1
|
Krüger J, Buchholz S, Schmitt S, Blankenhaus K, Pernat N, Ott D, Hollens‐Kuhr H. You are what you eat - The influence of polyphagic and monophagic diet on the flight performance of bees. Ecol Evol 2024; 14:e70256. [PMID: 39224153 PMCID: PMC11368496 DOI: 10.1002/ece3.70256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Movement performance of insects is an important measure of physiological fitness and is likely affected by novel stressors associated with global change. Reduced fitness can lead to smaller foraging areas and thus to decreasing abundance, diversity and nutritional quality, which could weaken insect populations and contribute to global insect decline. Here, we combined two different methods: An experimental semi-field design applying treatments in outdoor flight cages and a follow-up experiment conducted in the laboratory, in which different parameters of movement performance, such as (a) velocity, (b) duration and (c) distance of an insect's flight can be quantified. We kept colonies of the bumblebee Bombus terrestris under contrasting nutritional conditions and measured treatment effects on the movement performance of individuals. Monophagously fed bumblebees showed reduced movement performance than polyphagously fed bumblebees. In particular, they stopped more frequently during flight, flew shorter distances and showed less often flight duration of 20 min. Our results suggest that nutritional deficiency due to a monophagic diet leads to reduced flight performance, which can have dramatic negative consequences for bees. Reduced flight performance may result in decreased availability of host plants, which may negatively affect stress resistance of bees and brood provisioning, facilitating extinction of insects. Although food of great nutritional value is an important compensator for the negative effects of different novel stressor, such as pesticides, it is not much known how to compensate for the effects of nutritional stress, especially in landscapes dominated by monocultures. However, our experimental approach with semi-field and laboratory components has high potential for further studies investigating the impact of different stressors on the physiological fitness of insects but also body mass, or reproductive success and to find factors that may mitigate or even overcome the negative effect of stressors on insects.
Collapse
Affiliation(s)
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| | - Sophie Schmitt
- Institute of Landscape Ecology, University of MünsterMünsterGermany
| | | | - Nadja Pernat
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| | - David Ott
- Centre for Biodiversity Monitoring and Conservation ScienceLeibniz Institute for the Analysis of Biodiversity ChangeBonnGermany
| | - Hilke Hollens‐Kuhr
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| |
Collapse
|
2
|
Gekière A, Breuer L, Dorio L, Vanderplanck M, Michez D. Lethal effects and sex-specific tolerance of copper and cadmium in the buff-tailed bumble bee. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104546. [PMID: 39197507 DOI: 10.1016/j.etap.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Exposure to environmental pollutants, including trace metals, is a major driver of bee decline worldwide. While pesticides undergo standardised risk assessments (i.e., LD50) and the implementation of online databases, no such approaches exist for trace metals. Here, using acute oral exposure, we determined the LC50, LD50, and mass-standardised LD50 of copper and cadmium, essential and non-essential metals, respectively, in workers and males of the buff-tailed bumble bee. We also evaluated gut damage and sucrose consumption in workers post-exposure. Cadmium was more toxic than copper for workers at same doses, although both metals induced severe gut melanisation and reduced sucrose consumption at high concentrations. Males displayed higher tolerance to cadmium, but it was correlated to their higher body mass, emphasising the necessity for reporting mass-standardised LD50 for genuine sex comparisons in risk assessments. Our findings advocate for the establishment of databases focusing on metal-induced lethal effects on model bee species.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| | - Luna Breuer
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| | - Luca Dorio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| | - Maryse Vanderplanck
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, 1919 Route de Mende, Montpellier 34293, France.
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons 7000, Belgium.
| |
Collapse
|
3
|
Magalhães ICS, Souza-Neto CSD, Souza GTD, Baronio GJ, Castro CCD. Bee pollination effects on yield and chemical composition of West Indian gherkin fruits (Cucumis anguria L., Cucurbitaceae) in the Brazilian semi-arid region. BRAZ J BIOL 2024; 84:e284217. [PMID: 39194022 DOI: 10.1590/1519-6984.284217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Animal pollination plays a key role in global agricultural production and especially of monoecious crops, which are essentially dependent on pollinators. The West Indian gherkin fruit (Cucumis anguria L., Cucurbitaceae) is a monoecious vegetable adaptable to adverse abiotic conditions, resistant to diseases, and rich in minerals and vitamins, thus being a relevant alternative for improving nutritional security of socioeconomically vulnerable populations. The knowledge on the influence of pollination and of specific pollinators on chemical characteristics of fruits would help pollinators' management, but it is still poorly understood. In this study we investigated the influence of pollination on quantitative and qualitative aspects of fruits fruits of West Indian gherkin fruits (Cucumis anguria L., Cucurbitaceae) in the Brazilian semi-arid region. Data on pollination biology and on fruits resulted from controlled crosses (open-OP, cross-CP and Apis mellifera Linnaeus, 1758 pollinations) were compared among crosses: number, length, weight, number of seeds, firmness and chemical traits related to flavor and shelf life. Flowers were pollinated by four bee species, and Apis mellifera was the most frequent. followed by two native bee species. OP and A. mellifera resulted in more fruits than CP. Fruits resulting from OP were heavier than CP and had similar weight when compared to A. mellifera. The other variables did not differ between treatments. The better performance of OP and A. mellifera when compared to CP is probably related to the xenia, i.e., the influence of tissues bearing paternal genes (pollen and pollen tube) in maternal tissues. OP and A. mellifera experiments apparently resulted in the deposition of a greater genotypic diversity of the pollen loads when compared to CP. This result is also explained by the higher functional diversity of pollinators related to OP when compared to CP. This study not only elucidates immediate impacts on yield but also emphasizes the deeper connections between floral biology, pollinator diversity, and sustainable crop production, once West Indian gherkin profit was enhanced by bee pollination.
Collapse
Affiliation(s)
- I C S Magalhães
- Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biodiversidade, Recife, PE, Brasil
| | - C S de Souza-Neto
- Universidade Federal do Agreste de Pernambuco, Garanhuns, PE, Brasil
| | - G T de Souza
- Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biodiversidade, Recife, PE, Brasil
| | - G J Baronio
- Universidade de São Paulo, Departamento de Ecologia, São Paulo, SP, Brasil
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), Valencia, Spain
| | - C C de Castro
- Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biodiversidade, Recife, PE, Brasil
- Universidade Federal do Agreste de Pernambuco, Garanhuns, PE, Brasil
| |
Collapse
|
4
|
Grünfeld M. Telling Ecopoetic Stories: Wax Worms, Care, and the Cultivation of Other Sensibilities. THE JOURNAL OF MEDICAL HUMANITIES 2024:10.1007/s10912-024-09878-6. [PMID: 39145849 DOI: 10.1007/s10912-024-09878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
Recently, a beekeeper discovered the metabolic wizardry of wax worms, their ability to decompose polyethylene. While this organism has usually been perceived as a model organism in science or a pest to beekeepers, it acquired a new mode of being as potentially probiotic, inviting us to dream of a future without plastic waste. In this paper, I explore how wax worms are entangled with material practices of care and narratives that give meaning to these practices. These stories, however, are marked by manipulation, exploitation, and extermination, and call for a questioning of our modes of caring. Consequently, I offer a counter-narrative that questions our anthropocentric practices of caring and the stories we attach to them. Borrowing Puig de la Bellacasa's notion of ecopoetics, I tell another story based on my participation in the making of an art installation hosting wax worms. The installation creates an opening of a world of curiosity and cultivates a sensibility for wax worms expanding their modes of being and our capabilities of appreciation. In the end, I argue that by mattering and storying differently, we have the opportunity to challenge anthropocentric interests and make a different world of caring and co-existence possible.
Collapse
Affiliation(s)
- Martin Grünfeld
- Department of Science Education, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Rodríguez-Aguilar BA, Peregrina-Lucano AA, Ceballos-Magaña SG, Rodríguez-García A, Calderon R, Palma P, Muñiz-Valencia R. Spatiotemporal variability of pesticides concentration in honeybees (Apis mellifera) and their honey from western Mexico. Risk assessment for honey consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174702. [PMID: 39002602 DOI: 10.1016/j.scitotenv.2024.174702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The study conducted in the state of Colima, western Mexico, aimed to assess the 1) occurrence, 2) temporal variability, 3) spatial variability, and 4) potential risk for honeybees and human consumption of pesticide-contaminated honey. For that purpose, 48 pesticides were determined in bees and their honey during both dry and wet seasons. The research considered two variables: land use categorization (irrigated agriculture, rainfed agriculture, grassland, and forest area) and location (coastal, valley, and mountain). Bee and honey samples were collected, pre-treated using solid-phase extraction (SPE), and analyzed using LC-MS/MS and GC-MS techniques. Occurrence: of the total number of pesticides, 17 were detected in the bee samples and 12 in the honey samples. The pesticides with the highest concentrations in the bee samples were glufosinate ammonium, picloram, and permethrin, while in the honey samples, picloram, permethrin, and atrazine were the most prevalent. Temporal variability: analyses revealed significant differences between dry and wet seasons for glufosinate ammonium and DEET in bee samples and only for glufosinate ammonium in honey samples. Spatial variability: analyses showed a trend in the number of detected pesticides, with irrigated agriculture areas having the highest detection and grassland areas having the least. The human potential risk assessment of contaminated honey consumption indicated no risk. The bee's potential risk for consumption of pesticides contaminated honey revealed chronic effects due to permethrin in a general scenario, and carbofuran, diazinon and permethrin in the worst scenario, and potential risk of acute effects by permethrin. The findings of this study contribute to understanding the contamination levels of pesticides in bees and their honey, emphasizing the importance of monitoring and mitigating the adverse effects of pesticide exposure on bee populations and environmental health.
Collapse
Affiliation(s)
| | - Alejandro A Peregrina-Lucano
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | | | | | - Raul Calderon
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile; Núcleo de Investigación en Sustentabilidad Agroambiental, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Paulina Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Secretaria Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - Roberto Muñiz-Valencia
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán 28400, Colima, Mexico; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| |
Collapse
|
6
|
Sheard JK, Adriaens T, Bowler DE, Büermann A, Callaghan CT, Camprasse ECM, Chowdhury S, Engel T, Finch EA, von Gönner J, Hsing PY, Mikula P, Rachel Oh RY, Peters B, Phartyal SS, Pocock MJO, Wäldchen J, Bonn A. Emerging technologies in citizen science and potential for insect monitoring. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230106. [PMID: 38705194 PMCID: PMC11070260 DOI: 10.1098/rstb.2023.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Julie Koch Sheard
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000 Brussels, Belgium
| | - Diana E. Bowler
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Andrea Büermann
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Corey T. Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, FL 33314, USA
| | - Elodie C. M. Camprasse
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Shawan Chowdhury
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Thore Engel
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Elizabeth A. Finch
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Julia von Gönner
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Pen-Yuan Hsing
- Faculty of Life Sciences, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
| | - Peter Mikula
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Rui Ying Rachel Oh
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Birte Peters
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Shyam S. Phartyal
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | | | - Jana Wäldchen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Aletta Bonn
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Encerrado-Manriquez AM, Pouv AK, Fine JD, Nicklisch SCT. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170193. [PMID: 38278225 DOI: 10.1016/j.scitotenv.2024.170193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Honey bees are unintentionally exposed to a wide range of chemicals through various routes in their natural environment, yet research on the cumulative effects of multi-chemical and sublethal exposures on important caste members, including the queen bee and brood, is still in its infancy. The hive's social structure and food-sharing (trophallaxis) practices are important aspects to consider when identifying primary and secondary exposure pathways for residential hive members and possible chemical reservoirs within the colony. Secondary exposures may also occur through chemical transfer (maternal offloading) to the brood and by contact through possible chemical diffusion from wax cells to all hive members. The lack of research on peer-to-peer exposures to contaminants and their metabolites may be in part due to the limitations in sensitive analytical techniques for monitoring chemical fate and dispersion. Combined application of automated honey bee monitoring and modern chemical trace analysis techniques could offer rapid progress in quantifying chemical transfer and accumulation within the hive environment and developing effective mitigation strategies for toxic chemical co-exposures. To enhance the understanding of chemical fate and toxicity within the entire colony, it is crucial to consider both the intricate interactions among hive members and the potential synergistic effects arising from combinations of chemical and their metabolites.
Collapse
Affiliation(s)
| | - Amara K Pouv
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA; Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, 3026 Bee Biology Rd., Davis, CA 95616, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
9
|
Farder-Gomes CF, Grella TC, Malaspina O, Nocelli RFC. Exposure to sublethal concentrations of imidacloprid, pyraclostrobin, and glyphosate harm the behavior and fat body cells of the stingless bee Scaptotrigona postica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168072. [PMID: 37879468 DOI: 10.1016/j.scitotenv.2023.168072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Pesticide use in agriculture threatens non-target insects such as bees. Considering the ecological and economic relevance of native bees, such as Scaptotrigona postica, and the insufficient studies on the effects of pesticides on their behavior and physiology, improving the current knowledge on this issue is essential. Therefore, this study investigated the sublethal effects of imidacloprid, pyraclostrobin, and glyphosate on the behavior and fat body cells of S. postica. Pesticide ingestion decreased the walking distance and mean velocity of bees compared to the control and solvent control groups. The oenocytes of the control groups were spherical, with central nuclei containing decondensed chromatin, and the trophocytes presented irregular morphology, with cells varying in shape and the cytoplasm filled with vacuoles and granules. However, bees exposed to pesticides showed extensive cytoarchitectural disruption in the fat body, such as vacuolization and shape changes in oenocytes and altered nuclei morphology in trophocytes. Moreover, pesticide exposure increased the number of atypical oenocytes and altered trophocytes, except for the PYR group, which showed a lower number of atypical oenocytes. Caspase-positive labeling significantly increased in all exposed bee groups. Alternatively, TLR4 labeling was significantly decreased in the exposed groups compared to the control groups. There was a significant increase in HSP90 immunolabeling in all exposed groups compared to the control. These findings reinforce the importance of research on the sublethal effects of low pesticide concentrations on key neotropical pollinators and prove that these toxic substances can impair their detoxification and immune defense.
Collapse
Affiliation(s)
- Cliver Fernandes Farder-Gomes
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP 13.600-970, Brazil.
| | - Tatiane Caroline Grella
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia Geral e Aplicada, Rio Claro, SP 13506-900, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia Geral e Aplicada, Rio Claro, SP 13506-900, Brazil.
| | - Roberta Ferreira Cornélio Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP 13.600-970, Brazil.
| |
Collapse
|
10
|
Butovskaya E, Gasparini M, Angelone B, Cancemi G, Tranquillo V, Prestini G, Bosi F, Menotta S. Occurrence of Glyphosate and Other Polar Pesticides in Honey from Lombardy and Emilia-Romagna Regions in Italy: Three-Year Monitoring Results. Foods 2023; 12:4448. [PMID: 38137252 PMCID: PMC10742983 DOI: 10.3390/foods12244448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Intensive agricultural practices, such as pesticides use, may negatively affect bee health and hive products. Glyphosate is one of the most widely used polar pesticides applied in crops for weed control. In this study, honey samples, collected from beekeeping farms located in the Lombardy and Emilia-Romagna regions in Italy in the framework of regional monitoring plans activated from 2020 to 2022, were analyzed for the presence of residues of polar pesticides. The analytical method based on ion chromatography coupled to high-resolution mass spectrometry was applied to quantify glyphosate, glufosinate, ethephon, fosetyl aluminum, and their related metabolites. Residues of glyphosate were detected in around 28% of analyzed honey samples. Observations on the distribution of the honey-production-site locations suggest that honey samples originating from the provinces within the Lombardy region, where the agricultural sector is highly developed, were more affected by glyphosate contamination than the samples collected from the areas with low agricultural activity, where no glyphosate residues were detected over the three years of the monitoring program.
Collapse
Affiliation(s)
- Elena Butovskaya
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Mara Gasparini
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Barbara Angelone
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Gabriella Cancemi
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Vito Tranquillo
- Programmazione dei Servizi e Controllo di Gestione, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy;
| | - Giovanni Prestini
- Dipartimento Veterinario e Sicurezza degli Alimenti di Origine Animale, ATS della BRIANZA, Viale Elvezia 2, 20900 Monza, Italy;
| | - Filippo Bosi
- Dipartimento di Sanità Pubblica, Azienda Unità Sanitaria Locale della Romagna–Ravenna, via Fiume Montone Abbandonato 134, 48100 Ravenna, Italy;
| | - Simonetta Menotta
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| |
Collapse
|
11
|
Silvert CJ, Gusto C, Warner LA, Diaz JM, Mallinger RE. How can residents protect and promote pollinators? The diffusion of residential pollinator-friendly gardening. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118877. [PMID: 37708642 DOI: 10.1016/j.jenvman.2023.118877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Urbanization and land use change are leading causes of declines in pollinator abundance and diversity. However, researchers in different regions of the world have found that some pollinators can thrive in urban landscapes, depending on land use practices, environmental conditions, and species traits. Residential landscapes constitute a significant portion of urban green space and thus, residents' adoption of landscape practices to promote pollinators can play a central role in addressing the global pollinator challenge. Yet, although residents' willingness and intention appear strong, adoption of pollinator-friendly gardening remains low. The present study - guided by the Diffusion of Innovations theory - aimed to build empirical understanding by surveying 1598 [State] residents on their experiences and perceptions related to pollinator-friendly gardening to determine the most salient barriers and opportunities to engagement. Key findings suggest making the practice more widely observable and reducing perceived complexity in learning to do the practice are critical to promoting adoption. This demonstrates, in practical terms, that: (1) targeted efforts to build residents' actionable knowledge about pollinator-friendly gardening may significantly reduce uncertainty and boost the likelihood of adoption; and (2) examples of active pollinator gardens need to be more widely showcased and popularized (e.g., through experiential or virtual demonstrations). We also found most residents living in homeowner associations (HOAs) believed HOA policies on pollinator-friendly gardening were restrictive or the residents were unsure whether they are allowed to practice pollinator-friendly gardening. Given these perceptions strongly associated with residents' low intent to engage in pollinator-friendly gardening, a major opportunity exists to diffuse the practice and increase adoption by working with HOAs and community leaders to become promoters of - rather than barriers to - pollinator-friendly gardening.
Collapse
Affiliation(s)
- Colby J Silvert
- University of Maryland, Department of Plant Science and Landscape Architecture, College Park, MD, United States.
| | - Cody Gusto
- University of Florida, Department of Agricultural Education and Communication, Gainesville, FL, United States
| | - Laura A Warner
- University of Florida, Department of Agricultural Education and Communication, Gainesville, FL, United States
| | - John M Diaz
- University of Florida, Department of Agricultural Education and Communication, Gainesville, FL, United States
| | - Rachel E Mallinger
- University of Florida, Entomology and Nematology Department, Gainesville, FL, United States
| |
Collapse
|
12
|
Vercelli M, Croce L, Mancuso T. Biotechnical Control of Varroa in Honey Bee Colonies: A Trade-Off between Sustainable Beekeeping and Profitability? INSECTS 2023; 14:830. [PMID: 37887842 PMCID: PMC10607048 DOI: 10.3390/insects14100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Beekeeping faces several challenges, such as the Varroa mite. Few studies have measured the economic performance of farms in relation to the practices used for Varroa control. Our study analyzed various biotechniques (total brood removal, TBR; queen caging, QC; royal cell insertion, CI) and other methods (chemical treatments, CT; thymol use, THY) adopted by Italian beekeepers to show whether the adoption of biotechniques leads to farm profitability or a necessary trade-off between sustainability and profitability. Beekeepers were interviewed about the methods and operations conducted on their farms. The net incomes (NIs) of the farms were calculated and inter- and intrafarm comparisons were performed. A detailed schema of each practice was designed. The net income derived from TBR was the highest in eight out of the nine case studies, followed by CI and then QC. The NI calculated for farms using CT was lower than that for farms using other methods in two of the case studies. We also analyzed different biotechniques applied by the same farm and found that the NI resulting from TBR was higher than that achieved from the use of QC and CI. Our study suggests that use of biotechniques represents a long-term sustainable solution for reducing the level of Varroa infestation, which affects farm net income.
Collapse
Affiliation(s)
| | - Luca Croce
- Independent Researcher, Borgata Baratta 27, 10040 Villardora, Turin, Italy
| | - Teresina Mancuso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Turin, Italy;
| |
Collapse
|
13
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
14
|
Xie T, Orr MC, Zhang D, Ferrari RR, Li Y, Liu X, Niu Z, Wang M, Zhou Q, Hao J, Zhu C, Chesters D. Phylogeny-based assignment of functional traits to DNA barcodes outperforms distance-based, in a comparison of approaches. Mol Ecol Resour 2023; 23:1526-1539. [PMID: 37202847 DOI: 10.1111/1755-0998.13813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The full potential for using DNA barcodes for profiling functional trait diversity has yet to be determined in plants and animals; thus, we outline a general framework for quantifying functional trait diversity of insect community DNA and propose and assess the accuracy of three methods for achieving this. We built a novel dataset of traits and DNA barcodes for wild bees in China. An informatics framework was developed for phylogeny-based integration of these data and prediction of traits for any subject barcodes, which was compared with two distance-based methods. For Phylogenetic Assignment, we additionally conducted a species-level analysis of publically available bee trait data. Under the specimen-level dataset, the rate of trait assignment was negatively correlated with distance between the query and the nearest trait-known reference, for all methods. Phylogenetic Assignment was found to perform best under several criteria; particularly, it had the lowest false-positive rate (rarely returning a state prediction where success was unlikely; where the distance from query to the nearest reference was high). For a wider range of compiled traits, conservative life-history traits showed the highest rates of assignment; for example, sociality was predicted with confidence at 53%, parasitism at 44% and nest location at 33%. As outlined herein, automated trait assignment might be applied at scale to either barcodes or metabarcodes. With further compilation and databasing of DNA barcode and trait data, the rate and accuracy of trait assignment is expected to increase to the point of being a widely viable and informative approach.
Collapse
Affiliation(s)
- Tingting Xie
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rafael R Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiuwei Liu
- Institute of Agro-Products Processing, Kunming, China
| | - Zeqing Niu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingqiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Leponiemi M, Freitak D, Moreno-Torres M, Pferschy-Wenzig EM, Becker-Scarpitta A, Tiusanen M, Vesterinen EJ, Wirta H. Honeybees' foraging choices for nectar and pollen revealed by DNA metabarcoding. Sci Rep 2023; 13:14753. [PMID: 37679501 PMCID: PMC10484984 DOI: 10.1038/s41598-023-42102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.
Collapse
Affiliation(s)
- Matti Leponiemi
- Institute of Biology, Karl-Franzen University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Dalial Freitak
- Institute of Biology, Karl-Franzen University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Miguel Moreno-Torres
- Institute of Environmental Systems Science, Karl-Franzens-Universität Graz, Merangasse 18/I, 8010, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstraße 8, Graz, Austria
| | | | - Mikko Tiusanen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Vesilinnantie 5, Turku, Finland
| | - Helena Wirta
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland.
| |
Collapse
|
16
|
Takemae H, Nunomura Y, Yokota T, Oba M, Mizutani T, Hsu WL, Sakamoto Y. Novel ollusvirus detected in a solitary wild bee species (Osmia taurus) in Japan. Arch Virol 2023; 168:183. [PMID: 37318627 DOI: 10.1007/s00705-023-05805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
Pathogens of wild bees in Japan remain largely unknown. We examined viruses harbored by solitary wild Osmia bees, including Osmia cornifrons and Osmia taurus. Interestingly, the full-length genome of a novel virus (designated as "Osmia-associated bee chuvirus", OABV) was identified in three Osmia taurus bees collected in Fukushima prefecture. The sequences and genomic features are similar to those of Scaldis River bee virus. Phylogenetic analysis based on RNA-dependent RNA polymerase, glycoprotein, and nucleoprotein sequences showed that OABV formed a subcluster within ollusviruses and was closely related to strains identified in European countries. This study extends our knowledge of wild bee parasites in Japan.
Collapse
Affiliation(s)
- Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| | - Yuka Nunomura
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tomoko Yokota
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Mami Oba
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yoshiko Sakamoto
- National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| |
Collapse
|
17
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Lariviere PJ, Leonard SP, Horak RD, Powell JE, Barrick JE. Honey bee functional genomics using symbiont-mediated RNAi. Nat Protoc 2023; 18:902-928. [PMID: 36460809 DOI: 10.1038/s41596-022-00778-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022]
Abstract
Honey bees are indispensable pollinators and model organisms for studying social behavior, development and cognition. However, their eusociality makes it difficult to use standard forward genetic approaches to study gene function. Most functional genomics studies in bees currently utilize double-stranded RNA (dsRNA) injection or feeding to induce RNAi-mediated knockdown of a gene of interest. However, dsRNA injection is laborious and harmful, and dsRNA feeding is difficult to scale cheaply. Further, both methods require repeated dsRNA administration to ensure a continued RNAi response. To fill this gap, we engineered the bee gut bacterium Snodgrassella alvi to induce a sustained host RNA interference response that reduces expression of a targeted gene. To employ this functional genomics using engineered symbionts (FUGUES) procedure, a dsRNA expression plasmid is cloned in Escherichia coli using Golden Gate assembly and then transferred to S. alvi. Adult worker bees are then colonized with engineered S. alvi. Finally, gene knockdown is verified through qRT-PCR, and bee phenotypes of interest can be further assessed. Expression of targeted genes is reduced by as much as 50-75% throughout the entire bee body by 5 d after colonization. This protocol can be accomplished in 4 weeks by bee researchers with microbiology and molecular cloning skills. FUGUES currently offers a streamlined and scalable approach for studying the biology of honey bees. Engineering other microbial symbionts to influence their hosts in ways that are similar to those described in this protocol may prove useful for studying additional insect and animal species in the future.
Collapse
Affiliation(s)
- Patrick J Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Richard D Horak
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - J Elijah Powell
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Words matter: how ecologists discuss managed and non-managed bees and birds. Scientometrics 2023. [DOI: 10.1007/s11192-022-04620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractEffectively promoting the stability and quality of ecosystem services involves the successful management of domesticated species and the control of introduced species. In the pollinator literature, interest and concern regarding pollinator species and pollinator health dramatically increased in recent years. Concurrently, the use of loaded terms when discussing domesticated and non-native species may have increased. As a result, pollinator ecology has inherited both the confusion associated with invasion biology’s lack of a standardized terminology to describe native, managed, or introduced species as well as loaded terms with very strong positive or negative connotations. The recent explosion of research on native bees and alternative pollinators, coupled with the use of loaded language, has led to a perceived divide between native bee and managed bee researchers. In comparison, the bird literature discusses the study of managed (poultry) and non-managed (all other birds) species without an apparent conflict with regard to the use of terms with strong connotations or sentiment. Here, we analyze word usage when discussing non-managed and managed bee and bird species in 3614 ecological and evolutionary biology papers published between 1990 and 2019. Using time series analyses, we demonstrate how the use of specific descriptor terms (such as wild, introduced, and exotic) changed over time. We then conducted co-citation network analyses to determine whether papers that share references have similar terminology and sentiment. We predicted a negative language bias towards introduced species and positive language bias towards native species. We found an association between the term invasive and bumble bees and we observed significant increases in the usage of more ambiguous terms to describe non-managed species, such as wild. We detected a negative sentiment associated with the research area of pathogen spillover in bumble bees, which corroborates the subjectivity that language carries. We recommend using terms that acknowledge the role of human activities on pathogen spillover and biological invasions. Avoiding the usage of loaded terms when discussing managed and non-managed species will advance our understanding and promote effective and productive communication across scientists, general public, policy makers and other stake holders in our society.
Collapse
|
20
|
Casanelles‐Abella J, Fontana S, Fournier B, Frey D, Moretti M. Low resource availability drives feeding niche partitioning between wild bees and honeybees in a European city. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2727. [PMID: 36054537 PMCID: PMC10077915 DOI: 10.1002/eap.2727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Cities are socioecological systems that filter and select species, therefore establishing unique species assemblages and biotic interactions. Urban ecosystems can host richer wild bee communities than highly intensified agricultural areas, specifically in resource-rich urban green spaces such as allotments and family gardens. At the same time, urban beekeeping has boomed in many European cities, raising concerns that the fast addition of a large number of managed bees could deplete the existing floral resources, triggering competition between wild bees and honeybees. Here, we studied the interplay between resource availability and the number of honeybees at local and landscape scales and how this relationship influences wild bee diversity. We collected wild bees and honeybees in a pollination experiment using four standardized plant species with distinct floral morphologies. We performed the experiment in 23 urban gardens in the city of Zurich (Switzerland), distributed along gradients of urban and local management intensity, and measured functional traits related to resource use. At each site, we quantified the feeding niche partitioning (calculated as the average distance in the multidimensional trait space) between the wild bee community and the honeybee population. Using multilevel structural equation models (SEM), we tested direct and indirect effects of resource availability, urban beekeeping, and wild bees on the community feeding niche partitioning. We found an increase in feeding niche partitioning with increasing wild bee species richness. Moreover, feeding niche partitioning tended to increase in experimental sites with lower resource availability at the landscape scale, which had lower abundances of honeybees. However, beekeeping intensity at the local and landscape scales did not directly influence community feeding niche partitioning or wild bee species richness. In addition, wild bee species richness was positively influenced by local resource availability, whereas local honeybee abundance was positively affected by landscape resource availability. Overall, these results suggest that direct competition for resources was not a main driver of the wild bee community. Due to the key role of resource availability in maintaining a diverse bee community, our study encourages cities to monitor floral resources to better manage urban beekeeping and help support urban pollinators.
Collapse
Affiliation(s)
- Joan Casanelles‐Abella
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Terrestrial Ecosystems, ETH ZurichZurichSwitzerland
| | - Simone Fontana
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Nature Conservation and Landscape EcologyUniversity of FreiburgFreiburgGermany
| | - Bertrand Fournier
- Institute of Environmental Sciences and Geography, University of PotsdamPotsdamGermany
| | - David Frey
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco Moretti
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
21
|
Hatmaker EA, Miller DL, Newton I, Rokas A. Draft Genome Sequence of an Aspergillus Strain Isolated from a Honey Bee Pupa. Microbiol Resour Announc 2022; 11:e0079822. [PMID: 36194126 PMCID: PMC9670926 DOI: 10.1128/mra.00798-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Insect-associated fungi play an important role in wild and agricultural communities. We present a draft genome sequence of an entomopathogenic strain from the fungal genus Aspergillus, isolated from a honey bee pupa.
Collapse
Affiliation(s)
- E. Anne Hatmaker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Delaney L. Miller
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Irene Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Akram W, Sajjad A, Ghramh HA, Ali M, Khan KA. Nesting Biology and Ecology of a Resin Bee, Megachile cephalotes (Megachilidae: Hymenoptera). INSECTS 2022; 13:1058. [PMID: 36421961 PMCID: PMC9698045 DOI: 10.3390/insects13111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
We report the nesting biology and ecology of Megachile cephalotes Smith, 1853 for the first time in Pakistan. Wooden and bamboo trap nests were deployed at three different locations in Bahawalpur district, Pakistan, from January 2020 to May 2021. A total of 242 nests of M. cephalotes were occupied in all three locations with the maximum abundance in the Cholistan Institute of Desert Studies. Megachile cephalotes remained active from March to September (the spring and summer seasons). In a nest, females made 7-8 brood cells each having a length of 1.2-2.3 cm. Plant resin was used to construct cells and mud or animal dung to plug the nest entrance. A vestibular cell was also made between the outermost brood cell and the nest entrance that ranged from 1.4 to 2.5 cm in length. No intercalary cells were observed in the nests. The males took 65.3 days to become adults, while the females took 74.78 days. The sex ratio was significantly biased toward females in all three locations. Grewia asiatica was the predominant pollen grain species found in the brood cells. Megachile cephalotes were observed collecting resin from Acacia nilotica, Prosopis juliflora, and Moringa oleifera. Three cleptoparasites of this species were also recorded: Euaspis carbonaria, Coelioxys sp., and Anthrax sp. This study set up a background to encourage new studies on artificial nesting and provides tools for proper biodiversity management and conservation.
Collapse
Affiliation(s)
- Waseem Akram
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Asif Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Hamed A. Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mudssar Ali
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Punjab, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
23
|
Jachuła J, Denisow B, Wrzesień M, Ziółkowska E. The need for weeds: Man-made, non-cropped habitats complement crops and natural habitats in providing honey bees and bumble bees with pollen resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156551. [PMID: 35688241 DOI: 10.1016/j.scitotenv.2022.156551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In Europe, honey bees and bumble bees are among the most important pollinators, and there is a growing interest in understanding the effects of floral resource availability on their survival. Yet, to date, data on nectar and pollen supplies available to bees in agricultural landscapes are still scarce. In this paper, we quantify species-, habitat- and landscape-scale pollen production in the Lublin Upland, SE Poland. The production per unit area was highest (mean = 2.2-2.6 g/m2) in non-forest woody vegetation, field margins and fallows, whilst significantly lower pollen amounts were shown to be available in road verges and railway embankments (mean = 1.3-1.6 g/m2). At landscape scale, natural and semi-natural areas (forests and meadows/pastures) offered ca. 44% of the total pollen resources during the year. Relatively high amounts of pollen (ca. 35% of the year-round total pollen resources) were from winter rape, but this resource was short-term. Man-made, non-cropped habitats added only ca. 18% of the total pollen mass offered for pollinators during flowering season. However, they provided 66-99% of pollen resources available from July to October. There exists an imbalance in the availability of pollen resources throughout the year. Hence, a diversity of natural, semi-natural and man-made, non-cropped areas is required to support the seasonal continuity of pollen resources for pollinators in an agricultural landscape. Efforts should be made to secure habitat heterogeneity to enhance the flower diversity and continual pollen availability for pollinators.
Collapse
Affiliation(s)
- Jacek Jachuła
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland; The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Bożena Denisow
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland.
| | - Małgorzata Wrzesień
- Department of Botany, Mycology and Ecology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| | - Elżbieta Ziółkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
24
|
Walters J, Zavalnitskaya J, Isaacs R, Szendrei Z. Heat of the moment: extreme heat poses a risk to bee-plant interactions and crop yields. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100927. [PMID: 35500861 DOI: 10.1016/j.cois.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extreme heat events threaten the development, functioning, and success of bee pollinators and crops that rely on pollinators for high yields. While direct effects of extreme heat and climate warming have gained more attention, the indirect effects on bees and crops remain largely unexplored. Extreme heat can directly alter the nutritional value of floral rewards, which indirectly contributes to lower bee survival, development, and reproduction with implications for pollination. Phenological mismatches between bee activity and crop flowering are also expected. Heat-stressed crop plants with reduced floral rewards may reduce bee foraging and nesting, limiting pollination services. Understanding how extreme heat affects bee-crop interactions will be essential for resilient production of pollinator-dependent crops in this era of climate change.
Collapse
Affiliation(s)
- Jenna Walters
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | | | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Gérard M, Cariou B, Henrion M, Descamps C, Baird E. Exposure to elevated temperature during development affects bumblebee foraging behavior. Behav Ecol 2022; 33:816-824. [PMID: 35812365 PMCID: PMC9262166 DOI: 10.1093/beheco/arac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
Bee foraging behavior provides a pollination service that has both ecological and economic benefits. However, bee population decline could directly affect the efficiency of this interaction. Among the drivers of this decline, global warming has been implicated as an emerging threat but exactly how increasing temperatures affect bee foraging behavior remains unexplored. Here, we assessed how exposure to elevated temperatures during development affects the foraging behavior and morphology of workers from commercial and wild Bombus terrestris colonies. Workers reared at 33 °C had a higher visiting rate and shorter visiting time than those reared at 27°C. In addition, far fewer workers reared at 33 °C engaged in foraging activities and this is potentially related to the drastic reduction in the number of individuals produced in colonies exposed to 33 °C. The impact of elevated developmental temperature on wild colonies was even stronger as none of the workers from these colonies performed any foraging trips. We also found that rearing temperature affected wing size and shape. Our results provide the first evidence that colony temperature can have striking effects on bumblebee foraging behavior. Of particular importance is the drastic reduction in the number of workers performing foraging trips, and the total number of foraging trips made by workers reared in high temperatures. Further studies should explore if, ultimately, these observed effects of exposure to elevated temperature during development lead to a reduction in pollination efficiency.
Collapse
Affiliation(s)
- Maxence Gérard
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Bérénice Cariou
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Sorbonne Université, Faculté des Sciences et Ingénierie, 5 place Jussieu, 75005 Paris, France
| | - Maxime Henrion
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Ecole Normale Supérieure de Lyon, 15 parvis René Descartes, Lyon, France, and
| | - Charlotte Descamps
- Earth and Life Institute-Agrotnomy, UCLouvain, Croix du Sud 2, box L7.05.14, 1348 Louvain-la-Neuve, Belgium
| | - Emily Baird
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| |
Collapse
|
26
|
Saavedra S, Bartomeus I, Godoy O, Rohr RP, Zu P. Towards a system-level causative knowledge of pollinator communities. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210159. [PMID: 35491588 PMCID: PMC9058529 DOI: 10.1098/rstb.2021.0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Pollination plays a central role in both crop production and maintaining biodiversity. However, habitat loss, pesticides, invasive species and larger environmental fluctuations are contributing to a dramatic decline of pollinators worldwide. Different management solutions require knowledge of how ecological communities will respond following interventions. Yet, anticipating the response of these systems to interventions remains extremely challenging due to the unpredictable nature of ecological communities, whose nonlinear behaviour depends on the specific details of species interactions and the various unknown or unmeasured confounding factors. Here, we propose that this knowledge can be derived by following a probabilistic systems analysis rooted on non-parametric causal inference. The main outcome of this analysis is to estimate the extent to which a hypothesized cause can increase or decrease the probability that a given effect happens without making assumptions about the form of the cause-effect relationship. We discuss a road map for how this analysis can be accomplished with the aim of increasing our system-level causative knowledge of natural communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge, MA 02139, USA
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), 41092, Isla de la Cartuja, Seville, Spain
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Ciencias del Mar (INMAR), Universidad de Cádiz, Royal Port E-11510, Spain
| | - Rudolf P. Rohr
- Department of Biology - Ecology and Evolution, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Penguan Zu
- Department of Environmental Systems Science, ETH Zurich, Schmelzbergstrasse 9, Zurich CH-8092, Switzerland
- Department Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, Kastanienbaum CH-6047, Switzerland
| |
Collapse
|
27
|
Whitaker SH. Tranquil and Serene: Beekeeping and Well-Being in the Italian Alps. ECOPSYCHOLOGY 2022. [DOI: 10.1089/eco.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sarah H. Whitaker
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
- Center of Applied Studies for the Sustainable Management and Protection of Mountain Areas (GeSDiMont), University of Milan—Mountain University (UNIMONT), Edolo, Italy
| |
Collapse
|
28
|
Hosni EM, Al-Khalaf AA, Nasser MG, Abou-Shaara HF, Radwan MH. Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate. INSECTS 2022; 13:484. [PMID: 35621818 PMCID: PMC9143048 DOI: 10.3390/insects13050484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022]
Abstract
Beekeeping is essential for the global food supply, yet honeybee health and hive numbers are increasingly threatened by habitat alteration, climate change, agrochemical overuse, pathogens, diseases, and insect pests. However, pests and diseases that have unknown spatial distribution and influences are blamed for diminishing honeybee colonies over the world. The greater wax moth (GWM), Galleria mellonella, is a pervasive pest of the honeybee, Apis mellifera. It has an international distribution that causes severe loss to the beekeeping industry. The GWM larvae burrow into the edge of unsealed cells that have pollen, bee brood, and honey through to the midrib of the wax comb. Burrowing larvae leave behind masses of webs that cause honey to leak out and entangle emerging bees, resulting in death by starvation, a phenomenon called galleriasis. In this study, the maximum entropy algorithm implemented in (Maxent) model was used to predict the global spatial distribution of GWM throughout the world. Two representative concentration pathways (RCPs) 2.6 and 8.5 of three global climate models (GCMs), were used to forecast the global distribution of GWM in 2050 and 2070. The Maxent models for GWM provided a high value of the Area Under Curve equal to 0.8 ± 0.001, which was a satisfactory result. Furthermore, True Skilled Statistics assured the perfection of the resultant models with a value equal to 0.7. These values indicated a significant correlation between the models and the ecology of the pest species. The models also showed a very high habitat suitability for the GWM in hot-spot honey exporting and importing countries. Furthermore, we extrapolated the economic impact of such pests in both feral and wild honeybee populations and consequently the global market of the honeybee industry.
Collapse
Affiliation(s)
- Eslam M. Hosni
- Entomology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed G. Nasser
- Entomology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Hossam F. Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
| | - Marwa H. Radwan
- Entomology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
29
|
Galanis A, Vardakas P, Reczko M, Harokopos V, Hatzis P, Skoulakis EMC, Pavlopoulos GA, Patalano S. Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey. Mol Ecol Resour 2022; 22:2506-2523. [PMID: 35593171 DOI: 10.1111/1755-0998.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Honeybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with. Nevertheless, SM bioinformatics tools and DNA extraction methods rely on resources not necessarily optimized for honey. In this study, we compared five widely used taxonomic classifiers using simulated species communities commonly found in honey. We found that Kraken 2 with a threshold of 0.5 performs best in assessing species distribution. We also optimized a simple NaOH-based honey DNA extraction methodology (Direct-SM), which profiled species seasonal variability similarly to an established column-based DNA extraction approach (SM). Both approaches produce results consistent with melissopalinology analysis describing the botanical landscape surrounding the apiary. Interestingly, we detected a strong stability of the bacteria constituting the core and noncore gut microbiome across seasons, pointing to the potential utility of honey for noninvasive assessment of bee microbiota. Finally, the Direct-SM approach to detect Varroa correlates well with the biomonitoring of mite infestation observed in hives. These observations suggest that Direct-SM methodology has the potential to comprehensively describe honeybee ecological niches and can be tested as a building block for large-scale studies to assess bee health in the field.
Collapse
Affiliation(s)
- Anastasios Galanis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece.,Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Philippos Vardakas
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece.,Department of Apiculture, Institute of Animal Science, Nea Moudania, Greece
| | - Martin Reczko
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Solenn Patalano
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| |
Collapse
|
30
|
Dharampal PS, Danforth BN, Steffan SA. Exosymbiotic microbes within fermented pollen provisions are as important for the development of solitary bees as the pollen itself. Ecol Evol 2022; 12:e8788. [PMID: 35414891 PMCID: PMC8986510 DOI: 10.1002/ece3.8788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Developing bees derive significant benefits from the microbes present within their guts and fermenting pollen provisions. External microbial symbionts (exosymbionts) associated with larval diets may be particularly important for solitary bees that suffer reduced fitness when denied microbe-colonized pollen.To investigate whether this phenomenon is generalizable across foraging strategy, we examined the effects of exosymbiont presence/absence across two solitary bee species, a pollen specialist and generalist. Larvae from each species were reared on either microbe-rich natural or microbe-deficient sterilized pollen provisions allocated by a female forager belonging to their own species (conspecific-sourced pollen) or that of another species (heterospecific-sourced pollen). Our results reveal that the presence of pollen-associated microbes was critical for the survival of both the generalist and specialist larvae, regardless of whether the pollen was sourced from a conspecific or heterospecific forager.Given the positive effects of exosymbiotic microbes for larval fitness, we then examined if the magnitude of this benefit varied based on whether the microbes were provisioned by a conspecific forager (the mother bee) or a heterospecific forager. In this second study, generalist larvae were reared only on microbe-rich pollen provisions, but importantly, the sources (conspecific versus heterospecific) of the microbes and pollen were experimentally manipulated.Bee fitness metrics indicated that microbial and pollen sourcing both had significant impacts on larval performance, and the effect sizes of each were similar. Moreover, the effects of conspecific-sourced microbes and conspecific-sourced pollen were strongly positive, while that of heterospecific-sourced microbes and heterospecific-sourced pollen, strongly negative.Our findings imply that not only is the presence of exosymbionts critical for both specialist and generalist solitary bees, but more notably, that the composition of the specific microbial community within larval pollen provisions may be as critical for bee development as the composition of the pollen itself.
Collapse
Affiliation(s)
| | | | - Shawn A. Steffan
- Department of EntomologyUniversity of WisconsinMadisonWisconsinUSA
- USDA‐ARSVegetable Crops Research UnitMadisonWisconsinUSA
| |
Collapse
|
31
|
Trueman SJ, Kämper W, Nichols J, Ogbourne SM, Hawkes D, Peters T, Hosseini Bai S, Wallace HM. Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae). ANNALS OF BOTANY 2022; 129:135-146. [PMID: 34473241 PMCID: PMC8796667 DOI: 10.1093/aob/mcab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.
Collapse
Affiliation(s)
- Stephen J Trueman
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| | - Wiebke Kämper
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University
Bochum, 44780 Bochum, Germany
| | - Joel Nichols
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| | - Steven M Ogbourne
- GeneCology Research Centre, University of the Sunshine Coast,
Maroochydore DC, QLD 4558, Australia
- School of Science, Technology & Engineering, University of the Sunshine
Coast, Maroochydore DC, QLD 4558, Australia
| | - David Hawkes
- Australian Genome Research Facility, Gehrmann Laboratories, University of
Queensland, Brisbane, QLD 4072, Australia
| | - Trent Peters
- Australian Genome Research Facility, Gehrmann Laboratories, University of
Queensland, Brisbane, QLD 4072, Australia
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| | - Helen M Wallace
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| |
Collapse
|
32
|
Parreño MA, Alaux C, Brunet JL, Buydens L, Filipiak M, Henry M, Keller A, Klein AM, Kuhlmann M, Leroy C, Meeus I, Palmer-Young E, Piot N, Requier F, Ruedenauer F, Smagghe G, Stevenson PC, Leonhardt SD. Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 2021; 37:309-321. [PMID: 34955328 DOI: 10.1016/j.tree.2021.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Wild bee populations are declining due to human activities, such as land use change, which strongly affect the composition and diversity of available plants and food sources. The chemical composition of food (i.e., nutrition) in turn determines the health, resilience, and fitness of bees. For pollinators, however, the term 'health' is recent and is subject to debate, as is the interaction between nutrition and wild bee health. We define bee health as a multidimensional concept in a novel integrative framework linking bee biological traits (physiology, stoichiometry, and disease) and environmental factors (floral diversity and nutritional landscapes). Linking information on tolerated nutritional niches and health in different bee species will allow us to better predict their distribution and responses to environmental change, and thus support wild pollinator conservation.
Collapse
Affiliation(s)
- M A Parreño
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| | - C Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | - J-L Brunet
- INRAE, Abeilles et Environnement, Avignon, France
| | - L Buydens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - M Henry
- INRAE, Abeilles et Environnement, Avignon, France
| | - A Keller
- Center for Computational and Theoretical Biology, and Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - A-M Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - M Kuhlmann
- Zoological Museum of Kiel University, Kiel, Germany
| | - C Leroy
- INRAE, Abeilles et Environnement, Avignon, France
| | - I Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E Palmer-Young
- US Department of Agriculture (USDA) Agricultural Research Service Bee Research Laboratory, Beltsville, MD, USA
| | - N Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - F Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement, et Écologie, 91198 Gif-sur-Yvette, France
| | - F Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany
| | - G Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P C Stevenson
- Royal Botanic Gardens, Kew, Surrey TW9 3AE, UK; University of Greenwich, London, UK
| | - S D Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
33
|
Dierick HA, Ben-Shahar Y, Raman B, Gabbiani F. Genetic and viral approaches to record or manipulate neurons in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 48:79-88. [PMID: 34710643 PMCID: PMC8648980 DOI: 10.1016/j.cois.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/11/2023]
Abstract
The development of genetically encoded tools to record and manipulate neurons in vivo has greatly increased our understanding of how neuronal activity affects behavior. Recent advances enable the use of these tools in species not typically considered genetically tractable. This progress is revolutionizing neuroscience in general, and insect neuroethology in particular. Here we cover the latest innovations and some of their applications in phylogenetically diverse insect species. We discuss the importance and implications of these approaches for both basic and translational research. We focus on genetically encoded and virally encoded tools used for calcium imaging, optogenetics, and synaptic silencing. Finally, we discuss potential future developments of universally applicable, modular, and user-friendly genetic toolkits for neuroethological studies of insect behavior.
Collapse
Affiliation(s)
- Herman A Dierick
- Dep. of Human and Molecular Genetics, Baylor College of Medicine, United States
| | | | - Baranidharan Raman
- Dep. of Bioengineering, Washington University in St. Louis, United States
| | | |
Collapse
|
34
|
Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan. INSECTS 2021; 12:insects12111029. [PMID: 34821829 PMCID: PMC8625494 DOI: 10.3390/insects12111029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Lucerne (Medicago sativa L.) is a cross-pollinated crop and requires entomophilous pollination for tripping of flowers and subsequent pod and seed set. To discover the best pollinators for lucerne seed production, a two-year field trial was carried out at the research farm of MNS University of Agriculture, Multan, Pakistan. Abundance and diversity of insect pollinators along with the foraging behavior were recorded in terms of tripping efficiency, stay time, visitation rate and pollen harvest. The single-visit efficiency of abundant insect pollinators was also evaluated in terms of number of seeds and seed weight per raceme along with germination percentage. Ten most abundant floral visitors (five solitary bee species, three honeybee species and two syrphid fly species) were tested for their pollination efficiency. Honeybees were most abundant in both the years followed by the solitary bees and syrphid flies. Single-visit efficacy in terms of number of pods per raceme, number of seeds per raceme, 1000 seed weight and germination percentage revealed Megachile cephalotes as the most efficient insect pollinator followed by Megachile hera and Amegilla sp. Future studies should investigate the biology and ecology of these bee species with special emphasis on their nesting behavior and seasonality.
Collapse
|
35
|
Farder-Gomes CF, Fernandes KM, Bernardes RC, Bastos DSS, Oliveira LLD, Martins GF, Serrão JE. Harmful effects of fipronil exposure on the behavior and brain of the stingless bee Partamona helleri Friese (Hymenoptera: Meliponini). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148678. [PMID: 34225147 DOI: 10.1016/j.scitotenv.2021.148678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Fipronil is a pesticide widely used to control agricultural and household insect pests. However, fipronil is highly toxic to non-target insects, including pollinators. In this study, we investigated the acute effects of fipronil on the behavior, brain morphology, antioxidant activity, and proteins related to signaling pathways on the brain of workers of the stingless bee Partamona helleri. The ingestion of fipronil increases both the walking distance and velocity and causes enlarged intercellular spaces in the Kenyon cells and intense vacuolization in the neuropils of the brain. Moreover, fipronil decreases the activity of catalase (CAT) and increases the activity of glutathione S-transferase (GST). However, there is no difference in superoxide dismutase (SOD) activity between the control and fipronil. Regarding immunofluorescence analysis, bees exposed to fipronil showed an increase in the number of cells positive for cleaved caspase-3 and peroxidase, but a reduction in the number of cells positive for ERK 1/2, JNK and Notch, suggesting neuron death and impaired brain function. Our results demonstrate that fipronil has harmful effects on the behavior and brain of a stingless bee, which may threaten the individuals and colonies of this pollinator.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
36
|
Wang Y, Zhu YC, Li W, Yao J, Reddy GVP, Lv L. Binary and ternary toxicological interactions of clothianidin and eight commonly used pesticides on honey bees (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112563. [PMID: 34343900 DOI: 10.1016/j.ecoenv.2021.112563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of individual pesticides and mixtures of clothianidin (CLO) with eight other pesticides [carbaryl (CAR), thiodicarb (THI), chlorpyrifos (CHL), beta-cyfluthrin (BCY), gamma-cyhalothrin (GCY), tetraconazole (TET), spinosad (SPI) and indoxacarb (IND)] on honey bees using a feeding method. Toxicity tests of a 4-day exposure to individual pesticides revealed that CLO had the highest toxicity to A. mellifera, with an LC50 value of 0.24 μg a.i. mL-1, followed by IND and CHL with LC50 values of 3.40 and 3.56 μg a.i. mL-1, respectively. SPI and CAR had relatively low toxicities, with LC50 values of 7.19 and 8.42 μg a.i. mL-1, respectively. In contrast, TET exhibited the least toxicity, with an LC50 value of 258.7 μg a.i. mL-1. Most binary mixtures of CLO with other pesticides exerted additive and antagonistic effects. However, all the ternary mixtures containing CLO and TET (except for CLO+TET+THD) elicited synergistic responses to bees. Either increased numbers of components in the mixture or/and a unique mode of action appeared to be responsible for the higher toxicity of mixtures. Our findings emphasized the need for risk assessment of pesticide mixtures rather than the individual chemicals. Our data also provided information that might help growers avoid increased toxicity and unnecessary injury to pollinators.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China; United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA.
| | - Wenhong Li
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA; Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Jianxiu Yao
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA; Kansas State University, Manhattan, KS 66506, USA
| | - Gadi V P Reddy
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| |
Collapse
|
37
|
Murcia-Morales M, Díaz-Galiano FJ, Guitérrez-Tirado I, Flores JM, Van der Steen JJM, Fernández-Alba AR. Dissipation and cross-contamination of miticides in apiculture. Evaluation by APIStrip-based sampling. CHEMOSPHERE 2021; 280:130783. [PMID: 33964758 DOI: 10.1016/j.chemosphere.2021.130783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The active substances coumaphos, tau-fluvalinate and amitraz are among the most commonly employed synthetic miticides to control varroa infestations in apiculture. These compounds can persist inside the beehive matrices and can be detected long time after their application. The present study describes the application of a new passive sampling methodology to assess the dissipation of these miticides as well as the cross-contamination in neighboring beehives. The APIStrips are a recently developed sampling device based on the sorbent Tenax, which shows a remarkable versatility for the sorption of molecules onto its surface. This avoids the need of actively sampling apicultural matrices such as living bees, wax or reserves (honey and pollen), therefore allowing to obtain representative information of the contamination in the beehive environment in one single matrix. The results show that the amitraz-based treatments have the fastest dissipation rate (half-life of 11-14 days), whereas tau-fluvalinate and coumaphos remain inside the beehive environment for longer time periods, with a half-life up to 39 days. In the present study, tau-fluvalinate originated an intense cross-contamination, as opposed to coumaphos and amitraz. This study also demonstrates the contribution of drifting forager bees in the pesticide cross-contamination phenomena. Moreover, the sampling of adult living bees has been compared to the APIStrip-based sampling, and the experimental results show that the latter is more effective and consistent than traditional active sampling strategies. The active substances included in this study do not migrate to the honey from the treated colonies in significant amounts.
Collapse
Affiliation(s)
- María Murcia-Morales
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain
| | - Francisco José Díaz-Galiano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain
| | | | - José Manuel Flores
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | | | - Amadeo R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain.
| |
Collapse
|
38
|
Anti-Virulence Strategy against the Honey Bee Pathogenic Bacterium Paenibacillus larvae via Small Molecule Inhibitors of the Bacterial Toxin Plx2A. Toxins (Basel) 2021; 13:toxins13090607. [PMID: 34564612 PMCID: PMC8470879 DOI: 10.3390/toxins13090607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
American Foulbrood, caused by Paenibacillus larvae, is the most devastating bacterial honey bee brood disease. Finding a treatment against American Foulbrood would be a huge breakthrough in the battle against the disease. Recently, small molecule inhibitors against virulence factors have been suggested as candidates for the development of anti-virulence strategies against bacterial infections. We therefore screened an in-house library of synthetic small molecules and a library of flavonoid natural products, identifying the synthetic compound M3 and two natural, plant-derived small molecules, Acacetin and Baicalein, as putative inhibitors of the recently identified P. larvae toxin Plx2A. All three inhibitors were potent in in vitro enzyme activity assays and two compounds were shown to protect insect cells against Plx2A intoxication. However, when tested in exposure bioassays with honey bee larvae, no effect on mortality could be observed for the synthetic or the plant-derived inhibitors, thus suggesting that the pathogenesis strategies of P. larvae are likely to be too complex to be disarmed in an anti-virulence strategy aimed at a single virulence factor. Our study also underscores the importance of not only testing substances in in vitro or cell culture assays, but also testing the compounds in P. larvae-infected honey bee larvae.
Collapse
|
39
|
McCullough CT, Angelella GM, O'Rourke ME. Landscape Context Influences the Bee Conservation Value of Wildflower Plantings. ENVIRONMENTAL ENTOMOLOGY 2021; 50:821-831. [PMID: 33899083 DOI: 10.1093/ee/nvab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Pollination provided by bees is a critical ecosystem service for agricultural production. However, bee populations are at risk from stressors such as habitat loss, pesticides, and disease. On-farm wildflower plantings is one mitigation strategy to provide habitat and resources for bees. In many instances, government programs can subsidize the installation of these plantings for private landowners. Semi-natural habitat (SNH) in the landscape is also important for bee conservation and may alter the effectiveness of wildflower plantings. In this study, we tested the effectiveness of wildflower plantings and interactions with SNH in the landscape for promoting bee abundance and richness. Bee surveys were conducted over 2 yr at 22 sites in eastern Virginia and Maryland. Wildflower plantings, averaging 0.22 ha in size, were installed and maintained by cooperators at 10 of the sites. In total, 5,122 bees were identified from 85 species. Wildflower plantings did not alter bee communities independently, but bee abundance was greater on farms with plantings and 20-30% SNH in the landscape. Bee abundance and richness had nonlinear responses to increasing SNH in the landscape. The positive effects for richness and abundance peaked when SNH was approximately 40% of the landscape. Similar to predictions of the intermediate-landscape complexity hypothesis, increases in bee abundance at wildflower sites were only detected in simplified landscapes. Results indicate that small wildflower plantings in the Mid-Atlantic U.S. only provided conservation benefits to bee communities under specific circumstances on the scale studied, and that conserving SNH across the landscape may be a more important strategy.
Collapse
Affiliation(s)
| | - Gina M Angelella
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA,USA
| | - Megan E O'Rourke
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA,USA
| |
Collapse
|
40
|
Iwasaki JM, Hogendoorn K. How protection of honey bees can help and hinder bee conservation. CURRENT OPINION IN INSECT SCIENCE 2021; 46:112-118. [PMID: 34091098 DOI: 10.1016/j.cois.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Pollinators are globally recognised for their role in ecosystem function and reports of pollinator declines are a source of public and academic concern. However, pollinator decline is often erroneously interpreted as if crop pollination services are under threat, which can lead to misguided efforts to protect introduced and/or widespread crop pollinating species that are not in decline, without addressing the needs of other imperilled species. The honey bee (Apis mellifera L.) in particular has widespread recognition for its role as an integral agricultural pollinator and is the focus of many pollinator campaigns. However, we argue outside of their native range that honey bees are inappropriate as umbrella or flagship species for the conservation of pollinators.
Collapse
Affiliation(s)
- Jay M Iwasaki
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
41
|
An Easy Mixed-Method Analysis Tool to Support Rural Development Strategy Decision-Making for Beekeeping. LAND 2021. [DOI: 10.3390/land10070675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The EU has long-recognised the functions and contributions of beekeeping in sustainable rural area development. In 2018, the EU adopted the Pollinator Initiative to strengthen its pollinator conservation policies. To support the design of effective rural development actions, this work describes and tests an easy-to-apply, mixed-method tool for use with SWOT analysis. A two-step methodology was trialled with beekeepers in Piedmont Region (NW Italy). In step one, two independent groups of beekeepers operating in separate protected and intensive agricultural areas completed a SWOT matrix. In step two, three expert panels (beekeeper association leaders, honey market organisation leaders, and entomologists) prioritised the effects of the SWOT items with a quantitative weighting and rating process. Results suggest that the sector needs better-targeted incentives and that ‘soft’ policies on extension, advisory, and institutional measures could play a relevant role. The method was also confirmed as suitable for use with non-expert evaluators, such as policy officers and practitioners.
Collapse
|
42
|
Vanderplanck M, Michez D, Albrecht M, Attridge E, Babin A, Bottero I, Breeze T, Brown M, Chauzat MP, Cini E, Costa C, De la Rua P, de Miranda J, Di Prisco G, Dominik C, Dzul D, Fiordaliso W, Gennaux S, Ghisbain G, Hodge S, Klein AM, Knapp J, Knauer A, Laurent M, Lefebvre V, Mänd M, Martinet B, Martinez-Lopez V, Medrzycki P, Pereira Peixoto MH, Potts S, Przybyla K, Raimets R, Rundlöf M, Schweiger O, Senapathi D, Serrano J, Stout J, Straw E, Tamburini G, Toktas Y, Gérard M. Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. ONE ECOSYSTEM 2021. [DOI: 10.3897/oneeco.6.e63653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential.
This data paper contains an extensive dataset of wing morphology and fat body content for the European honeybee (Apis mellifera) and the buff-tailed bumblebee (Bombus terrestris) sampled at 128 sites across eight European countries in landscape gradients dominated by two major bee-pollinated crops (apple and oilseed rape), before and after focal crop bloom and potential pesticide exposure. The dataset also includes environmental metrics of each sampling site, namely landscape structure and pesticide use. The data offer the opportunity to test whether variation in the phenotype and fat bodies of bees is structured by environmental factors and drivers of global change. Overall, the dataset provides valuable information to identify which environmental threats predominantly contribute to the modification of these traits.
Collapse
|
43
|
Patel V, Pauli N, Biggs E, Barbour L, Boruff B. Why bees are critical for achieving sustainable development. AMBIO 2021; 50:49-59. [PMID: 32314266 PMCID: PMC7708548 DOI: 10.1007/s13280-020-01333-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 05/27/2023]
Abstract
Reductions in global bee populations are threatening the pollination benefits to both the planet and people. Whilst the contribution of bee pollination in promoting sustainable development goals through food security and biodiversity is widely acknowledged, a range of other benefits provided by bees has yet to be fully recognised. We explore the contributions of bees towards achieving the United Nation's Sustainable Development Goals (SDGs). Our insights suggest that bees potentially contribute towards 15 of the 17 SDGs and a minimum of 30 SDG targets. We identify common themes in which bees play an essential role, and suggest that improved understanding of bee contributions to sustainable development is crucial for ensuring viable bee systems.
Collapse
Affiliation(s)
- Vidushi Patel
- UWA School of Agriculture and Environment, The University of Western Australia (M004), 35 Stirling Highway, Crawley, WA 6009 Australia
- Cooperative Research Centre for Honey Bee Products, 128, Yanchep Beach Rd, Yanchep, WA 6035 Australia
| | - Natasha Pauli
- UWA School of Agriculture and Environment, The University of Western Australia (M004), 35 Stirling Highway, Crawley, WA 6009 Australia
- Department of Geography and Planning, The University of Western Australia (M004), 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Eloise Biggs
- Department of Geography and Planning, The University of Western Australia (M004), 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Liz Barbour
- Cooperative Research Centre for Honey Bee Products, 128, Yanchep Beach Rd, Yanchep, WA 6035 Australia
| | - Bryan Boruff
- UWA School of Agriculture and Environment, The University of Western Australia (M004), 35 Stirling Highway, Crawley, WA 6009 Australia
- Cooperative Research Centre for Honey Bee Products, 128, Yanchep Beach Rd, Yanchep, WA 6035 Australia
- Department of Geography and Planning, The University of Western Australia (M004), 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
44
|
Sterkel M, Haines LR, Casas-Sánchez A, Owino Adung’a V, Vionette-Amaral RJ, Quek S, Rose C, Silva dos Santos M, García Escude N, Ismail HM, Paine MI, Barribeau SM, Wagstaff S, MacRae JI, Masiga D, Yakob L, Oliveira PL, Acosta-Serrano Á. Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLoS Biol 2021; 19:e3000796. [PMID: 33497373 PMCID: PMC7837477 DOI: 10.1371/journal.pbio.3000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.
Collapse
Affiliation(s)
- Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Vincent Owino Adung’a
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | | | - Shannon Quek
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Mark I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth M. Barribeau
- Department of Ecology Evolution & Behaviour, Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Simon Wagstaff
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
45
|
The Economic Value of the Ecosystem Services of Beekeeping in the Czech Republic. SUSTAINABILITY 2020. [DOI: 10.3390/su122310179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beekeeping is an important part of the bioeconomy. Throughout its existence, it has been one of the fields of human endeavour that contributes to sustainability. It has significant benefits for society, both economically and environmentally. Most (90%) of honeybees’ benefit to humankind lies in their pollination capacity, and only 10% lies in bee products (honey, propolis, wax, etc.). The research presented was carried out in the conditions of the Czech Republic in the first half of 2020 through a questionnaire survey within a Google Form, which was aimed at beekeepers. The aim of this paper is, based on a questionnaire survey, to evaluate ecosystem services of beekeeping from the perspective of beekeepers, including the valuation of selected types of ecosystem services. The results show that in the Czech Republic, the most common reason for beekeeping is as a hobby (34.18%). As expected, the demand for pollination is very low compared to other countries (11.6%). From the point of view of the benefits of ecosystem services, the questionnaire survey showed that the most important benefit is the pollination of cultivated and other plants (54.7%) and honeybee products (24.8%). The value of all selected ecosystem services totals 3,646,368 CZK. The results show that state support is needed, which should address the negative demographic development of beekeepers and thus ensure the production of ecosystem services.
Collapse
|
46
|
OneHealth implications of infectious diseases of wild and managed bees. J Invertebr Pathol 2020; 186:107506. [PMID: 33249062 DOI: 10.1016/j.jip.2020.107506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/23/2023]
Abstract
The OneHealth approach aims to further our understanding of the drivers of human, animal and environmental health, and, ultimately, to improve them by combining approaches and knowledge from medicine, biology and fields beyond. Wild and managed bees are essential pollinators of crops and wild flowers. Their health thus directly impacts on human and environmental health. At the same time, these bee species represent highly amenable and relevant model organisms for a OneHealth approach that aims to study fundamental epidemiological questions. In this review, we focus on how infectious diseases of wild and managed bees can be used as a OneHealth model system, informing fundamental questions on ecological immunology and disease transmission, while addressing how this knowledge can be used to tackle the issues facing pollinator health.
Collapse
|
47
|
Longing SD, Peterson EM, Jewett CT, Rendon BM, Discua SA, Wooten KJ, Subbiah S, Smith PN, McIntyre NE. Exposure of Foraging Bees (Hymenoptera) to Neonicotinoids in the U.S. Southern High Plains. ENVIRONMENTAL ENTOMOLOGY 2020; 49:528-535. [PMID: 32025712 DOI: 10.1093/ee/nvaa003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to pesticides is a major threat to insect pollinators, potentially leading to negative effects that could compromise pollination services and biodiversity. The objectives of this study were to quantify neonicotinoid concentrations among different bee genera and to examine differences attributable to body size and surrounding land use. During the period of cotton planting (May-June), 282 wild bees were collected from habitat patches associated with cropland, grassland, and urban land cover and analyzed for three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Twenty bees among eight genera contained one or more of the neonicotinoid compounds and detections occurred in all landscape types, yet with the most detections occurring in cropland-associated habitats. Apis Linnaeus (Hymenoptera: Apidae), Melissodes Latreille (Apidae), Perdita Smith (Andrenidae), and Lasioglossum Curtis (Halictidae) had multiple individuals with neonicotinoid detections. Two of the largest bees (Apis and Melissodes) had the greatest number of detections within genera, yet the relatively small-bodied genus Perdita had the three highest neonicotinoid concentrations reported. The number of detections within a genus and average generic body mass showed a marginally significant trend towards larger bees having a greater frequency of neonicotinoid detections. Overall, the relatively low percentage of detections across taxa suggests practices aimed at conserving grassland remnants in intensified agricultural regions could assist in mitigating exposure of wild bees to agrochemicals, while differences in bee traits and resource use could in part drive exposure. Further work is needed to address variable agrochemical exposures among pollinators, to support strategies for conservation and habitat restoration in affected landscapes.
Collapse
Affiliation(s)
- Scott D Longing
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Christopher T Jewett
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Bianca M Rendon
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Samuel A Discua
- Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Lubbock, TX
| | - Kimberly J Wooten
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX
| | - Nancy E McIntyre
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
48
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
49
|
Hipólito J, Sousa BDSB, Borges RC, Brito RMD, Jaffé R, Dias S, Imperatriz Fonseca VL, Giannini TC. Valuing nature's contribution to people: The pollination services provided by two protected areas in Brazil. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
50
|
|