient despite low genetic differentiation. Sci Rep 2022; 12:4166. [PMID: 35264687 PMCID: PMC8907314 DOI: 10.1038/s41598-022-08093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental heterogeneity resulting from human-modified landscapes can increase intraspecific trait variation. However, less known is whether such phenotypic variation is driven by plastic or adaptive responses to local environments. Here, we study five bumble bee (Apidae: Bombus) species across an urban gradient in the greater Saint Louis, Missouri region in the North American Midwest and ask: (1) Can urban environments induce intraspecific spatial structuring of body size, an ecologically consequential functional trait? And, if so, (2) is this body size structure the result of plasticity or adaptation? We additionally estimate genetic diversity, inbreeding, and colony density of these species—three factors that affect extinction risk. Using ≥ 10 polymorphic microsatellite loci per species and measurements of body size, we find that two of these species (Bombus impatiens, Bombus pensylvanicus) exhibit body size clines across the urban gradient, despite a lack of population genetic structure. We also reaffirm reports of low genetic diversity in B. pensylvanicus and find evidence that Bombus griseocollis, a species thought to be thriving in North America, is inbred in the greater Saint Louis region. Collectively, our results have implications for conservation in urban environments and suggest that plasticity can cause phenotypic clines across human-modified landscapes.
Collapse
|
18
|
Klatt BK, Pudifoot B, Urrutia‐Cordero P, Smith HG, Alsterberg CM. A trophic cascade causes unexpected ecological interactions across the aquatic–terrestrial interface under extreme weather. OIKOS 2022. [DOI: 10.1111/oik.09047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Björn K. Klatt
- Dept of Biology, Lund Univ. Lund Sweden
- The Rural Economic and Agricultural Society Halland, Dept of Nature&Water Conservation Eldsberga Sweden
| | | | | | | | | |
Collapse
|
19
|
Mola JM, Hemberger J, Kochanski J, Richardson LL, Pearse IS. The Importance of Forests in Bumble Bee Biology and Conservation. Bioscience 2021. [DOI: 10.1093/biosci/biab121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Declines of many bumble bee species have raised concerns because of their importance as pollinators and potential harbingers of declines among other insect taxa. At present, bumble bee conservation is predominantly focused on midsummer flower restoration in open habitats. However, a growing body of evidence suggests that forests may play an important role in bumble bee life history. Compared with open habitats, forests and woody edges provide food resources during phenologically distinct periods, are often preferred nesting and overwintering habitats, and can offer favorable abiotic conditions in a changing climate. Future research efforts are needed in order to anticipate how ongoing changes in forests, such as overbrowsing by deer, plant invasions, and shifting canopy demographics, affect the suitability of these habitats for bumble bees. Forested habitats are increasingly appreciated in the life cycles of many bumble bees, and they deserve greater attention from those who wish to understand bumble bee populations and aid in their conservation.
Collapse
Affiliation(s)
- John M Mola
- Fort Collins Science Center, Fort Collins, Colorado, United States
| | - Jeremy Hemberger
- University of California Davis, Davis, California, United States
| | - Jade Kochanski
- University of Wisconsin Madison, Madison, Wisconsin, United States
| | - Leif L Richardson
- Xerces Society for Invertebrate Conservation, Portland, Oregon, United States
| | - Ian S Pearse
- Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
20
|
Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life (Basel) 2021; 11:life11090970. [PMID: 34575119 PMCID: PMC8464958 DOI: 10.3390/life11090970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biodiversity strengthens the productivity of any ecosystem (agricultural land, forest, lake, etc.). The loss of biodiversity contributes to food and energy insecurity; increases vulnerability to natural disasters, such as floods or tropical storms; and decreases the quality of both life and health. Wild and managed bees play a key role in maintaining the biodiversity and in the recovery and restoration of degraded habitats. The novelty character of this perspective is to give an updated representation of bee products’ biodiversity, sustainability, and health relationship. The role of bees as bioindicators, their importance in the conservation of biodiversity, their ecosystem services, and the variety of the bee products are described herein. An overview of the main components of bee products, their biological potentials, and health is highlighted and detailed as follows: (i) nutritional value of bee products, (ii) bioactive profile of bee products and the related beneficial properties; (iii) focus on honey and health through a literature quantitative analysis, and (iv) bee products explored through databases. Moreover, as an example of the interconnection between health, biodiversity, and sustainability, a case study, namely the “Cellulose Park”, realized in Rome (Italy), is presented here. This case study highlights how bee activities can be used to assess and track changes in the quality of agricultural ecosystems—hive products could be valid indicators of the quality and health of the surrounding environment, as well as the changes induced by the biotic and abiotic factors that impact the sustainability of agricultural production and biodiversity conservation in peri-urban areas.
Collapse
|
21
|
Cna'ani A, Dener E, Ben-Zeev E, Günther J, Köllner TG, Tzin V, Seifan M. Phylogeny and abiotic conditions shape the diel floral emission patterns of desert Brassicaceae species. PLANT, CELL & ENVIRONMENT 2021; 44:2656-2671. [PMID: 33715174 DOI: 10.1111/pce.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.
Collapse
Affiliation(s)
- Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Dener
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Ben-Zeev
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Günther
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Section of Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| |
Collapse
|
22
|
Measuring foraging preferences in bumble bees: a comparison of popular laboratory methods and a test for sucrose preferences following neonicotinoid exposure. Oecologia 2021; 196:963-976. [PMID: 34250559 DOI: 10.1007/s00442-021-04979-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Animals develop food preferences based on taste, nutritional quality and to avoid environmental toxins. Yet, measuring preferences in an experimental setting can be challenging since ecologically realistic assays can be time consuming, while simplified assays may not capture natural sampling behavior. Field realism is a particular challenge when studying behavioral responses to environmental toxins in lab-based assays, given that toxins can themselves impact sampling behavior, masking our ability to detect preferences. We address these challenges by comparing different experimental methods for measuring sucrose concentration preference in bumble bees (Bombus impatiens), evaluating the utility of two preference chamber-based methods (ad libitum versus a novel restricted-sampling assay) in replicating bees' preferences when they fly freely between artificial flowers in a foraging arena. We find that the restricted-sampling method matched a free-flying scenario more closely than the ad libitum protocol, and we advocate for expanded use of this approach, given its ease of implementation. We then performed a second experiment using the new protocol to ask whether consuming the neonicotinoid pesticide imidacloprid, known to suppress feeding motivation, interfered with the expression of sucrose preferences. After consuming imidacloprid, bees were less likely to choose the higher-quality sucrose even as they gained experience with both options. Thus, we provide evidence that pesticides interfere with bees' ability to discriminate between floral rewards that differ in value. This work highlights a simple protocol for assessing realistic foraging preferences in bees and provides an efficient way for researchers to measure the impacts of anthropogenic factors on preference expression.
Collapse
|
23
|
Bruzaca EES, de Oliveira RC, Duarte MSS, Sousa CP, Morais S, Correia AN, de Lima-Neto P. Electrochemical sensor based on multi-walled carbon nanotubes for imidacloprid determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2124-2136. [PMID: 33876058 DOI: 10.1039/d1ay00198a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple and robust sensor (fMWCNT-Nafion®0.5%/GCE) for determination of imidacloprid (IMI), a widely used neonicotinoid, was developed using a glassy carbon electrode (GCE) modified with functionalized multi-walled carbon nanotubes (fMWCNT) and Nafion®. The obtained data suggest that IMI reduction is an irreversible process, due to the reduction of the nitro group to hydroxylamine derivatives, with the participation of two protons and four electrons, and a charge transfer coefficient of 0.141. The optimized square-wave voltammetric conditions were: McIlvaine buffer at pH 6.0, 0.5% of Nafion® in the fMWCNT suspension, -0.6 V and 180 s as accumulation potential and time, respectively. A linearity in the range of 2.00 × 10-7 to 1.77 × 10-6 mol L-1 IMI, with the values of limit of detection and limit of quantification were equal to 3.74 × 10-8 mol L-1 and 1.25 × 10-7 mol L-1, respectively. Repeatability and reproducibility displayed relative standard deviations lower than 5%. Recovery tests performed in tap water, melon, and shrimp yielded mean values of 94 ± 6%, 97 ± 10% and 93 ± 10%, respectively. Moreover, several inorganic and organic compounds did not significantly interfere (0.6 to 4.5%) on the IMI signal, proving the selectivity and applicability of the developed sensor for IMI detection in complex samples.
Collapse
Affiliation(s)
- Evellin E S Bruzaca
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Raissa C de Oliveira
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Mateus S S Duarte
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Camila P Sousa
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Adriana N Correia
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Pedro de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| |
Collapse
|
24
|
Nicholson CC, J-M Hayes J, Connolly S, Ricketts TH. Corridors through time: Does resource continuity impact pollinator communities, populations, and individuals? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02260. [PMID: 33185959 DOI: 10.1002/eap.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Spatial aspects of connectivity have received considerable attention from ecologists and conservationists, yet temporal connectivity, the periodic linking of habitats, plays an equally important, but largely overlooked role. Different biological and biophysical attributes of ecosystems underpin temporal connectivity, but here we focus on resource continuity, the uninterrupted availability of foraging sites. We test the response of pollinators to resource continuity at community, population, and individual levels using a novel natural experiment consisting of farms with either single or sequential cropping systems. We found significant effects at the population level; colony density of an important crop pollinator (Bombus impatiens L.) was greater when crop floral resources were continuously available. However, we did not find significant effects at the community or individual level; wild bee abundance, diversity and body size did not respond to resource continuity. Raspberry farms with greater early season resources provided by blueberry had greater bumble bee populations, suggesting beneficial effects on resource availability due to crop diversity. Better understanding the impact of resource continuity via crop diversity on broader patterns of biodiversity is essential for the co-management of biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Charlie C Nicholson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Jen J-M Hayes
- Department of Horticulture, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Samantha Connolly
- Department of Computer Science, University of Vermont, Burlington, Vermont, 05405, USA
| | - Taylor H Ricketts
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
25
|
Descamps C, Quinet M, Jacquemart AL. Climate Change-Induced Stress Reduce Quantity and Alter Composition of Nectar and Pollen From a Bee-Pollinated Species ( Borago officinalis, Boraginaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:755843. [PMID: 34707633 PMCID: PMC8542702 DOI: 10.3389/fpls.2021.755843] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 05/14/2023]
Abstract
In temperate ecosystems, elevated temperatures, and drought occur especially during spring and summer, which are crucial periods for flowering, pollination, and reproduction of a majority of temperate plants. While many mechanisms may underlie pollinator decline in the wake of climate change, the interactive effects of temperature and water stress on the quantity and quality of floral nectar and pollen resources remain poorly studied. We investigated the impact of temperature rise (+3 and +6°C) and water stress (soil humidity lower than 15%) on the floral resources produced by the bee-pollinated species Borago officinalis. Nectar volume decreased with both temperature rise and water stress (6.1 ± 0.5 μl per flower under control conditions, 0.8 ± 0.1 μl per flower under high temperature and water stress conditions), resulting in a 60% decrease in the total quantity of nectar sugars (mg) produced per flower. Temperature rise but not water stress also induced a 50% decrease in pollen weight per flower but a 65% increase in pollen polypeptide concentration. Both temperature rise and water stress increased the total amino acid concentration and the essential amino acid percentage in nectar but not in pollen. In both pollen and nectar, the relative percentage of the different amino acids were modified under stresses. We discuss these modifications in floral resources in regards to plant-pollinator interactions and consequences on plant pollination success and on insect nutritional needs.
Collapse
|
26
|
Filipiak ZM, Filipiak M. The Scarcity of Specific Nutrients in Wild Bee Larval Food Negatively Influences Certain Life History Traits. BIOLOGY 2020; 9:E462. [PMID: 33322450 PMCID: PMC7764569 DOI: 10.3390/biology9120462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.
Collapse
Affiliation(s)
- Zuzanna M. Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
27
|
Cecala JM, Baronia DA, Wilson Rankin EE. Sugar content of diet does not buffer against chronic oral imidacloprid exposure in the alfalfa leafcutting bee (Hymenoptera: Megachilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2705-2712. [PMID: 33001178 DOI: 10.1093/jee/toaa194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Bees are economically critical pollinators, but are declining broadly due to several stressors, including nontarget exposure to insecticides and deficiencies in nutrition. Understanding the simultaneous impact of stressors, particularly interactions between them, is critical to effectively conserving bees. Although behavioral effects of pesticides like neonicotinoids have received some attention in solitary bees, our understanding of how they are modulated by diet quality is limited. Furthermore, scarce data exist on what concentrations of orally ingested neonicotinoids elicit mortality in solitary bees. In a controlled exposure laboratory experiment, we investigated how diet quality, as sugar concentration, and chronic oral exposure to imidacloprid affect adult alfalfa leafcutting bees, Megachile rotundata (Fabricius). We provided individuals ad libitum with either 20 or 50% (m/m) sucrose syrups containing either 0, 30, or 300 ppb imidacloprid (measuring 0, 27, and 209 ppb via an ELISA assay). Over 5 wk, we tracked behavior and survivorship of individuals. Imidacloprid decreased survivorship in a dose-dependent fashion, but sucrose content did not affect survivorship, even in bees not fed imidacloprid. In the high imidacloprid treatment, 45% of bees were observed in a motionless supine position while still alive, with this effect appearing to be buffered against by the higher sucrose diet. Our results suggest that diets higher in sugar concentration may prevent an intermediate stage of poisoning, but do not ultimately extend longevity. In devising risk assessments for bees, it is important to consider that interactions between stressors may occur in the stages leading up to death even if survivorship is unaffected.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology, University of California, Riverside, CA
| | - Danelle Angeline Baronia
- Division of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California, La Jolla, CA
| | | |
Collapse
|
28
|
Saved by the pulse? Separating the effects of total and temporal food abundance on the growth and reproduction of bumble bee microcolonies. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Simanonok MP, Otto CRV, Smart MD. Do the Quality and Quantity of Honey Bee-Collected Pollen Vary Across an Agricultural Land-Use Gradient? ENVIRONMENTAL ENTOMOLOGY 2020; 49:189-196. [PMID: 31748814 DOI: 10.1093/ee/nvz139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 05/27/2023]
Abstract
Pollen is the source of protein for most bee species, yet the quality and quantity of pollen is variable across landscapes and growing seasons. Understanding the role of landscapes in providing nutritious forage to bees is important for pollinator health, particularly in areas undergoing significant land-use change such as in the Northern Great Plains (NGP) region of the United States where grasslands are being converted to row crops. We investigated how the quality and quantity of pollen collected by honey bees (Apis mellifera L. [Hymenoptera: Apidae]) changed with land use and across the growing season by sampling bee-collected pollen from apiaries in North Dakota, South Dakota, and Minnesota, USA, throughout the flowering season in 2015-2016. We quantified protein content and quantity of pollen to investigate how they varied temporally and across a land-use gradient of grasslands to row crops. Neither pollen weight nor crude protein content varied linearly across the land-use gradient; however, there were significant interactions between land use and sampling date across the season, particularly in grasslands. Generally, pollen protein peaked mid-July while pollen weight had two maxima in late-June and late-August. Results suggest that while land use itself may not correlate with the quality or quantity of pollen resources collected by honey bees among our study apiaries, the nutritional landscape of the NGP is seasonally dynamic, especially in certain land covers, and may impose seasonal resource limitations for both managed and native bee species. Furthermore, results indicate periods of qualitative and quantitative pollen dearth may not coincide.
Collapse
Affiliation(s)
- Michael P Simanonok
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND
| | - Clint R V Otto
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND
| | - Matthew D Smart
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND
- Department of Entomology, University of Nebraska Lincoln, Lincoln, NE
| |
Collapse
|
30
|
Trinkl M, Kaluza BF, Wallace H, Heard TA, Keller A, Leonhardt SD. Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee. INSECTS 2020; 11:E125. [PMID: 32075297 PMCID: PMC7073955 DOI: 10.3390/insects11020125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality.
Collapse
Affiliation(s)
- Moritz Trinkl
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Benjamin F. Kaluza
- Department of Public Technology and Innovation Planning, Fraunhofer Institute for Technological Trend Analysis INT, 53879 Euskirchen, Germany
| | - Helen Wallace
- Environmental Futures Research Institute, Griffith University, Nathan Campus, QLD 4111, Australia;
| | - Tim A. Heard
- CSIRO Ecosystem Sciences, Brisbane, QLD 4001, Australia;
| | - Alexander Keller
- Center for Computational and Theoretical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Sara D. Leonhardt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
- Department of Ecology and Ecosystem Management, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
31
|
Simanonok MP, Burkle LA. High-severity wildfire limits available floral pollen quality and bumble bee nutrition compared to mixed-severity burns. Oecologia 2019; 192:489-499. [PMID: 31844986 DOI: 10.1007/s00442-019-04577-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/05/2019] [Indexed: 11/30/2022]
Abstract
High-severity wildfires, which can homogenize floral communities, are becoming more common relative to historic mixed-severity fire regimes in the Northern Rockies of the U.S. High-severity wildfire could negatively affect bumble bees, which are typically diet generalists, if floral species of inadequate pollen quality dominate the landscape post-burn. High-severity wildfires often require more time to return to pre-burn vegetation composition, and thus, effects of high-severity burns may persist past initial impacts. We investigated how wildfire severity (mixed- vs. high-severity) and time-since-burn affected available floral pollen quality, corbicular pollen quality, and bumble bee nutrition using percent nitrogen as a proxy for pollen quality and bumble bee nutrition. We found that community-weighted mean floral pollen nitrogen, corbicular pollen nitrogen, and bumble bee nitrogen were greater on average by 0.82%N, 0.60%N, and 1.16%N, respectively, in mixed-severity burns. This pattern of enhanced floral pollen nitrogen in mixed-severity burns was likely driven by the floral community, as community-weighted mean floral pollen percent nitrogen explained 87.4% of deviance in floral community composition. Only bee percent nitrogen varied with time-since-burn, increasing by 0.33%N per year. If these patterns persist across systems, our findings suggest that although wildfire is an essential ecosystem process, there are negative early successional impacts of high-severity wildfires on bumble bees and potentially on other pollen-dependent organisms via reductions in available pollen quality and nutrition. This work examines a previously unexplored pathway for how disturbances can influence native bee success via altering the nutritional landscape of pollen.
Collapse
Affiliation(s)
- Michael P Simanonok
- Department of Ecology, Montana State University, Bozeman, MT, USA. .,U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, USA.
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
32
|
Decourtye A, Alaux C, Le Conte Y, Henry M. Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science. CURRENT OPINION IN INSECT SCIENCE 2019; 35:123-131. [PMID: 31473587 DOI: 10.1016/j.cois.2019.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 05/25/2023]
Abstract
Over the past 30 years (1987-2016), bibliometric data have shown a drastic change in the scientific investigation of threats to bee populations. Bee research efforts committed to studying bioagressors of honeybees (mainly Varroa sp.) were predominant, but now appear to be shifting from bioagressors to global change in the published literature. This rise of global change science reveals prevailing topics, for current and future years: climate change, landscape alteration, agricultural intensification and invasive species. We argue that with increased investment in applied research and development, the scientific, beekeeping and agricultural communities will be able to find management strategies for productive agrosystems and enhanced resilience of pollination and beekeeping. This implies the need for restoring and improving food resources and shelters of bees by ecological intensification of diversified farming systems, and also reconciling sustainable beekeeping with wild pollinator conservation.
Collapse
Affiliation(s)
- Axel Decourtye
- UMT PrADE, Avignon, France; ITSAP-Institut de l'abeille, Avignon, France; ACTA, Avignon, France.
| | - Cédric Alaux
- UMT PrADE, Avignon, France; INRA, UR406 Abeilles et Environnement, Avignon, France
| | - Yves Le Conte
- UMT PrADE, Avignon, France; INRA, UR406 Abeilles et Environnement, Avignon, France
| | - Mickaël Henry
- UMT PrADE, Avignon, France; INRA, UR406 Abeilles et Environnement, Avignon, France
| |
Collapse
|
33
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
34
|
Francis JS, Acevedo CR, Muth F, Leonard AS. Nectar quality changes the ecological costs of chemically defended pollen. Curr Biol 2019; 29:R679-R680. [DOI: 10.1016/j.cub.2019.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Woodard SH, Duennes MA, Watrous KM, Jha S. Diet and nutritional status during early adult life have immediate and persistent effects on queen bumble bees. CONSERVATION PHYSIOLOGY 2019; 7:coz048. [PMID: 32802333 PMCID: PMC6694593 DOI: 10.1093/conphys/coz048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/02/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
Many insects sequester nutrients during developmentally programmed periods, which they metabolize during subsequent life history stages. During these periods, failure to store adequate nutrients can have persistent effects on fitness. Here, we examined a critical but under-studied nutrient storage period in queen bumble bees: the first days of adult life, which are followed by a diapause period typically coinciding with winter. We experimentally manipulated availability of pollen (the primary dietary source of lipids and protein) and the sugar concentration of artificial nectar (the primary source of carbohydrates) for laboratory-reared queens during this period and examined three nutritional phenomena: (i) diet impacts on nutritional status, (ii) the timescale upon which nutrient sequestration occurs and (iii) the fitness consequences of nutrient sequestration, specifically related to survival across the life cycle. We found evidence that pollen and nectar starvation negatively impact lipid storage, whereas nectar sugar concentration impacts stored carbohydrates. The majority of nutrients were stored during the first ~ 3 days of adult life. Nutrients derived from pollen during this period appear to be more critical for surviving earlier life stages, whereas nutrients sequestered from nectar become more important for surviving the diapause and post-diapause periods. Negative impacts of a poor diet during early life persisted in our experiment, even when pollen and a relatively high (50%) nectar sugar concentration were provided post-diapause. Based on these findings, we posit that the nutritional environment during the early adult life of queens has both immediate and persistent impacts on fitness. These findings underscore the importance of examining effects of stage-specific nutritional limitations on physiology and life history traits in this social insect group. Moreover, the findings may shed light on how declining food resources are contributing to the decline of wild bumble bee populations.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
- Corresponding author: Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA. Tel.: 1-951-827-5761.
| | | | - Kristal M Watrous
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
36
|
Filipiak M. A Better Understanding of Bee Nutritional Ecology Is Needed to Optimize Conservation Strategies for Wild Bees-The Application of Ecological Stoichiometry. INSECTS 2018; 9:E85. [PMID: 30021977 PMCID: PMC6165546 DOI: 10.3390/insects9030085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/14/2018] [Indexed: 11/23/2022]
Abstract
The observed decline in wild bees may be connected to the decreasing diversity of flowering plants. Changes in floral composition shape nutrient availability in inhabited areas, and bee larvae need food rich in body-building nutrients to develop into adults. Adult food, mainly composed of energy-rich nectar, differs from larval food, mainly composed of pollen, and adult bees forage on different plant species for nectar and pollen. Defining bee-friendly plants based on the quantities of food produced, and on the visitation rates of adult pollinating insects leads to the planting of bee habitats with poor-quality food for larvae, which limits their growth and development, and negatively affects the population. Consequently, failing to understand the nutritional needs of wild bees may lead to unintended negative effects of conservation efforts. Ecological stoichiometry was developed to elucidate the nutritional constraints of organisms and their colonies, populations, and communities. Here, I discuss how applying ecological stoichiometry to the study of the nutritional ecology of wild bees would help fill the gaps in our understanding of bee biology. I present questions that should be answered in future studies to improve our knowledge of the nutritional ecology of wild bees, which could result in better conservation strategies.
Collapse
Affiliation(s)
- Michał Filipiak
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
37
|
Leza M, Watrous KM, Bratu J, Woodard SH. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc Biol Sci 2018; 285:20180761. [PMID: 29899072 PMCID: PMC6015844 DOI: 10.1098/rspb.2018.0761] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/21/2018] [Indexed: 11/12/2022] Open
Abstract
Bumblebees are among the world's most important groups of pollinating insects in natural and agricultural ecosystems. Each spring, queen bumblebees emerge from overwintering and initiate new nests, which ultimately give rise to workers and new reproductives later in the season. Nest initiation and survival are thus key drivers of both bumblebee pollination services and population dynamics. We performed the first laboratory experiment with the model bumblebee species Bombus impatiens that explores how early nesting success is impacted by the effects of temporary or more sustained exposure to sublethal levels of a neonicotinoid-type insecticide (imidacloprid at 5 ppb in nectar) and by reliance on a monofloral pollen diet, two factors that have been previously implicated in bumblebee decline. We found that queens exhibited increased mortality and dramatically reduced activity levels when exposed to imidacloprid, as well as delayed nest initiation and lower brood numbers in the nest, but partially recovered from these effects when they only received early, temporary exposure. The effects of pollen diet on individual queen- and colony-level responses were overshadowed by effects of the insecticide, although a monofloral pollen diet alone was sufficient to negatively impact brood production. These findings speak to the sensitivity of queen bumblebees during the nest initiation phase of the colony cycle, with implications for how queens and their young nests are uniquely impacted by exposure to threats such as pesticide exposure and foraging habitat unsuitability.
Collapse
Affiliation(s)
- Mar Leza
- Laboratory of Zoology, Department of Biology, University of the Balearic Islands, Cra, Valldemossa km 7.5, CP 07122, Palma, Illes Balears, Spain
| | - Kristal M Watrous
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jade Bratu
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|