1
|
Afridi R, Kim JH, Bhusal A, Lee WH, Suk K. Lipocalin-2 as a mediator of neuroimmune communication. J Leukoc Biol 2024; 116:357-368. [PMID: 38149462 DOI: 10.1093/jleuko/qiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Lipocalin-2, a neutrophil gelatinase-associated lipocalin, is a 25-kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and nonimmune cells throughout the body. Importantly, the surge in lipocalin-2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of lipocalin-2, which plays a definitive role in determining their functional phenotypes. In different central nervous system pathologies, an increased expression of glial lipocalin-2 has been linked to neurotoxicity. Lipocalin-2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated lipocalin-2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of lipocalin-2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores lipocalin-2 as a mediator of neuroimmune crosstalk in various central nervous system pathologies and highlights the role of lipocalin-2 in carrying inflammatory signals along the neuroimmune axis.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Mandal A, Moneme C, Tewari BP, Goldstein AM, Sontheimer H, Cheng L, Moore SR, Levin D. A novel method for culturing enteric neurons generates neurospheres containing functional myenteric neuronal subtypes. J Neurosci Methods 2024; 407:110144. [PMID: 38670535 PMCID: PMC11144385 DOI: 10.1016/j.jneumeth.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/04/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics. NEW METHOD Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation. RESULTS Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells. COMPARISON WITH EXISTING METHODS This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials. CONCLUSION Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.
Collapse
Affiliation(s)
- Arabinda Mandal
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Chioma Moneme
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Bhanu P Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Lily Cheng
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Sean R Moore
- Department of Pediatrics, Division of Pediatric Gastroenterology Hepatology, and Nutrition, University of Virginia, Charlottesville, VA, USA.
| | - Daniel Levin
- Department of Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
4
|
Banik A, Eum J, Hwang BJ, Kee Y. Differential Neuroprotective Effects of N-Acetylcysteine against Dithianon Toxicity in Glutamatergic, Dopaminergic, and GABAergic Neurons: Assessment Using Zebrafish. Antioxidants (Basel) 2023; 12:1920. [PMID: 38001773 PMCID: PMC10668936 DOI: 10.3390/antiox12111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the widespread agricultural use of dithianon as an antifungal agent, its neurotoxic implications for humans and wildlife have not been comprehensively explored. Using zebrafish embryonic development as our model, we found that dithianon treatment induced behavioral alterations in zebrafish larvae that appeared normal. Detailed quantitative analyses showed that dithianon at ≥0.0001 µgmL-1 induced cytoplasmic and mitochondrial antioxidant responses sequentially, followed by the disruption of mitochondrial and cellular homeostasis. Additionally, dithianon at 0.01 and 0.1 µgmL-1 downregulated the expressions of glutamatergic (slc17a6b), GABAergic (gad1b), and dopaminergic (th) neuronal markers. Contrarily, dithianon upregulated the expression of the oligodendrocyte marker (olig2) at concentrations of 0.001 and 0.01 µgmL-1, concurrently suppressing the gene expression of the glucose transporter slc2a1a/glut1. Particularly, dithianon-induced increase in reactive oxygen species (ROS) production was reduced by both N-acetylcysteine (NAC) and betaine; however, only NAC prevented dithianon-induced mortality of zebrafish embryos. Moreover, NAC specifically prevented dithianon-induced alterations in glutamatergic and dopaminergic neurons while leaving GABAergic neurons unaffected, demonstrating that the major neurotransmission systems in the central nervous system differentially respond to the protective effects. Our findings contribute to a better understanding of the neurotoxic potential of dithianon and to developing preventive strategies.
Collapse
Affiliation(s)
- Amit Banik
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (A.B.); (J.E.)
| | - Juneyong Eum
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (A.B.); (J.E.)
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
5
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
6
|
Li AJ, Wang Q, Rogers RC, Herman G, Ritter RC, Ritter S. Chemogenetic activation of ventral medullary astrocytes enhances feeding and corticosterone release in response to mild glucoprivation. Am J Physiol Regul Integr Comp Physiol 2023; 325:R229-R237. [PMID: 37424401 PMCID: PMC10396275 DOI: 10.1152/ajpregu.00079.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
To investigate the role of glial cells in the regulation of glucoprivic responses in rats, a chemogenetic approach was used to activate astrocytes neighboring catecholamine (CA) neurons in the ventromedial medulla (VLM) where A1 and C1 CA cell groups overlap (A1/C1). Previous results indicate that activation of CA neurons in this region is necessary and sufficient for feeding and corticosterone release in response to glucoprivation. However, it is not known whether astrocyte neighbors of CA neurons contribute to glucoregulatory responses. Hence, we made nanoinjections of AAV5-GFAP-hM3D(Gq)-mCherry to selectively transfect astrocytes in the A1/C1 region with the excitatory designer receptor exclusively activated by designer drugs (DREADDs), hM3D(Gq). After allowing time for DREADD expression, we evaluated the rats for increased food intake and corticosterone release in response to low systemic doses of the antiglycolytic agent, 2-deoxy-d-glucose (2DG), alone and in combination with the hM3D(Gq) activator clozapine-n-oxide (CNO). We found that DREADD-transfected rats ate significantly more food when 2DG and CNO were coadministered than when either 2DG or CNO was injected alone. We also found that CNO significantly enhanced 2DG-induced FOS expression in the A1/C1 CA neurons, and that corticosterone release also was enhanced when CNO and 2DG were administered together. Importantly, CNO-induced activation of astrocytes in the absence of 2DG did not trigger food intake or corticosterone release. Our results indicate that during glucoprivation, activation of VLM astrocytes cells markedly increases the sensitivity or responsiveness of neighboring A1/C1 CA neurons to glucose deficit, suggesting a potentially important role for VLM astrocytes in glucoregulation.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States
| | - Richard C Rogers
- Autonomic Neuroscience Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Gerlinda Herman
- Autonomic Neuroscience Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Robert C Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States
| |
Collapse
|
7
|
Yao D, Zhang R, Xie M, Ding F, Wang M, Wang W. Updated Understanding of the Glial-Vascular Unit in Central Nervous System Disorders. Neurosci Bull 2023; 39:503-518. [PMID: 36374471 PMCID: PMC10043098 DOI: 10.1007/s12264-022-00977-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The concept of the glial-vascular unit (GVU) was raised recently to emphasize the close associations between brain cells and cerebral vessels, and their coordinated reactions to diverse neurological insults from a "glio-centric" view. GVU is a multicellular structure composed of glial cells, perivascular cells, and perivascular space. Each component is closely linked, collectively forming the GVU. The central roles of glial and perivascular cells and their multi-level interconnections in the GVU under normal conditions and in central nervous system (CNS) disorders have not been elucidated in detail. Here, we comprehensively review the intensive interactions between glial cells and perivascular cells in the niche of perivascular space, which take part in the modulation of cerebral blood flow and angiogenesis, formation of the blood-brain barrier, and clearance of neurotoxic wastes. Next, we discuss dysfunctions of the GVU in various neurological diseases, including ischemic stroke, spinal cord injury, Alzheimer's disease, and major depression disorder. In addition, we highlight the possible therapies targeting the GVU, which may have potential clinical applications.
Collapse
Affiliation(s)
- Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruoying Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Arcuschin CD, Pinkasz M, Schor IE. Mechanisms of robustness in gene regulatory networks involved in neural development. Front Mol Neurosci 2023; 16:1114015. [PMID: 36814969 PMCID: PMC9940843 DOI: 10.3389/fnmol.2023.1114015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
The functions of living organisms are affected by different kinds of perturbation, both internal and external, which in many cases have functional effects and phenotypic impact. The effects of these perturbations become particularly relevant for multicellular organisms with complex body patterns and cell type heterogeneity, where transcriptional programs controlled by gene regulatory networks determine, for example, the cell fate during embryonic development. Therefore, an essential aspect of development in these organisms is the ability to maintain the functionality of their genetic developmental programs even in the presence of genetic variation, changing environmental conditions and biochemical noise, a property commonly termed robustness. We discuss the implication of different molecular mechanisms of robustness involved in neurodevelopment, which is characterized by the interplay of many developmental programs at a molecular, cellular and systemic level. We specifically focus on processes affecting the function of gene regulatory networks, encompassing transcriptional regulatory elements and post-transcriptional processes such as miRNA-based regulation, but also higher order regulatory organization, such as gene network topology. We also present cases where impairment of robustness mechanisms can be associated with neurodevelopmental disorders, as well as reasons why understanding these mechanisms should represent an important part of the study of gene regulatory networks driving neural development.
Collapse
Affiliation(s)
- Camila D. Arcuschin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Pinkasz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio E. Schor
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Elias AE, Nuñez TA, Kun B, Kreiling JA. primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data. J Genet Genomics 2023; 50:108-121. [PMID: 36371075 PMCID: PMC9974815 DOI: 10.1016/j.jgg.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Single-nucleus RNA-sequencing technology has revolutionized understanding of nuanced changes in gene expression between cell types within tissues. Unfortunately, our understanding of regulatory RNAs, such as microRNAs (miRNAs), is limited through both single-cell and single-nucleus techniques due to the short length of miRNAs in the cytoplasm and the incomplete reference of longer primary miRNA (pri-miRNA) transcripts in the nucleus. We build a custom reference to align and count pri-miRNA sequences in single-nucleus data. Using young and aged subventricular zone (SVZ) nuclei, we show differential expression of pri-miRNAs targeting genes involved in neural stem cells (NSC) differentiation in the aged SVZ. Furthermore, using wild-type and 5XFAD mouse model cortex nuclei, to validate the use of primiReference, we find cell-type-specific expression of pri-miRNAs known to be involved in Alzheimer's disease (AD). pri-miRNAs likely contribute to NSC dysregulation with age and AD pathology. primiReference is paramount in capturing a global profile of gene expression and regulation in single-nucleus data and can provide key insights into cell-type-specific expression of pri-miRNAs, paving the way for future studies of regulation and pathway dysregulation. By looking at pri-miRNA abundance and transcriptional differences, regulation of gene expression by miRNAs in disease and aging can be further explored.
Collapse
Affiliation(s)
- Amy E Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Thomas A Nuñez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Bianca Kun
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
10
|
Bigbee JW. Cells of the Central Nervous System: An Overview of Their Structure and Function. ADVANCES IN NEUROBIOLOGY 2023; 29:41-64. [PMID: 36255671 DOI: 10.1007/978-3-031-12390-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The central nervous system is the last major organ system in the vertebrate body to yield its cellular structure, due to the complexity of its cells and their interactions. The fundamental unit of the nervous system is the neuron, which forms complex circuits that receive and integrate information and generate adaptive responses. Each neuron is composed of an input domain consisting of multiple dendrites along with the cell body, which is also responsible for the majority of macromolecule synthesis for the cell. The output domain is the axon which is a singular extension from the cell body that propagates the action potential to the synapse, where signals pass from one neuron to another. Facilitating these functions are cohorts of supporting cells consisting of astrocytes, oligodendrocytes and microglia along with NG2 cells and ependymal cells. Astrocytes have a dazzling array of functions including physical support, maintenance of homeostasis, development and integration of synaptic activity. Oligodendrocytes form the myelin sheath which surrounds axons and enables rapid conduction of the nerve impulse. Microglia are the resident immune cells, providing immune surveillance and remodeling of neuronal circuits during development and trauma. All these cells function in concert with each other, producing the remarkably diverse functions of the nervous system.
Collapse
Affiliation(s)
- John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Kugler E, Breitenbach EM, MacDonald R. Glia Cell Morphology Analysis Using the Fiji GliaMorph Toolkit. Curr Protoc 2023; 3:e654. [PMID: 36688682 PMCID: PMC10108223 DOI: 10.1002/cpz1.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glial cells are the support cells of the nervous system. Glial cells typically have elaborate morphologies that facilitate close contacts with neighboring neurons, synapses, and the vasculature. In the retina, Müller glia (MG) are the principal glial cell type that supports neuronal function by providing a myriad of supportive functions via intricate cell morphologies and precise contacts. Thus, complex glial morphology is critical for glial function, but remains challenging to resolve at a sub-cellular level or reproducibly quantify in complex tissues. To address this issue, we developed GliaMorph as a Fiji-based macro toolkit that allows 3D glial cell morphology analysis in the developing and mature retina. As GliaMorph is implemented in a modular fashion, here we present guides to (a) setup of GliaMorph, (b) data understanding in 3D, including z-axis intensity decay and signal-to-noise ratio, (c) pre-processing data to enhance image quality, (d) performing and examining image segmentation, and (e) 3D quantification of MG features, including apicobasal texture analysis. To allow easier application, GliaMorph tools are supported with graphical user interfaces where appropriate, and example data are publicly available to facilitate adoption. Further, GliaMorph can be modified to meet users' morphological analysis needs for other glial or neuronal shapes. Finally, this article provides users with an in-depth understanding of data requirements and the workflow of GliaMorph. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Download and installation of GliaMorph components including example data Basic Protocol 2: Understanding data properties and quality 3D-essential for subsequent analysis and capturing data property issues early Basic Protocol 3: Pre-processing AiryScan microscopy data for analysis Alternate Protocol: Pre-processing confocal microscopy data for analysis Basic Protocol 4: Segmentation of glial cells Basic Protocol 5: 3D quantification of glial cell morphology.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Institute of Ophthalmology, University College London, Greater London, UK
| | | | - Ryan MacDonald
- Institute of Ophthalmology, University College London, Greater London, UK
| |
Collapse
|
12
|
Xu J, Li P, Lu F, Chen Y, Guo Q, Yang Y. Domino reaction of neurovascular unit in neuropathic pain after spinal cord injury. Exp Neurol 2023; 359:114273. [PMID: 36375510 DOI: 10.1016/j.expneurol.2022.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The mechanism of neuropathic pain after spinal cord injury is complex, and the communication between neurons, glia, and blood vessels in neurovascular units significantly affects the occurrence and development of neuropathic pain. After spinal cord injury, a domino chain reaction occurs in the neuron-glia-vessel, which affects the permeability of the blood-spinal cord barrier and jointly promotes the development of neuroinflammation. This article discusses the signal transduction between neuro-glial-endothelial networks from a multidimensional point of view and reviews its role in neuropathic pain after spinal cord injury.
Collapse
Affiliation(s)
- Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Obstetrics, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Feng Lu
- Department of Anesthesiology, First Affiliated Hospital of Gannan medical university, Ganzhou 341000, China
| | - Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
13
|
Ramos SI, Mussa ZM, Falk EN, Pai B, Giotti B, Allette K, Cai P, Dekio F, Sebra R, Beaumont KG, Tsankov AM, Tsankova NM. An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics. Nat Commun 2022; 13:7671. [PMID: 36509746 PMCID: PMC9744747 DOI: 10.1038/s41467-022-34975-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Collapse
Affiliation(s)
- Susana I Ramos
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zarmeen M Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elisa N Falk
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Balagopal Pai
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nadejda M Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Wischhof L, Lee H, Tutas J, Overkott C, Tedt E, Stork M, Peitz M, Brüstle O, Ulas T, Händler K, Schultze JL, Ehninger D, Nicotera P, Salomoni P, Bano D. BCL7A-containing SWI/SNF/BAF complexes modulate mitochondrial bioenergetics during neural progenitor differentiation. EMBO J 2022; 41:e110595. [PMID: 36305367 PMCID: PMC9713712 DOI: 10.15252/embj.2022110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Hang‐Mao Lee
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Janine Tutas
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Eileen Tedt
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn Medical Faculty and University Hospital BonnBonnGermany
- Cell Programming Core FacilityUniversity of Bonn Medical FacultyBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn Medical Faculty and University Hospital BonnBonnGermany
| | - Thomas Ulas
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
- Department for Genomics and Immunoregulation, LIMES InstituteUniversity of BonnBonnGermany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
15
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci 2022; 12:brainsci12060687. [PMID: 35741573 PMCID: PMC9221432 DOI: 10.3390/brainsci12060687] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Collapse
|
18
|
Astorkia M, Lachman HM, Zheng D. Characterization of cell-cell communication in autistic brains with single-cell transcriptomes. J Neurodev Disord 2022; 14:29. [PMID: 35501678 PMCID: PMC9059394 DOI: 10.1186/s11689-022-09441-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Autism spectrum disorder is a neurodevelopmental disorder, affecting 1-2% of children. Studies have revealed genetic and cellular abnormalities in the brains of affected individuals, leading to both regional and distal cell communication deficits. METHODS Recent application of single-cell technologies, especially single-cell transcriptomics, has significantly expanded our understanding of brain cell heterogeneity and further demonstrated that multiple cell types and brain layers or regions are perturbed in autism. The underlying high-dimensional single-cell data provides opportunities for multilevel computational analysis that collectively can better deconvolute the molecular and cellular events altered in autism. Here, we apply advanced computation and pattern recognition approaches on single-cell RNA-seq data to infer and compare inter-cell-type signaling communications in autism brains and controls. RESULTS Our results indicate that at a global level, there are cell-cell communication differences in autism in comparison with controls, largely involving neurons as both signaling senders and receivers, but glia also contribute to the communication disruption. Although the magnitude of changes is moderate, we find that excitatory and inhibitor neurons are involved in multiple intercellular signaling that exhibits increased strengths in autism, such as NRXN and CNTN signaling. Not all genes in the intercellular signaling pathways show differential expression, but genes in the affected pathways are enriched for axon guidance, synapse organization, neuron migration, and other critical cellular functions. Furthermore, those genes are highly connected to and enriched for genes previously associated with autism risks. CONCLUSIONS Overall, our proof-of-principle computational study using single-cell data uncovers key intercellular signaling pathways that are potentially disrupted in the autism brains, suggesting that more studies examining cross-cell type effects can be valuable for understanding autism pathogenesis.
Collapse
Affiliation(s)
- Maider Astorkia
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Herbert M Lachman
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
19
|
Casamassa A, Cuomo O, Pannaccione A, Cepparulo P, Laudati G, Valsecchi V, Annunziato L, Pignataro G. IN BRAIN POST-ISCHEMIC PLASTICITY, Na+/Ca2+ EXCHANGER 1 AND Ascl1 INTERVENE IN MICROGLIA-DEPENDENT CONVERSION OF ASTROCYTES INTO NEURONAL LINEAGE. Cell Calcium 2022; 105:102608. [DOI: 10.1016/j.ceca.2022.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/28/2022] [Indexed: 01/13/2023]
|
20
|
Abstract
ABSTRACT The human brain dose from radon-222 (222Rn) exposure is calculated here using 222Rn tissue solubility data. A fraction of 222Rn inhaled dissolves in blood and cellular fluids and circulates to brain and all organs. Radon-222 has a relatively high solubility in blood and body fluids based on human inhalation experiments. The brain dose uses calculated concentrations of 222Rn in blood and cellular fluids from exhaled breath measurements following human exposure in a 222Rn chamber. The annual brain dose from continuous inhalation of a concentration of 100 Bq m-3 is about 450 times less than the dose to bronchial epithelium from inhalation of the same 222Rn concentration. Based on the 222Rn dosimetry here, it is highly unlikely that brain cancer is related to even high 222Rn exposures. Any functional or neurodegenerative issues from exposure to very small doses of 222Rn alpha particles are, at present, unknown.
Collapse
Affiliation(s)
- Naomi H Harley
- Naomi H. Harley, New York University School of Medicine, Department of Environmental Medicine, Marine View Plaza, Apt. 24E, Hoboken, NJ 07030
| | - Edith S Robbins
- Edith S. Robbins, New York University School of Medicine, Department of Cell Biology, (retired)
| |
Collapse
|
21
|
de Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/progenitor cell division. Curr Biol 2022; 32:2174-2188.e3. [DOI: 10.1016/j.cub.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023]
|
22
|
Sinegubov A, Andreeva D, Burzak N, Vasyutina M, Murashova L, Dyachuk V. Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Front Mol Neurosci 2022; 15:737949. [PMID: 35401107 PMCID: PMC8990813 DOI: 10.3389/fnmol.2022.737949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the heterogeneity of peripheral glial cell populations, from the emergence of Schwann cells (SCs) in early development, to their involvement, and that of their derivatives in adult glial populations. We focus on the origin of the first glial precursors from neural crest cells (NCCs), and their ability to differentiate into several cell types during development. We also discuss the heterogeneity of embryonic glia in light of the latest data from genetic tracing and transcriptome analysis. Special attention has been paid to the biology of glial populations in adult animals, by highlighting common features of different glial cell types and molecular differences that modulate their functions. Finally, we consider the communication of glial cells with axons of neurons in normal and pathological conditions. In conclusion, the present review details how information available on glial cell types and their functions in normal and pathological conditions may be utilized in the development of novel therapeutic strategies for the treatment of patients with neurodiseases.
Collapse
|
23
|
Beckman D, Seelke AMH, Bennett J, Dougherty P, Van Rompay KKA, Keesler R, Pesavento PA, Coffey LLA, Morrison JH, Bliss-Moreau E. Neuroanatomical abnormalities in a nonhuman primate model of congenital Zika virus infection. eLife 2022; 11:e64734. [PMID: 35261339 PMCID: PMC8906804 DOI: 10.7554/elife.64734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluated neuropathological consequences of fetal ZIKV exposure in rhesus monkeys, a translatable animal model for human neural development, by carrying out quantitative neuroanatomical analyses of the nearly full-term brains of fetuses infected with ZIKV and procedure-matched controls. For each animal, a complete cerebral hemisphere was evaluated using immunohistochemical (IHC) and neuroanatomical techniques to detect virus, identify affected cell types, and evaluate gross neuroanatomical abnormalities. IHC staining revealed the presence of ZIKV in the frontal lobe, which contained activated microglia and showed increased apoptosis of immature neurons. ZIKV-infected animals exhibited macrostructural changes within the visual pathway. Regional differences tracked with the developmental timing of the brain, suggesting inflammatory processes related to viral infiltration swept through the cortex, followed by a wave of cell death resulting in morphological changes. These findings may help explain why some infants born with normal sized heads during the ZIKV epidemic manifest developmental challenges as they age.
Collapse
Affiliation(s)
- Danielle Beckman
- California National Primate Research Center, UC DavisDavisUnited States
| | - Adele MH Seelke
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Jeffrey Bennett
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Paige Dougherty
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Koen KA Van Rompay
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - Rebekah Keesler
- California National Primate Research Center, UC DavisDavisUnited States
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - Lark LA Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - John H Morrison
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Neurology, School of Medicine, UC DavisDavisUnited States
| | - Eliza Bliss-Moreau
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| |
Collapse
|
24
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
- *Correspondence: Ellen Fritsche,
| |
Collapse
|
25
|
Zhang J, Mai CL, Xiong Y, Lin ZJ, Jie YT, Mai JZ, Liu C, Xie MX, Zhou X, Liu XG. The Causal Role of Magnesium Deficiency in the Neuroinflammation, Pain Hypersensitivity and Memory/Emotional Deficits in Ovariectomized and Aged Female Mice. J Inflamm Res 2021; 14:6633-6656. [PMID: 34908863 PMCID: PMC8665878 DOI: 10.2147/jir.s330894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Postmenopausal women often suffer from chronic pain, memory decline and mood depression. The mechanisms underlying the neuronal disorders are not fully understood, and effective treatment is still lacking. Methods Oral administration of magnesium-L-threonate was tested to treat the neuronal disorders in ovariectomized and aged female mice. The pain hypersensitivity, memory function and depression-like behaviors were measured with a set of behavioral tests. Western blots, immunochemistry and in situ hybridization were used to assess molecular changes. Results Chronic oral administration of magnesium-L-threonate substantially prevented or reversed the chronic pain and memory/emotional deficits in both ovariectomized and aged female mice. We found that phospho-p65, an active form of nuclear factor-kappaB, tumor necrosis factor-alpha and interleukin-1 beta were significantly upregulated in the neurons of dorsal root ganglion, spinal dorsal horn and hippocampus in ovariectomized and aged mice. The microglia and astrocytes were activated in spinal dorsal horn and hippocampus. Calcitonin gene–related peptide, a marker for peptidergic C-fibers, was upregulated in dorsal horn, which is associated with potentiation of C-fiber-mediated synaptic transmission in the model mice. In parallel with neuroinflammation and synaptic potentiation, free Mg2+ levels in plasma, cerebrospinal fluid and in dorsal root ganglion neurons were significantly reduced. Oral magnesium-L-threonate normalized the neuroinflammation, synaptic potentiation and Mg2+ deficiency, but did not affect the estrogen decline in ovariectomized and aged mice. Furthermore, in cultured dorsal root ganglion neurons, estrogen at physiological concentration elevated intracellular Mg2+, and downregulated phospho-p65, tumor necrosis factor-alpha and interleukin-1 beta exclusively in the presence of extracellular Mg2+. Conclusion Estrogen decline in menopause may cause neuroinflammation by reducing intracellular Mg2+ in neurons, leading to chronic pain, memory/emotional deficits. Supplement Mg2+ by oral magnesium-L-threonate may be a novel approach for treating menopause-related neuronal disorders.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Cardiovascular Institute, Guangzhou, 510080, People's Republic of China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ying Xiong
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ying-Tao Jie
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jie-Zhen Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Chong Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Xin Zhou
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Cardiovascular Institute, Guangzhou, 510080, People's Republic of China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Anesthesiology, Guangdong Second Provincial Central Hospital, Guangzhou, 510317, People's Republic of China.,Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
26
|
Astrocytes in Neuropsychiatric Disorders: A Review of Postmortem Evidence. ADVANCES IN NEUROBIOLOGY 2021; 26:153-172. [PMID: 34888835 DOI: 10.1007/978-3-030-77375-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cell types in the central nervous system (CNS) include microglia, oligodendrocytes and the most diverse type, astrocytes. Clinical and experimental evidence suggest critical roles for astrocytes in the pathogenesis of CNS disease. Here, we summarize the extensive morphological heterogeneity and physiological properties of different astrocyte subtypes. We review postmortem studies, discussing astrocyte-related changes found in the brain in subjects diagnosed with the neuropsychiatric disorders schizophrenia, major depressive disorder and bipolar disorder. Finally, we discuss the potential effects of psychotropic medication on these findings. In summary, postmortem studies highlight that the morphology of astrocytes and the expression of functionally important astrocyte markers are altered in the brain in neuropsychiatric disorders and may play a role in the pathophysiology of these serious mental illnesses.
Collapse
|
27
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Astrocyte Gliotransmission in the Regulation of Systemic Metabolism. Metabolites 2021; 11:metabo11110732. [PMID: 34822390 PMCID: PMC8623475 DOI: 10.3390/metabo11110732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Normal brain function highly relies on the appropriate functioning of astrocytes. These glial cells are strategically situated between blood vessels and neurons, provide significant substrate support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules. Astrocytes respond to many metabolic conditions and regulate a wide array of physiological processes, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits counterregulatory mechanisms in order to couple whole-body energy availability with brain function. Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.
Collapse
|
29
|
Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol 2021; 9:732820. [PMID: 34646826 PMCID: PMC8502923 DOI: 10.3389/fcell.2021.732820] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the “neuro” and “vascular” components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - John Greenwood
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
30
|
Zhang X, Alnafisah RS, Hamoud ARA, Shukla R, Wen Z, McCullumsmith RE, O'Donovan SM. Role of Astrocytes in Major Neuropsychiatric Disorders. Neurochem Res 2021; 46:2715-2730. [PMID: 33411227 DOI: 10.1007/s11064-020-03212-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Astrocytes are the primary homeostatic cells of the central nervous system, essential for normal neuronal development and function, metabolism and response to injury and inflammation. Here, we review postmortem studies examining changes in astrocytes in subjects diagnosed with the neuropsychiatric disorders schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BPD). We discuss the astrocyte-related changes described in the brain in these disorders and the potential effects of psychotropic medication on these findings. Finally, we describe emerging tools that can be used to study the role of astrocytes in neuropsychiatric illness.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Abdul-Rizaq A Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
31
|
Domínguez-Rivas E, Ávila-Muñoz E, Schwarzacher SW, Zepeda A. Adult hippocampal neurogenesis in the context of lipopolysaccharide-induced neuroinflammation: A molecular, cellular and behavioral review. Brain Behav Immun 2021; 97:286-302. [PMID: 34174334 DOI: 10.1016/j.bbi.2021.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The continuous generation of new neurons occurs in at least two well-defined niches in the adult rodent brain. One of these areas is the subgranular zone of the dentate gyrus (DG) in the hippocampus. While the DG is associated with contextual and spatial learning and memory, hippocampal neurogenesis is necessary for pattern separation. Hippocampal neurogenesis begins with the activation of neural stem cells and culminates with the maturation and functional integration of a portion of the newly generated glutamatergic neurons into the hippocampal circuits. The neurogenic process is continuously modulated by intrinsic factors, one of which is neuroinflammation. The administration of lipopolysaccharide (LPS) has been widely used as a model of neuroinflammation and has yielded a body of evidence for unveiling the detrimental impact of inflammation upon the neurogenic process. This work aims to provide a comprehensive overview of the current knowledge on the effects of the systemic and central administration of LPS upon the different stages of neurogenesis and discuss their effects at the molecular, cellular, and behavioral levels.
Collapse
Affiliation(s)
- Eduardo Domínguez-Rivas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evangelina Ávila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Role of JNK and p53 in Implementation of Functions of Various Types of Regeneration-Competent Cells of the Nervous Tissue. Bull Exp Biol Med 2021; 171:333-337. [PMID: 34297290 DOI: 10.1007/s10517-021-05222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 10/20/2022]
Abstract
We studied the participation of JNK and p53 in the realization of the growth potential of different types of progenitors of the subventricular zone of mouse brain and secretion of neurotrophins by glial cells. The stimulating role of these signaling molecules in mitotic activity and specialization of multipotent neural stem cells was shown. It was found that JNK and p53 do not participate in the regulation of committed neuronal progenitor cells (clonogenic PSA-NCAM+ cells). A dependence of neurotrophic growth factors in individual populations of neuroglia on activity of these protein kinase and transcription factor was revealed. The role of JNK and p53 in astrocytes consists in stimulation of their secretion, and in microglial cells, on the contrary, in its inhibition. The secretory neurotrophic function of oligodendrogliocytes is not associated with JNK and p53 activity.
Collapse
|
33
|
Glia-derived temporal signals orchestrate neurogenesis in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:2020098118. [PMID: 34078666 DOI: 10.1073/pnas.2020098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non-cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/β cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/β-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.
Collapse
|
34
|
Li Y, Zhang LN, Chong L, Liu Y, Xi FY, Zhang H, Duan XL. Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Mol Med Rep 2021; 23:274. [PMID: 33576465 PMCID: PMC7893684 DOI: 10.3892/mmr.2021.11913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
During embryonic cortical development, radial glial cells (RGCs) are the major source of neurons, and these also serve as a supportive scaffold to guide neuronal migration. Similar to Vimentin, glial fibrillary acidic protein (GFAP) is one of the major intermediate filament proteins present in glial cells. Previous studies confirmed that prenatal ethanol exposure (PEE) significantly affected the levels of GFAP and increased the disassembly of radial glial fibers. GFAPδ is a variant of GFAP that is specifically expressed in RGCs; however, to the best of our knowledge, there are no reports regarding how PEE influences its expression during cortical development. In the present study, the effects of PEE on the expression and distribution of GFAPδ during early cortical development were assessed. It was found that PEE significantly decreased the expression levels of GFAP and GFAPδ. Using double immunostaining, GFAPδ was identified to be specifically expressed in apical and basal RGCs, and was co‑localized with other intermediate filament proteins, such as GFAP, Nestin and Vimentin. Additionally, PEE significantly affected the morphology of radial glial fibers and altered the behavior of RGCs. The loss of GFAPδ accelerated the transformation of RGCs into astrocytes. Using co‑immunostaining with Ki67 or phospho‑histone H3, GFAPδ+ cells were observed to be proliferative or mitotic cells, and ethanol treatment significantly decreased the proliferative or mitotic activities of GFAPδ+ RGCs. Taken together, the results suggested that PEE altered the expression patterns of GFAPδ and impaired the development of radial glial fibers and RGC behavior. The results of the present study provided evidence that GFAPδ may be a promising target to rescue the damage induced by PEE.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li-Na Zhang
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li Chong
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Yue Liu
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Feng-Yu Xi
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiang-Long Duan
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
35
|
Ochi S, Sekiya K, Abe N, Funahashi Y, Kumon H, Yoshino Y, Nishihara T, Boku S, Iga JI, Ueno SI. Neural precursor cells are decreased in the hippocampus of the delayed carbon monoxide encephalopathy rat model. Sci Rep 2021; 11:6244. [PMID: 33737717 PMCID: PMC7973557 DOI: 10.1038/s41598-021-85860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
The pathophysiology of delayed carbon monoxide (CO) encephalopathy remains unclear. In this study, the effects of CO exposure on the dentate gyrus (DG) were investigated in a Wistar rat model by histochemical and molecular methods. Model rats showed significant cognitive impairment in the passive-avoidance test beginning 7 days after CO exposure. Immunohistochemistry showed that compared to the control, the cell number of SRY (sex-determining region Y)-box 2 (SOX2)+/brain lipid binding protein (BLBP)+/glial fibrillary acidic protein (GFAP)+ cells in the DG was significantly less, but the number of SOX2+/GFAP− cells was not, reflecting a decreased number of type 1 and type 2a neural precursor cells. Compared to the control, the numbers of CD11b+ cells and neuron glial antigen 2+ cells were significantly less, but the number of SOX2−/GFAP+ cells was not. Flow cytometry showed that the percent of live microglial cells isolated from the hippocampus in this CO rat model was significantly lower than in controls. Furthermore, mRNA expression of fibroblast growth factor 2 and glial cell-derived neurotrophic factor, which are neurogenic factors, was significantly decreased in that area. We conclude that, in this rat model, there is an association between delayed cognitive impairment with dysregulated adult hippocampal neurogenesis and glial changes in delayed CO encephalopathy.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
36
|
Zyuz'kov GN, Miroshnichenko LAE, Simanina EV, Stavrova LA, Polykova TYE. Intracellular signaling molecules of nerve tissue progenitors as pharmacological targets for treatment of ethanol-induced neurodegeneration. J Basic Clin Physiol Pharmacol 2021; 33:305-315. [PMID: 33559456 DOI: 10.1515/jbcpp-2020-0317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. METHODS In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. RESULTS Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). CONCLUSIONS The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.
Collapse
Affiliation(s)
- Gleb Nikolaevich Zyuz'kov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Larisa Arkad Evna Miroshnichenko
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena Vladislavovna Simanina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Larisa Alexandrovna Stavrova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatyana Yur Evna Polykova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| |
Collapse
|
37
|
Harrison NJ, Connolly E, Gascón Gubieda A, Yang Z, Altenhein B, Losada Perez M, Moreira M, Sun J, Hidalgo A. Regenerative neurogenic response from glia requires insulin-driven neuron-glia communication. eLife 2021; 10:58756. [PMID: 33527895 PMCID: PMC7880684 DOI: 10.7554/elife.58756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding how injury to the central nervous system induces de novo neurogenesis in animals would help promote regeneration in humans. Regenerative neurogenesis could originate from glia and glial neuron-glia antigen-2 (NG2) may sense injury-induced neuronal signals, but these are unknown. Here, we used Drosophila to search for genes functionally related to the NG2 homologue kon-tiki (kon), and identified Islet Antigen-2 (Ia-2), required in neurons for insulin secretion. Both loss and over-expression of ia-2 induced neural stem cell gene expression, injury increased ia-2 expression and induced ectopic neural stem cells. Using genetic analysis and lineage tracing, we demonstrate that Ia-2 and Kon regulate Drosophila insulin-like peptide 6 (Dilp-6) to induce glial proliferation and neural stem cells from glia. Ectopic neural stem cells can divide, and limited de novo neurogenesis could be traced back to glial cells. Altogether, Ia-2 and Dilp-6 drive a neuron-glia relay that restores glia and reprogrammes glia into neural stem cells for regeneration.
Collapse
Affiliation(s)
- Neale J Harrison
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Connolly
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Gascón Gubieda
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Zidan Yang
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Maria Losada Perez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Marta Moreira
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jun Sun
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Structural Plasticity & Regeneration Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Tatomir A, Beltrand A, Nguyen V, Boodhoo D, Mekala A, Cudrici C, Badea TC, Muresanu DF, Rus V, Rus H. RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 11:608294. [PMID: 33569054 PMCID: PMC7868332 DOI: 10.3389/fimmu.2020.608294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are increasingly recognized as critical contributors to multiple sclerosis pathogenesis. We have previously shown that lack of Response Gene to Complement 32 (RGC-32) alters astrocyte morphology in the spinal cord at the peak of experimental autoimmune encephalomyelitis (EAE), suggesting a role for RGC-32 in astrocyte differentiation. In this study, we analyzed the expression and distribution of astrocytes and astrocyte progenitors by immunohistochemistry in spinal cords of wild-type (WT) and RGC-32-knockout (KO) mice with EAE and of normal adult mice. Our analysis showed that during acute EAE, WT astrocytes had a reactive morphology and increased GFAP expression, whereas RGC-32 KO astrocytes had a morphology similar to that of radial glia and an increased expression of progenitor markers such as vimentin and fatty acid binding protein 7 (FABP7). In control mice, GFAP expression and astrocyte density were also significantly higher in the WT group, whereas the number of vimentin and FABP7-positive radial glia was significantly higher in the RGC-32 KO group. In vitro studies on cultured neonatal astrocytes from WT and RGC-32 KO mice showed that RGC-32 regulates a complex array of molecular networks pertaining to signal transduction, growth factor expression and secretion, and extracellular matrix (ECM) remodeling. Among the most differentially expressed factors were insulin-like growth factor 1 (IGF1), insulin-like growth factor binding proteins (IGFBPs), and connective tissue growth factor (CTGF); their expression was downregulated in RGC-32-depleted astrocytes. The nuclear translocation of STAT3, a transcription factor critical for astrogliogenesis and driving glial scar formation, was also impaired after RGC-32 silencing. Taken together, these data suggest that RGC-32 is an important regulator of astrocyte differentiation during EAE and that in the absence of RGC-32, astrocytes are unable to fully mature and become reactive astrocytes.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fatty Acid-Binding Protein 7/metabolism
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Rats, Sprague-Dawley
- Signal Transduction
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Vimentin/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Armugam Mekala
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
39
|
Yadav A, Tandon A, Seth B, Goyal S, Singh SJ, Tiwari SK, Agarwal S, Nair S, Chaturvedi RK. Cypermethrin Impairs Hippocampal Neurogenesis and Cognitive Functions by Altering Neural Fate Decisions in the Rat Brain. Mol Neurobiol 2021; 58:263-280. [PMID: 32920670 DOI: 10.1007/s12035-020-02108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
Neurogenesis is a developmental process that involves fine-tuned coordination between self-renewal, proliferation, and differentiation of neural stem cells (NSCs) into neurons. However, early-life assault with environmental toxicants interferes with the regular function of genes, proteins, and other molecules that build brain architecture resulting in attenuated neurogenesis. Cypermethrin is a class II synthetic pyrethroid pesticide extensively used in agriculture, veterinary, and residential applications due to its low mammalian toxicity, high bio-efficacy, and enhanced stability. Despite reports on cypermethrin-mediated behavioral and biochemical alterations, till now, no study implicates whether cypermethrin exposure has any effect on neurogenesis. Therefore, the present study was undertaken to comprehend the effects of cypermethrin treatment on embryonic and adult neurogenesis. We found that cypermethrin exposure led to a considerable decrease in the BrdU/Sox-2+, BrdU/Dcx+, and BrdU/NeuN+ co-labeled cells indicating that cypermethrin treatment decreases NSC proliferation and generation of mature and functional neurons. On the contrary, the generation of BrdU/S100β+ glial cells was increased resulting in neurogliogenesis imbalance in the hippocampus. Further, cypermethrin treatment also led to an increased number of BrdU/cleaved caspase-3+ and Fluoro-Jade B+ cells suggesting an induction of apoptosis in NSCs and increased degeneration of neurons in the hippocampus. Overall, these results explicate that cypermethrin exposure not only reduces the NSC pool but also disturbs the neuron-astrocyte ratio and potentiates neurodegeneration in the hippocampus, leading to cognitive dysfunctions in rats.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashi Kant Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Saumya Nair
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Abstract
Neural stem cells (NSCs) persist into adulthood in the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and in the ventricular-subventricular zone (V-SVZ) of the lateral ventricles, where they generate new neurons and glia cells that contribute to neural plasticity. A better understanding of the developmental process that enables NSCs to persist beyond development will provide insight into factors that determine the size and properties of the adult NSC pool and thus the capacity for life-long neurogenesis in the adult mammalian brain. We review current knowledge regarding the developmental origins of adult NSCs and the developmental process by which embryonic NSCs transition into their adult form. We also discuss potential mechanisms that might regulate proper establishment of the adult NSC pool, and propose future directions of research that will be key to unraveling how NSCs transform to establish the adult NSC pool in the mammalian brain.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
41
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
42
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
43
|
Bond AM, Berg DA, Lee S, Garcia-Epelboim AS, Adusumilli VS, Ming GL, Song H. Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions. Brain Sci 2020; 10:brainsci10120909. [PMID: 33255945 PMCID: PMC7760658 DOI: 10.3390/brainsci10120909] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development. In contrast, we find that neurogenesis in the dentate gyrus begins embryonically but is a protracted process which peaks neonatally and continues at low levels postnatally. As a result, astrogenesis, which occurs during early postnatal development, overlaps with the process of neurogenesis in the dentate gyrus. During all stages, neurogenesis overwhelms astrogenesis in the dentate gyrus. In addition, we find that the timing of peak astrogenesis varies by hippocampal subregion. Together, our results show differential timing and coordination of neurogenesis and astrogenesis in developing mouse hippocampal subregions and suggest that neurogenesis and gliogenesis occur simultaneously during dentate gyrus development, challenging the conventional principle that neurogenesis and gliogenesis are temporally separated processes.
Collapse
Affiliation(s)
- Allison M. Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Daniel A. Berg
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Stephanie Lee
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Alan S. Garcia-Epelboim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Vijay S. Adusumilli
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
44
|
Li G, Hidalgo A. Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void. Int J Mol Sci 2020; 21:ijms21186653. [PMID: 32932867 PMCID: PMC7554932 DOI: 10.3390/ijms21186653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Establishing the existence and extent of neurogenesis in the adult brain throughout the animals including humans, would transform our understanding of how the brain works, and how to tackle brain damage and disease. Obtaining convincing, indisputable experimental evidence has generally been challenging. Here, we revise the state of this question in the fruit-fly Drosophila. The developmental neuroblasts that make the central nervous system and brain are eliminated, either through apoptosis or cell cycle exit, before the adult fly ecloses. Despite this, there is growing evidence that cell proliferation can take place in the adult brain. This occurs preferentially at, but not restricted to, a critical period. Adult proliferating cells can give rise to both glial cells and neurons. Neuronal activity, injury and genetic manipulation in the adult can increase the incidence of both gliogenesis and neurogenesis, and cell number. Most likely, adult glio- and neuro-genesis promote structural brain plasticity and homeostasis. However, a definitive visualisation of mitosis in the adult brain is still lacking, and the elusive adult progenitor cells are yet to be identified. Resolving these voids is important for the fundamental understanding of any brain. Given its powerful genetics, Drosophila can expedite discovery into mammalian adult neurogenesis in the healthy and diseased brain.
Collapse
|
45
|
Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy. Prog Neurobiol 2020; 196:101899. [PMID: 32858093 DOI: 10.1016/j.pneurobio.2020.101899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022]
Abstract
We previously revealed adult reactive neurogenesis in deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline model. We recently replicated the same surgery in a rodent model and aimed to elucidate the origin and fate of newly generated cells following UVN. We used specific markers of cell proliferation, glial reaction, and cell differentiation in the medial vestibular nucleus (MVN) of adult rats. UVN induced an intense cell proliferation and glial reaction with an increase of GFAP-Immunoreactive (Ir), IBA1-Ir and Olig2-Ir cells 3 days after the lesion in the deafferented MVN. Most of the newly generated cells survived after UVN and differentiated into oligodendrocytes, astrocytes, microglial cells and GABAergic neurons. Interestingly, UVN induced a significant increase in a population of cells colocalizing SOX2 and GFAP 3 days after lesion in the deafferented MVN indicating the probable presence of multipotent cells in the vestibular nuclei. The concomitant increase in BrdU- and SOX2-Ir cells with the presence of SOX2 and GFAP colocalization 3 days after UVN in the deafferented MVN may support local mitotic activity of endemic quiescent neural stem cells in the parenchyma of vestibular nuclei.
Collapse
|
46
|
Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes (Basel) 2020; 11:genes11070804. [PMID: 32708801 PMCID: PMC7397164 DOI: 10.3390/genes11070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.
Collapse
|
47
|
Goodman T, Nayar SG, Clare S, Mikolajczak M, Rice R, Mansour S, Bellusci S, Hajihosseini MK. Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus. Development 2020; 147:147/13/dev180950. [PMID: 32661019 PMCID: PMC7375484 DOI: 10.1242/dev.180950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
New neurons are generated in the postnatal rodent hypothalamus, with a subset of tanycytes in the third ventricular (3V) wall serving as neural stem/progenitor cells. However, the precise stem cell niche organization, the intermediate steps and the endogenous regulators of postnatal hypothalamic neurogenesis remain elusive. Quantitative lineage-tracing in vivo revealed that conditional deletion of fibroblast growth factor 10 (Fgf10) from Fgf10-expressing β-tanycytes at postnatal days (P)4-5 results in the generation of significantly more parenchymal cells by P28, composed mostly of ventromedial and dorsomedial neurons and some glial cells, which persist into adulthood. A closer scrutiny in vivo and ex vivo revealed that the 3V wall is not static and is amenable to cell movements. Furthermore, normally β-tanycytes give rise to parenchymal cells via an intermediate population of α-tanycytes with transient amplifying cell characteristics. Loss of Fgf10 temporarily attenuates the amplification of β-tanycytes but also appears to delay the exit of their α-tanycyte descendants from the germinal 3V wall. Our findings suggest that transience of cells through the α-tanycyte domain is a key feature, and Fgf10 is a negative regulator of postnatal hypothalamic neurogenesis. Summary: Generation of new hypothalamic neurons after birth is a multistep process involving cell division and cell movements that are controlled by Fgf10.
Collapse
Affiliation(s)
- Timothy Goodman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stuart G Nayar
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Shaun Clare
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Marta Mikolajczak
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Ritva Rice
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Suzanne Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Saverio Bellusci
- Pediatrics, Saban Research Institute of Children's Hospital Los Angeles, University of California, Los Angeles, CA 90027, USA.,Excellence Cluster Cardio Pulmonary System, University Justus Liebig, 35392 Giessen, Germany
| | | |
Collapse
|
48
|
Tighilet B, Rastoldo G, Chabbert C. [The adult brain produces new neurons to restore balance after vestibular loss]. Med Sci (Paris) 2020; 36:581-591. [PMID: 32614308 DOI: 10.1051/medsci/2020112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following partial or total loss of peripheral vestibular inputs, a phenomenon called central vestibular compensation takes place in the hours and days following the injury. This neuroplasticity process involves a mosaic of profound rearrangements within the brain stem vestibular nuclei. Among them, the setting of a new neuronal network is maybe the most original and unexpected, as it involves an adult reactive neurogenesis in a brain area not reported as neurogenic so far. Both the survival and functionality of this newly generated neuronal network will depend on its integration to pre-existing networks in the deafferented structure. Far from being aberrant, this new structural organization allows the use of inputs from other sensory modalities (vision and proprioception) to promote the restoration of the posture and equilibrium. We choose here to detail this model, which does not belong to the traditional niches of adult neurogenesis, but it is the best example so far of the reparative role of the adult neurogenesis. Not only it represents an original neuroplasticity mechanism, interesting for basic neuroscience, but it also opens new medical perspectives for the development of therapeutic approaches to alleviate vestibular disorders.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de neurosciences sensorielles et cognitives, LNSC UMR 7260. Équipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), 3 place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de neurosciences sensorielles et cognitives, LNSC UMR 7260. Équipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), 3 place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de neurosciences sensorielles et cognitives, LNSC UMR 7260. Équipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), 3 place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
49
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
50
|
Li G, Forero MG, Wentzell JS, Durmus I, Wolf R, Anthoney NC, Parker M, Jiang R, Hasenauer J, Strausfeld NJ, Heisenberg M, Hidalgo A. A Toll-receptor map underlies structural brain plasticity. eLife 2020; 9:52743. [PMID: 32066523 PMCID: PMC7077983 DOI: 10.7554/elife.52743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Experience alters brain structure, but the underlying mechanism remained unknown. Structural plasticity reveals that brain function is encoded in generative changes to cells that compete with destructive processes driving neurodegeneration. At an adult critical period, experience increases fiber number and brain size in Drosophila. Here, we asked if Toll receptors are involved. Tolls demarcate a map of brain anatomical domains. Focusing on Toll-2, loss of function caused apoptosis, neurite atrophy and impaired behaviour. Toll-2 gain of function and neuronal activity at the critical period increased cell number. Toll-2 induced cycling of adult progenitor cells via a novel pathway, that antagonized MyD88-dependent quiescence, and engaged Weckle and Yorkie downstream. Constant knock-down of multiple Tolls synergistically reduced brain size. Conditional over-expression of Toll-2 and wek at the adult critical period increased brain size. Through their topographic distribution, Toll receptors regulate neuronal number and brain size, modulating structural plasticity in the adult brain. Everything that you experience leaves its mark on your brain. When you learn something new, the neurons involved in the learning episode grow new projections and form new connections. Your brain may even produce new neurons. Physical exercise can induce similar changes, as can taking antidepressants. By contrast, stress, depression, ageing and disease can have the opposite effect, triggering neurons to break down and even die. The ability of the brain to change in response to experience is known as structural plasticity, and it is in a tug-of-war with processes that drive neurodegeneration. Structural plasticity occurs in other species too: for example, it was described in the fruit fly more than a quarter of a century ago. Yet, the molecular mechanisms underlying structural plasticity remain unclear. Li et al. now show that, in fruit flies, this plasticity involves Toll receptors, a family of proteins present in the brain but best known for their role in the immune system. Fruit flies have nine different Toll receptors, the most abundant being Toll-2. When activated, these proteins can trigger a series of molecular events in a cell. Li et al. show that increasing the amount of Toll-2 in the fly brain makes the brain produce new neurons. Activating neurons in a brain region has the same effect, and this increase in neuron number also depends on Toll-2. By contrast, reducing the amount of Toll-2 causes neurons to lose their projections and connections, and to die, and impairs fly behaviour. Li et al. also show that each Toll receptor has a unique distribution across the fly brain. Different types of experiences activate different brain regions, and therefore different Toll receptors. These go on to trigger a common molecular cascade, but they modulate it such as to result in distinct outcomes. By working together in different combinations, Toll receptors can promote either the death or survival of neurons, and they can also drive specific brain cells to remain dormant or to produce new neurons. By revealing how experience changes the brain, Li et al. provide clues to the way neurons work and form; these findings may also help to find new treatments for disorders that change brain structure, such as certain psychiatric conditions. Toll-like receptors in humans could thus represent a promising new target for drug discovery.
Collapse
Affiliation(s)
- Guiyi Li
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Manuel G Forero
- Facultad de Ingeniería, Universidad de Ibagué, Ibagué, Colombia
| | - Jill S Wentzell
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Ilgim Durmus
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Reinhard Wolf
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Niki C Anthoney
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Mieczyslaw Parker
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Ruiying Jiang
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jacob Hasenauer
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas James Strausfeld
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Neuroscience, University of Arizona College of Science, Tucson, United States
| | - Martin Heisenberg
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Alicia Hidalgo
- Neurodevelopment Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|