1
|
Qin Y, Zhao H, Chang Q, Liu Y, Jing Z, Yu D, Mugo SM, Wang H, Zhang Q. Amylopectin-based Hydrogel Probes for Brain-machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416926. [PMID: 39663729 DOI: 10.1002/adma.202416926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Implantable neural probes hold promise for acquiring brain data, modulating neural circuits, and treating various brain disorders. However, traditional implantable probes face significant challenges in practical applications, such as balancing sensitivity with biocompatibility and the difficulties of in situ neural information monitoring and neuromodulation. To address these challenges, this study developed an implantable hydrogel probe capable of recording neural signals, modulating neural circuits, and treating stroke. Amylopectin is integrated into the hydrogels, which can induce reorientation of the poly(3,4-ethylenedioxythiophene) (PEDOT) chain and create compliant interfaces with brain tissues, enhancing both sensitivity and biocompatibility. The hydrogel probe shows the capability of continuously recording deep brain signals for 8 weeks. The hydrogel probe is effectively utilized to study deep brain signals associated with various physiological activities. Neuromodulation and neural signal monitoring are performed directly in the primary motor cortex of rats, enabling control over their limb behaviors through evoked signals. When applied to the primary motor cortex of stroke-affected rats, neuromodulation significantly reduced the brain infarct area, promoted synaptic reorganization, and restored motor functions and balance. This research represents a significant scientific breakthrough in the design of neural probes for brain monitoring, neural circuit modulation, and the development of brain disease therapies.
Collapse
Affiliation(s)
- Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hao Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qi Chang
- Department of Orthopaedics, The 989 Hospital of the People's Liberation Army Joint Service Support Force, Luoyang, 471031, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, P. R. China
| | - Zhen Jing
- Jilin Provincial Science and Technology Innovation Platform Management Center, Changchun, 130012, P. R. China
| | - Dehai Yu
- Core Facility, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun, 130021, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Potesta CV, Cargile MS, Yan A, Xiong S, Macdonald RL, Gallagher MJ, Zhou C. Preoptic area controls sleep-related seizure onset in a genetic epilepsy mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.24.568593. [PMID: 39314442 PMCID: PMC11418963 DOI: 10.1101/2023.11.24.568593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In genetic and refractory epileptic patients, seizure activity exhibits sleep-related modulation/regulation and sleep and seizure are intermingled. In this study, by using one het Gabrg2 Q390X KI mice as a genetic epilepsy model and optogenetic method in vivo, we found that subcortical POA neurons were active within epileptic network from the het Gabrg2 Q390X KI mice and the POA activity preceded epileptic (poly)spike-wave discharges(SWD/PSDs) in the het Gabrg2 Q390X KI mice. Meanwhile, as expected, the manipulating of the POA activity relatively altered NREM sleep and wake periods in both wt and the het Gabrg2 Q390X KI mice. Most importantly, the short activation of epileptic cortical neurons alone did not effectively trigger seizure activity in the het Gabrg2 Q390X KI mice. In contrast, compared to the wt mice, combined the POA nucleus activation and short activation of the epileptic cortical neurons effectively triggered or suppressed epileptic activity in the het Gabrg2 Q390X KI mice, indicating that the POA activity can control the brain state to trigger seizure incidence in the het Gabrg2 Q390X KI mice in vivo. In addition, the suppression of POA nucleus activity decreased myoclonic jerks in the Gabrg2 Q390X KI mice. Overall, this study discloses an operational mechanism for sleep-dependent seizure incidence in the genetic epilepsy model with the implications for refractory epilepsy. This operational mechanism also underlies myoclonic jerk generation, further with translational implications in seizure treatment for genetic/refractory epileptic patients and with contribution to memory/cognitive deficits in epileptic patients.
Collapse
Affiliation(s)
| | | | | | | | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Martin J. Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Brain Institute and Neuroscience graduate program, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Brain Institute and Neuroscience graduate program, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
3
|
Parks DF, Schneider AM, Xu Y, Brunwasser SJ, Funderburk S, Thurber D, Blanche T, Dyer EL, Haussler D, Hengen KB. A nonoscillatory, millisecond-scale embedding of brain state provides insight into behavior. Nat Neurosci 2024; 27:1829-1843. [PMID: 39009836 DOI: 10.1038/s41593-024-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
The most robust and reliable signatures of brain states are enriched in rhythms between 0.1 and 20 Hz. Here we address the possibility that the fundamental unit of brain state could be at the scale of milliseconds and micrometers. By analyzing high-resolution neural activity recorded in ten mouse brain regions over 24 h, we reveal that brain states are reliably identifiable (embedded) in fast, nonoscillatory activity. Sleep and wake states could be classified from 100 to 101 ms of neuronal activity sampled from 100 µm of brain tissue. In contrast to canonical rhythms, this embedding persists above 1,000 Hz. This high-frequency embedding is robust to substates, sharp-wave ripples and cortical on/off states. Individual regions intermittently switched states independently of the rest of the brain, and such brief state discontinuities coincided with brief behavioral discontinuities. Our results suggest that the fundamental unit of state in the brain is consistent with the spatial and temporal scale of neuronal computation.
Collapse
Affiliation(s)
- David F Parks
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Aidan M Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yifan Xu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Samuel J Brunwasser
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Samuel Funderburk
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | | | - Eva L Dyer
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Mehrotra D, Levenstein D, Duszkiewicz AJ, Carrasco SS, Booker SA, Kwiatkowska A, Peyrache A. Hyperpolarization-activated currents drive neuronal activation sequences in sleep. Curr Biol 2024; 34:3043-3054.e8. [PMID: 38901427 DOI: 10.1016/j.cub.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Sequential neuronal patterns are believed to support information processing in the cortex, yet their origin is still a matter of debate. We report that neuronal activity in the mouse postsubiculum (PoSub), where a majority of neurons are modulated by the animal's head direction, was sequentially activated along the dorsoventral axis during sleep at the transition from hyperpolarized "DOWN" to activated "UP" states, while representing a stable direction. Computational modeling suggested that these dynamics could be attributed to a spatial gradient of hyperpolarization-activated currents (Ih), which we confirmed in ex vivo slice experiments and corroborated in other cortical structures. These findings open up the possibility that varying amounts of Ih across cortical neurons could result in sequential neuronal patterns and that traveling activity upstream of the entorhinal-hippocampal circuit organizes large-scale neuronal activity supporting learning and memory during sleep.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Daniel Levenstein
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; MILA, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | - Adrian J Duszkiewicz
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sofia Skromne Carrasco
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Angelika Kwiatkowska
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Adrien Peyrache
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
5
|
Delamare G, Zaki Y, Cai DJ, Clopath C. Drift of neural ensembles driven by slow fluctuations of intrinsic excitability. eLife 2024; 12:RP88053. [PMID: 38712831 PMCID: PMC11076042 DOI: 10.7554/elife.88053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.
Collapse
Affiliation(s)
- Geoffroy Delamare
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Yosif Zaki
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Denise J Cai
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Claudia Clopath
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Sheybani L, Vivekananda U, Rodionov R, Diehl B, Chowdhury FA, McEvoy AW, Miserocchi A, Bisby JA, Bush D, Burgess N, Walker MC. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat Commun 2023; 14:7397. [PMID: 38036557 PMCID: PMC10689494 DOI: 10.1038/s41467-023-42971-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Slow waves of neuronal activity are a fundamental component of sleep that are proposed to have homeostatic and restorative functions. Despite this, their interaction with pathology is unclear and there is only indirect evidence of their presence during wakefulness. Using intracortical recordings from the temporal lobe of 25 patients with epilepsy, we demonstrate the existence of local wake slow waves (LoWS) with key features of sleep slow waves, including a down-state of neuronal firing. Consistent with a reduction in neuronal activity, LoWS were associated with slowed cognitive processing. However, we also found that LoWS showed signatures of a homeostatic relationship with interictal epileptiform discharges (IEDs): exhibiting progressive adaptation during the build-up of network excitability before an IED and reducing the impact of subsequent IEDs on network excitability. We therefore propose an epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant activity at the price of transient cognitive impairment.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Umesh Vivekananda
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - James A Bisby
- Division of Psychiatry, University College London, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Neil Burgess
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
8
|
Girardeau G. [The role of sleep brain oscillations and neuronal patterns for memory]. Med Sci (Paris) 2023; 39:836-844. [PMID: 38018927 DOI: 10.1051/medsci/2023160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Sleep is crucial for the selective processing and strengthening of information encoded during wakefulness, known as memory consolidation. The different phases of sleep are characterized by specific neuronal activities associated with memory consolidation and homeostatic regulation. In the hippocampus during non-REM sleep, neural patterns called sharp-wave ripple complexes are associated with reactivations of the neural activity that occurred during wakefulness. These reactivations, through their coordinations with cortical slow oscillations and thalamocortical spindles, contribute to the consolidation of spatial memories by strengthening neuronal connections. Cortical slow waves are also a marker of synaptic homeostasis, a regulatory phenomenon maintaining networks in a functional range of firing rates. Finally, REM sleep is also important for memory, although the underlying physiology and the role of theta waves deserves to be further explored.
Collapse
|
9
|
Dearnley B, Jones M, Dervinis M, Okun M. Brain state transitions primarily impact the spontaneous rate of slow-firing neurons. Cell Rep 2023; 42:113185. [PMID: 37773749 DOI: 10.1016/j.celrep.2023.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
The spontaneous firing of neurons is modulated by brain state. Here, we examine how such modulation impacts the overall distribution of firing rates in neuronal populations of neocortical, hippocampal, and thalamic areas across natural and pharmacologically driven brain state transitions. We report that across all the examined combinations of brain area and state transition category, the structure of rate modulation is similar, with almost all fast-firing neurons experiencing proportionally weak modulation, while slow-firing neurons exhibit high inter-neuron variability in the modulation magnitude, leading to a stronger modulation on average. We further demonstrate that this modulation structure is linked to the left-skewed distribution of firing rates on the logarithmic scale and is recapitulated by bivariate log-gamma, but not Gaussian, distributions. Our findings indicate that a preconfigured log-rate distribution with rigid fast-firing neurons and a long left tail of malleable slow-firing neurons is a generic property of forebrain neuronal circuits.
Collapse
Affiliation(s)
- Bradley Dearnley
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Melissa Jones
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Martynas Dervinis
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK; School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
10
|
Delaney TJ, O’Donnell C. Fast-local and slow-global neural ensembles in the mouse brain. Netw Neurosci 2023; 7:731-742. [PMID: 37397884 PMCID: PMC10312261 DOI: 10.1162/netn_a_00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 08/03/2023] Open
Abstract
Ensembles of neurons are thought to be coactive when participating in brain computations. However, it is unclear what principles determine whether an ensemble remains localised within a single brain region, or spans multiple brain regions. To address this, we analysed electrophysiological neural population data from hundreds of neurons recorded simultaneously across nine brain regions in awake mice. At fast subsecond timescales, spike count correlations between pairs of neurons in the same brain region were stronger than for pairs of neurons spread across different brain regions. In contrast at slower timescales, within- and between-region spike count correlations were similar. Correlations between high-firing-rate neuron pairs showed a stronger dependence on timescale than low-firing-rate neuron pairs. We applied an ensemble detection algorithm to the neural correlation data and found that at fast timescales each ensemble was mostly contained within a single brain region, whereas at slower timescales ensembles spanned multiple brain regions. These results suggest that the mouse brain may perform fast-local and slow-global computations in parallel.
Collapse
Affiliation(s)
- Thomas J. Delaney
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, UK
| | - Cian O’Donnell
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, UK
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry/Londonderry, UK
| |
Collapse
|
11
|
Parks DF, Schneider AM, Xu Y, Brunwasser SJ, Funderburk S, Thurber D, Blanche T, Dyer EL, Haussler D, Hengen KB. A non-oscillatory, millisecond-scale embedding of brain state provides insight into behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544399. [PMID: 37333381 PMCID: PMC10274881 DOI: 10.1101/2023.06.09.544399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sleep and wake are understood to be slow, long-lasting processes that span the entire brain. Brain states correlate with many neurophysiological changes, yet the most robust and reliable signature of state is enriched in rhythms between 0.1 and 20 Hz. The possibility that the fundamental unit of brain state could be a reliable structure at the scale of milliseconds and microns has not been addressed due to the physical limits associated with oscillation-based definitions. Here, by analyzing high resolution neural activity recorded in 10 anatomically and functionally diverse regions of the murine brain over 24 h, we reveal a mechanistically distinct embedding of state in the brain. Sleep and wake states can be accurately classified from on the order of 100 to 101 ms of neuronal activity sampled from 100 μm of brain tissue. In contrast to canonical rhythms, this embedding persists above 1,000 Hz. This high frequency embedding is robust to substates and rapid events such as sharp wave ripples and cortical ON/OFF states. To ascertain whether such fast and local structure is meaningful, we leveraged our observation that individual circuits intermittently switch states independently of the rest of the brain. Brief state discontinuities in subsets of circuits correspond with brief behavioral discontinuities during both sleep and wake. Our results suggest that the fundamental unit of state in the brain is consistent with the spatial and temporal scale of neuronal computation, and that this resolution can contribute to an understanding of cognition and behavior.
Collapse
Affiliation(s)
- David F Parks
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | | | - Yifan Xu
- Department of Biology, Washington University in Saint Louis
| | | | | | | | | | - Eva L Dyer
- Department of Biomedical Engineering, Georgia Tech, Atlanta GA
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis
| |
Collapse
|
12
|
Uji M, Tamaki M. Sleep, learning, and memory in human research using noninvasive neuroimaging techniques. Neurosci Res 2022; 189:66-74. [PMID: 36572251 DOI: 10.1016/j.neures.2022.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
An accumulating body of evidence indicates that sleep is beneficial for learning and memory. Task performance improves significantly after a period that includes sleep, whereas a lack of sleep nullifies or impairs such improvements. Our current knowledge about sleep's role in learning and memory has been obtained based on studies that were conducted in both animal models and human subjects. Nevertheless, how sleep promotes learning and memory in humans is not fully understood. In this review, we overview our current understating of how sleep may contribute to learning and memory, covering different roles of non-rapid eye movement and rapid eye movement sleep. We then discuss cutting-edge advanced techniques that are currently available, including simultaneous functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) and simultaneous functional magnetic resonance spectroscopy (fMRS) and EEG measurements, and evaluate how these may contribute to advance the understanding of the role of sleep in human cognition. We also highlight the current limitations and challenges using these methods and discuss ways that may allow us to overcome these limitations.
Collapse
Affiliation(s)
- Makoto Uji
- RIKEN Center for Brain Science, Saitama 3510198, Japan
| | - Masako Tamaki
- RIKEN Center for Brain Science, Saitama 3510198, Japan; RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan.
| |
Collapse
|
13
|
Catron MA, Howe RK, Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Macdonald RL, Zhou C. Sleep slow-wave oscillations trigger seizures in a genetic epilepsy model of Dravet syndrome. Brain Commun 2022; 5:fcac332. [PMID: 36632186 PMCID: PMC9830548 DOI: 10.1093/braincomms/fcac332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sleep is the preferential period when epileptic spike-wave discharges appear in human epileptic patients, including genetic epileptic seizures such as Dravet syndrome with multiple mutations including SCN1A mutation and GABAA receptor γ2 subunit Gabrg2Q390X mutation in patients, which presents more severe epileptic symptoms in female patients than male patients. However, the seizure onset mechanism during sleep still remains unknown. Our previous work has shown that the sleep-like state-dependent homeostatic synaptic potentiation can trigger epileptic spike-wave discharges in one transgenic heterozygous Gabrg2+/Q390X knock-in mouse model.1 Here, using this heterozygous knock-in mouse model, we hypothesized that slow-wave oscillations themselves in vivo could trigger epileptic seizures. We found that epileptic spike-wave discharges in heterozygous Gabrg2+/Q390X knock-in mice exhibited preferential incidence during non-rapid eye movement sleep period, accompanied by motor immobility/facial myoclonus/vibrissal twitching and more frequent spike-wave discharge incidence appeared in female heterozygous knock-in mice than male heterozygous knock-in mice. Optogenetically induced slow-wave oscillations in vivo significantly increased epileptic spike-wave discharge incidence in heterozygous Gabrg2+/Q390X knock-in mice with longer duration of non-rapid eye movement sleep or quiet-wakeful states. Furthermore, suppression of slow-wave oscillation-related homeostatic synaptic potentiation by 4-(diethylamino)-benzaldehyde injection (i.p.) greatly attenuated spike-wave discharge incidence in heterozygous knock-in mice, suggesting that slow-wave oscillations in vivo did trigger seizure activity in heterozygous knock-in mice. Meanwhile, sleep spindle generation in wild-type littermates and heterozygous Gabrg2+/Q390X knock-in mice involved the slow-wave oscillation-related homeostatic synaptic potentiation that also contributed to epileptic spike-wave discharge generation in heterozygous Gabrg2+/Q390X knock-in mice. In addition, EEG spectral power of delta frequency (0.1-4 Hz) during non-rapid eye movement sleep was significantly larger in female heterozygous Gabrg2+/Q390X knock-in mice than that in male heterozygous Gabrg2+/Q390X knock-in mice, which likely contributes to the gender difference in seizure incidence during non-rapid eye movement sleep/quiet-wake states of human patients. Overall, all these results indicate that slow-wave oscillations in vivo trigger the seizure onset in heterozygous Gabrg2+/Q390X knock-in mice, preferentially during non-rapid eye movement sleep period and likely generate the sex difference in seizure incidence between male and female heterozygous Gabrg2+/Q390X knock-in mice.
Collapse
Affiliation(s)
- Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel K Howe
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gai-Linn K Besing
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily K St. John
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Curia G, Estrada-Camarena E, Manjarrez E, Mizuno H. Editorial: In vivo investigations on neurological disorders: From traditional approaches to forefront technologies. Front Neurosci 2022; 16:1052089. [PMID: 36330344 PMCID: PMC9623258 DOI: 10.3389/fnins.2022.1052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Giulia Curia
| | - Erika Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Neuroscience, National Institute of Psychiatry Ramon de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Elias Manjarrez
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Zhou C. Artificial sleep-like up/down-states induce synaptic plasticity in cortical neurons from mouse brain slices. Front Cell Neurosci 2022; 16:948327. [PMID: 36313618 PMCID: PMC9615418 DOI: 10.3389/fncel.2022.948327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023] Open
Abstract
During non-rapid eye movement (NREM) sleep, cortical neuron activity alternates between a depolarized (firing, up-state) and a hyperpolarized state (down-state) coinciding with delta electroencephalogram (EEG) slow-wave oscillation (SWO, 0. 5-4 Hz) in vivo. Recently, we have found that artificial sleep-like up/down-states can potentiate synaptic strength in layer V cortical neurons ex vivo. Using mouse coronal brain slices, whole cell voltage-clamp recordings were made from layer V cortical pyramidal neurons to record spontaneous excitatory synaptic currents (sEPSCs) and inhibitory synaptic currents (sIPSCs). Artificial sleep-like up/down-states (as SWOs, 0.5 Hz, 10 min, current clamp mode) were induced by injecting sinusoidal currents into layer V cortical neurons. Baseline pre-SWO recordings were recorded for 5 min and post-SWO recordings for at least 25-30 min. Compared to pre-SWO sEPSCs or sIPSCs, post-SWO sEPSCs or sIPSCs in layer V cortical neurons exhibited significantly larger amplitudes and a higher frequency for 30 min. This finding suggests that both sEPSCs and sIPSCs could be potentiated in layer V cortical neurons by the low-level activity of SWOs, and sEPSCs and sIPSCs maintained a balance in layer V cortical neurons during pre- and post-SWO periods. Overall, this study presents an ex vivo method to show SWO's ability to induce synaptic plasticity in layer V cortical neurons, which may underlie sleep-related synaptic potentiation for sleep-related memory consolidation in vivo.
Collapse
Affiliation(s)
- Gai-Linn Kay Besing
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily Kate St. John
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cobie Victoria Potesta
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Martin J. Gallagher
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
16
|
Thomas CW, Blanco-Duque C, Bréant BJ, Goodwin GM, Sharp T, Bannerman DM, Vyazovskiy VV. Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Transl Psychiatry 2022; 12:77. [PMID: 35197453 PMCID: PMC8866416 DOI: 10.1038/s41398-022-01846-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Serotonergic psychedelic drugs, such as psilocin (4-hydroxy-N,N-dimethyltryptamine), profoundly alter the quality of consciousness through mechanisms which are incompletely understood. Growing evidence suggests that a single psychedelic experience can positively impact long-term psychological well-being, with relevance for the treatment of psychiatric disorders, including depression. A prominent factor associated with psychiatric disorders is disturbed sleep, and the sleep-wake cycle is implicated in the homeostatic regulation of neuronal activity and synaptic plasticity. However, it remains largely unknown to what extent psychedelic agents directly affect sleep, in terms of both acute arousal and homeostatic sleep regulation. Here, chronic electrophysiological recordings were obtained in mice to track sleep-wake architecture and cortical activity after psilocin injection. Administration of psilocin led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing, and the acute EEG response was associated primarily with an enhanced oscillation around 4 Hz. No long-term changes in sleep-wake quantity were found. When combined with sleep deprivation, psilocin did not alter the dynamics of homeostatic sleep rebound during the subsequent recovery period, as reflected in both sleep amount and EEG slow-wave activity. However, psilocin decreased the recovery rate of sleep slow-wave activity following sleep deprivation in the local field potentials of electrodes targeting the medial prefrontal and surrounding cortex. It is concluded that psilocin affects both global vigilance state control and local sleep homeostasis, an effect which may be relevant for its antidepressant efficacy.
Collapse
Affiliation(s)
- Christopher W. Thomas
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Cristina Blanco-Duque
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Benjamin J. Bréant
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Guy M. Goodwin
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Trevor Sharp
- grid.4991.50000 0004 1936 8948Department of Pharmacology, University of Oxford, Oxford, UK
| | - David M. Bannerman
- grid.4991.50000 0004 1936 8948Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav V. Vyazovskiy
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Zarhin D, Atsmon R, Ruggiero A, Baeloha H, Shoob S, Scharf O, Heim LR, Buchbinder N, Shinikamin O, Shapira I, Styr B, Braun G, Harel M, Sheinin A, Geva N, Sela Y, Saito T, Saido T, Geiger T, Nir Y, Ziv Y, Slutsky I. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep 2022; 38:110268. [PMID: 35045289 PMCID: PMC8789564 DOI: 10.1016/j.celrep.2021.110268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.
Collapse
Affiliation(s)
- Daniel Zarhin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Refaela Atsmon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiri Shoob
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Scharf
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Harel
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Tamar Geiger
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
18
|
Abstract
Sleep is crucial for healthy cognition, including memory. The two main phases of sleep, REM (rapid eye movement) and non-REM sleep, are associated with characteristic electrophysiological patterns that are recorded using surface and intracranial electrodes. These patterns include sharp-wave ripples, cortical slow oscillations, delta waves, and spindles during non-REM sleep and theta oscillations during REM sleep. They reflect the precisely timed activity of underlying neural circuits. Here, we review how these electrical signatures have been guiding our understanding of the circuits and processes sustaining memory consolidation during sleep, focusing on hippocampal theta oscillations and sharp-wave ripples and how they coordinate with cortical patterns. Finally, we highlight how these brain patterns could also sustain sleep-dependent homeostatic processes and evoke several potential future directions for research on the memory function of sleep.
Collapse
Affiliation(s)
- Gabrielle Girardeau
- Institut du Fer a Moulin, UMR-S 1270 INSERM and Sorbonne Université, 75005 Paris, France
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
19
|
Skilling QM, Eniwaye B, Clawson BC, Shaver J, Ognjanovski N, Aton SJ, Zochowski M. Acetylcholine-gated current translates wake neuronal firing rate information into a spike timing-based code in Non-REM sleep, stabilizing neural network dynamics during memory consolidation. PLoS Comput Biol 2021; 17:e1009424. [PMID: 34543284 PMCID: PMC8483332 DOI: 10.1371/journal.pcbi.1009424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/30/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Sleep is critical for memory consolidation, although the exact mechanisms mediating this process are unknown. Combining reduced network models and analysis of in vivo recordings, we tested the hypothesis that neuromodulatory changes in acetylcholine (ACh) levels during non-rapid eye movement (NREM) sleep mediate stabilization of network-wide firing patterns, with temporal order of neurons’ firing dependent on their mean firing rate during wake. In both reduced models and in vivo recordings from mouse hippocampus, we find that the relative order of firing among neurons during NREM sleep reflects their relative firing rates during prior wake. Our modeling results show that this remapping of wake-associated, firing frequency-based representations is based on NREM-associated changes in neuronal excitability mediated by ACh-gated potassium current. We also show that learning-dependent reordering of sequential firing during NREM sleep, together with spike timing-dependent plasticity (STDP), reconfigures neuronal firing rates across the network. This rescaling of firing rates has been reported in multiple brain circuits across periods of sleep. Our model and experimental data both suggest that this effect is amplified in neural circuits following learning. Together our data suggest that sleep may bias neural networks from firing rate-based towards phase-based information encoding to consolidate memories. We show that neuromodulatory changes during non-rapid eye movement (NREM) sleep generate stable spike timing relationships between neurons, the ordering of which reflects the neurons’ relative firing rates during wake. Learning-dependent ordering of firing in the hippocampus during NREM, acting in tandem with spike timing-dependent plasticity, reconfigures neuronal firing rates across the hippocampal network. This “rescaling” of neuronal firing rates has recently been reported in multiple brain circuits across periods of sleep. Together, our results suggest that the brain is remapping frequency-biased representations of information formed during wake into timing biased-representations during NREM sleep.
Collapse
Affiliation(s)
- Quinton M Skilling
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bolaji Eniwaye
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brittany C Clawson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James Shaver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicolette Ognjanovski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michal Zochowski
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
Lindén H, Berg RW. Why Firing Rate Distributions Are Important for Understanding Spinal Central Pattern Generators. Front Hum Neurosci 2021; 15:719388. [PMID: 34539363 PMCID: PMC8446347 DOI: 10.3389/fnhum.2021.719388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023] Open
Abstract
Networks in the spinal cord, which are responsible for the generation of rhythmic movements, commonly known as central pattern generators (CPGs), have remained elusive for decades. Although it is well-known that many spinal neurons are rhythmically active, little attention has been given to the distribution of firing rates across the population. Here, we argue that firing rate distributions can provide an important clue to the organization of the CPGs. The data that can be gleaned from the sparse literature indicate a firing rate distribution, which is skewed toward zero with a long tail, akin to a normal distribution on a log-scale, i.e., a “log-normal” distribution. Importantly, such a shape is difficult to unite with the widespread assumption of modules composed of recurrently connected excitatory neurons. Spinal modules with recurrent excitation has the propensity to quickly escalate their firing rate and reach the maximum, hence equalizing the spiking activity across the population. The population distribution of firing rates hence would consist of a narrow peak near the maximum. This is incompatible with experiments, that show wide distributions and a peak close to zero. A way to resolve this puzzle is to include recurrent inhibition internally in each CPG modules. Hence, we investigate the impact of recurrent inhibition in a model and find that the firing rate distributions are closer to the experimentally observed. We therefore propose that recurrent inhibition is a crucial element in motor circuits, and suggest that future models of motor circuits should include recurrent inhibition as a mandatory element.
Collapse
Affiliation(s)
- Henrik Lindén
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Tingley D, McClain K, Kaya E, Carpenter J, Buzsáki G. A metabolic function of the hippocampal sharp wave-ripple. Nature 2021; 597:82-86. [PMID: 34381214 PMCID: PMC9214835 DOI: 10.1038/s41586-021-03811-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The hippocampus has previously been implicated in both cognitive and endocrine functions1-15. We simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats to identify an activity pattern that may link these disparate functions of the hippocampus. Here we report that clusters of sharp wave-ripples recorded from the hippocampus reliably predicted a decrease in peripheral glucose concentrations within about 10 min. This correlation was not dependent on circadian, ultradian or meal-triggered fluctuations, could be mimicked with optogenetically induced ripples in the hippocampus (but not in the parietal cortex) and was attenuated to chance levels by pharmacogenetically suppressing activity of the lateral septum, which is the major conduit between the hippocampus and the hypothalamus. Our findings demonstrate that a function of the sharp wave-ripple is to modulate peripheral glucose homeostasis, and offer a mechanism for the link between sleep disruption and blood glucose dysregulation in type 2 diabetes16-18.
Collapse
Affiliation(s)
- David Tingley
- Neuroscience Institute, New York University, New York, NY, USA.
| | - Kathryn McClain
- Center for Neural Science, New York University, New York, NY, USA
| | - Ekin Kaya
- Neuroscience Institute, New York University, New York, NY, USA
- Department of Psychology, Bogazici University, Istanbul, Turkey
| | - Jordan Carpenter
- Neuroscience Institute, New York University, New York, NY, USA
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Neurology, New York University, New York, NY, USA.
- Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
22
|
Golosio B, De Luca C, Capone C, Pastorelli E, Stegel G, Tiddia G, De Bonis G, Paolucci PS. Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep. PLoS Comput Biol 2021; 17:e1009045. [PMID: 34181642 PMCID: PMC8270441 DOI: 10.1371/journal.pcbi.1009045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories. We created a thalamo-cortical spiking model (ThaCo) with the purpose of demonstrating a link among two phenomena that we believe to be essential for the brain capability of efficient incremental learning from few examples in noisy environments. Grounded in two experimental observations—the first about the effects of deep-sleep on pre- and post-sleep firing rate distributions, the second about the combination of perceptual and contextual information in pyramidal neurons—our model joins these two ingredients. ThaCo alternates phases of incremental learning, classification and deep-sleep. Memories of handwritten digit examples are learned through thalamo-cortical and cortico-cortical plastic synapses. In absence of noise, the combination of contextual information with perception enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are considered. We observed in ThaCo both homeostatic and associative processes: deep-sleep fights noise in perceptual and internal knowledge and it supports the categorical association of examples belonging to the same digit class, through reinforcement of class-specific cortico-cortical synapses. The distributions of pre-sleep and post-sleep firing rates during classification change in a manner similar to those of experimental observation. These changes promote energetic efficiency during recall of memories, better representation of individual memories and categories and higher classification performances.
Collapse
Affiliation(s)
- Bruno Golosio
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Chiara De Luca
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
- * E-mail:
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Elena Pastorelli
- Ph.D. Program in Behavioural Neuroscience, “Sapienza” Università di Roma, Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Giovanni Stegel
- Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy
| | - Gianmarco Tiddia
- Dipartimento di Fisica, Università di Cagliari, Cagliari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Cagliari, Italy
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | |
Collapse
|
23
|
Baravalle R, Montani F. Heterogeneity across neural populations: Its significance for the dynamics and functions of neural circuits. Phys Rev E 2021; 103:042308. [PMID: 34005927 DOI: 10.1103/physreve.103.042308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/18/2021] [Indexed: 11/07/2022]
Abstract
Neural populations show patterns of synchronous activity, as they share common correlated inputs. Neurons in the cortex that are connected by strong synapses cause rapid firing explosions. In addition, areas that are connected by weaker synapses have a slower dynamics and they can contribute to asymmetries in the input distributions. The aim of this work is to develop a neural model to investigate how the heterogeneities in the synaptic input distributions affect different levels of organizational activity in the brain dynamics. We analytically show how small changes in the correlation inputs can cause large changes in the interactions of the outputs that lead to a phase transition, demonstrating that a simple variation in the direction of a biased skewed distribution in the neuronal inputs can generate a transition of states in the firing rate, passing from spontaneous silence ("down state") to an absolute spiking activity ("up state"). We present an exact quantification of the dynamics of the output variables, showing that when considering a biased skewed distribution in the inputs of neuronal population, the critical point is not in an asynchronous or synchronous state but rather at an intermediate value.
Collapse
Affiliation(s)
- Roman Baravalle
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata (1900) La Plata, Argentina
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata (1900) La Plata, Argentina
| |
Collapse
|
24
|
Ruggiero A, Katsenelson M, Slutsky I. Mitochondria: new players in homeostatic regulation of firing rate set points. Trends Neurosci 2021; 44:605-618. [PMID: 33865626 DOI: 10.1016/j.tins.2021.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Neural circuit functions are stabilized by homeostatic processes at long timescales in response to changes in behavioral states, experience, and learning. However, it remains unclear which specific physiological variables are being stabilized and which cellular or neural network components compose the homeostatic machinery. At this point, most evidence suggests that the distribution of firing rates among neurons in a neuronal circuit is the key variable that is maintained around a set-point value in a process called 'firing rate homeostasis.' Here, we review recent findings that implicate mitochondria as central players in mediating firing rate homeostasis. While mitochondria are known to regulate neuronal variables such as synaptic vesicle release or intracellular calcium concentration, the mitochondrial signaling pathways that are essential for firing rate homeostasis remain largely unknown. We used basic concepts of control theory to build a framework for classifying possible components of the homeostatic machinery that stabilizes firing rate, and we particularly emphasize the potential role of sleep and wakefulness in this homeostatic process. This framework may facilitate the identification of new homeostatic pathways whose malfunctions drive instability of neural circuits in distinct brain disorders.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
25
|
Radwan B, Yanez Touzet A, Hammami S, Chaudhury D. Prolonged Exposure to Social Stress Impairs Homeostatic Sleep Regulation. Front Neurosci 2021; 15:633955. [PMID: 33692671 PMCID: PMC7937905 DOI: 10.3389/fnins.2021.633955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
Stress and sleep are tightly regulated as a result of the substantial overlap in neurotransmitter signaling and regulatory pathways between the neural centers that modulate mood and sleep-wake cycle. The chronicity of the stressor and variability in coping with it are major determinants of the psychiatric outcomes and subsequent effect on sleep. The regulation of sleep is mediated by the interaction of a homeostatic and a circadian process according to the two-process model. Chronic stress induces stress-related disorders which are associated with deficient sleep homeostasis. However, little is known about how chronic stress affects sleep homeostasis and whether the differences in adaptation to stress distinctively influence sleep. Therefore, we assessed sleep homeostasis in C57BL6/J mice following exposure to 15-d of chronic social defeat stress. We implemented wake:sleep ratio as a behavioral correlate of sleep pressure. Both stress-resilient and stress-susceptible mice displayed deficient sleep homeostasis in post-stress baseline sleep. This was due to poor temporal correlation between frontal slow wave activity (SWA) power and sleep pressure in the dark/active phase. Moreover, the buildup rate of sleep pressure in the dark was lower in susceptible mice in comparison to stress-naïve mice. Additionally, 4-h SD in the dark caused a deficient sleep recovery response in susceptible mice characterized by non-rapid eye movement (NREM) sleep loss. Our findings provide evidence of deficient homeostatic sleep process (S) in baseline sleep in stress-exposed mice, while impaired sleep recovery following a mild enforced wakefulness experienced during the dark was only detected in stress-susceptible mice. This alludes to the differential homeostatic adaptation to stress between susceptible and resilient mice and its effect on sleep regulation.
Collapse
Affiliation(s)
- Basma Radwan
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Soaad Hammami
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dipesh Chaudhury
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Findlay G, Tononi G, Cirelli C. The evolving view of replay and its functions in wake and sleep. ACTA ACUST UNITED AC 2021; 1:zpab002. [PMID: 33644760 PMCID: PMC7898724 DOI: 10.1093/sleepadvances/zpab002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Indexed: 12/28/2022]
Abstract
The term hippocampal replay originally referred to the temporally compressed reinstantiation, during rest, of sequential neural activity observed during prior active wake. Since its description in the 1990s, hippocampal replay has often been viewed as the key mechanism by which a memory trace is repeatedly rehearsed at high speeds during sleep and gradually transferred to neocortical circuits. However, the methods used to measure the occurrence of replay remain debated, and it is now clear that the underlying neural events are considerably more complicated than the traditional narratives had suggested. “Replay-like” activity happens during wake, can play out in reverse order, may represent trajectories never taken by the animal, and may have additional functions beyond memory consolidation, from learning values and solving the problem of credit assignment to decision-making and planning. Still, we know little about the role of replay in cognition, and to what extent it differs between wake and sleep. This may soon change, however, because decades-long efforts to explain replay in terms of reinforcement learning (RL) have started to yield testable predictions and possible explanations for a diverse set of observations. Here, we (1) survey the diverse features of replay, focusing especially on the latest findings; (2) discuss recent attempts at unifying disparate experimental results and putatively different cognitive functions under the banner of RL; (3) discuss methodological issues and theoretical biases that impede progress or may warrant a partial revaluation of the current literature, and finally; (4) highlight areas of considerable uncertainty and promising avenues of inquiry.
Collapse
Affiliation(s)
- Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
28
|
REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun 2020; 11:4819. [PMID: 32968048 PMCID: PMC7511313 DOI: 10.1038/s41467-020-18592-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
In many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice. We found that monocular deprivation (MD) or auditory-cued fear conditioning (FC) caused rapid spine elimination in V1 or FrA, respectively. MD- or FC-induced spine elimination was significantly reduced after total sleep or REM sleep deprivation. Total sleep or REM sleep deprivation also prevented MD- and FC-induced reduction of neuronal activity in response to visual or conditioned auditory stimuli. Furthermore, dendritic calcium spikes increased substantially during REM sleep, and the blockade of these calcium spikes prevented MD- and FC-induced spine elimination. These findings reveal an important role of REM sleep in experience-dependent synapse elimination and neuronal activity reduction. Sleep plays an important role in learning and memory. Here the authors show that experience dependent elimination of spines is attenuated by REM sleep deprivation.
Collapse
|
29
|
Zhang CQ, Catron MA, Ding L, Hanna CM, Gallagher MJ, Macdonald RL, Zhou C. Impaired State-Dependent Potentiation of GABAergic Synaptic Currents Triggers Seizures in a Genetic Generalized Epilepsy Model. Cereb Cortex 2020; 31:768-784. [PMID: 32930324 DOI: 10.1093/cercor/bhaa256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
Epileptic activity in genetic generalized epilepsy (GGE) patients preferentially appears during sleep and its mechanism remains unknown. Here, we found that sleep-like slow-wave oscillations (0.5 Hz SWOs) potentiated excitatory and inhibitory synaptic currents in layer V cortical pyramidal neurons from wild-type (wt) mouse brain slices. In contrast, SWOs potentiated excitatory, but not inhibitory, currents in cortical neurons from a heterozygous (het) knock-in (KI) Gabrg2+Q/390X model of Dravet epilepsy syndrome. This created an imbalance between evoked excitatory and inhibitory currents to effectively prompt neuronal action potential firings. Similarly, physiologically similar up-/down-state induction (present during slow-wave sleep) in cortical neurons also potentiated excitatory synaptic currents within brain slices from wt and het KI mice. Moreover, this state-dependent potentiation of excitatory synaptic currents entailed some signaling pathways of homeostatic synaptic plasticity. Consequently, in het KI mice, in vivo SWO induction (using optogenetic methods) triggered generalized epileptic spike-wave discharges (SWDs), being accompanied by sudden immobility, facial myoclonus, and vibrissa twitching. In contrast, in wt littermates, SWO induction did not cause epileptic SWDs and motor behaviors. To our knowledge, this is the first mechanism to explain why epileptic SWDs preferentially happen during non rapid eye-movement sleep and quiet-wakefulness in human GGE patients.
Collapse
Affiliation(s)
- Chun-Qing Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mackenzie A Catron
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Li Ding
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlyn M Hanna
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
30
|
McLeod GA, Ghassemi A, Ng MC. Can REM Sleep Localize the Epileptogenic Zone? A Systematic Review and Analysis. Front Neurol 2020; 11:584. [PMID: 32793089 PMCID: PMC7393443 DOI: 10.3389/fneur.2020.00584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common and debilitating neurological disease. When medication cannot control seizures in up to 40% of cases, surgical resection of epileptogenic tissue is a clinically and cost- effective therapy to achieve seizure freedom. To simultaneously resect minimal yet sufficient cortex, exquisite localization of the epileptogenic zone (EZ) is crucial. However, localization is not straightforward, given relative difficulty of capturing seizures, constraints of the inverse problem in source localization, and possible disparate locations of symptomatogenic vs. epileptogenic regions. Thus, attention has been paid to which state of vigilance best localizes the EZ, in the hopes that one or another sleep-wake state may hold the key to improved accuracy of localization. Studies investigating this topic have employed diverse methodologies and produced diverse results. Nonetheless, rapid eye movement sleep (REM) has emerged as a promising sleep-wake state, as epileptic phenomena captured in REM may spatially correspond more closely to the EZ. Cortical neuronal asynchrony in REM may spatially constrain epileptic phenomena to reduce propagation away from the source generator, rendering them of high localizing value. However, some recent work demonstrates best localization in sleep-wake states other than REM, and there are reports of REM providing clearly false localization. Moreover, synchronistic properties and basic mechanisms of human REM remain to be fully characterized. Amidst these uncertainties, there is an urgent need for recording and analytical techniques to improve accuracy of localization. Here we present a systematic review and quantitative analysis of pertinent literature on whether and how REM may help localize epileptogenic foci. To help streamline and accelerate future work on the intriguing anti-epileptic properties of REM, we also introduce a simple, conceptually clear set-theoretic framework to conveniently and rigorously describe the spatial properties of epileptic phenomena in the brain.
Collapse
Affiliation(s)
- Graham A McLeod
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | | - Marcus C Ng
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Thomas CW, Guillaumin MCC, McKillop LE, Achermann P, Vyazovskiy VV. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 2020; 9:e54148. [PMID: 32614324 PMCID: PMC7332296 DOI: 10.7554/elife.54148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.
Collapse
Affiliation(s)
- Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurichSwitzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
32
|
Carroll CM, Hsiang H, Snyder S, Forsberg J, Dash MB. Cortical zeta-inhibitory peptide injection reduces local sleep need. Sleep 2020; 42:5306948. [PMID: 30722054 DOI: 10.1093/sleep/zsz028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/28/2019] [Indexed: 11/14/2022] Open
Abstract
Local sleep need within cortical circuits exhibits extensive interregional variability and appears to increase following learning during preceding waking. Although the biological mechanisms responsible for generating sleep need are unclear, this local variability could arise as a consequence of wake-dependent synaptic plasticity. To test whether cortical synaptic strength is a proximate driver of sleep homeostasis, we developed a novel experimental approach to alter local sleep need. One hour prior to light onset, we injected zeta-inhibitory peptide (ZIP), a pharmacological antagonist of protein kinase Mζ, which can produce pronounced synaptic depotentiation, into the right motor cortex of freely behaving rats. When compared with saline control, ZIP selectively reduced slow-wave activity (SWA; the best electrophysiological marker of sleep need) within the injected motor cortex without affecting SWA in a distal cortical site. This local reduction in SWA was associated with a significant reduction in the slope and amplitude of individual slow waves. Local ZIP injection did not significantly alter the amount of time spent in each behavioral state, locomotor activity, or EEG/LFP power during waking or REM sleep. Thus, local ZIP injection selectively produced a local reduction in sleep need; synaptic strength, therefore, may play a causal role in generating local homeostatic sleep need within the cortex.
Collapse
Affiliation(s)
| | | | - Sam Snyder
- Program in Neuroscience, Middlebury College, Middlebury, VT
| | - Jade Forsberg
- Program in Neuroscience, Middlebury College, Middlebury, VT
| | - Michael B Dash
- Program in Neuroscience, Middlebury College, Middlebury, VT.,Department of Psychology, Middlebury College, Middlebury, VT
| |
Collapse
|
33
|
Sun L, Zhou H, Cichon J, Yang G. Experience and sleep-dependent synaptic plasticity: from structure to activity. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190234. [PMID: 32248786 DOI: 10.1098/rstb.2019.0234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for learning and memory. With increasing evidence linking sleep states to changes in synaptic strength, an emerging view is that sleep promotes learning and memory by facilitating experience-induced synaptic plasticity. In this review, we summarize the recent progress on the function of sleep in regulating cortical synaptic plasticity. Specifically, we outline the electroencephalogram signatures of sleep states (e.g. slow-wave sleep, rapid eye movement sleep, spindles), sleep state-dependent changes in gene and synaptic protein expression, synaptic morphology, and neuronal and network activity. We highlight studies showing that post-experience sleep potentiates experience-induced synaptic changes and discuss the potential mechanisms that may link sleep-related brain activity to synaptic structural remodelling. We conclude that both synapse formation or strengthening and elimination or weakening occur across sleep. This sleep-dependent synaptic plasticity plays an important role in neuronal circuit refinement during development and after learning, while sleep disorders may contribute to or exacerbate the development of common neurological diseases. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Hang Zhou
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Joseph Cichon
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Liu TY, Watson BO. Patterned activation of action potential patterns during offline states in the neocortex: replay and non-replay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190233. [PMID: 32248782 PMCID: PMC7209911 DOI: 10.1098/rstb.2019.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Action potential generation (spiking) in the neocortex is organized into repeating non-random patterns during both awake experiential states and non-engaged states ranging from inattention to sleep to anaesthesia—and even occur in slice preparations. Repeating patterns in a given population of neurons between states may imply a common means by which cortical networks can be engaged despite brain state changes, but super-imposed on this common firing is a variability that is both specific to ongoing inputs and can be re-shaped by experience. This similarity with specifically induced variance may allow for a range of processes including perception, memory consolidation and network homeostasis. Here, we review how patterned activity in neocortical populations has been studied and what it may imply for a cortex that must be both static and plastic. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Tang-Yu Liu
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Tingley D, Peyrache A. On the methods for reactivation and replay analysis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190231. [PMID: 32248787 DOI: 10.1098/rstb.2019.0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major task in the history of neurophysiology has been to relate patterns of neural activity to ongoing external stimuli. More recently, this approach has branched out to relating current neural activity patterns to external stimuli or experiences that occurred in the past or future. Here, we aim to review the large body of methodological approaches used towards this goal, and to assess the assumptions each makes with reference to the statistics of neural data that are commonly observed. These methods primarily fall into two categories, those that quantify zero-lag relationships without examining temporal evolution, termed reactivation, and those that quantify the temporal structure of changing activity patterns, termed replay. However, no two studies use the exact same approach, which prevents an unbiased comparison between findings. These observations should instead be validated by multiple and, if possible, previously established tests. This will help the community to speak a common language and will eventually provide tools to study, more generally, the organization of neuronal patterns in the brain. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- David Tingley
- Neuroscience Institute, New York University, New York, NY, USA
| | - Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Lu HC, Pollack H, Lefante JJ, Mills AA, Tian D. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 2020; 42:5239591. [PMID: 30541142 DOI: 10.1093/sleep/zsy253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep abnormalities are common among children with neurodevelopmental disorders. The human chr16p11.2 microdeletion is associated with a range of neurological and neurobehavioral abnormalities. Previous studies of a mouse model of human chr16p11.2 microdeletion (chr16p11.2df/+) have demonstrated pathophysiological changes at the synapses in the hippocampus and striatum; however, the impact of this genetic abnormality on system level brain functions, such as sleep and neural oscillation, has not been adequately investigated. Here, we show that chr16p11.2df/+ mice have altered sleep architecture, with increased wake time and reduced time in rapid eye movement (REM) and non-REM (NREM) sleep. Importantly, several measurements of REM sleep are significantly changed in deletion mice. The REM bout number and the bout number ratio of REM to NREM are decreased in mutant mice, suggesting a deficit in REM-NREM transition. The average REM bout duration is shorter in mutant mice, indicating a defect in REM maintenance. In addition, whole-cell patch clamp recording of the ventrolateral periaqueductal gray (vlPAG)-projecting gamma-aminobutyric acid (GABA)ergic neurons in the lateral paragigantocellular nucleus of ventral medulla of mutant mice reveal that these neurons, which are important for NREM-REM transition and REM maintenance, have hyperpolarized resting membrane potential and increased membrane resistance. These changes in intrinsic membrane properties suggest that these projection-specific neurons of mutant mice are less excitable, and thereby may play a role in deficient NREM-REM transition and REM maintenance. Furthermore, mutant mice exhibit changes in neural oscillation involving multiple frequency classes in several vigilance states. The most significant alterations occur in the theta frequency during wake and REM sleep.
Collapse
Affiliation(s)
- Hung-Chi Lu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Harvey Pollack
- Department of Radiology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - John J Lefante
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Center for Cancer Research, Cold Spring Harbor, NY
| | - Di Tian
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA.,Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
37
|
Dash MB. Infraslow coordination of slow wave activity through altered neuronal synchrony. Sleep 2019; 42:5540154. [PMID: 31353415 DOI: 10.1093/sleep/zsz170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Indexed: 11/14/2022] Open
Abstract
Slow wave activity (SWA; the EEG power between 0.5 and 4 Hz during non-rapid eye movement sleep [NREM]) is the best electrophysiological marker of sleep need; SWA dissipates across the night and increases following sleep deprivation. In addition to these well-documented homeostatic SWA trends, SWA exhibits extensive variability across shorter timescales (seconds to minutes) and between local cortical regions. The physiological underpinnings of SWA variability, however, remain poorly characterized. In male Sprague-Dawley rats, we observed that SWA exhibits pronounced infraslow fluctuations (~40- to 120-s periods) that are coordinated across disparate cortical locations. Peaks in SWA across infraslow cycles were associated with increased slope, amplitude, and duration of individual slow waves and a reduction in the total number of waves and proportion of multipeak waves. Using a freely available data set comprised of extracellular unit recordings during consolidated NREM episodes in male Long-Evans rats, we further show that infraslow SWA does not appear to arise as a consequence of firing rate modulation of putative excitatory or inhibitory neurons. Instead, infraslow SWA was associated with alterations in neuronal synchrony surrounding "On"/"Off" periods and changes in the number and duration of "Off" periods. Collectively, these data provide a mechanism by which SWA can be coordinated across disparate cortical locations and thereby connect local and global expression of this patterned neuronal activity. In doing so, infraslow SWA may contribute to the regulation of cortical circuits during sleep and thereby play a critical role in sleep function.
Collapse
Affiliation(s)
- Michael B Dash
- Department of Psychology, Middlebury College, Middlebury, VT
- Program in Neuroscience, Middlebury College, Middlebury, VT
| |
Collapse
|
38
|
Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ. How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 2019; 42:zsz095. [PMID: 31100149 PMCID: PMC6612670 DOI: 10.1093/sleep/zsz095] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Indexed: 11/14/2022] Open
Abstract
Decades of neurobehavioral research has linked sleep-associated rhythms in various brain areas to improvements in cognitive performance. However, it remains unclear what synaptic changes might underlie sleep-dependent declarative memory consolidation and procedural task improvement, and why these same changes appear not to occur across a similar interval of wake. Here we describe recent research on how one specific feature of sleep-network rhythms characteristic of rapid eye movement and non-rapid eye movement-could drive synaptic strengthening or weakening in specific brain circuits. We provide an overview of how these rhythms could affect synaptic plasticity individually and in concert. We also present an overarching hypothesis for how all network rhythms occurring across the sleeping brain could aid in encoding new information in neural circuits.
Collapse
Affiliation(s)
| | - James Roach
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Niels Niethard
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Michal Zochowski
- Department of Physics, Biophysics Program, University of Michigan, Ann Arbor, MI
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
39
|
Levenstein D, Buzsáki G, Rinzel J. NREM sleep in the rodent neocortex and hippocampus reflects excitable dynamics. Nat Commun 2019; 10:2478. [PMID: 31171779 PMCID: PMC6554409 DOI: 10.1038/s41467-019-10327-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
During non-rapid eye movement (NREM) sleep, neuronal populations in the mammalian forebrain alternate between periods of spiking and inactivity. Termed the slow oscillation in the neocortex and sharp wave-ripples in the hippocampus, these alternations are often considered separately but are both crucial for NREM functions. By directly comparing experimental observations of naturally-sleeping rats with a mean field model of an adapting, recurrent neuronal population, we find that the neocortical alternations reflect a dynamical regime in which a stable active state is interrupted by transient inactive states (slow waves) while the hippocampal alternations reflect a stable inactive state interrupted by transient active states (sharp waves). We propose that during NREM sleep in the rodent, hippocampal and neocortical populations are excitable: each in a stable state from which internal fluctuations or external perturbation can evoke the stereotyped population events that mediate NREM functions.
Collapse
Affiliation(s)
- Daniel Levenstein
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA.,NYU Neuroscience Institute, 450 East 29th Street, New York, NY, 10016, USA
| | - György Buzsáki
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA.,NYU Neuroscience Institute, 450 East 29th Street, New York, NY, 10016, USA
| | - John Rinzel
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA. .,Courant Institute for Mathematical Sciences, New York University, 251 Mercer St, New York, 10012, USA.
| |
Collapse
|
40
|
Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2019. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lateral hypothalamus (LH) is a relatively large hypothalamic structure containing several neurochemically different, but spatially intermingled, neuronal populations. While the role of these neurons in the homeostatic regulation of diverse physiological and behavioral functions such as sleep/wake cycle has been studied extensively, the impact of sleep history on the electrophysiology of the LH and whether this effect is homogenous across LH is unknown. By combining multiunit activity (MUA) recordings in different regions of LH with electroencephalogram recordings in freely moving rats, we unravelled a heterogeneity of neural-activity patterns within different subregions of LH. This heterogeneity was evident in both the circadian and the vigilance state-dependent modulation of MUA. Interestingly, and consistent with this heterogeneity under baseline conditions, the magnitude of MUA suppression following 6 hr of sleep deprivation (SD) was also different within different locations of LH. Unlike the cortex and in contrast to the predictions of the synaptic homeostatic hypothesis, no correlation was found between the magnitude of activity increase during SD and the percentage of suppression of MUA during recovery sleep. These data provide in vivo evidence of a functional heterogeneity in the circadian and homeostatic modulation of neuronal activity in LH.
Collapse
Affiliation(s)
- Marjolein Schoonakker
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Deboer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karim Fifel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
41
|
The up and down of sleep: From molecules to electrophysiology. Neurobiol Learn Mem 2019; 160:3-10. [DOI: 10.1016/j.nlm.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 12/21/2022]
|
42
|
Sigl-Glöckner J, Seibt J. Peeking into the sleeping brain: Using in vivo imaging in rodents to understand the relationship between sleep and cognition. J Neurosci Methods 2019; 316:71-82. [PMID: 30208306 PMCID: PMC6390172 DOI: 10.1016/j.jneumeth.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
Sleep is well known to benefit cognitive function. In particular, sleep has been shown to enhance learning and memory in both humans and animals. While the underlying mechanisms are not fully understood, it has been suggested that brain activity during sleep modulates neuronal communication through synaptic plasticity. These insights were mostly gained using electrophysiology to monitor ongoing large scale and single cell activity. While these efforts were instrumental in the characterisation of important network and cellular activity during sleep, several aspects underlying cognition are beyond the reach of this technology. Neuronal circuit activity is dynamically regulated via the precise interaction of different neuronal and non-neuronal cell types and relies on subtle modifications of individual synapses. In contrast to established electrophysiological approaches, recent advances in imaging techniques, mainly applied in rodents, provide unprecedented access to these aspects of neuronal function in vivo. In this review, we describe various techniques currently available for in vivo brain imaging, from single synapse to large scale network activity. We discuss the advantages and limitations of these approaches in the context of sleep research and describe which particular aspects related to cognition lend themselves to this kind of investigation. Finally, we review the few studies that used in vivo imaging in rodents to investigate the sleeping brain and discuss how the results have already significantly contributed to a better understanding on the complex relation between sleep and plasticity across development and adulthood.
Collapse
Affiliation(s)
- Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, D-10115, Berlin, Germany
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, GU2 7XP, Guildford, UK.
| |
Collapse
|
43
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
44
|
Almeida-Filho DG, Queiroz CM, Ribeiro S. Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation. Cell Mol Life Sci 2018; 75:3715-3740. [PMID: 30054638 PMCID: PMC11105475 DOI: 10.1007/s00018-018-2886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
Abstract
Once viewed as a passive physiological state, sleep is a heterogeneous and complex sequence of brain states with essential effects on synaptic plasticity and neuronal functioning. Rapid-eye-movement (REM) sleep has been shown to promote calcium-dependent plasticity in principal neurons of the cerebral cortex, both during memory consolidation in adults and during post-natal development. This article reviews the plasticity mechanisms triggered by REM sleep, with a focus on the emerging role of kinases and immediate-early genes for the progressive corticalization of hippocampus-dependent memories. The body of evidence suggests that memory corticalization triggered by REM sleep is a systemic phenomenon with cellular and molecular causes.
Collapse
Affiliation(s)
- Daniel G Almeida-Filho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil.
| |
Collapse
|
45
|
Kawaguchi Y. Pyramidal Cell Subtypes and Their Synaptic Connections in Layer 5 of Rat Frontal Cortex. Cereb Cortex 2018; 27:5755-5771. [PMID: 29028949 DOI: 10.1093/cercor/bhx252] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
The frontal cortical areas make a coordinated response that generates appropriate behavior commands, using individual local circuits with corticostriatal and corticocortical connections in longer time scales than sensory areas. In secondary motor cortex (M2), situated between the prefrontal and primary motor areas, major subtypes of layer 5 corticostriatal cells are crossed-corticostriatal (CCS) cells innervating both sides of striatum, and corticopontine (CPn) cells projecting to the ipsilateral striatum and pontine nuclei. CCS cells innervate CPn cells unidirectionally: the former are therefore hierarchically higher than the latter among L5 corticostriatal cells. CCS cells project directly to both frontal and nonfrontal areas. On the other hand, CPn cells innervate the thalamus and layer 1a of frontal areas, where thalamic fibers relaying basal ganglia outputs are distributed. Thus, CCS cells can make activities of frontal areas in concert with those of nonfrontal area using corticocortical loops, whereas CPn cells are more involved in closed corticostriatal loops than CCS cells. Since reciprocal connections between CPn cells with facilitatory synapses may be related to persistent activity, CPn cells play a key role of longer time constant processes in corticostriatal as well as in corticocortical loops between the frontal areas.
Collapse
Affiliation(s)
- Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
46
|
Bueno-Junior LS, Leite JP. Input Convergence, Synaptic Plasticity and Functional Coupling Across Hippocampal-Prefrontal-Thalamic Circuits. Front Neural Circuits 2018; 12:40. [PMID: 29875637 PMCID: PMC5975431 DOI: 10.3389/fncir.2018.00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Executive functions and working memory are long known to involve the prefrontal cortex (PFC), and two PFC-projecting areas: midline/paramidline thalamus (MLT) and cornus ammonis 1 (CA1)/subiculum of the hippocampal formation (HF). An increasing number of rodent electrophysiology studies are examining these substrates together, thus providing circuit-level perspectives on input convergence, synaptic plasticity and functional coupling, as well as insights into cognition mechanisms and brain disorders. Our review article puts this literature into a method-oriented narrative. As revisited throughout the text, limbic thalamic and hippocampal afferents to the PFC gate one another’s inputs, which in turn are modulated by PFC interneurons and ascending monoaminergic projections. In addition, long-term synaptic plasticity, paired-pulse facilitation (PPF), and event-related potentials (ERP) dynamically vary across PFC-related circuits during learning paradigms and drug effects. Finally, thalamic-prefrontal loops, which have been shown to amplify both cognitive processes and limbic seizures, are also being implicated as relays in the prefrontal-hippocampal feedback, contributing to spatial navigation and decision making. Based on these issues, we conclude the review with a critical synthesis and some research directions.
Collapse
Affiliation(s)
- Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
47
|
Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018; 222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Knowledge regarding the cellular mechanisms of sleep regulation is accumulating rapidly. In addition to neurones, also non-neuronal brain cells (astrocytes and microglia) are emerging as potential players. New techniques, particularly optogenetics and designed receptors activated by artificial ligands (DREADD), have provided also sleep research with important additional tools to study the effect of either silencing or activating specific neuronal groups/neuronal networks by opening or shutting ion channels on cells. The advantages of these strategies are the possibility to genetically target specific cell populations and the possibility to either activate or inhibit them with inducing light signal into the brain. Studies probing circuits of NREM and REM sleep regulation, as well as their role in memory consolidation, have been conducted recently. In addition, fundamentally new thoughts and potential mechanisms have been introduced to the field. The role of non-neuronal tissues in the regulation of many brain functions has become evident. These non-neuronal cells, particularly astrocytes, integrate large number of neurones, and it has been suggested that one of their functions is to integrate the (neural) activity in larger brain areas-a feature that is one of the prominent features of also the state of sleep.
Collapse
Affiliation(s)
- H.-K. Wigren
- Department of Physiology; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
48
|
Blum ID, Bell B, Wu MN. Time for Bed: Genetic Mechanisms Mediating the Circadian Regulation of Sleep. Trends Genet 2018; 34:379-388. [PMID: 29395381 DOI: 10.1016/j.tig.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Sleep is an evolutionarily conserved behavior that is increasingly recognized as important for human health. While its precise function remains controversial, sleep has been suggested to play a key role in a variety of biological phenomena ranging from synaptic plasticity to metabolic clearance. Although it is clear that sleep is regulated by the circadian clock, how this occurs remains enigmatic. Here we examine the genetic mechanisms by which the circadian clock regulates sleep, drawing on recent work in fruit flies, zebrafish, mice, and humans. These studies reveal that central and local clocks utilize diverse mechanisms to regulate different aspects of sleep, and a better understanding of this multilayered regulation may lead to a better understanding of the functions of sleep.
Collapse
Affiliation(s)
- Ian D Blum
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benjamin Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
49
|
DiNuzzo M, Nedergaard M. Brain energetics during the sleep-wake cycle. Curr Opin Neurobiol 2017; 47:65-72. [PMID: 29024871 PMCID: PMC5732842 DOI: 10.1016/j.conb.2017.09.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 12/11/2022]
Abstract
Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage of interstitial fluid. These events are accompanied by changes in neuronal discharge patterns, astrocyte-neuron interactions, synaptic transactions and underlying metabolic features. Internally-generated neuronal activity and network homeostasis are proposed to account for the high sleep-related energy demand.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640, USA
| |
Collapse
|
50
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|