1
|
Rouabah A, Rabolin-Meinrad C, Gay C, Therond O. Models of bee responses to land use and land cover changes in agricultural landscapes - a review and research agenda. Biol Rev Camb Philos Soc 2024; 99:2003-2021. [PMID: 38940343 DOI: 10.1111/brv.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Predictive modelling tools can be used to support the design of agricultural landscapes to promote pollinator biodiversity and pollination services. Despite the proliferation of such modelling tools in recent decades, there remains a gap in synthesising their main characteristics and representation capacities. Here, we reviewed 42 studies that developed non-correlative models to explore the impact of land use and land cover changes on bee populations, and synthesised information about the modelled systems, modelling approaches, and key model characteristics like spatiotemporal extent and resolution. Various modelling approaches are employed to predict the biodiversity of bees and the pollination services they provide, with a prevalence of models focusing on wild populations compared to managed ones. Of these models, landscape indicators and distance decay models are relatively simple, with few parameters. They allow mapping bee visitation probabilities using basic land cover data and considering bee foraging ranges. Conversely, mechanistic or agent-based models delineate, with varying degrees of complexity, a multitude of processes that characterise, among others, the foraging behaviour and population dynamics of bees. The reviewed models collectively encompass 38 ecological, agronomic, and economic processes, producing various outputs including bee abundance, habitat visitation rate, and crop yield. To advance the development of predictive modelling tools aimed at fostering pollinator biodiversity and pollination services in agricultural landscapes, we highlight future avenues for increasing biophysical realism in models predicting the impact of land use and land cover changes on bees. Additionally, we address the challenges associated with balancing model complexity and practical usability.
Collapse
Affiliation(s)
- Abdelhak Rouabah
- Université de Lorraine, INRAE, LAE, 28 rue de Herrlisheim, Colmar, 68000, France
| | | | - Camille Gay
- Université de Lorraine, INRAE, LAE, 2 Avenue de la forêt de Haye, BP 20163, Vandœuvre-lès-Nancy Cedex, 54500, France
| | - Olivier Therond
- Université de Lorraine, INRAE, LAE, 28 rue de Herrlisheim, Colmar, 68000, France
| |
Collapse
|
2
|
Milberg P, Franzen M, Karpaty Wickbom A, Svelander S, Johansson V. Pollinator activity and flowering in agricultural weeds in Sweden. Ecol Evol 2024; 14:e11725. [PMID: 38978999 PMCID: PMC11227967 DOI: 10.1002/ece3.11725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
The extent to which weeds in arable land are useful to pollinators depends in part on the temporal pattern of flowering and insect flight activity. We compiled citizen science data on 54 bees and hoverflies typical of agricultural areas in southern Sweden, as well as 24 flowering weed species classified as pollinator-friendly in the sense that they provide nectar and/or pollen to pollinators. The flight periods of the bees and hoverflies varied greatly, but there were also some consistent differences between the four groups studied. The first group to fly were the early flying solitary bees (7 species), followed by the social bees (18 species). In contrast, other solitary bees (11 species) and hoverflies (22 species) flew later in the summer. Solitary bees had the shortest flight periods, while social bees and hoverflies had longer flight periods. Flowering of weed species also varied greatly between species, with weeds classified as winter annuals (e.g., germinating in autumn) starting early together with germination generalists (species that can germinate in both autumn and spring). Summer annuals (spring germinators) and perennials started flowering about a month later. Germination generalists had a much longer flowering period than the others. Weekly pollinator records were in most cases significantly explained by weed records. Apart from early flying solitary bees, all models showed strong positive relationships. The overall best explanatory variable was the total number of weeds, with a weight assigned to each species based on its potential as a nectar/pollen source. This suggests that agricultural weeds in Sweden provide a continuous potential supply of nectar and pollen throughout the flight season of most pollinators.
Collapse
Affiliation(s)
- Per Milberg
- IFM Biology, Conservation Ecology GroupLinköping UniversityLinköpingSweden
| | - Markus Franzen
- IFM Biology, Conservation Ecology GroupLinköping UniversityLinköpingSweden
| | | | - Sabine Svelander
- IFM Biology, Conservation Ecology GroupLinköping UniversityLinköpingSweden
| | - Victor Johansson
- IFM Biology, Conservation Ecology GroupLinköping UniversityLinköpingSweden
| |
Collapse
|
3
|
Wright EK, Timberlake TP, Baude M, Vaughan IP, Memmott J. Quantifying the production of plant pollen at the farm scale. THE NEW PHYTOLOGIST 2024; 242:2888-2899. [PMID: 38622779 DOI: 10.1111/nph.19763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Plant pollen is rich in protein, sterols and lipids, providing crucial nutrition for many pollinators. However, we know very little about the quantity, quality and timing of pollen availability in real landscapes, limiting our ability to improve food supply for pollinators. We quantify the floral longevity and pollen production of a whole plant community for the first time, enabling us to calculate daily pollen availability. We combine these data with floral abundance and nectar measures from UK farmland to quantify pollen and nectar production at the landscape scale throughout the year. Pollen and nectar production were significantly correlated at the floral unit, and landscape level. The species providing the highest quantity of pollen on farmland were Salix spp. (38%), Filipendula ulmaria (14%), Rubus fruticosus (10%) and Taraxacum officinale (9%). Hedgerows were the most pollen-rich habitats, but permanent pasture provided the majority of pollen at the landscape scale, because of its large area. Pollen and nectar were closely associated in their phenology, with both peaking in late April, before declining steeply in June and remaining low throughout the year. Our data provide a starting point for including pollen in floral resource assessments and ensuring the nutritional requirements of pollinators are met in farmland landscapes.
Collapse
Affiliation(s)
- Ellen K Wright
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Cabot Institute, University of Bristol, Royal Fort House, Bristol, BS8 1UH, UK
| | - Thomas P Timberlake
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Mathilde Baude
- Université d'Orléans, Château de la Source, BP 6749, Orléans Cedex 2, 45067, France
- Institut d'Ecologie et des Sciences de l'Environnement (iEES-Paris), Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Paris, 75005, France
| | - Ian P Vaughan
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
4
|
Glenny WR, Runyon JB, Burkle LA. Bumble bee diet breadth increases with local abundance and phenophase duration, not intraspecific variation in body size. Oecologia 2024; 205:149-162. [PMID: 38796612 PMCID: PMC11144151 DOI: 10.1007/s00442-024-05560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee-flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.
Collapse
Affiliation(s)
- Will R Glenny
- Department of Ecology, Montana State University, Bozeman, MT, USA.
| | - Justin B Runyon
- US Department of Agriculture Forest Service, Rocky Mountain Research Station, Bozeman, MT, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
5
|
Rivest S, Muralidhar M, Forrest JRK. Pollen chemical and mechanical defences restrict host-plant use by bees. Proc Biol Sci 2024; 291:20232298. [PMID: 38471551 PMCID: PMC10932708 DOI: 10.1098/rspb.2023.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Plants produce an array of chemical and mechanical defences that provide protection against many herbivores and pathogens. Putatively defensive compounds and structures can even occur in floral rewards: for example, the pollen of some plant taxa contains toxic compounds or possesses conspicuous spines. Yet little is known about whether pollen defences restrict host-plant use by bees. In other words, do bees, like other insect herbivores, tolerate the defences of their specific host plants while being harmed by non-host defences? To answer this question, we compared the effects of a chemical defence from Lupinus (Fabaceae) pollen and a putative mechanical defence (pollen spines) from Asteraceae pollen on larval survival of nine bee species in the tribe Osmiini (Megachilidae) varying in their pollen-host use. We found that both types of pollen defences reduce larval survival rate in some bee species. These detrimental effects were, however, mediated by host-plant associations, with bees being more tolerant of the pollen defences of their hosts, relative to the defences of plant taxa exploited by other species. This pattern strongly suggests that bees are adapted to the pollen defences of their hosts, and that host-plant use by bees is constrained by their ability to tolerate such defences.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | | | - Jessica R. K. Forrest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
6
|
Williams NM, Buderi A, Rowe L, Ward K. Wildflower plantings enhance nesting opportunities for soil-nesting bees. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2935. [PMID: 38071699 DOI: 10.1002/eap.2935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/15/2023] [Indexed: 01/27/2024]
Abstract
Ongoing declines of bees and other pollinators are driven in part by the loss of critical floral resources and nesting substrates. Most conservation/restoration efforts for bees aim to enhance floral abundance and continuity but often assume the same actions will bolster nesting opportunities. Recent research suggests that habitat plantings may not always provide both forage and nesting resources. We evaluated wildflower plantings designed to augment floral resources to determine their ability to enhance nesting by soil-nesting bees over 3 study years in Northern California agricultural landscapes. We established wildflower plantings along borders of annual row crops and paired each with an unplanted control border. We used soil emergence traps to assess nest densities and species richness of soil-nesting bees from spring through late summer at paired field borders planted with wildflowers or maintained conventionally as bare or sparsely vegetated areas, as is typical for the region. We also quantified soil-surface characteristics and flower resources among borders. Wildflower plantings significantly increased nest densities and the richness of bee species using them. Such benefits occurred within the first year of planting and persisted up to 4 years post establishment. The composition of nesting bee communities also differed between wildflower and unenhanced borders. Wildflower plantings differed from controls in multiple characteristics of the soil surface, including vegetation cover, surface microtopography and hardness. Surprisingly, only vegetation cover significantly affected nest densities and species richness. Wildflower plantings are a widespread habitat action with the potential to support wild bees. The demonstrated benefit wildflower plantings had for increasing the nesting of soil-nesting bees greatly augments their relevance for the conservation of wild bee communities in agricultural and other landscapes. Identifying soil-surface characteristics that are important for nesting provides critical information to guide the implementation and management of habitats for bees.
Collapse
Affiliation(s)
- Neal M Williams
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
- Graduate Group in Ecology, University of California, Davis, Davis, California, USA
| | - Andrew Buderi
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Logan Rowe
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Kimiora Ward
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
7
|
Shi X, Ma C, Gustave W, Orr M, Sritongchuay T, Yuan Z, Wang M, Zhang X, Zhou Q, Huang Y, Luo A, Zhu C. Effects of arsenic and selenium pollution on wild bee communities in the agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168052. [PMID: 37898201 DOI: 10.1016/j.scitotenv.2023.168052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Wild bees play crucial roles in pollinating numerous crops and fruits worldwide. However, these essential insect pollinators are threatened with decline due to a variety of stressors. Among stressors, relatively little work has been done on metalloid pollution. Laboratory experiments have shown that arsenic (As) and selenium (Se) can negatively impact on bees, it is unknown if these effects translate in real-world environments. To address this knowledge gap, wild bee communities were sampled from 18 smallholder farmlands in Kaihua County in Quzhou, Southeast China and As and Se concentrations in three bee species were measured (Xylocopa tranquebarorum, Eucera floralia, and Apis cerana). Analyses revealed that the large carpenter bee, X. tranquebarorum, exhibited significantly lower As and Se concentrations than the other two wild bee species. No significant correlations were found between As and Se concentrations in all three wild bee species. Interestingly, the proportion of semi-natural habitat was found to be significantly related to reduced Se concentration in wild bee bodies, though no such effect was observed for As. As pollution negatively impacted bee diversity but not abundance, whereas Se significantly impacted neither bee diversity nor abundance. Furthermore, both As and Se pollution had no significant effect on the abundance of small-bodied wild bees. Given the essential role of wild bees for pollination services, monitoring of As and Se pollution in wild bee bodies and their food resources (pollen and nectar) is recommended across agricultural and other potentially impacted systems.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, P.O. Box N-4912, Bahamas
| | - Michael Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Tuanjit Sritongchuay
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ Leipzig, Leipzig, Germany; Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Mei Wang
- Eurofins Technology Service (Suzhou) Co., Ltd., China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yixin Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China.
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Lowe A, Jones L, Brennan G, Creer S, Christie L, de Vere N. Temporal change in floral availability leads to periods of resource limitation and affects diet specificity in a generalist pollinator. Mol Ecol 2023; 32:6363-6376. [PMID: 36200580 DOI: 10.1111/mec.16719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Generalist species are core components of ecological networks and crucial for the maintenance of biodiversity. Generalist species and networks are expected to be more resilient, and therefore understanding the dynamics of specialization and generalization in ecological networks is a key focus in a time of rapid global change. Whilst diet generalization is frequently studied, our understanding of how it changes over time is limited. Here we explore temporal variation in diet specificity in the honeybee (Apis mellifera), using pollen DNA metabarcoding of honey samples, through the foraging season, over two years. We find that, overall, honeybees are generalists that visit a wide range of plants, but there is temporal variation in the degree of specialization. Temporal specialization of honeybee colonies corresponds to periods of resource limitation, identified as a lack of honey stores. Honeybees experience a lack of preferred resources in June when switching from flowering trees in spring to shrubs and herbs in summer. Investigating temporal patterns in specialization can identify periods of resource limitation that may lead to species and network vulnerability. Diet specificity must therefore be explored at different temporal scales in order to fully understand species and network stability in the face of ecological change.
Collapse
Affiliation(s)
- Abigail Lowe
- National Botanic Garden of Wales, Llanarthne, UK
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
- Natural History Museum, London, UK
| | - Laura Jones
- National Botanic Garden of Wales, Llanarthne, UK
| | | | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | | | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Tarbill GL, White AM, Sollmann R. Response of pollinator taxa to fire is consistent with historic fire regimes in the Sierra Nevada and mediated through floral richness †. Ecol Evol 2023; 13:e10761. [PMID: 38107425 PMCID: PMC10721959 DOI: 10.1002/ece3.10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023] Open
Abstract
Many fire-prone forests are experiencing wildfires that burn outside the historical range of variation in extent and severity. These fires impact pollinators and the ecosystem services they provide, but how the effects of fire are mediated by burn severity in different habitats is not well understood. We used generalized linear mixed models in a Bayesian framework to model the abundance of pollinators as a function of burn severity, habitat, and floral resources in post-fire, mid-elevation, conifer forest, and meadow in the Sierra Nevada, California. Although most species-level effects were not significant, we found highly consistent negative impacts of burn severity in meadows where pollinators were most abundant, with only hummingbirds and some butterfly families responding positively to burn severity in meadows. Moderate-severity fire tended to increase the abundance of most pollinator taxa in upland forest habitat, indicating that even in large fires that burn primarily at high- and moderate-severity patches may be associated with improved habitat conditions for pollinator species in upland forest. Nearly all pollinator taxa responded positively to floral richness but not necessarily to floral abundance. Given that much of the Sierra Nevada is predicted to burn at high severity, limiting high-severity effects in meadow and upland habitats may help conserve pollinator communities whereas low- to moderate-severity fire may be needed in both systems.
Collapse
Affiliation(s)
- Gina L. Tarbill
- Pacific Southwest Research StationUSDA, Forest ServiceDavisCaliforniaUSA
- Wildlife, Fish, & Conservation BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Angela M. White
- Pacific Southwest Research StationUSDA, Forest ServiceDavisCaliforniaUSA
| | - Rahel Sollmann
- Wildlife, Fish, & Conservation BiologyUniversity of California, DavisDavisCaliforniaUSA
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| |
Collapse
|
10
|
Chen H, Zhang G, Ding G, Huang J, Zhang H, Vidal MC, Corlett RT, Liu C, An J. Interspecific Host Variation and Biotic Interactions Drive Pathogen Community Assembly in Chinese Bumblebees. INSECTS 2023; 14:887. [PMID: 37999086 PMCID: PMC10672019 DOI: 10.3390/insects14110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Bumblebees have been considered one of the most important pollinators on the planet. However, recent reports of bumblebee decline have raised concern about a significant threat to ecosystem stability. Infectious diseases caused by multiple pathogen infections have been increasingly recognized as an important mechanism behind this decline worldwide. Understanding the determining factors that influence the assembly and composition of pathogen communities among bumblebees can provide important implications for predicting infectious disease dynamics and making effective conservation policies. Here, we study the relative importance of biotic interactions versus interspecific host resistance in shaping the pathogen community composition of bumblebees in China. We first conducted a comprehensive survey of 13 pathogens from 22 bumblebee species across China. We then applied joint species distribution modeling to assess the determinants of pathogen community composition and examine the presence and strength of pathogen-pathogen associations. We found that host species explained most of the variations in pathogen occurrences and composition, suggesting that host specificity was the most important variable in predicting pathogen occurrences and community composition in bumblebees. Moreover, we detected both positive and negative associations among pathogens, indicating the role of competition and facilitation among pathogens in determining pathogen community assembly. Our research demonstrates the power of a pluralistic framework integrating field survey of bumblebee pathogens with community ecology frameworks to understand the underlying mechanisms of pathogen community assembly.
Collapse
Affiliation(s)
- Huanhuan Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Guangshuo Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Hong Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jiandong An
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| |
Collapse
|
11
|
Satyshur CD, Evans EC, Forsberg BM, Evans TA, Blair R. Determining Minnesota bee species' distributions and phenologies with the help of participatory science. PeerJ 2023; 11:e16146. [PMID: 38025759 PMCID: PMC10656906 DOI: 10.7717/peerj.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
The Minnesota Bee Atlas project contributed new information about bee distributions, phenologies, and community structure by mobilizing participatory science volunteers to document bees statewide. Volunteers submitted iNaturalist (©2016 California Academy of Sciences) photograph observations, monitored nest-traps for tunnel-nesting bees, and conducted roadside observational bumble bee surveys. By pairing research scientists and participatory science volunteers, we overcame geographic and temporal challenges to document the presence, phenologies, and abundances of species. Minnesota Bee Atlas project observations included new state records for Megachile inimica, Megachile frugalis, Megachile sculpturalis, Osmia georgica, Stelis permaculata, and Bombus nevadensis, nesting phenology for 17 species, a new documentation of bivoltinism for Megachile relativa in Minnesota, and over 500 observations of the endangered species Bombus affinis. We also expanded known ranges for 16 bee species compared with specimens available from the University of Minnesota (UMN) Insect Collection. Surveys with standardized effort across the state found ecological province associations for six tunnel-nesting species and lower bumble bee abundance in the Prairie Parkland ecological province than the Laurentian Mixed Forest or Eastern Broadleaf Forest ecological provinces, indicating potential benefit of a focus on bumble bee habitat management in the Prairie Parkland. Landcover analysis found associations for four tunnel-nesting species, as well as a possible association of B. affinis with developed areas. These data can inform management decisions affecting pollinator conservation and recovery of endangered species. By engaging over 2,500 project volunteers and other iNaturalist users, we also promoted conservation action for pollinators through our educational programs and interactions.
Collapse
Affiliation(s)
- Colleen D. Satyshur
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States of America
| | - Elaine C. Evans
- University of Minnesota Extension, University of Minnesota, St. Paul, MN, United States of America
- Department of Entomology, University of Minnesota, St. Paul, MN, United States of America
| | - Britt M. Forsberg
- University of Minnesota Extension, University of Minnesota, St. Paul, MN, United States of America
| | - Thea A. Evans
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States of America
| | - Robert Blair
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
12
|
Chmielewski MW, Naya S, Borghi M, Cortese J, Fernie AR, Swartz MT, Zografou K, Sewall BJ, Spigler RB. Phenology and foraging bias contribute to sex-specific foraging patterns in the rare declining butterfly Argynnis idalia idalia. Ecol Evol 2023; 13:e10287. [PMID: 37475725 PMCID: PMC10353922 DOI: 10.1002/ece3.10287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Variation in pollinator foraging behavior can influence pollination effectiveness, community diversity, and plant-pollinator network structure. Although effects of interspecific variation have been widely documented, studies of intraspecific variation in pollinator foraging are relatively rare. Sex-specific differences in resource use are a strong potential source of intraspecific variation, especially in species where the phenology of males and females differ. Differences may arise from encountering different flowering communities, sex-specific traits, nutritional requirements, or a combination of these factors. We evaluated sex-specific foraging patterns in the eastern regal fritillary butterfly (Argynnis idalia idalia), leveraging a 21-year floral visitation dataset. Because A. i. idalia is protandrous, we determined whether foraging differences were due to divergent phenology by comparing visitation patterns between the entire season with restricted periods of male-female overlap. We quantified nectar carbohydrate and amino acid contents of the most visited plant species and compared those visited more frequently by males versus females. We demonstrate significant differences in visitation patterns between male and female A. i. idalia over two decades. Females visit a greater diversity of species, while dissimilarity in foraging patterns between sexes is persistent and comparable to differences between species. While differences are diminished or absent in some years during periods of male-female overlap, remaining signatures of foraging dissimilarity during implicate mechanisms other than phenology. Nectar of plants visited more by females had greater concentrations of total carbohydrates, glucose, and fructose and individual amino acids than male-associated plants. Further work can test whether nutritional differences are a cause of visitation patterns or consequence, reflecting seasonal shifts in the nutritional landscape encountered by male and female A. i. idalia. We highlight the importance of considering sex-specific foraging patterns when studying interaction networks, and in making conservation management decisions for this at-risk butterfly and other species exhibiting strong intraspecific variation.
Collapse
Affiliation(s)
| | - Skyler Naya
- Department of BiologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Monica Borghi
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Department of BiologyUtah State UniversityLoganUtahUSA
| | - Jen Cortese
- Department of BiologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mark T. Swartz
- The Pennsylvania Department of Military and Veterans AffairsFort Indiantown Gap National Guard Training CenterAnnvillePennsylvaniaUSA
| | | | - Brent J. Sewall
- Department of BiologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
13
|
Wyver C, Potts SG, Edwards M, Edwards R, Roberts S, Senapathi D. Climate-driven phenological shifts in emergence dates of British bees. Ecol Evol 2023; 13:e10284. [PMID: 37431445 PMCID: PMC10329875 DOI: 10.1002/ece3.10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Climate change has a diverse range of impacts on wild bees, including their phenology or timing of life history events. Climate-driven phenological shifts can not only impact individuals at species level but also threaten the vital pollination service that wild bees provide to both wild plants and cultivated crops. Despite their involvement in pollination, for most bee species, especially in Great Britain, little is known about phenological shifts. This study makes use of 40 years of presence-only data for 88 species of wild bees to analyse shifts in emergence dates, both over time and in relation to temperature. The analyses reveal widespread advances in emergence dates of British wild bees, at an average rate of 0.40 ± 0.02 days per year since 1980 across all species in the study data set. Temperature is a key driver of this shift, with an average advance of 6.5 ± 0.2 days per 1°C warming. For change in emergence dates both over time and in relation to temperature, there was significant species-specific variation, with 14 species showing significant advances over time and 67 showing significant advances in relation to temperature. Traits did not appear to explain variation in individual species' responses, with overwintering stage, lecty, emergence period and voltinism considered as possible explanatory traits. Pairwise comparisons showed no differences in sensitivity of emergence dates to increasing temperature between trait groups (groups of species which share all four traits) that differed by only one trait. These results highlight not only a direct impact of temperature on the phenology of wild bees themselves but also the species-specific shifts highlight a possible impact on the temporal structure of bee communities and the pollination networks for which the wild bees are so crucial.
Collapse
Affiliation(s)
- Chris Wyver
- Centre for Agri‐Environmental Research, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Simon G. Potts
- Centre for Agri‐Environmental Research, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Mike Edwards
- Bees, Wasps and Ants Recording SocietyWest SussexUK
| | | | - Stuart Roberts
- Centre for Agri‐Environmental Research, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Deepa Senapathi
- Centre for Agri‐Environmental Research, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
14
|
Chen J, Rincon JOR, DeGrandi-Hoffman G, Fewell J, Harrison J, Kang Y. Impacts of seasonality and parasitism on honey bee population dynamics. J Math Biol 2023; 87:19. [PMID: 37389742 DOI: 10.1007/s00285-023-01952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The honeybee plays an extremely important role in ecosystem stability and diversity and in the production of bee pollinated crops. Honey bees and other pollinators are under threat from the combined effects of nutritional stress, parasitism, pesticides, and climate change that impact the timing, duration, and variability of seasonal events. To understand how parasitism and seasonality influence honey bee colonies separately and interactively, we developed a non-autonomous nonlinear honeybee-parasite interaction differential equation model that incorporates seasonality into the egg-laying rate of the queen. Our theoretical results show that parasitism negatively impacts the honey bee population either by decreasing colony size or destabilizing population dynamics through supercritical or subcritical Hopf-bifurcations depending on conditions. Our bifurcation analysis and simulations suggest that seasonality alone may have positive or negative impacts on the survival of honey bee colonies. More specifically, our study indicates that (1) the timing of the maximum egg-laying rate seems to determine when seasonality has positive or negative impacts; and (2) when the period of seasonality is large it can lead to the colony collapsing. Our study further suggests that the synergistic influences of parasitism and seasonality can lead to complicated dynamics that may positively and negatively impact the honey bee colony's survival. Our work partially uncovers the intrinsic effects of climate change and parasites, which potentially provide essential insights into how best to maintain or improve a honey bee colony's health.
Collapse
Affiliation(s)
- Jun Chen
- Simon A. Levin Mathematical and Computational Modeling Sciences Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Jordy O Rodriguez Rincon
- Simon A. Levin Mathematical and Computational Modeling Sciences Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, United States Department of Agriculture-Agricultural Research Service, Tucson, AZ, 85719, USA
| | - Jennifer Fewell
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jon Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yun Kang
- Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, USA.
| |
Collapse
|
15
|
Diniz UM, Aguiar LMDS. Spatiotemporal trends in floral visitation and interaction networks reveal shifting niches for bats in a Neotropical savanna. J Anim Ecol 2023. [PMID: 37173810 DOI: 10.1111/1365-2656.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Flower-vising bats are important components of tropical pollinator communities, yet little is known about the structure of their pollination networks and how resource availability through time (seasons) and space (habitat heterogeneity) affects the extent to which bats interact with plants within a community-wide context. This information is key for the conservation of threatened nectarivore species, such as the Cerrado-endemic Lonchophylla dekeyseri, for which data on its specialization on floral-resources is scarce. Within a seasonal and heterogeneous savanna in the central Brazilian Cerrado, we performed a year-round assessment of an inclusive assemblage of flower-visiting bats (both nectarivores and other guilds that can also feed on nectar) within a savanna-edge-forest gradient, the phenological trends and spatial distribution of bat and their resource plants, and the resultant temporal and spatial interaction networks between bats and plants in order to associate network structure to resource availability. Clear spatiotemporal trends emerged in the community. Nectarivores dominated the flower-visiting niche outside forests and were prolific floral visitors, resulting in networks with lower specialization and modularity. These bats diverged into savanna foragers active during the wet season and the wet-dry transition, and edge foragers active mostly during the dry season. The latter group encompassed L. dekeyseri, which visited mostly Bauhinia species. Frugivores took over as main floral visitors within forests, as well as during peak dry season, when fewer fruits were available, resulting in more specialized and modular networks. Our work shows that the turnover of floral resources across seasons and vegetation types has a defining role in bat-plant interactions and relates to network structure, as bat trophic guilds interact with plants in distinct habitats and times of the year. Frugivores dominate the flower-visiting niche in certain temporal and spatial subsets of the network, which calls for the inclusion of this guild in future studies. Moreover, the high visitation to Bauhinia species by L. dekeyseri during the dry season might reduce competition with other nectarivores and is relevant to the management of the species, although more data is needed on its resource consumption on a larger time frame and across its geographic range.
Collapse
Affiliation(s)
- Ugo Mendes Diniz
- Technische Universität München, Freising, Germany
- University of Brasília, Brasília, Brazil
| | | |
Collapse
|
16
|
de Manincor N, Fisogni A, Rafferty NE. Warming of experimental plant-pollinator communities advances phenologies, alters traits, reduces interactions and depresses reproduction. Ecol Lett 2023; 26:323-334. [PMID: 36592334 PMCID: PMC10107705 DOI: 10.1111/ele.14158] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 01/03/2023]
Abstract
Climate change may disrupt plant-pollinator mutualisms by generating phenological asynchronies and by altering traits that shape interaction costs and benefits. Our knowledge is limited to studies that manipulate only one partner or focus on either phenological or trait-based mismatches. We assembled communities of three annual plants and a solitary bee prior to flowering and emergence to test how springtime warming affects phenologies, traits, interactions and reproductive output. Warming advanced community-level flowering onset, peak and end but did not alter bee emergence. Warmed plant communities produced fewer and smaller flowers with less, more-concentrated nectar, reducing attractiveness, and warmed bees were more generalized in their foraging, reducing their effectiveness. Plant-bee interactions were less frequent, shorter and peaked earlier under warming. As a result, warmed plants produced fewer, lighter seeds, indicating pollinator-mediated fitness costs. Climate change will perturb plant-pollinator mutualisms, causing wide-ranging effects on partner species and diminishing the ecosystem service they provide.
Collapse
Affiliation(s)
- Natasha de Manincor
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Alessandro Fisogni
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Nicole E Rafferty
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
17
|
Practice makes the expert: The importance of training volunteers in the generation of phenological data from photographs of biodiversity observation platforms. PLoS One 2023; 18:e0282750. [PMID: 36881607 PMCID: PMC9990930 DOI: 10.1371/journal.pone.0282750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Phenology studies the time at which events in the life cycle of a species occur sand how they are related to environmental cues. Patterns of change in phenology at different scales can be used as an indicator of ecosystem changes and climate change, but the data necessary to detect these changes can be difficult to obtain due to their temporal and regional dimensions. Citizen science can contribute to generate large amounts of data on phenological changes at wide geographical scales that would be almost impossible for professional scientists to generate, but the quality and reliability of these data are often questioned. The objective of this study was to evaluate the use of a biodiversity observation citizen science platform based on photographic information as a potential source of large-scale phenological information, and to identify the key benefits and limitations of this type of information source. We used the Naturalista photographic databases for two invasive species in a tropical region: Leonotis nepetifolia and Nicotiana glauca. The photographs were classified into different phenophases (initial growth, immature flower, mature flower, dry fruit) by three groups of volunteers: a group of experts, a trained group with information on the biology and phenology of both species, and an untrained group. The degree of reliability of the phenological classifications was estimated for each group of volunteers and each phenophase. The degree of reliability of the phenological classification of the untrained group was generally very low for all phenophases. The group of trained volunteers showed accuracy levels for the reproductive phenophases that equaled the degree of reliability among the expert group, regardless of species, and was consistent across phenophases. We conclude that volunteer classification of photographic information contained in biodiversity observation platforms can provide phenological information with high geographic coverage and an increasing temporal coverage on general phenological patterns of species with wide distributions but has limited applicability in the identification of exact start and end dates. and peaks of the different phenophases.
Collapse
|
18
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
19
|
Ogilvie JE, CaraDonna PJ. The shifting importance of abiotic and biotic factors across the life cycles of wild pollinators. J Anim Ecol 2022; 91:2412-2423. [PMID: 36268682 DOI: 10.1111/1365-2656.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Organisms living in seasonal environments are exposed to different environmental conditions as they transition from one life stage to the next across their life cycle. How different life stages respond to these varying conditions, and the extent to which different life stages are linked, are fundamental components of the ecology of an organism. Nevertheless, the influence of abiotic and biotic factors on different parts of an organism's life cycle is often not accounted for, which limits our understanding of the ecological consequences of environmental change. We investigated the relative importance of climate conditions, food availability, and previous life-stage abundance in an assemblage of seven wild bumble bee species, asking: how do these three factors directly influence bee abundance at each life stage? To do so, we used a 7-year dataset where we monitored climate conditions, floral resources, and abundances of bees in each life stage across the active colony life cycle in a highly seasonal subalpine ecosystem in the Colorado Rocky Mountains, USA. Bee abundance at different life stages responded to abiotic and biotic conditions in a broadly consistent manner across the seven species: the survival and recruitment stage of the life cycle (overwintered queens) responded negatively to longer winters; the growth stage (workers) responded positively to floral resource availability; and the reproductive stage (males) was positively related to the abundance of the previous life stage (workers). Most species also exhibited some idiosyncratic responses. Our long-term examination of annual bumble bees reveals a general set of responses in the abundance of each life stage to climate conditions, floral resource availability, and previous life stage. Across species, these three factors each directly influenced a distinct life stage, illustrating how their relative importance can shift throughout the life cycle. The life-cycle approach that we have taken highlights that important details about demography can be overlooked without considering life-stage-specific responses. Ultimately, it is these life-stage-specific responses that shape population outcomes, not only for animal pollinators but also for many organisms living in seasonal environments.
Collapse
Affiliation(s)
- Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Paul J CaraDonna
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA.,Plant Biology and Conservation, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
20
|
Schilcher F, Hilsmann L, Ankenbrand MJ, Krischke M, Mueller MJ, Steffan-Dewenter I, Scheiner R. Honeybees are buffered against undernourishment during larval stages. FRONTIERS IN INSECT SCIENCE 2022; 2:951317. [PMID: 38468773 PMCID: PMC10926507 DOI: 10.3389/finsc.2022.951317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 03/13/2024]
Abstract
The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.
Collapse
Affiliation(s)
- Felix Schilcher
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lioba Hilsmann
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus J. Ankenbrand
- Center for Computational and Theoretical Biology (CCTB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute of Biosciences, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Stowe HE, Michaud JP, Kim TN. Resource amount and discontinuity influence flight and reproduction in
Hippodamia convergens
(Coleoptera: Coccinellidae). Ecosphere 2022. [DOI: 10.1002/ecs2.4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hannah E. Stowe
- Department of Entomology Kansas State University Manhattan Kansas USA
| | - J. P. Michaud
- Department of Entomology Kansas State University, Agricultural Research Center—Hays Hays Kansas USA
| | - Tania N. Kim
- Department of Entomology Kansas State University Manhattan Kansas USA
| |
Collapse
|
22
|
Nabors A, Hung KLJ, Corkidi L, Bethke JA. California Native Perennials Attract Greater Native Pollinator Abundance and Diversity Than Nonnative, Commercially Available Ornamentals in Southern California. ENVIRONMENTAL ENTOMOLOGY 2022; 51:836-847. [PMID: 35854655 DOI: 10.1093/ee/nvac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 06/15/2023]
Abstract
While many factors have been implicated in global pollinator decline, habitat loss is a key driver of wild pollinator decline in both abundance and species richness. An increase in and diversification of pollinator habitat, even in urban settings, can assist in the conservation of pollinator populations. In Southern California, a highly fragmented and urbanized landscape with a rich yet threatened native pollinator fauna, the availability of food resources for native pollinators hinges largely upon the selection of ornamental plants grown in the urban landscape. To examine the pollinator attractiveness of ornamental plants in a Southern California context, we installed an experimental garden with common California native and nonnative ornamental perennials and observed floral visitation and visitor community composition for 3 yr. Our study demonstrates that while native pollinators visited common ornamental perennials native to California at a higher rate than they visited nonnative ornamentals, introduced honey bees showed no significant preference for either native or nonnative species. Native plants also received a greater diversity of visitor taxa, including a richer suite of native bees. Plant species differed dramatically in attractiveness, by as much as a factor of 12, even within the native status group. Our results suggest that including a data-driven selection of both native and non-native ornamental perennials in the urban landscape can diversify the assemblage of native pollinators, provide critical floral resources throughout the year, and reduce the impact of honey bee landscape foraging dominance by providing plants highly attractive to native pollinators and less so to honey bees.
Collapse
Affiliation(s)
- Annika Nabors
- University of California Cooperative Extension, San Diego County, San Diego, CA, USA
| | - Keng-Lou James Hung
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Oklahoma Natural Heritage Inventory & Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA
| | - Lea Corkidi
- University of California Cooperative Extension, San Diego County, San Diego, CA, USA
| | - James A Bethke
- University of California Cooperative Extension, San Diego County, San Diego, CA, USA
| |
Collapse
|
23
|
Walters J, Zavalnitskaya J, Isaacs R, Szendrei Z. Heat of the moment: extreme heat poses a risk to bee-plant interactions and crop yields. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100927. [PMID: 35500861 DOI: 10.1016/j.cois.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extreme heat events threaten the development, functioning, and success of bee pollinators and crops that rely on pollinators for high yields. While direct effects of extreme heat and climate warming have gained more attention, the indirect effects on bees and crops remain largely unexplored. Extreme heat can directly alter the nutritional value of floral rewards, which indirectly contributes to lower bee survival, development, and reproduction with implications for pollination. Phenological mismatches between bee activity and crop flowering are also expected. Heat-stressed crop plants with reduced floral rewards may reduce bee foraging and nesting, limiting pollination services. Understanding how extreme heat affects bee-crop interactions will be essential for resilient production of pollinator-dependent crops in this era of climate change.
Collapse
Affiliation(s)
- Jenna Walters
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | | | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Turley NE, Biddinger DJ, Joshi NK, López‐Uribe MM. Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecol Evol 2022; 12:e9190. [PMID: 35983174 PMCID: PMC9374588 DOI: 10.1002/ece3.9190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Wild bees form diverse communities that pollinate plants in both native and agricultural ecosystems making them both ecologically and economically important. The growing evidence of bee declines has sparked increased interest in monitoring bee community and population dynamics using standardized methods. Here, we studied the dynamics of bee biodiversity within and across years by monitoring wild bees adjacent to four apple orchard locations in Southern Pennsylvania, USA. We collected bees using passive Blue Vane traps continuously from April to October for 6 years (2014-2019) amassing over 26,000 bees representing 144 species. We quantified total abundance, richness, diversity, composition, and phylogenetic structure. There were large seasonal changes in all measures of biodiversity with month explaining an average of 72% of the variation in our models. Changes over time were less dramatic with years explaining an average of 44% of the variation in biodiversity metrics. We found declines in all measures of biodiversity especially in the last 3 years, though additional years of sampling are needed to say if changes over time are part of a larger trend. Analyses of population dynamics over time for the 40 most abundant species indicate that about one third of species showed at least some evidence for declines in abundance. Bee family explained variation in species-level seasonal patterns but we found no consistent family-level patterns in declines, though bumble bees and sweat bees were groups that declined the most. Overall, our results show that season-wide standardized sampling across multiple years can reveal nuanced patterns in bee biodiversity, phenological patterns of bees, and population trends over time of many co-occurring species. These datasets could be used to quantify the relative effects that different aspects of environmental change have on bee communities and to help identify species of conservation concern.
Collapse
Affiliation(s)
- Nash E. Turley
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityPennsylvaniaUSA
| | - David J. Biddinger
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Neelendra K. Joshi
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleArkansasUSA
| | - Margarita M. López‐Uribe
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityPennsylvaniaUSA
| |
Collapse
|
25
|
Ballarin CS, Hachuy‐Filho L, Doria MJW, Giffu MM, Polizello DS, Oliveira PH, Lacerda‐Barbosa PA, Amorim FW. Intra‐seasonal and daily variations in nectar availability affect bee assemblage in a monodominant afforested Brazilian Cerrado. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caio S. Ballarin
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Biologia Vegetal, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Leandro Hachuy‐Filho
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Zoologia, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Maria Júlia W. Doria
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Biologia Vegetal, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Murilo M. Giffu
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Zoologia, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Diego S. Polizello
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Zoologia, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Pablo H. Oliveira
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Zoologia, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Pedro A. Lacerda‐Barbosa
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Biologia Vegetal, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| | - Felipe W. Amorim
- Laboratório de Ecologia da Polinização e Interações – LEPI Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Street Prof. Dr. Antonio Celso Wagner Zanin CEP 18618‐689 Botucatu São Paulo State Brazil
- Programa de Pós‐graduação em Biologia Vegetal, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
- Programa de Pós‐graduação em Zoologia, Instituto de Biociências Universidade Estadual Paulista “Júlio de Mesquita Filho” São Paulo São Paulo State Brazil
| |
Collapse
|
26
|
Gonzales D, Hempel de Ibarra N, Anderson K. Remote Sensing of Floral Resources for Pollinators – New Horizons From Satellites to Drones. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect pollinators are affected by the spatio-temporal distribution of floral resources, which are dynamic across time and space, and also influenced heavily by anthropogenic activities. There is a need for spatial data describing the time-varying spatial distribution of flowers, which can be used within behavioral and ecological studies. However, this information is challenging to obtain. Traditional field techniques for mapping flowers are often laborious and limited to relatively small areas, making it difficult to assess how floral resources are perceived by pollinators to guide their behaviors. Conversely, remote sensing of plant traits is a relatively mature technique now, and such technologies have delivered valuable data for identifying and measuring non-floral dynamics in plant systems, particularly leaves, stems and woody biomass in a wide range of ecosystems from local to global scales. However, monitoring the spatial and temporal dynamics of plant floral resources has been notably scarce in remote sensing studies. Recently, lightweight drone technology has been adopted by the ecological community, offering a capability for flexible deployment in the field, and delivery of centimetric resolution data, providing a clear opportunity for capturing fine-grained information on floral resources at key times of the flowering season. In this review, we answer three key questions of relevance to pollination science – can remote sensing deliver information on (a) how isolated are floral resources? (b) What resources are available within a flower patch? And (c) how do floral patches change over time? We explain how such information has potential to deepen ecological understanding of the distribution of floral resources that feed pollinators and the parameters that determine their navigational and foraging choices based on the sensory information they extract at different spatial scales. We provide examples of how such data can be used to generate new insights into pollinator behaviors in distinct landscape types and their resilience to environmental change.
Collapse
|
27
|
Cecala JM, Wilson Rankin EE. Diversity and turnover of wild bee and ornamental plant assemblages in commercial plant nurseries. Oecologia 2022; 198:773-783. [PMID: 35201380 DOI: 10.1007/s00442-022-05135-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/08/2022] [Indexed: 01/30/2023]
Abstract
In human-modified landscapes, understanding how habitat characteristics influence the diversity and composition of beneficial organisms is critical to conservation efforts and modeling ecosystem services. Assessing turnover, or the magnitude of change in species composition across sites or through time, is crucial to said efforts, yet is often overlooked. For pollinators such as wild bees, variables influencing temporal turnover, particularly across seasons within a year, remain poorly understood. To investigate how local and landscape characteristics correlate with bee diversity and turnover across seasons, we recorded wild bee and flowering ornamental plant assemblages at 13 plant nurseries in California between spring and autumn over 2 years. Nurseries cultivate a broad diversity of flowering plant species that differ widely across sites and seasons, providing an opportunity to test for correlations between turnover and diversity of plants and bees. As expected, we documented strong seasonal trends in wild bee diversity and composition. We found that local habitat factors, such as increased cultivation of native plants, were positively associated with bee diversity in sweep netting collections, whereas we detected moderate influences of landscape level factors such as proportion of surrounding natural area in passive trap collections. We also detected a moderate positive correlation between the magnitude of turnover in plant species and that of bee species (as number of taxa gained) across consecutive seasons. Our results have implications for the conservation of wild bees in ornamental plant landscapes, and highlight the utility of plant nurseries for investigating hypotheses related to diversity and turnover in plant-pollinator systems.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | | |
Collapse
|
28
|
Lowe A, Jones L, Brennan G, Creer S, Vere N. Seasonal progression and differences in major floral resource use by bees and hoverflies in a diverse horticultural and agricultural landscape revealed by
DNA
metabarcoding. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abigail Lowe
- National Botanic Garden of Wales, Llanarthne UK
- Molecular Ecology and Evolution Group, School of Natural Sciences Bangor University Bangor UK
| | - Laura Jones
- National Botanic Garden of Wales, Llanarthne UK
| | | | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences Bangor University Bangor UK
| | - Natasha Vere
- Natural History Museum of Denmark University of Copenhagen Denmark
| |
Collapse
|
29
|
Reproductive patterns of solitary cavity-nesting bees responsive to both local and landscape factors. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01116-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Bumble Bee Foraged Pollen Analyses in Spring Time in Southern Estonia Shows Abundant Food Sources. INSECTS 2021; 12:insects12100922. [PMID: 34680691 PMCID: PMC8538635 DOI: 10.3390/insects12100922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Pollinators make a strong contribution to ecosystem stability. However, nowadays, they also need protection and sustainable habitat to live and develop. Not all regions can provide suitable habitats due to agricultural intensification, urbanization, climate changes and corresponding impacts. Our study was conducted in the late spring in south Estonia where arable lands were surrounded by forest patches and rural areas. For better performance, we used both light microscopy and DNA metabarcoding methods for pollen identification. We found that bumble bees foraged on the diverse food sources showing preferences for several main plant families. Additionally, in our case, land-use types did not show important effects on bumble bee food choices and foraging decisions. Various landscape features can provide diverse food sources at the early development stages and support nest longevity. Here, we can say that a better understanding of pollinators’ food preferences can help in the application of more suitable measures for their conservation. Abstract Agricultural landscapes usually provide higher quantities of single-source food, which are noticeably lacking in diversity and might thus have low nutrient value for bumble bee colony development. Here, in this study, we analysed the pollen foraging preferences over a large territory of a heterogeneous agricultural landscape: southern Estonia. We aimed to assess the botanical diversity of bumble bee food plants in the spring time there. We looked for preferences for some food plants or signs of food shortage that could be associated with any particular landscape features. For this purpose, we took Bombus terrestris commercial hives to the landscape, performed microscopy analyses and improved the results with the innovative DNA metabarcoding technique to determine the botanical origin of bumble bee-collected pollen. We found high variability of forage plants with no strong relationship with any particular landscape features. Based on the low number of plant species in single flights, we deduce that the availability of main forage plants is sufficient indicating rich forage availabilities. Despite specific limitations, we saw strong correlations between microscopy and DNA metabarcoding data usable for quantification analyses. As a conclusion, we saw that the spring-time vegetation in southern Estonia can support bumble bee colony development regardless of the detailed landscape structure. The absence of clearly dominating food preference by the tested generalist bumble bee species B. terrestris makes us suggest that other bumble bee species, at least food generalists, should also find plenty of forage in their early development phase.
Collapse
|
31
|
Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life (Basel) 2021; 11:life11090970. [PMID: 34575119 PMCID: PMC8464958 DOI: 10.3390/life11090970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biodiversity strengthens the productivity of any ecosystem (agricultural land, forest, lake, etc.). The loss of biodiversity contributes to food and energy insecurity; increases vulnerability to natural disasters, such as floods or tropical storms; and decreases the quality of both life and health. Wild and managed bees play a key role in maintaining the biodiversity and in the recovery and restoration of degraded habitats. The novelty character of this perspective is to give an updated representation of bee products’ biodiversity, sustainability, and health relationship. The role of bees as bioindicators, their importance in the conservation of biodiversity, their ecosystem services, and the variety of the bee products are described herein. An overview of the main components of bee products, their biological potentials, and health is highlighted and detailed as follows: (i) nutritional value of bee products, (ii) bioactive profile of bee products and the related beneficial properties; (iii) focus on honey and health through a literature quantitative analysis, and (iv) bee products explored through databases. Moreover, as an example of the interconnection between health, biodiversity, and sustainability, a case study, namely the “Cellulose Park”, realized in Rome (Italy), is presented here. This case study highlights how bee activities can be used to assess and track changes in the quality of agricultural ecosystems—hive products could be valid indicators of the quality and health of the surrounding environment, as well as the changes induced by the biotic and abiotic factors that impact the sustainability of agricultural production and biodiversity conservation in peri-urban areas.
Collapse
|
32
|
Jachuła J, Denisow B, Wrzesień M. Habitat heterogeneity helps to mitigate pollinator nectar sugar deficit and discontinuity in an agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146909. [PMID: 33848857 DOI: 10.1016/j.scitotenv.2021.146909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The scarcity of floral resources and their seasonal discontinuity are considered as major factors for pollinator decline in intensified agricultural landscapes worldwide. The consequences are detrimental for the stability of the environment and ecosystems. Here, we quantified the production of nectar sugars in plant species occurring in man-made, non-cropped areas (non-forest woody vegetation, road verges, railway embankments, field margins, fallow areas) of an agricultural landscape in SE Poland. We also assessed changes in the availability of sugar resources both in space (habitat and landscape scales) and in time (throughout the flowering season), and checked to what extent the sugar demands of honeybees and bumblebees are met at the landscape scale. At landscape-level, 37.6% of the available sugar resources are produced in man-made, non-cropped habitats, while 32.6% and 15.0% of sugars derive from winter rape crops and forest vegetation, respectively. Nectar sugar supplies vary greatly between man-made, non-cropped habitat types/sub-types. These areas are characterized by a high richness of nectar-producing species. However, a predominant role in total sugar resources is ascribable to a few species. Strong fluctuations in nectar resources are recorded throughout the flowering season. March and June are periods with food shortages. Abundant nectar sugars are generally found in April-May, mainly due to the mass flowering of nectar-yielding species in the forests, meadows/pastures and orchards/rapeseed crops. Heterogeneity of man-made, non-cropped habitats is essential to support the supply of July-October nectar sugars for honeybees and bumblebees. Reduced flowering in man-made non-cropped habitats can generate serious food deficiencies, as from summer towards the end of the flowering season >90% of sugars are provided by the flora of these areas. Therefore, highly nectar-yielding plant species that flower during periods of expected food shortages should be a priority for conservation and restoration programs.
Collapse
Affiliation(s)
- Jacek Jachuła
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland
| | - Bożena Denisow
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland.
| | - Małgorzata Wrzesień
- Department of Botany, Mycology, and Ecology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| |
Collapse
|
33
|
Ratnieks FLW, Balfour NJ. Plants and pollinators: Will natural selection cause an imbalance between nectar supply and demand? Ecol Lett 2021; 24:1741-1749. [PMID: 34170608 DOI: 10.1111/ele.13823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/05/2020] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Pollination is an important ecological process. However, plant and pollinator needs are not always met. Commonly, pollen limitation reduces seed set or bees experience nectar dearth. Using a cost-benefit approach, we show that natural selection will lead to lower nectar production when pollinators are abundant, and vice-versa. At the community level, competition among plants for pollinators causes positive feedback that exacerbates pre-existing seasonal imbalances between nectar supply and demand. When pollinators are scarce, plants will be selected to produce more nectar to outcompete other plants in attracting pollinators, and when pollinators are abundant, plants will be selected to produce less nectar. We suggest ways to test this positive feedback hypothesis and note that evidence for seasonal variation in nectar availability provides preliminary empirical support. If correct, our hypothesis indicates that pollination faces a particular challenge in balancing nectar supply with pollinator demand and is a further example of the underappreciated role of positive feedback in ecology and evolution.
Collapse
Affiliation(s)
- Francis L W Ratnieks
- Laboratory of Apiculture & Social Insects (LASI), School of Life Sciences, University of Sussex, Brighton, UK
| | - Nicholas J Balfour
- Laboratory of Apiculture & Social Insects (LASI), School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
34
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
35
|
Mola JM, Richardson LL, Spyreas G, Zaya DN, Pearse IS. Long‐term surveys support declines in early season forest plants used by bumblebees. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John M. Mola
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| | | | - Greg Spyreas
- Illinois Natural History SurveyUniversity of Illinois Champaign IL USA
| | - David N. Zaya
- Illinois Natural History SurveyUniversity of Illinois Champaign IL USA
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| |
Collapse
|
36
|
Nicholson CC, J-M Hayes J, Connolly S, Ricketts TH. Corridors through time: Does resource continuity impact pollinator communities, populations, and individuals? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02260. [PMID: 33185959 DOI: 10.1002/eap.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Spatial aspects of connectivity have received considerable attention from ecologists and conservationists, yet temporal connectivity, the periodic linking of habitats, plays an equally important, but largely overlooked role. Different biological and biophysical attributes of ecosystems underpin temporal connectivity, but here we focus on resource continuity, the uninterrupted availability of foraging sites. We test the response of pollinators to resource continuity at community, population, and individual levels using a novel natural experiment consisting of farms with either single or sequential cropping systems. We found significant effects at the population level; colony density of an important crop pollinator (Bombus impatiens L.) was greater when crop floral resources were continuously available. However, we did not find significant effects at the community or individual level; wild bee abundance, diversity and body size did not respond to resource continuity. Raspberry farms with greater early season resources provided by blueberry had greater bumble bee populations, suggesting beneficial effects on resource availability due to crop diversity. Better understanding the impact of resource continuity via crop diversity on broader patterns of biodiversity is essential for the co-management of biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Charlie C Nicholson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Jen J-M Hayes
- Department of Horticulture, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Samantha Connolly
- Department of Computer Science, University of Vermont, Burlington, Vermont, 05405, USA
| | - Taylor H Ricketts
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
37
|
Guezen JM, Forrest JRK. Seasonality of floral resources in relation to bee activity in agroecosystems. Ecol Evol 2021; 11:3130-3147. [PMID: 33841773 PMCID: PMC8019032 DOI: 10.1002/ece3.7260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/05/2022] Open
Abstract
The contribution of wild insects to crop pollination is becoming increasingly important as global demand for crops dependent on animal pollination increases. If wild insect populations are to persist in agricultural landscapes, there must be sufficient resources over time and space. The temporal, within-season component of floral resource availability has rarely been investigated, despite growing recognition of its likely importance for pollinator populations. Here, we examined the visitation rates of common bee genera and the spatiotemporal availability of floral resources in agroecosystems over one season to determine whether local wild bee activity was limited by landscape floral resource abundance, and if so, whether it was limited by the present or past abundance of landscape floral resources. Visitation rates and landscape floral resources were measured in 27 agricultural sites in Ontario and Québec, Canada, across four time periods and three spatial scales. Floral resources were determined based on species-specific floral volume measurements, which we found to be highly correlated with published measurements of nectar sugar mass and pollen volume. Total floral volume at varying spatial scales predicted visits for commonly observed bee genera. We found Lasioglossum and Halictus visits were highest in landscapes that provided either a stable or increasing amount of floral resources over the season. Andrena visits were highest in landscapes with high floral resources at the start of the season, and Bombus visits appeared to be positively related to greater cumulative seasonal abundance of floral resources. These findings together suggest the importance of early-season floral resources to bees. Megachile visits were negatively associated with the present abundance of floral resources, perhaps reflecting pollinator movement or dilution. Our research provides insight into how seasonal fluctuations in floral resources affect bee activity and how life history traits of bee genera influence their responses to food availability within agroecosystems.
Collapse
|
38
|
Wu P, Dai P, Wang M, Feng S, Olhnuud A, Xu H, Li X, Liu Y. Improving Habitat Quality at the Local and Landscape Scales Increases Wild Bee Assemblages and Associated Pollination Services in Apple Orchards in China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.621469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bees provide key pollination services for a wide range of crops. Accumulating evidence shows the effect of semi-natural habitats at the landscape level and local management practices on bee diversity in fields. However, most of the evidence is derived from studies in North America and Europe. Whether this paradigm is applicable in China, which is characterized by smallholder-dominated agricultural landscapes, has rarely been studied. In this study, we aimed to investigate how bee diversity affected apple production, and how landscape and local variables affected bee diversity and species composition on the Northern China Plain. The results showed that bees significantly increased apple fruit set compared to bagged controls. Wild bee diversity was positively related to apple seed numbers. Higher seed numbers reduced the proportion of deformed apples and thus increased fruit quality. Wild bee abundance was positively correlated with flowering ground cover, and both the abundance and species richness of wild bees were positively affected by the percentage of semi-natural habitats. We conclude that apple quality can benefit from ecological intensification comprising the augmentation of wild bees by semi-natural habitats and flowering ground cover. Future pollination management should therefore reduce the intensification level of management at both the local and landscape scales.
Collapse
|
39
|
Heiling JM, Bronstein JL, Irwin RE. Nectar addition changes pollinator behavior but not plant reproduction in pollen-rewarding Lupinus argenteus. AMERICAN JOURNAL OF BOTANY 2021; 108:402-410. [PMID: 33608867 DOI: 10.1002/ajb2.1613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
PREMISE In addition to its role as the male gamete, pollen is often used as a food reward for pollinators. Roughly 20,000 species of angiosperms are strictly pollen-rewarding, providing no other rewards to their pollinators. However, the influence of this strategy on pollinator behavior and plant reproduction is poorly understood, especially relative to the nectar-reward strategy. We performed a field experiment using the strictly pollen-rewarding Lupinus argenteus to explore how the absence of nectar influences pollinator behavior and plant reproduction. METHODS We added artificial nectar to Lupinus argenteus individuals to simulate a phenotype that would reward pollinators with both nectar and pollen. We compared bee pollinator behavior, via direct observation, and female reproduction between nectar-added and nectarless control plants. RESULTS Bees exhibited behavioral responses to the novel reward, collecting nectar as well as pollen and spending 27% longer per flower. Pollen transfer increased with flower visit duration. However, plants in the study population were not pollen-limited; consequently, the observed changes in pollinator behavior did not result in changes in female components of plant reproduction. CONCLUSIONS The addition of nectar to pollen-rewarding plants resulted in modest increases in per-flower pollinator visit duration and pollen transfer, but had no effect on reproduction because, at the place and time the experiment was conducted, plants were not pollen-limited. These results suggest that a pollen-only reward strategy may allow plants that are visited by pollen foragers to minimize some costs of reproduction by eliminating investment in other rewards, such as nectar, without compromising female plant fitness.
Collapse
Affiliation(s)
- Jacob M Heiling
- Dept. of Applied Ecology, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, 81224, USA
- Dept. of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - Judith L Bronstein
- Rocky Mountain Biological Laboratory, Gothic, Colorado, 81224, USA
- Dept. of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Rebecca E Irwin
- Dept. of Applied Ecology, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, 81224, USA
| |
Collapse
|
40
|
Kammerer M, Goslee SC, Douglas MR, Tooker JF, Grozinger CM. Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. GLOBAL CHANGE BIOLOGY 2021. [PMID: 33433964 DOI: 10.5061/dryad.kwh70rz2s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.
Collapse
Affiliation(s)
- Melanie Kammerer
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sarah C Goslee
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, USA
| | - Margaret R Douglas
- Department of Environmental Studies & Environmental Science, Dickinson College, Carlisle, PA, USA
| | - John F Tooker
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Christina M Grozinger
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
41
|
Kammerer M, Goslee SC, Douglas MR, Tooker JF, Grozinger CM. Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. GLOBAL CHANGE BIOLOGY 2021; 27:1250-1265. [PMID: 33433964 PMCID: PMC7986353 DOI: 10.1111/gcb.15485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.
Collapse
Affiliation(s)
- Melanie Kammerer
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPAUSA
- Department of EntomologyCenter for Pollinator ResearchHuck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
- Present address:
USDA‐ARS Pasture Systems and Watershed Management Research UnitUniversity ParkPA16802USA
- Present address:
USDA‐ARS Jornada Experimental RangeLas CrucesNM88003USA
| | - Sarah C. Goslee
- USDA‐ARS Pasture Systems and Watershed Management Research UnitUniversity ParkPAUSA
| | - Margaret R. Douglas
- Department of Environmental Studies & Environmental ScienceDickinson CollegeCarlislePAUSA
| | - John F. Tooker
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPAUSA
- Department of EntomologyCenter for Pollinator ResearchHuck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - Christina M. Grozinger
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPAUSA
- Department of EntomologyCenter for Pollinator ResearchHuck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
42
|
Timberlake TP, Vaughan IP, Baude M, Memmott J. Bumblebee colony density on farmland is influenced by late‐summer nectar supply and garden cover. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas P. Timberlake
- School of Biological Sciences University of Bristol Bristol UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Ian P. Vaughan
- Cardiff School of BiosciencesCardiff University Cardiff UK
| | | | - Jane Memmott
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
43
|
Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics. INSECTS 2020; 11:insects11120853. [PMID: 33271986 PMCID: PMC7760584 DOI: 10.3390/insects11120853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Many bees and wasps are important pollinators and natural pest controllers. Habitat loss is a major threat to bee and wasp conservation, but little is known about how this impacts tropical bees and wasps. This study aimed to determine how habitat loss affects solitary bees and wasps in tropical agricultural landscapes and how they change with the seasons. Solitary bees and wasps can be monitored using trap nests, popularly known as “bee hotels”. We installed bee hotels in forests and orchards and checked them every season over two years. We found 41 species of bees and wasps nesting in bee hotels. Importantly, five species of bees and 14 species of wasps were found only in forests, mostly species with particular food or nesting requirements. More species of bees and wasps used the hotels in the wet season (spring-summer). Our study suggests that solitary bees and wasps with special resource requirements are vulnerable to habitat loss in tropical agricultural landscapes. Abstract (1) Background: Landscape simplification is a major threat to bee and wasp conservation in the tropics, but reliable, long-term population data are lacking. We investigated how community composition, diversity, and abundance of tropical solitary bees and wasps change with landscape simplification (plant diversity, plant richness, distance from forest, forest cover, and land use type) and season. (2) Methods: We installed 336 timber and cob trap nests in four complex forests and three simplified orchards within the subtropical biodiversity hotspot of south-east Queensland, Australia. Trap nests were replaced every season for 23 months and all emergents identified. (3) Results: We identified 28 wasp species and 13 bee species from 2251 brood cells. Bee and wasp community composition changed with landscape simplification such that large, ground-nesting, and spider-hunting species were present in all landscapes, while those with specialist resource requirements and (clepto) parasitoids were present only in complex landscapes. Abundance and diversity of bees and wasps were unaffected by landscape simplification but increased with rainfall. (4) Conclusions: This study highlights the need for multi-year studies incorporating nuanced measures such as composition with a focus on functional diversity to detect changes bee and wasp populations.
Collapse
|
44
|
Evidence of Pollinators Foraging on Centipedegrass Inflorescences. INSECTS 2020; 11:insects11110795. [PMID: 33202733 PMCID: PMC7696019 DOI: 10.3390/insects11110795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Turfgrasses are generally considered devoid of pollinators, as turfgrasses are often described as being only wind-pollinated. Centipede grass is a popular turfgrass grown in the southeastern USA. Centipede grass produces a large number of inflorescences from August to October each year. In a recent study, honeybees were found to collect pollen from centipede grass. However, it is not clear whether other pollinators are attracted to centipede grass inflorescences and actively forage them. Thus, the aim of the current study was to document the pollinators that foraged on centipede grass inflorescences. Pollinators visiting centipede grass were sampled using (1) a sweep net when actively foraging on an inflorescence; (2) blue, white and yellow pan traps; and (3) malaise or flight-intercept traps. Sweat-, bumble- and honeybees were captured while actively foraging on the centipede grass inflorescences. In the pan and flight-intercept traps, more sweat-bees were collected than honey- or bumblebees. We also captured hoverflies in the samples. The adult hoverflies consumed pollen during flower visits. This research is a first step toward developing bee-friendly lawns. The data also imply that proper caution should be exercised to preserve bee habitat and encourage bee foraging. Abstract Turfgrasses are commonly used for lawns and as recreational surfaces in the USA. Because grasses are largely wind-pollinated, it was thought that pollinators would not forage on turfgrasses. Centipede grass (Eremochloa ophiuroides (Munro) Hack) is a warm-season turfgrass widely used in the southeastern USA. Centipede grass produces spike-like inflorescences from August to October, and little is known about whether pollinators utilize those inflorescences as pollen resources. Thus, the objective of the current study was to identify the pollinators foraging on centipede grass inflorescences. Pollinator samples were collected by (1) sweeping the insects actively foraging on centipede grass inflorescence for 30 min, (2) deploying pan traps for 24 h and (3) deploying malaise traps for 7 d. In the sweep samples, Lasioglossum spp., Bombus spp., Apis spp., Melissodes spp. and Augochlorella spp. were collected from centipede grass inflorescences. Syrphid flies were also collected in the sweep samples. The pan and malaise traps collected mostly Lasioglossum spp. The results imply that there is a critical need to conserve bee habitats and adopt nondisruptive lawn practices. Additionally, this new knowledge lays the foundation for future research to enhance our understanding of bee and syrphid behavior and the selection of host traits for improving bee foraging.
Collapse
|
45
|
Staab M, Pereira-Peixoto MH, Klein AM. Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia 2020; 194:465-480. [PMID: 33079266 PMCID: PMC7644476 DOI: 10.1007/s00442-020-04785-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/10/2020] [Indexed: 11/30/2022]
Abstract
Urban green spaces such as gardens often consist of native and exotic plant species, which provide pollen and nectar for flower-visiting insects. Although some exotic plants are readily visited by pollinators, it is unknown if and at which time of the season exotic garden plants may supplement or substitute for flower resources provided by native plants. To investigate if seasonal changes in flower availability from native vs. exotic plants affect flower visits, diversity and particularly plant–pollinator interaction networks, we studied flower-visiting insects over a whole growing season in 20 urban residential gardens in Germany. Over the course of the season, visits to native plants decreased, the proportion of flower visits to exotics increased, and flower-visitor species richness decreased. Yet, the decline in flower-visitor richness over the season was slowed in gardens with a relatively higher proportion of flowering exotic plants. This compensation was more positively linked to the proportion of exotic plant species than to the proportion of exotic flower cover. Plant–pollinator interaction networks were moderately specialized. Interactions were more complex in high summer, but interaction diversity, linkage density, and specialisation were not influenced by the proportion of exotic species. Thus, later in the season when few native plants flowered, exotic garden plants partly substituted for native flower resources without apparent influence on plant–pollinator network structure. Late-flowering garden plants support pollinator diversity in cities. If appropriately managed, and risk of naturalisation is minimized, late-flowering exotic plants may provide floral resources to support native pollinators when native plants are scarce.
Collapse
Affiliation(s)
- Michael Staab
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Maria Helena Pereira-Peixoto
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany.
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.
| | - Alexandra-Maria Klein
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| |
Collapse
|
46
|
CaraDonna PJ, Burkle LA, Schwarz B, Resasco J, Knight TM, Benadi G, Blüthgen N, Dormann CF, Fang Q, Fründ J, Gauzens B, Kaiser-Bunbury CN, Winfree R, Vázquez DP. Seeing through the static: the temporal dimension of plant-animal mutualistic interactions. Ecol Lett 2020; 24:149-161. [PMID: 33073900 DOI: 10.1111/ele.13623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Most studies of plant-animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human-driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant-animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.
Collapse
Affiliation(s)
- Paul J CaraDonna
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60647, USA
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, CO, 81224, USA
- Plant Biology and Conservation, Northwestern University, Evanston, IL, 60208, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Benjamin Schwarz
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Tiffany M Knight
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Straße 4, Halle (Saale), 06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Gita Benadi
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
| | - Nico Blüthgen
- Ecological Networks, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt, 64287, Germany
| | - Carsten F Dormann
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
- Freiburg Institute for Advanced Studies, Universität Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Qiang Fang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jochen Fründ
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christopher N Kaiser-Bunbury
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Rachael Winfree
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ, 08901, USA
| | - Diego P Vázquez
- Freiburg Institute for Advanced Studies, Universität Freiburg, Freiburg im Breisgau, 79104, Germany
- Argentine Institute for Dryland Research, CONICET, National University of Cuyo, Av. Ruiz Leal s/n, Mendoza, 5500, Argentina
- Faculty of Exact and Natural Sciences, National University of Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| |
Collapse
|
47
|
Beyer N, Gabriel D, Kirsch F, Schulz‐Kesting K, Dauber J, Westphal C. Functional groups of wild bees respond differently to faba bean
Vicia faba
L. cultivation at landscape scale. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole Beyer
- Functional Agrobiodiversity Department of Crop Sciences University of Göttingen Göttingen Germany
| | - Doreen Gabriel
- Institute for Crop and Soil Science Julius Kühn‐Institut (JKI) Braunschweig Germany
| | - Felix Kirsch
- Functional Agrobiodiversity Department of Crop Sciences University of Göttingen Göttingen Germany
| | - Katharina Schulz‐Kesting
- Thünen Institute of Biodiversity Braunschweig Germany
- Biodiversity of Agricultural Landscapes Institute of Geoecology Technische Universität Braunschweig Braunschweig Germany
| | - Jens Dauber
- Thünen Institute of Biodiversity Braunschweig Germany
- Biodiversity of Agricultural Landscapes Institute of Geoecology Technische Universität Braunschweig Braunschweig Germany
| | - Catrin Westphal
- Functional Agrobiodiversity Department of Crop Sciences University of Göttingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Göttingen Göttingen Germany
| |
Collapse
|
48
|
Wilson Rankin EE, Barney SK, Lozano GE. Reduced Water Negatively Impacts Social Bee Survival and Productivity Via Shifts in Floral Nutrition. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5918281. [PMID: 33021636 PMCID: PMC7583269 DOI: 10.1093/jisesa/ieaa114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Pollinators provide a key ecosystem service vital for the survival and stability of the biosphere. Identifying factors influencing the plant-pollinator mutualism and pollinator management is necessary for maintaining a healthy ecosystem. Since healthy beehives require substantial amounts of carbohydrates (nectar) and protein (pollen) from forage plants such as clover, we must assess how resources offered by plants change under limited water conditions in order to fully understand how drought modifies the pollination mutualism. Here we document how reduced water availability leads to decreased nectar quality and quantity and decreased protein quality of pollen. Furthermore, we provide conclusive evidence that these lower quality resources lead to decreased survival and productivity in both developing honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae). The results emphasize the importance of the nutritional effects of reduced water on bees when predicting shifts of pollination mutualisms under climate change.
Collapse
Affiliation(s)
| | - Sarah K Barney
- Department of Entomology, University of California, Riverside, CA
| | - Giselle E Lozano
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
49
|
Fisogni A, Hautekèete N, Piquot Y, Brun M, Vanappelghem C, Michez D, Massol F. Urbanization drives an early spring for plants but not for pollinators. OIKOS 2020. [DOI: 10.1111/oik.07274] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alessandro Fisogni
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
- Dept of Evolution, Ecology, and Organismal Biology, Univ. of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Nina Hautekèete
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
| | - Yves Piquot
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
| | - Marion Brun
- Univ. Lille, UFR de Géographie et Aménagement – TVES EA 4477 Lille France
| | | | - Denis Michez
- Laboratoire de Zoologie, Res. Inst. of Biosciences, Univ. of Mons Mons Belgium
| | - François Massol
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille Lille France
| |
Collapse
|
50
|
Flórez-Gómez NA, Maldonado-Cepeda JD, Ospina-Torres R. Bee-Plant Interaction Networks in a Seasonal Dry Tropical Forest of the Colombian Caribbean. NEOTROPICAL ENTOMOLOGY 2020; 49:533-544. [PMID: 32737865 DOI: 10.1007/s13744-020-00804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Mutualistic interactions between bees and flowering plants have been widely recognized as one of the most important for the maintenance of these communities throughout ecosystems. Consequently, understanding how these interactions occur is highly important, especially in seasonal dry tropical forest (SDTF), one of the most endangered ecosystems in northern South America. In this study, we analyzed the changes between interaction networks across two well-defined seasons, dry and wet, in a SDTF of the Colombian Caribbean in Taganga, Magdalena. We also determined changes in species composition and their role in interaction networks. To study this system, we compared two approaches: (1) networks constructed with data from direct collections in flowering plants, and (2) networks constructed with pollen data obtained from bees' bodies. A total of 44 species were collected in 18 species of flowering plants; also, we registered 16 additional plants presented in the records only as pollen types. We found that network metrics, connectance, nestedness, specialization (H2'), and interaction strength asymmetry remain stable through seasons. However, when the two types of approximations were compared, there were significant differences. Networks constructed with pollen data are more connected, less specialized, and with lower values of interaction strength asymmetry. The major difference between seasons relied on the interacting species composition, due to a high species turnover. Bee community was more diverse in dry season. Apidae family, mainly eusocial species, persisted in the community, being more abundant and relevant in wet season. For dry season, Megachile and other solitary species from Apidae and Halictidae families were better represented and relevant for the community. We found that Fabaceae is an important resource for bees in both seasons. In addition, herbaceous species from Asteraceae and Convolvulaceae were preferred in wet season, while shrub and tree species from Fabaceae and Polygonaceae were the main resource in dry season.
Collapse
Affiliation(s)
- N A Flórez-Gómez
- Laboratorio de Investigaciones en Abejas LABUN, Universidad Nacional de Colombia, Bogotá, Colombia.
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - J D Maldonado-Cepeda
- Laboratorio de Investigaciones en Abejas LABUN, Universidad Nacional de Colombia, Bogotá, Colombia
- Manejo integrado de plagas- Disciplina de Entomología, Centro Nacional de Investigaciones en café (CENICAFÉ), Caldas, Colombia
| | - R Ospina-Torres
- Laboratorio de Investigaciones en Abejas LABUN, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|