1
|
Yang D, Huang H, Zeng T, Wang L, Ying C, Chen X, Zhou X, Sun F, Chen Y, Li S, Wang B, Wu S, Xie F, Cen Z, Luo W. Unveiling distinct clinical manifestations of primary familial brain calcifications in Asian and European patients: A study based on 10-year individual-level data. Parkinsonism Relat Disord 2025; 132:107290. [PMID: 39827654 DOI: 10.1016/j.parkreldis.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear. METHODS We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients. Demographic data, genetic information, radiological examinations, and clinical characteristics were extracted for each case. RESULTS The study included 120 publications and 564 genetically confirmed PFBC patients. Asian and European PFBC populations represented 54 % and 37 % of global patients, respectively. While calcification patterns showed no significant differences between Asian and European PFBC patients, European autosomal dominant PFBC variant carriers were more likely to exhibit clinical symptoms compared to their Asian counterparts (OR = 2.90, 95 % CI 1.55-5.60) and had an earlier estimated age of onset (median age 42 vs 58). CONCLUSION The interaction between regional differences and genetically determined calcification severity may collectively influence PFBC symptom progression. Future research should further explore the potential roles of gene modifiers, ethnic background, socioeconomic and environmental exposure factors underlying regional differences in PFBC progression.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbo Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyue Sun
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liao J, Jiang L, Qin Y, Hu J, Tang Z. Causal Association Between Cerebrospinal Fluid Metabolites and Parkinson's Disease: A Two-Sample Bidirectional Mendelian Randomization Study. Behav Brain Res 2025:115426. [PMID: 39793738 DOI: 10.1016/j.bbr.2025.115426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
OBJECTIVE Observational studies suggest CSF metabolites may be linked to Parkinson's disease (PD) onset, but causality is uncertain. This study uses a two-sample bidirectional Mendelian randomization approach to investigate the causal relationship between CSF metabolites and PD. METHODS Data on 338 CSF metabolites and PD-related traits were obtained from genome-wide association studies (GWAS). Causal relationships between CSF metabolites and PD were assessed using inverse variance-weighted (IVW), MR-Egger regression, weighted median method, simple mode, and weighted mode. Sensitivity analyses for heterogeneity and pleiotropy were conducted to explore the robustness of the results. RESULTS Our analysis identified an association between nine CSF metabolites and PD. Notably, significant increases in the risk of PD were observed for Ribitol (IVW, OR: 1.45; 95% CI: 1.09-1.91; P=9.04×E-03), Lysine (IVW, OR: 1.54; 95% CI: 1.09-2.17; P=1.24×E-02), and O-sulfo-l-tyrosine (IVW, OR: 1.38; 95% CI: 1.06-1.79; P=1.60×E-02). Additionally, we found that elevated levels of oxidized cysteinyl-glycine and 1,5-anhydroglucitol were associated with a decreased risk of PD. Furthermore, PD was associated with alterations in 12 CSF metabolites, including significant increases in Acetoacetate (IVW, OR: 1.15; 95% CI: 1.02-1.30; P=1.79×E-02), S-methylcysteine (IVW, OR: 1.14; 95% CI: 1.02-1.29; P=2.62×E-02), and N-acetyl-3-methylhistidine (IVW, OR: 1.12; 95% CI: 1.01-1.23; P=2.22×E-02). CONCLUSION The identified CSF metabolites may serve as potential CSF metabolic biomarkers for screening and preventing PD in clinical practice and could also be considered as candidate molecules for future mechanistic exploration and drug target selection.
Collapse
Affiliation(s)
- Jing Liao
- Intensive care Unit,The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liangyan Jiang
- Intensive care Unit,The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiliu Qin
- Intensive care Unit,The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Juntao Hu
- Intensive care Unit,The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhanhong Tang
- Intensive care Unit,The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Zhao Z, Xing N, Sun G. Identification of 7-HOCA as a Potential Biomarker in Glioblastoma: Evidence from Genome-Wide Association Study and Clinical Validation. Int J Gen Med 2024; 17:6185-6197. [PMID: 39691836 PMCID: PMC11651077 DOI: 10.2147/ijgm.s493488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose Glioblastoma (GBM) is associated with metabolic disturbances, yet the relationships between metabolites with GBM have not been comprehensively explored. This study aims to fill this gap by integrating Mendelian randomization (MR) analysis with clinical validation. Patients and Methods Summary data from genome-wide association study (GWAS) of cerebrospinal fluid (CSF) metabolites, plasma metabolites, and GBM were obtained separately. A total of 338 CSF metabolites and 1400 plasma metabolites were utilized as exposures. Concurrently, GBM was designated as the outcome. A two-sample bidirectional MR study was conducted to investigate the potential association. The inverse variance weighted (IVW) analyses were conducted as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Additionally, metabolite levels in clinical plasma and CSF samples were quantified using liquid chromatography-mass spectrometry to validate the findings. Results MR analysis identified eight CSF metabolites and six plasma metabolites that were closely associated with GBM. Among these, elevated levels of 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) in both CSF and plasma were found to promote GBM. In terms of clinical validation, compared to the control group, 7-HOCA levels were significantly higher in both the CSF and plasma of GBM group. Conclusion This study provides a comprehensive analysis of the metabolic factors contributing to GBM. The identification of specific metabolites, particularly 7-HOCA, that have vital roles in GBM pathogenesis suggests new biomarkers and therapeutic targets, offering potential pathways for improved diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
4
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Zhao Z, Xing N, Hou L. Cerebrospinal fluid metabolites as potential biomarkers for epilepsy: Insights from genome-wide association studies. Epilepsia Open 2024. [PMID: 39556006 DOI: 10.1002/epi4.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVES While metabolic imbalances have been observed in individuals with epilepsy, the direct involvement of specific metabolites in the development of the condition remains underexplored. A comprehensive analysis of the causality between cerebrospinal fluid metabolites (CSF) and epilepsy is pivotal in discovering innovative therapeutic interventions and prophylactic approaches. METHODS Summary data from genome-wide association studies (GWAS) of CSF metabolites and epilepsy subtypes were obtained separately. A total of 338 CSF metabolites were investigated as exposures, and 11 epilepsy phenotypes were examined as the outcomes. A two sample Mendelian randomization (MR) approach was utilized to explore the causal influence of these metabolites on epilepsy. Causality was primarily estimated through inverse variance weighted (IVW) analysis, complemented by a range of sensitivity analyses to ensure result stability. Additionally, reverse MR analysis was performed to explore the possibility of bidirectional causality. RESULTS The IVW method, reinforced by sensitivity analyses, pinpointed 17 CSF metabolites with causal implications for six epilepsy phenotypes. After False Discovery Rate (FDR) multiple testing correction, two metabolites (Methylmalonate and Gamma-glutamyl-alpha-lysine) were found to have robust causal links to epilepsy (p < 0.05 and FDR<0.05). The other 15 metabolites exhibited suggestive evidence of a causal association (p < 0.05 and FDR>0.05). SIGNIFICANCE This study highlights CSF metabolites that could serve as valuable biomarkers and may be critical in developing targeted treatments and preventing epilepsy. PLAIN LANGUAGE SUMMARY This study explores how certain chemicals in the brain fluid might influence the development of epilepsy, aiming to find new ways to treat or prevent it. Researchers looked at the relationship between 338 cerebrospinal fluid metabolites and 11 types of epilepsy using genetic data. They found that 17 of these chemicals could potentially cause six types of epilepsy. Two of these chemicals were strongly linked to epilepsy, suggesting they could be important for creating specific treatments or prevention strategies.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Hou
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Su K, Li J, Liu H, Zou Y. Emerging Trends in Integrated Digital Microfluidic Platforms for Next-Generation Immunoassays. MICROMACHINES 2024; 15:1358. [PMID: 39597170 PMCID: PMC11596068 DOI: 10.3390/mi15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Technologies based on digital microfluidics (DMF) have made significant advancements in the automated manipulation of microscale liquids and complex multistep processes. Due to their numerous benefits, such as automation, speed, cost-effectiveness, and minimal sample volume requirements, these systems are particularly well suited for immunoassays. In this review, an overview is provided of diverse DMF manipulation platforms and their applications in immunological analysis. Initially, droplet-driven DMF platforms based on electrowetting on dielectric (EWOD), magnetic manipulation, surface acoustic wave (SAW), and other related technologies are briefly introduced. The preparation of DMF is then described, including material selection, fabrication techniques and droplet generation. Subsequently, a comprehensive account of advancements in the integration of DMF with various immunoassay techniques is offered, encompassing colorimetric, direct chemiluminescence, enzymatic chemiluminescence, electrosensory, and other immunoassays. Ultimately, the potential challenges and future perspectives in this burgeoning field are delved into.
Collapse
Affiliation(s)
- Kaixin Su
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (K.S.); (J.L.); (H.L.)
| | - Jiaqi Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (K.S.); (J.L.); (H.L.)
| | - Hailan Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (K.S.); (J.L.); (H.L.)
| | - Yuan Zou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (K.S.); (J.L.); (H.L.)
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing 401329, China
| |
Collapse
|
7
|
Péron JA. Challenges and prospects in advancing clinical neuropsychology. Cortex 2024; 179:261-270. [PMID: 39213778 DOI: 10.1016/j.cortex.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
In the ever-evolving field of clinical neuropsychology, significant methodological and conceptual limitations hinder progress. To ensure the continued relevance of this discipline amidst remarkable advancements in neuroscience, medicine, and methodology, these obstacles must be addressed. This opinion article identifies inherent limitations within current clinical neuropsychology, including issues such as multi-collinearity in neuropsychological assessments, lack of validated tools reflecting contemporary cognitive function models, and the use of divergent theoretical frameworks in evaluations, leading to a gap between theory and practice. The disconnect between behavior and biomarkers, particularly evident in neurodegenerative diseases but also relevant for other pathologies, together with the rise of genetic analyses, necessitate change. Methodological improvements are crucial for ensuring the discipline's future relevance. Looking ahead, key perspectives and challenges are outlined, emphasizing the need for a holistic approach to cognitive functioning and congruent tools, patient engagement in experimental studies, rectification of biases, and exploration of variables like personality. Training professionals to bridge the gap between practice and research is essential. By addressing these challenges, clinical neuropsychology can not only adapt to the evolving landscape but also shape it, ensuring a brighter future for the field.
Collapse
Affiliation(s)
- Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland.
| |
Collapse
|
8
|
Yu F, Pituch KA, Maxfield M, Baena E, Geda YE, Pruzin JJ, Coon DW, Shaibi GQ. The associations between type 2 diabetes and plasma biomarkers of Alzheimer's disease in the Health and Aging Brain Study: Health Disparities (HABS-HD). PLoS One 2024; 19:e0295749. [PMID: 38558059 PMCID: PMC10984470 DOI: 10.1371/journal.pone.0295749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD) affects Latinos disproportionately. One of the reasons underlying this disparity may be type 2 diabetes (T2D) that is a risk factor for AD. The purpose of this study was to examine the associations of T2D and AD blood biomarkers and the differences in these associations between Mexican Americans and non-Hispanic Whites. This study was a secondary analysis of baseline data from the observational Health and Aging Brain Study: Health Disparities (HABS-HD) that investigated factors underlying health disparities in AD in Mexican Americans in comparison to non-Hispanic Whites. HABS-HD participants were excluded if they had missing data or were large outliers (z-scores >|4|) on a given AD biomarker. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels were measured from clinical labs. T2D was diagnosed by licensed clinicians. Plasma amyloid-beta 42 and 40 (Aβ42/42) ratio, total tau (t-tau), and neurofilament light (NfL) were measured via ultra-sensitive Simoa assays. The sample sizes were 1,552 for Aβ42/40 ratio, 1,570 for t-tau, and 1,553 for NfL. Mexican Americans were younger (66.6±8.7 vs. 69.5±8.6) and had more female (64.9% female vs. 55.1%) and fewer years of schooling (9.5±4.6 vs. 15.6±2.5) than non-Hispanic Whites. Mexican Americans differed significantly from non-Hispanic Whites in blood glucose (113.5±36.6 vs. 99.2±17.0) and HbA1c (6.33±1.4 vs. 5.51±0.6) levels, T2D diagnosis (35.3% vs. 11.1%), as well as blood Aβ42/40 ratio (.051±.012 vs. .047±.011), t-tau (2.56±.95 vs. 2.33±.90), and NfL levels (16.3±9.5 vs. 20.3±10.3). Blood glucose, blood HbA1c, and T2D diagnosis were not related to Aβ42/40 ratio and t-tau but explained 3.7% of the variation in NfL (p < .001). Blood glucose and T2D diagnosis were not, while HbA1c was positively (b = 2.31, p < .001, β = 0.26), associated with NfL among Mexican Americans. In contrast, blood glucose, HbA1c, and T2D diagnosis were negatively (b = -0.09, p < .01, β = -0.26), not (b = 0.34, p = .71, β = 0.04), and positively (b = 3.32, p < .01, β = 0.33) associated with NfL, respectively in non-Hispanic Whites. To conclude, blood glucose and HbA1c levels and T2D diagnosis are associated with plasma NfL levels, but not plasma Aβ and t-tau levels. These associations differ in an ethnicity-specific manner and need to be further studied as a potential mechanism underlying AD disparities.
Collapse
Affiliation(s)
- Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Keenan A. Pituch
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Molly Maxfield
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Elsa Baena
- Clinical Neuropsychology Department, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Yonas E. Geda
- Department of Neurology and the Franke Neursciene Education Center, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Jeremy J. Pruzin
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - David W. Coon
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Gabriel Q. Shaibi
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | | |
Collapse
|
9
|
Cai Y, Chen T, Cai Y, Liu J, Yu B, Fan Y, Su J, Zeng Y, Xiao X, Ren L, Tang Y. Surface protein profiling and subtyping of extracellular vesicles in body fluids reveals non-CSF biomarkers of Alzheimer's disease. J Extracell Vesicles 2024; 13:e12432. [PMID: 38602321 PMCID: PMC11007802 DOI: 10.1002/jev2.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Noninvasive and effortless diagnosis of Alzheimer's disease (AD) remains challenging. Here we report the multiplexed profiling of extracellular vesicle (EV) surface proteins at the single EV level in five types of easily accessible body fluids using a proximity barcoding assay (PBA). A total of 183 surface proteins were detected on the EVs from body fluids collected from APP/PS1 transgenic mice and patients with AD. The AD-associated differentially expressed EV proteins could discriminate between the control and AD/AD model samples with high accuracy. Based on machine learning predictive models, urinary EV proteins exhibited the highest diagnostic potential compared to those on other biofluid EVs, both in mice and humans. Single EV analysis further revealed AD-associated EV subpopulations in the tested body fluids, and a urinary EV subpopulation with the signature proteins PLAU, ITGAX and ANXA1 could diagnose patients with AD in blinded datasets with 88% accuracy. Our results suggest that EVs and their subpopulations from noninvasive body fluids, particularly urine, are potential diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- You Cai
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
| | - Ting Chen
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of UrologyThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenChina
| | - Jiabang Liu
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
| | - Bin Yu
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
| | - Yixian Fan
- Department of Biochemistry and Molecular BiologyTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jun Su
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Yixuan Zeng
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Xiaohua Xiao
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Lijie Ren
- Department of NeurologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Yizhe Tang
- Department of GeriatricsShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory for Systemic Aging and InterventionHealth Science CenterShenzhen UniversityShenzhenChina
- Lead contact
| |
Collapse
|
10
|
Zivari-Ghader T, Valioglu F, Eftekhari A, Aliyeva I, Beylerli O, Davran S, Cho WC, Beilerli A, Khalilov R, Javadov S. Recent progresses in natural based therapeutic materials for Alzheimer's disease. Heliyon 2024; 10:e26351. [PMID: 38434059 PMCID: PMC10906329 DOI: 10.1016/j.heliyon.2024.e26351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease is a neurological disorder that causes increased memory loss, mood swings, behavioral disorders, and disruptions in daily activities. Polymer scaffolds for the brain have been grown under laboratory, physiological, and pathological circumstances because of the limitations of conventional treatments for patients with central nervous system diseases. The blood-brain barrier prevents medications from entering the brain, challenging AD treatment. Numerous biomaterials such as biomolecules, polymers, inorganic metals, and metal oxide nanoparticles have been used to transport therapeutic medicines into the nervous system. Incorporating biocompatible materials that support neurogenesis through a combination of topographical, pharmacological, and mechanical stimuli has also shown promise for the transfer of cells to replenish dopaminergic neurons. Components made of naturally occurring biodegradable polymers are appropriate for the regeneration of nerve tissue. The ability of natural-based materials (biomaterials) has been shown to promote endogenous cell development after implantation. Also, strategic functionalization of polymeric nanocarriers could be employed for treating AD. In particular, nanoparticles could resolve Aβ aggregation and thus help cure Alzheimer's disease. Drug moieties can be effectively directed to the brain by utilizing nano-based systems and diverse colloidal carriers, including hydrogels and biodegradable scaffolds. Notably, early investigations employing neural stem cells have yielded promising results, further emphasizing the potential advancements in this field. Few studies have fully leveraged the combination of cells with cutting-edge biomaterials. This study provides a comprehensive overview of prior research, highlighting the pivotal role of biomaterials as sophisticated drug carriers. It delves into various intelligent drug delivery systems, encompassing pH and thermo-triggered mechanisms, polymeric and lipid carriers, inorganic nanoparticles, and other vectors. The discussion synthesizes existing knowledge and underscores the transformative impact of these biomaterials in devising innovative strategies, augmenting current therapeutic methodologies, and shaping new paradigms in the realm of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51665118, Iran
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Immi Aliyeva
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Department of Environmental Engineering, Azerbaijan Technological University, Ganja, Azerbaijan
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Soodabeh Davran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
- Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| |
Collapse
|
11
|
Sullivan AC, Zuniga G, Ramirez P, Fernandez R, Wang CP, Li J, Davila L, Pelton K, Gomez S, Sohn C, Gonzalez E, Lopez-Cruzan M, Gonzalez DA, Parker A, Zilli E, de Erausquin GA, Seshadri S, Espinoza S, Musi N, Frost B. A pilot study to investigate the safety and feasibility of antiretroviral therapy for Alzheimer's disease (ART-AD). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303316. [PMID: 38464267 PMCID: PMC10925371 DOI: 10.1101/2024.02.26.24303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Retrotransposons are viral-like DNA sequences that constitute approximately 41% of the human genome. Studies in Drosophila, mice, cultured cells, and human brain indicate that retrotransposons are activated in settings of tauopathy, including Alzheimer's disease, and causally drive neurodegeneration. The anti-retroviral medication 3TC (lamivudine), a nucleoside analog reverse transcriptase inhibitor, limits retrotransposon activation and suppresses neurodegeneration in tau transgenic Drosophila, two mouse models of tauopathy, and in brain assembloids derived from patients with sporadic Alzheimer's disease. We performed a 24-week phase 2a open-label clinical trial of 300 mg daily oral 3TC (NCT04552795) in 12 participants aged 52-83 years with a diagnosis of mild cognitive impairment due to suspected Alzheimer's disease. Primary outcomes included feasibility, blood brain barrier penetration, effects of 3TC on reverse transcriptase activity in the periphery, and safety. Secondary outcomes included changes in cognition and fluid-based biomarkers of neurodegeneration and neuroinflammation. All participants completed the six-month trial; one event of gastrointestinal bleeding due to a peptic ulcer was reported. 3TC was detected in blood and cerebrospinal fluid (CSF) of all participants, suggestive of adherence to study drug and effective brain penetration. Cognitive measures remained stable throughout the study. Glial fibrillary acidic protein (GFAP) (P=0.03) and Flt1 (P=0.05) were significantly reduced in CSF over the treatment period; Aβ42/40 (P=0.009) and IL-15 (P=0.006) were significantly elevated in plasma. While this is an open label study of small sample size, the significant decrease of some neurodegeneration- and neuroinflammation-related biomarkers in CSF, significantly elevated levels of plasma Aβ42/40, and a trending decrease of CSF NfL after six months of 3TC exposure suggest a beneficial effect on subjects with mild cognitive impairment due to suspected Alzheimer's disease. Feasibility, safety, tolerability, and central nervous system (CNS) penetration assessments further support clinical evaluation of 3TC in a larger placebo-controlled, multi-dose clinical trial.
Collapse
Affiliation(s)
- A. Campbell Sullivan
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Gabrielle Zuniga
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Paulino Ramirez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Roman Fernandez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Population Health Sciences, University of Texas Health San Antonio
| | - Chen-Pin Wang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Population Health Sciences, University of Texas Health San Antonio
| | - Ji Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
| | - Lisa Davila
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Kristine Pelton
- Brown University Center for Alzheimer’s Disease Research, Providence, RI
| | - Sandra Gomez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Medicine, Cedars-Sinai Medical Center
| | - Claira Sohn
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Elias Gonzalez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Psychiatry and Behavioral Sciences, University of Texas Health San Antonio
| | - David A. Gonzalez
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
- Department of Neurological Sciences, Rush University Medical Center
| | - Alicia Parker
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Eduardo Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Gabriel A. de Erausquin
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Department of Neurology, University of Texas Health San Antonio
| | | | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio
| |
Collapse
|
12
|
Chowdhury MA, Collins JM, Gell DA, Perry S, Breadmore MC, Shigdar S, King AE. Isolation and Identification of the High-Affinity DNA Aptamer Target to the Brain-Derived Neurotrophic Factor (BDNF). ACS Chem Neurosci 2024; 15:346-356. [PMID: 38149631 DOI: 10.1021/acschemneuro.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Aptamers are functional oligonucleotide ligands used for the molecular recognition of various targets. The natural characteristics of aptamers make them an excellent alternative to antibodies in diagnostics, therapeutics, and biosensing. DNA aptamers are mainly single-stranded oligonucleotides (ssDNA) that possess a definite binding to targets. However, the application of aptamers to the fields of brain health and neurodegenerative diseases has been limited to date. Herein, a DNA aptamer against the brain-derived neurotrophic factor (BDNF) protein was obtained by in vitro selection. BDNF is a potential biomarker of brain health and neurodegenerative diseases and has functions in the synaptic plasticity and survival of neurons. We identified eight aptamers that have binding affinity for BDNF from a 50-nucleotide library. Among these aptamers, NV_B12 showed the highest sensitivity and selectivity for detecting BDNF. In an aptamer-linked immobilized sorbent assay (ALISA), the NV_B12 aptamer strongly bound to BDNF protein, in a dose-dependent manner. The dissociation constant (Kd) for NV_B12 was 0.5 nM (95% CI: 0.4-0.6 nM). These findings suggest that BDNF-specific aptamers could be used as an alternative to antibodies in diagnostic and detection assays for BDNF.
Collapse
Affiliation(s)
- Md Anisuzzaman Chowdhury
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - David A Gell
- Menzies Research Institute, School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Sandy Bay, Hobart, Tasmania 7001, Australia
| | - Sarah Shigdar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria 3220, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| |
Collapse
|
13
|
Bayram E, Batzu L, Tilley B, Gandhi R, Jagota P, Biundo R, Garon M, Prasertpan T, Lazcano-Ocampo C, Chaudhuri KR, Weil RS. Clinical trials for cognition in Parkinson's disease: Where are we and how can we do better? Parkinsonism Relat Disord 2023; 112:105385. [PMID: 37031010 PMCID: PMC10330317 DOI: 10.1016/j.parkreldis.2023.105385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Cognitive impairment is common in Parkinson's disease (PD) and has a substantial impact on quality of life. Despite numerous trials targeting various PD features, we still lack effective treatments for cognition beyond cholinesterase inhibitors. OBJECTIVE To identify the gaps in recent clinical trials with cognitive outcomes in PD and consider areas for improvement. METHODS We examined recent clinical trials with cognitive outcomes in PD registered on ClinicalTrials.gov, excluding trials without cognitive outcomes, non-interventional studies, and in atypical Parkinsonian disorders. Included trials were categorized by treatment approach (investigational medicinal product, behavioral, physical activity, device-based). Details of trial design and outcomes were collected. RESULTS 178 trials at different stages of trial completion were considered. 46 trials were completed, 25 had available results. Mean follow-up duration was 29.9 weeks. Most common cognitive measure was Montreal Cognitive Assessment. Most were performed in North America or Europe. Majority of the participants identified as non-Hispanic and White. Only eight trials showed improvement in cognition, none showed improvement beyond four months. These included trials of international medicinal products, cognitive and physical interventions and devices. GRADE certainty levels ranged from Moderate to Very Low. Only mevidalen had a Moderate certainty for potential clinical effectiveness. CONCLUSIONS Amongst a large number of trials for cognition in PD, only a small proportion were completed. Few showed significant improvement, with no proven long-lasting effects. Trial design, lack of enrichment for at-risk groups, short follow-up duration, insensitive outcome measures likely contribute to lack of detectable benefit and should be considered in future trials.
Collapse
Affiliation(s)
- Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Bension Tilley
- Dementia Research Centre, University College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK
| | - Rhea Gandhi
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy; Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Michela Garon
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Tittaya Prasertpan
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Claudia Lazcano-Ocampo
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neurology, Hospital Sotero del Rio, Santiago, Chile
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK; Movement Disorders Centre, University College London, London, UK
| |
Collapse
|
14
|
Negi D, Granak S, Shorter S, O'Leary VB, Rektor I, Ovsepian SV. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics 2023; 20:767-778. [PMID: 36884195 PMCID: PMC10275849 DOI: 10.1007/s13311-023-01355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
Collapse
Affiliation(s)
- Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Simon Granak
- National Institute of Mental Health, Topolova 748, Klecany, 25067, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
15
|
Contini C, Serrao S, Manconi B, Olianas A, Iavarone F, Guadalupi G, Messana I, Castagnola M, Masullo C, Bizzarro A, Turck CW, Maccarrone G, Cabras T. Characterization of Cystatin B Interactome in Saliva from Healthy Elderly and Alzheimer’s Disease Patients. Life (Basel) 2023; 13:life13030748. [PMID: 36983903 PMCID: PMC10054399 DOI: 10.3390/life13030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cystatin B is a small, multifunctional protein involved in the regulation of inflammation, innate immune response, and neuronal protection and found highly abundant in the brains of patients with Alzheimer’s disease (AD). Recently, our study demonstrated a significant association between the level of salivary cystatin B and AD. Since the protein is able to establish protein-protein interaction (PPI) in different contexts and aggregation-prone proteins and the PPI networks are relevant for AD pathogenesis, and due to the relevance of finding new AD markers in peripheral biofluids, we thought it was interesting to study the possible involvement of cystatin B in PPIs in saliva and to evaluate differences and similarities between AD and age-matched elderly healthy controls (HC). For this purpose, we applied a co-immunoprecipitation procedure and a bottom-up proteomics analysis to purify, identify, and quantify cystatin B interactors. Results demonstrated for the first time the existence of a salivary cystatin B-linked multi-protein complex composed by 82 interactors and largely expressed in the body. Interactors are involved in neutrophil activation, antimicrobial activity, modulation of the cytoskeleton and extra-cellular matrix (ECM), and glucose metabolism. Preliminary quantitative data showed significantly lower levels of triosophosphate isomerase 1 and higher levels of mucin 7, BPI, and matrix Gla protein in AD with respect to HC, suggesting implications associated with AD of altered glucose metabolism, antibacterial activities, and calcification-associated processes. Data are available via ProteomeXchange with identifiers PXD039286 and PXD030679.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
- Correspondence:
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Policlinico Universitario “A. Gemelli” Foundation IRCCS, 00168 Rome, Italy
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy
| | - Carlo Masullo
- Department of Neuroscience, Neurology Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
16
|
Logroscino G, Piccininni M, Graff C, Hardiman O, Ludolph AC, Moreno F, Otto M, Remes AM, Rowe JB, Seelaar H, Solje E, Stefanova E, Traykov L, Jelic V, Rydell MT, Pender N, Anderl-Straub S, Barandiaran M, Gabilondo A, Krüger J, Murley AG, Rittman T, van der Ende EL, van Swieten JC, Hartikainen P, Stojmenović GM, Mehrabian S, Benussi L, Alberici A, Dell’Abate MT, Zecca C, Borroni B. Incidence of Syndromes Associated With Frontotemporal Lobar Degeneration in 9 European Countries. JAMA Neurol 2023; 80:279-286. [PMID: 36716024 PMCID: PMC9887528 DOI: 10.1001/jamaneurol.2022.5128] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 01/31/2023]
Abstract
Importance Diagnostic incidence data for syndromes associated with frontotemporal lobar degeneration (FTLD) in multinational studies are urgent in light of upcoming therapeutic approaches. Objective To assess the incidence of FTLD across Europe. Design, Setting, and Participants The Frontotemporal Dementia Incidence European Research Study (FRONTIERS) was a retrospective cohort study conducted from June 1, 2018, to May 31, 2019, using a population-based registry from 13 tertiary FTLD research clinics from the UK, the Netherlands, Finland, Sweden, Spain, Bulgaria, Serbia, Germany, and Italy and including all new FTLD-associated cases during the study period, with a combined catchment population of 11 023 643 person-years. Included patients fulfilled criteria for the behavioral variant of frontotemporal dementia (BVFTD), the nonfluent variant or semantic variant of primary progressive aphasia (PPA), unspecified PPA, progressive supranuclear palsy, corticobasal syndrome, or frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS). Data were analyzed from July 19 to December 7, 2021. Main Outcomes and Measures Random-intercept Poisson models were used to obtain estimates of the European FTLD incidence rate accounting for geographic heterogeneity. Results Based on 267 identified cases (mean [SD] patient age, 66.70 [9.02] years; 156 males [58.43%]), the estimated annual incidence rate for FTLD in Europe was 2.36 cases per 100 000 person-years (95% CI, 1.59-3.51 cases per 100 000 person-years). There was a progressive increase in FTLD incidence across age, reaching its peak at the age of 71 years, with 13.09 cases per 100 000 person-years (95% CI, 8.46-18.93 cases per 100 000 person-years) among men and 7.88 cases per 100 000 person-years (95% CI, 5.39-11.60 cases per 100 000 person-years) among women. Overall, the incidence was higher among men (2.84 cases per 100 000 person-years; 95% CI, 1.88-4.27 cases per 100 000 person-years) than among women (1.91 cases per 100 000 person-years; 95% CI, 1.26-2.91 cases per 100 000 person-years). BVFTD was the most common phenotype (107 cases [40.07%]), followed by PPA (76 [28.46%]) and extrapyramidal phenotypes (69 [25.84%]). FTD-ALS was the rarest phenotype (15 cases [5.62%]). A total of 95 patients with FTLD (35.58%) had a family history of dementia. The estimated number of new FTLD cases per year in Europe was 12 057. Conclusions and Relevance The findings suggest that FTLD-associated syndromes are more common than previously recognized, and diagnosis should be considered at any age. Improved knowledge of FTLD incidence may contribute to appropriate health and social care planning and in the design of future clinical trials.
Collapse
Affiliation(s)
- Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari-Aldo Moro, Bari at Pia Fondazione Cardinale Giovanni Panico, Tricase, Lecce, Italy
| | - Marco Piccininni
- Institute of Public Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital–Solna, Stockholm, Sweden
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- Department of Neurology, Martin Luther University, University Hospital, Halle (Saale), Germany
| | - Anne M. Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit, and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Elka Stefanova
- Faculty of Medicine, Neurology Clinic, University Clinical Center, University of Belgrade, Serbia
| | - Latchezar Traykov
- Alexandrovska University Hospital, Department of Neurology, Medical University Sofia, Sofia, Bulgaria
| | - Vesna Jelic
- Theme Inflammation and Aging, Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Melissa Taheri Rydell
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | - Myriam Barandiaran
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Alazne Gabilondo
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Alexander G. Murley
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit, and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Rittman
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit, and Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. van der Ende
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - John C. van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | | | - Shima Mehrabian
- Alexandrovska University Hospital, Department of Neurology, Medical University Sofia, Sofia, Bulgaria
| | - Luisa Benussi
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonella Alberici
- Centre for Neurodegenerative Disorders, Neurology Unit, Azienda Socio Sanitaria Territoriale Spedali Civili Brescia and University of Brescia, Brescia, Italy
| | - Maria Teresa Dell’Abate
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari-Aldo Moro, Bari at Pia Fondazione Cardinale Giovanni Panico, Tricase, Lecce, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari-Aldo Moro, Bari at Pia Fondazione Cardinale Giovanni Panico, Tricase, Lecce, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Azienda Socio Sanitaria Territoriale Spedali Civili Brescia and University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023:10.1007/s10571-023-01330-y. [PMID: 36847930 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
|
18
|
DeMarshall CA, Viviano J, Emrani S, Thayasivam U, Godsey GA, Sarkar A, Belinka B, Libon DJ, Nagele RG. Early Detection of Alzheimer's Disease-Related Pathology Using a Multi-Disease Diagnostic Platform Employing Autoantibodies as Blood-Based Biomarkers. J Alzheimers Dis 2023; 92:1077-1091. [PMID: 36847005 PMCID: PMC10116135 DOI: 10.3233/jad-221091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Evidence for the universal presence of IgG autoantibodies in blood and their potential utility for the diagnosis of Alzheimer's disease (AD) and other neurodegenerative diseases has been extensively demonstrated by our laboratory. The fact that AD-related neuropathological changes in the brain can begin more than a decade before tell-tale symptoms emerge has made it difficult to develop diagnostic tests useful for detecting the earliest stages of AD pathogenesis. OBJECTIVE To determine the utility of a panel of autoantibodies for detecting the presence of AD-related pathology along the early AD continuum, including at pre-symptomatic [an average of 4 years before the transition to mild cognitive impairment (MCI)/AD)], prodromal AD (MCI), and mild-moderate AD stages. METHODS A total of 328 serum samples from multiple cohorts, including ADNI subjects with confirmed pre-symptomatic, prodromal, and mild-moderate AD, were screened using Luminex xMAP® technology to predict the probability of the presence of AD-related pathology. A panel of eight autoantibodies with age as a covariate was evaluated using randomForest and receiver operating characteristic (ROC) curves. RESULTS Autoantibody biomarkers alone predicted the probability of the presence of AD-related pathology with 81.0% accuracy and an area under the curve (AUC) of 0.84 (95% CI = 0.78-0.91). Inclusion of age as a parameter to the model improved the AUC (0.96; 95% CI = 0.93-0.99) and overall accuracy (93.0%). CONCLUSION Blood-based autoantibodies can be used as an accurate, non-invasive, inexpensive, and widely accessible diagnostic screener for detecting AD-related pathology at pre-symptomatic and prodromal AD stages that could aid clinicians in diagnosing AD.
Collapse
Affiliation(s)
| | | | - Sheina Emrani
- New Jersey Institute for Successful Aging, Rowan University, Stratford, NJ, Department of Psychology, Rowan University, Glassboro, NJ, USA
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Umashanger Thayasivam
- Durin Technologies, Inc., Mullica Hill, NJ, USA
- Department of Mathematics, Rowan University, Glassboro, NJ, USA
| | | | | | | | - David J. Libon
- New Jersey Institute for Successful Aging, Rowan University, Stratford, NJ, Department of Psychology, Rowan University, Glassboro, NJ, USA
| | - Robert G. Nagele
- Durin Technologies, Inc., Mullica Hill, NJ, USA
- New Jersey Institute for Successful Aging, Rowan University, Stratford, NJ, Department of Gerontology & Geriatrics, Rowan University, Stratford, NJ, USA
| | | |
Collapse
|
19
|
Krishna G, Santhoshkumar R, Sivakumar PT, Alladi S, Mahadevan A, Dahale AB, Arshad F, Subramanian S. Pathological (Dis)Similarities in Neuronal Exosome-Derived Synaptic and Organellar Marker Levels Between Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis 2023; 94:S387-S397. [PMID: 36336935 PMCID: PMC10473137 DOI: 10.3233/jad-220829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal dementia (FTD) are pathologically distinct neurodegenerative disorders with certain overlap in cognitive and behavioral symptoms. Both AD and FTD are characterized by synaptic loss and accumulation of misfolded proteins, albeit, in different regions of the brain. OBJECTIVE To investigate the synaptic and organellar markers in AD and FTD through assessment of the levels of synaptic protein, neurogranin (Ng) and organellar proteins, mitofusin-2 (MFN-2), lysosomal associated membrane protein-2 (LAMP-2), and golgin A4 from neuronal exosomes. METHODS Exosomes isolated from the plasma of healthy controls (HC), AD and FTD subjects were characterized using transmission electron microscopy. Neurodegenerative status was assessed by measurement of neurofilament light chain (NfL) using Simoa. The pooled exosomal extracts from each group were analyzed for Ng, MFN-2, LAMP-2, and golgin A4 by western blot analysis using enhanced chemiluminescence method of detection. RESULTS The densitometric analysis of immunoreactive bands demonstrated a 65% reduction of Ng in AD and 53% in FTD. Mitochondrial protein MFN-2 showed a significant reduction by 32% in AD and 46% in FTD. Lysosomal LAMP-2 and Golgi complex associated golgin A4 were considerably increased in both AD and FTD. CONCLUSION Changes in Ng may reflect the ongoing synaptic degeneration that are linked to cognitive disturbances in AD and FTD. Importantly, the rate of synaptic degeneration was more pronounced in AD. Changes to a similar extent in both the dementia groups in organellar proteins indicates shared mechanisms of protein accumulation/degradation common to both AD and FTD.
Collapse
Affiliation(s)
- Geethu Krishna
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | | | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Ajit B. Dahale
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Faheem Arshad
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| |
Collapse
|
20
|
Winchester L, Barber I, Lawton M, Ash J, Liu B, Evetts S, Hopkins-Jones L, Lewis S, Bresner C, Malpartida AB, Williams N, Gentlemen S, Wade-Martins R, Ryan B, Holgado-Nevado A, Hu M, Ben-Shlomo Y, Grosset D, Lovestone S. Identification of a possible proteomic biomarker in Parkinson's disease: discovery and replication in blood, brain and cerebrospinal fluid. Brain Commun 2023; 5:fcac343. [PMID: 36694577 PMCID: PMC9856276 DOI: 10.1093/braincomms/fcac343] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Biomarkers to aid diagnosis and delineate the progression of Parkinson's disease are vital for targeting treatment in the early phases of the disease. Here, we aim to discover a multi-protein panel representative of Parkinson's and make mechanistic inferences from protein expression profiles within the broader objective of finding novel biomarkers. We used aptamer-based technology (SomaLogic®) to measure proteins in 1599 serum samples, 85 cerebrospinal fluid samples and 37 brain tissue samples collected from two observational longitudinal cohorts (the Oxford Parkinson's Disease Centre and Tracking Parkinson's) and the Parkinson's Disease Brain Bank, respectively. Random forest machine learning was performed to discover new proteins related to disease status and generate multi-protein expression signatures with potential novel biomarkers. Differential regulation analysis and pathway analysis were performed to identify functional and mechanistic disease associations. The most consistent diagnostic classifier signature was tested across modalities [cerebrospinal fluid (area under curve) = 0.74, P = 0.0009; brain area under curve = 0.75, P = 0.006; serum area under curve = 0.66, P = 0.0002]. Focusing on serum samples and using only those with severe disease compared with controls increased the area under curve to 0.72 (P = 1.0 × 10-4). In the validation data set, we showed that the same classifiers were significantly related to disease status (P < 0.001). Differential expression analysis and weighted gene correlation network analysis highlighted key proteins and pathways with known relationships to Parkinson's. Proteins from the complement and coagulation cascades suggest a disease relationship to immune response. The combined analytical approaches in a relatively large number of samples, across tissue types, with replication and validation, provide mechanistic insights into the disease as well as nominate a protein signature classifier that deserves further biomarker evaluation.
Collapse
Affiliation(s)
- Laura Winchester
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Imelda Barber
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jessica Ash
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Benjamine Liu
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Samuel Evetts
- Oxford Parkinson's Disease Centre and Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lucinda Hopkins-Jones
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Suppalak Lewis
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Catherine Bresner
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Ana Belen Malpartida
- Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nigel Williams
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Steve Gentlemen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Brent Ryan
- Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Michele Hu
- Oxford Parkinson's Disease Centre and Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Donald Grosset
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| |
Collapse
|
21
|
Yu F, Han SY, Salisbury D, Pruzin JJ, Geda Y, Caselli RJ, Li D. Feasibility and preliminary effects of exercise interventions on plasma biomarkers of Alzheimer's disease in the FIT-AD trial: a randomized pilot study in older adults with Alzheimer's dementia. Pilot Feasibility Stud 2022; 8:243. [PMID: 36461134 PMCID: PMC9716660 DOI: 10.1186/s40814-022-01200-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) biomarkers have provided a unique opportunity to understand AD pathogenesis and monitor treatment responses. However, exercise trials show mixed effects on imagining and cerebrospinal fluid biomarkers of AD. The feasibility and effects of exercise on plasma biomarkers remain unknown. The primary objective of this study was to examine the feasibility of recruitment, retention, and blood sample collection in community-dwelling older adults with mild-to-moderate AD dementia. Secondarily, it estimated the preliminary effects of 6-month aerobic and stretching exercise on plasma amyloid-β42 and Aβ40 (Aβ42/40) ratio, phosphorylated tau (p-tau) 181, and total tau (t-tau). METHODS This pilot study was implemented in year 2 of the 2-parallel group FIT-AD trial that randomized 96 participants on a 2:1 allocation ratio to moderate-intensity cycling or low-intensity stretching for 20-50 min, 3 times/week for 6 months with 6-month follow-up. Investigators (except for the statistician) and data collectors were blinded to group assignment. Fasting blood samples were collected from 26 participants at baseline and 3 and 6 months. Plasma Aβ42, Aβ40, p-tau181, and t-tau were measured using Simoa™ assays. Data were analyzed using intention-to-treat, Cohen's d, and linear mixed models. RESULTSS The sample averaged 77.6±6.99 years old and 15.4±3.00 years of education with 65% being male and 96.2% being apolipoprotein epsilon 4 gene carriers. The recruitment rate was 76.5%. The retention rate was 100% at 3 months and 96.2% at 6 months. The rate of blood collection was 88.5% at 3 months and 96.2% at 6 months. Means (standard deviation) of within-group 6-month difference in the stretching and cycling group were 0.001 (0.012) and -0.001 (0.010) for Aβ42/40 ratio, 0.609 (1.417) pg/mL and 0.101(1.579) pg/mL for p-tau181, and -0.020 (0.279) pg/mL and -0.075 (0.215) pg/mL for t-tau. Effect sizes for within-group 6-month difference were observed for p-tau181 in stretching (d=0.43 [-0.33, 1.19]) and t-tau in cycling (-0.35 [-0.87, 0.17]). CONCLUSIONS Blood collections with fasting were well received by participants and feasible with high recruitment and retention rates. Plasma biomarkers of AD may be modifiable by exercise intervention. Important design considerations are provided for future Phase III trials. TRIALS REGISTRATION ClinicalTrials.gov Identifier: NCT01954550 and posted on October 1, 2013.
Collapse
Affiliation(s)
- Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA.
| | - Seung Yong Han
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Dereck Salisbury
- Adult and Gerontological Health Cooperative, School of Nursing, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy J Pruzin
- Department of Neurology, Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yonas Geda
- Department of Neurology, and Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Mackmull MT, Nagel L, Sesterhenn F, Muntel J, Grossbach J, Stalder P, Bruderer R, Reiter L, van de Berg WDJ, de Souza N, Beyer A, Picotti P. Global, in situ analysis of the structural proteome in individuals with Parkinson's disease to identify a new class of biomarker. Nat Struct Mol Biol 2022; 29:978-989. [PMID: 36224378 DOI: 10.1038/s41594-022-00837-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/18/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein α-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes.
Collapse
Affiliation(s)
- Marie-Therese Mackmull
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luise Nagel
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Fabian Sesterhenn
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Jan Grossbach
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Patrick Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Wilma D J van de Berg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Section Clinical Neuroanatomy and Biobanking, Department Anatomy and Neurosciences, Amsterdam, the Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Andreas Beyer
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Faculty of Medicine and University Hospital of Cologne, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Trares K, Bhardwaj M, Perna L, Stocker H, Petrera A, Hauck SM, Beyreuther K, Brenner H, Schöttker B. Association of the inflammation-related proteome with dementia development at older age: results from a large, prospective, population-based cohort study. Alzheimers Res Ther 2022; 14:128. [PMID: 36085081 PMCID: PMC9461133 DOI: 10.1186/s13195-022-01063-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chronic inflammation is a central feature of several forms of dementia. However, few details on the associations of blood-based inflammation-related proteins with dementia incidence have been explored yet. METHODS The Olink Target 96 Inflammation panel was measured in baseline serum samples (collected 07/2000-06/2002) of 1782 older adults from a German, population-based cohort study in a case-cohort design. Logistic regression models were used to assess the associations of biomarkers with all-cause dementia, Alzheimer's disease, and vascular dementia incidence. RESULTS During 17 years of follow-up, 504 participants were diagnosed with dementia, including 163 Alzheimer's disease and 195 vascular dementia cases. After correction for multiple testing, 58 out of 72 tested (80.6%) biomarkers were statistically significantly associated with all-cause dementia, 22 with Alzheimer's disease, and 33 with vascular dementia incidence. We identified four biomarker clusters, among which the strongest representatives, CX3CL1, EN-RAGE, LAP TGF-beta-1, and VEGF-A, were significantly associated with dementia endpoints independently from other inflammation-related proteins. CX3CL1 (odds ratio [95% confidence interval] per 1 standard deviation increase: 1.41 [1.24-1.60]) and EN-RAGE (1.41 [1.25-1.60]) were associated with all-cause dementia incidence, EN-RAGE (1.51 [1.25-1.83]) and LAP TGF-beta-1 (1.46 [1.21-1.76]) with Alzheimer's disease incidence, and VEGF-A (1.43 [1.20-1.70]) with vascular dementia incidence. All named associations were stronger among APOE ε4-negative subjects. CONCLUSION With this large, population-based cohort study, we show for the first time that the majority of inflammation-related proteins measured in blood samples are associated with total dementia incidence. Future studies should concentrate not only on single biomarkers but also on the complex relationships in biomarker clusters.
Collapse
Affiliation(s)
- Kira Trares
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Megha Bhardwaj
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Laura Perna
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Hannah Stocker
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Heidemannstraße 1, 80939, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Heidemannstraße 1, 80939, Munich, Germany
| | - Konrad Beyreuther
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Hermann Brenner
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Ben Schöttker
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115, Heidelberg, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Chatterjee T, Johnson-Buck A, Walter NG. Highly sensitive protein detection by aptamer-based single-molecule kinetic fingerprinting. Biosens Bioelectron 2022; 216:114639. [PMID: 36037714 DOI: 10.1016/j.bios.2022.114639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Sensitive assays of protein biomarkers play critical roles in clinical diagnostics and biomedical research. Such assays typically employ immunoreagents such as monoclonal antibodies that suffer from several drawbacks, including relatively tedious production, significant batch-to-batch variability, and challenges in site-specific, stoichiometric modification with fluorophores or other labels. One proposed alternative to such immunoreagents, nucleic acid aptamers generated by systematic evolution of ligand by exponential enrichment (SELEX), can be chemically synthesized with much greater ease, precision, and reproducibility than antibodies. However, most aptamers exhibit relatively poor affinity, yielding low sensitivity in the assays employing them. Recently, single molecule recognition through equilibrium Poisson sampling (SiMREPS) has emerged as a platform for detecting proteins and other biomarkers with high sensitivity without requiring high-affinity detection probes. In this manuscript, we demonstrate the applicability and advantages of aptamers as detection probes in SiMREPS as applied to two clinically relevant biomarkers, VEGF165 and IL-8, using a wash-free protocol with limits of detection in the low femtomolar range (3-9 fM). We show that the kinetics of existing RNA aptamers can be rationally optimized for use as SiMREPS detection probes by mutating a single nucleotide in the conserved binding region or by shortening the aptamer sequence. Finally, we demonstrate the detection of endogenous IL-8 from human serum at a concentration below the detection limit of commercial ELISAs.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Alexander Johnson-Buck
- aLight Sciences, Inc., 333 Jackson Plaza Suite 460, Ann Arbor, Michigan, 48103, United States.
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States.
| |
Collapse
|
25
|
Collins JM, Atkinson RAK, Matthews LM, Murray IC, Perry SE, King AE. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal cord circuitry but not disease progression in the mSOD1 G93A mouse model of ALS. Neurobiol Dis 2022; 172:105821. [PMID: 35863521 DOI: 10.1016/j.nbd.2022.105821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
The mechanisms underlying the loss of motor neuron axon integrity in amyotrophic lateral sclerosis (ALS) are unclear. SARM1 has been identified as a genetic risk variant in sporadic ALS, and the SARM1 protein is a key mediator of axon degeneration. To investigate the role of SARM1 in ALS-associated axon degeneration, we knocked out Sarm1 (Sarm1KO) in mSOD1G93ATg (mSOD1) mice. Animals were monitored for ALS disease onset and severity, with motor function assessed at pre-symptomatic and late-stage disease and lumbar spinal cord and sciatic nerve harvested for immunohistochemistry at endpoint (20 weeks). Serum was collected monthly to assess protein concentrations of biomarkers linked to axon degeneration (neurofilament light (NFL) and tau), and astrogliosis (glial fibrillary acidic protein (GFAP)), using single molecule array (Simoa®) technology. Overall, loss of Sarm1 in mSOD1 mice did not slow or delay symptom onset, failed to improve functional declines, and failed to protect motor neurons. Serum NFL levels in mSOD1 mice increased between 8 -12 and 16-20 weeks of age, with the later increase significantly reduced by loss of SARM1. Similarly, loss of SARM1 significantly reduced an increase in serum GFAP between 16 and 20 weeks of age in mSOD1 mice, indicating protection of both global axon degeneration and astrogliosis. In the spinal cord, Sarm1 deletion protected against loss of excitatory VGluT2-positive puncta and attenuated astrogliosis in mSOD1 mice. In the sciatic nerve, absence of SARM1 in mSOD1 mice restored the average area of phosphorylated neurofilament reactivity towards WT levels. Together these data suggest that Sarm1KO in mSOD1 mice is not sufficient to ameliorate functional decline or motor neuron loss but does alter serum biomarker levels and provide protection to axons and glutamatergic synapses. This indicates that treatments targeting SARM1 could warrant further investigation in ALS, potentially as part of a combination therapy.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Lyzette M Matthews
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Isabella C Murray
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Sharn E Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| |
Collapse
|
26
|
Coysh T, Mead S. The Future of Seed Amplification Assays and Clinical Trials. Front Aging Neurosci 2022; 14:872629. [PMID: 35813946 PMCID: PMC9257179 DOI: 10.3389/fnagi.2022.872629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prion-like seeded misfolding of host proteins is the leading hypothesised cause of neurodegenerative diseases. The exploitation of the mechanism in the protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC) assays have transformed prion disease research and diagnosis and have steadily become more widely used for research into other neurodegenerative disorders. Clinical trials in adult neurodegenerative diseases have been expensive, slow, and disappointing in terms of clinical benefits. There are various possible factors contributing to the failure to identify disease-modifying treatments for adult neurodegenerative diseases, some of which include: limited accuracy of antemortem clinical diagnosis resulting in the inclusion of patients with the “incorrect” pathology for the therapeutic; the role of co-pathologies in neurodegeneration rendering treatments targeting one pathology alone ineffective; treatment of the primary neurodegenerative process too late, after irreversible secondary processes of neurodegeneration have become established or neuronal loss is already extensive; and preclinical models used to develop treatments not accurately representing human disease. The use of seed amplification assays in clinical trials offers an opportunity to tackle these problems by sensitively detecting in vivo the proteopathic seeds thought to be central to the biology of neurodegenerative diseases, enabling improved diagnostic accuracy of the main pathology and co-pathologies, and very early intervention, particularly in patients at risk of monogenic forms of neurodegeneration. The possibility of quantifying proteopathic seed load, and its reduction by treatments, is an attractive pharmacodynamic biomarker in the preclinical and early clinical stages of drug development. Here we review some potential applications of seed amplification assays in clinical trials.
Collapse
Affiliation(s)
- Thomas Coysh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
27
|
Fernandes M, Mari L, Chiaravalloti A, Paoli B, Nuccetelli M, Izzi F, Giambrone MP, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Placidi F, Liguori C. 18F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J Neurol 2022; 269:5356-5367. [PMID: 35608659 PMCID: PMC9468130 DOI: 10.1007/s00415-022-11182-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Introduction Dysregulation of cerebral glucose consumption, alterations in cerebrospinal fluid (CSF) biomarkers, and cognitive impairment have been reported in patients with obstructive sleep apnoea (OSA). On these bases, OSA has been considered a risk factor for Alzheimer’s disease (AD). This study aimed to measure cognitive performance, CSF biomarkers, and cerebral glucose consumption in OSA patients and to evaluate the effects of continuous positive airway pressure (CPAP) treatment on these biomarkers over a 12-month period. Methods Thirty-four OSA patients and 34 controls underwent 18F-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET), cognitive evaluation, and CSF analysis. A subgroup of 12 OSA patients treated with beneficial CPAP and performing the 12-month follow-up was included in the longitudinal analysis, and cognitive evaluation and 18F-FDG PET were repeated. Results Significantly reduced glucose consumption was observed in the bilateral praecuneus, posterior cingulate cortex, and frontal areas in OSA patients than controls. At baseline, OSA patients also showed lower β-amyloid42 and higher phosphorylated-tau CSF levels than controls. Increased total tau and phosphorylated tau levels correlated with a reduction in brain glucose consumption in a cluster of different brain areas. In the longitudinal analysis, OSA patients showed an improvement in cognition and a global increase in cerebral 18F-FDG uptake. Conclusions Cognitive impairment, reduced cerebral glucose consumption, and alterations in CSF biomarkers were observed in OSA patients, which may reinforce the hypothesis of AD neurodegenerative processes triggered by OSA. Notably, cognition and brain glucose consumption improved after beneficial CPAP treatment. Further studies are needed to evaluate the long-term effects of CPAP treatment on these AD biomarkers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy
| | - Luisa Mari
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Paoli
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | | | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.,IRCSS Santa Lucia Foundation, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy.,Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy. .,Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
28
|
Younas N, Fernandez Flores LC, Hopfner F, Höglinger GU, Zerr I. A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl Neurodegener 2022; 11:28. [PMID: 35527262 PMCID: PMC9082915 DOI: 10.1186/s40035-022-00301-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of maladies, characterized by progressive loss of neurons. These diseases involve an intricate pattern of cross-talk between different types of cells to maintain specific signaling pathways. A component of such intercellular cross-talk is the exchange of various types of extracellular vesicles (EVs). Exosomes are a subset of EVs, which are increasingly being known for the role they play in the pathogenesis and progression of neurodegenerative diseases, e.g., synucleinopathies and tauopathies. The ability of the central nervous system exosomes to cross the blood–brain barrier into blood has generated enthusiasm in their study as potential biomarkers. However, the lack of standardized, efficient, and ultra-sensitive methods for the isolation and detection of brain-derived exosomes has hampered the development of effective biomarkers. Exosomes mirror heterogeneous biological changes that occur during the progression of these incurable illnesses, potentially offering a more comprehensive outlook of neurodegenerative disease diagnosis, progression and treatment. In this review, we aim to discuss the challenges and opportunities of peripheral biofluid-based brain-exosomes in the diagnosis and biomarker discovery of Alzheimer’s and Parkinson’s diseases. In the later part, we discuss the traditional and emerging methods used for the isolation of exosomes and compare their advantages and disadvantages in clinical settings.
Collapse
|
29
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
30
|
Solanky D, Fields JA, Iudicello JE, Ellis RJ, Franklin D, Clifford DB, Gelman BB, Marra CM, Morgello S, Rubin LH, Grant I, Heaton RK, Letendre SL, Mehta SR. Higher buccal mitochondrial DNA and mitochondrial common deletion number are associated with markers of neurodegeneration and inflammation in cerebrospinal fluid. J Neurovirol 2022; 28:281-290. [PMID: 35157246 PMCID: PMC9352370 DOI: 10.1007/s13365-022-01052-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/03/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Human immunodeficiency virus (HIV) infection is potentially associated with premature aging, but demonstrating this is difficult due to a lack of reliable biomarkers. The mitochondrial (mt) DNA "common deletion" mutation (mtCDM) is a 4977-bp deletion associated with aging and neurodegenerative diseases. We examined how mtDNA and mtCDM correlate with markers of neurodegeneration and inflammation in people with and without HIV (PWH and PWOH). Data from 149 adults were combined from two projects involving PWH (n = 124) and PWOH (n = 25). We measured buccal mtDNA and mtCDM by digital droplet PCR and compared them to disease and demographic characteristics and soluble biomarkers in cerebrospinal fluid (CSF) and blood measured by immunoassay. Participants had a median age of 52 years, with 53% white and 81% men. Median mtDNA level was 1,332 copies/cell (IQR 1,201-1,493) and median mtCDM level was 0.36 copies × 102/cell (IQR 0.31-0.42); both were higher in PWH. In the best model adjusting for HIV status and demographics, higher mtDNA levels were associated with higher CSF amyloid-β 1-42 and 8-hydroxy-2'-deoxyguanosine and higher mtCDM levels were associated with higher plasma soluble tumor necrosis factor receptor II. The differences in mtDNA markers between PWH and PWOH support potential premature aging in PWH. Our findings suggest mtDNA changes in oral tissues may reflect CNS processes, allowing the use of inexpensive and easily accessible buccal biospecimens as a screening tool for CSF inflammation and neurodegeneration. Confirmatory and mechanistic studies on mt genome alterations by HIV and ART may identify interventions to prevent or treat neurodegenerative complications.
Collapse
Affiliation(s)
- Dipesh Solanky
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jerel A Fields
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jennifer E Iudicello
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Donald Franklin
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David B Clifford
- Division of Infectious Diseases, Washington University at St. Louis, St. Louis, MO, 63110, USA
| | - Benjamin B Gelman
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Christina M Marra
- Deparment of Neurology, University of Washington, Seattle, WA, 98104, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mt, Sinai, New York, NY, 10029, USA
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Scott L Letendre
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sanjay R Mehta
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Medicine, VA San Diego Healthcare System, La Jolla, CA, 92161, USA.
- Infectious Diseases Division, VA San Diego Healthcare System, La Jolla, 92161, USA.
| |
Collapse
|
31
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
32
|
Janelidze S, Palmqvist S, Leuzy A, Stomrud E, Verberk IMW, Zetterberg H, Ashton NJ, Pesini P, Sarasa L, Allué JA, Teunissen CE, Dage JL, Blennow K, Mattsson-Carlgren N, Hansson O. Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma Aβ42/Aβ40 and p-tau. Alzheimers Dement 2022; 18:283-293. [PMID: 34151519 DOI: 10.1002/alz.12395] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION We studied usefulness of combining blood amyloid beta (Aβ)42/Aβ40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aβ deposition in different stages of early Alzheimer's disease (AD). METHODS Plasma biomarkers were measured using mass spectrometry (Aβ42/Aβ40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). RESULTS In CU, a combination of plasma Aβ42/Aβ40 and p-tau217 detected abnormal brain Aβ status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or Aβ42/Aβ40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyapps.io/PredictABplasma/). DISCUSSION A combination of plasma Aβ42/Aβ40 and p-tau217 discriminated Aβ status with relatively high accuracy, whereas p-tau217 showed strongest associations with Aβ pathology in MCI but not in CU.
Collapse
Affiliation(s)
- Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | | | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
33
|
Jiang Y, Zhou X, Ip FC, Chan P, Chen Y, Lai NC, Cheung K, Lo RM, Tong EP, Wong BW, Chan AL, Mok VC, Kwok TC, Mok KY, Hardy J, Zetterberg H, Fu AK, Ip NY. Large-scale plasma proteomic profiling identifies a high-performance biomarker panel for Alzheimer's disease screening and staging. Alzheimers Dement 2022; 18:88-102. [PMID: 34032364 PMCID: PMC9292367 DOI: 10.1002/alz.12369] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood proteins are emerging as candidate biomarkers for Alzheimer's disease (AD). We systematically profiled the plasma proteome to identify novel AD blood biomarkers and develop a high-performance, blood-based test for AD. METHODS We quantified 1160 plasma proteins in a Hong Kong Chinese cohort by high-throughput proximity extension assay and validated the results in an independent cohort. In subgroup analyses, plasma biomarkers for amyloid, tau, phosphorylated tau, and neurodegeneration were used as endophenotypes of AD. RESULTS We identified 429 proteins that were dysregulated in AD plasma. We selected 19 "hub proteins" representative of the AD plasma protein profile, which formed the basis of a scoring system that accurately classified clinical AD (area under the curve = 0.9690-0.9816) and associated endophenotypes. Moreover, specific hub proteins exhibit disease stage-dependent dysregulation, which can delineate AD stages. DISCUSSION This study comprehensively profiled the AD plasma proteome and serves as a foundation for a high-performance, blood-based test for clinical AD screening and staging.
Collapse
Affiliation(s)
- Yuanbing Jiang
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development; Shenzhen–Hong Kong Institute of Brain Science, HKUST Shenzhen Research InstituteShenzhenChina
| | - Fanny C. Ip
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development; Shenzhen–Hong Kong Institute of Brain Science, HKUST Shenzhen Research InstituteShenzhenChina
| | - Philip Chan
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Yu Chen
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development; Shenzhen–Hong Kong Institute of Brain Science, HKUST Shenzhen Research InstituteShenzhenChina
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Nicole C.H. Lai
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Kit Cheung
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Ronnie M.N. Lo
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Estella P.S. Tong
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Bonnie W.Y. Wong
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Andrew L.T. Chan
- Divisions of Neurology and GeriatricsDepartment of MedicineQueen Elizabeth HospitalHong KongChina
| | - Vincent C.T. Mok
- Gerald Choa Neuroscience CentreLui Che Woo Institute of Innovative MedicineTherese Pei Fong Chow Research Centre for Prevention of DementiaDivision of NeurologyDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
| | - Timothy C.Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of DementiaDivision of GeriatricsDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
| | - Kin Y. Mok
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - John Hardy
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Henrik Zetterberg
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Amy K.Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development; Shenzhen–Hong Kong Institute of Brain Science, HKUST Shenzhen Research InstituteShenzhenChina
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development; Shenzhen–Hong Kong Institute of Brain Science, HKUST Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
34
|
Computer-based Eye-tracking Analysis of King-Devick Test Differentiates Persons With Idiopathic Normal Pressure Hydrocephalus From Cognitively Unimpaired. Alzheimer Dis Assoc Disord 2022; 36:340-346. [PMID: 36219131 PMCID: PMC9698082 DOI: 10.1097/wad.0000000000000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Functional defects in eye movements and reduced reading speed in neurodegenerative diseases represent a potential new biomarker to support clinical diagnosis. We investigated whether computer-based eye-tracking (ET) analysis of the King-Devick (KD) test differentiates persons with idiopathic normal pressure hydrocephalus (iNPH) from cognitively unimpaired [control (CO)] and persons with Alzheimer's disease (AD). METHODS We recruited 68 participants (37 CO, 10 iNPH, and 21 AD) who underwent neurological examination, the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological test battery (CERAD-NB), and a Clinical Dementia Rating interview. The KD reading test was performed using computer-based ET. We analyzed the total time used for the reading test, number of errors, durations of fixation and saccade, and saccade amplitudes. RESULTS The iNPH group significantly differed from the CO group in the KD test mean total time (CO 69.3 s, iNPH 87.3 s; P ≤0.009) and eye-tracking recording of the mean saccade amplitude (CO 3.6 degree, iNPH 3.2 degree; P ≤0.001). The AD group significantly differed from the CO group in each tested parameter. No significant differences were detected between the iNPH and AD groups. CONCLUSION For the first time, we demonstrated altered reading ability and saccade amplitudes in patients with iNPH.
Collapse
|
35
|
Xu J, Jin X, Ye Z, Wang D, Zhao H, Tong Z. Opposite Roles of Co-enzyme Q10 and Formaldehyde in Neurodegenerative Diseases. Am J Alzheimers Dis Other Demen 2022; 37:15333175221143274. [PMID: 36455136 PMCID: PMC10624093 DOI: 10.1177/15333175221143274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Most of neurodegenerative diseases (NDD) have no cure. The common etiology of neurodegenerations is unclear. Air pollutant-gaseous formaldehyde is notoriously known to induce demyelination and cognitive impairments. Unexpectedly, an amount of formaldehyde has been detected in the brains. Multiple factors can induce the generation and accumulation of endogenous formaldehyde. Excessive formaldehyde can induce oxidative stress to generate H2O2; in turn, H2O2 promote formaldehyde production. Clinical investigations have shown that an abnormal high level of formaldehyde but low level of coenzyme Q10 (coQ10) was observed in patients with NDD. Further studies have proven that excessive formaldehyde directly inactivates coQ10, reduces the ATP generation, enhances oxidative stress, initiates inflammation storm, induces demyelination; subsequently, it results in neurodegeneration. Although the low water solubility of coQ10 limits its clinical application, nanomicellar water-soluble coQ10 exhibits positive therapeutical effects. Hence, nanopackage of coQ10 may be a promising strategy for treating NDD.
Collapse
Affiliation(s)
- Jinan Xu
- Institute of Ningbo, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xingjiang Jin
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zuting Ye
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Hang Zhao
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zhiqian Tong
- Institute of Ningbo, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Converging evidence suggest axonal damage is implicated in depression and cognitive function. Neurofilament light protein, measured within serum and cerebrospinal fluid, may be a biomarker of axonal damage. This article examines the emerging evidence implicating neurofilament light protein in depression and cognitive function. RECENT FINDINGS Preliminary cross-sectional and case-control studies in cohorts with depression have yielded inconsistent results regarding the association between neurofilament light protein and symptomatology. However, these studies had methodological limitations, requiring further investigation. Importantly, neurofilament light protein concentrations may be a marker of progression of cognitive decline and may be associated with cognitive performance within cognitively intact cohorts. SUMMARY Axonal damage is implicated in the neuropathology of depression and cognitive dysfunction. Consequently, neurofilament light protein is an emerging biomarker with potential in depression and cognitive function. Results are more consistent for cognition, requiring more research to assess neurofilament light protein in depression as well as other psychiatric disorders. Future longitudinal studies are necessary to determine whether neurofilament light protein can predict the onset and progression of depression and measure the effectiveness of potential psychiatric interventions and medications.
Collapse
|
37
|
Garland P, Morton M, Zolnourian A, Durnford A, Gaastra B, Toombs J, Heslegrave AJ, More J, Zetterberg H, Bulters DO, Galea I. Neurofilament light predicts neurological outcome after subarachnoid haemorrhage. Brain 2021; 144:761-768. [PMID: 33517369 PMCID: PMC8041040 DOI: 10.1093/brain/awaa451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
To improve outcome prediction following subarachnoid haemorrhage (SAH), we sought a biomarker integrating early brain injury and multiple secondary pathological processes in a prospective study of 42 non-traumatic SAH patients and 19 control individuals. Neurofilament light (NF-L) was elevated in CSF and serum following SAH. CSF and serum NF-L on Days 1–3 post-SAH strongly predicted modified Rankin score at 6 months, independent of World Federation of Neurosurgical Societies (WFNS) score. NF-L from Day 4 onwards also had a profound impact on outcome. To link NF-L to a SAH-specific pathological process, we investigated NF-L’s relationship with extracellular haemoglobin. Most CSF haemoglobin was not complexed with haptoglobin, yet was able to be bound by exogenous haptoglobin i.e. haemoglobin was scavengeable. CSF scavengeable haemoglobin was strongly predictive of subsequent CSF NF-L. Next, we investigated NF-L efflux from the brain after SAH. Serum and CSF NF-L correlated positively. The serum/CSF NF-L ratio was lower in SAH versus control subjects, in keeping with glymphatic efflux dysfunction after SAH. CSF/serum albumin ratio was increased following SAH versus controls. The serum/CSF NF-L ratio correlated negatively with the CSF/serum albumin ratio, indicating that transfer of the two proteins across the blood–brain interface is dissociated. In summary, NF-L is a strong predictive marker for SAH clinical outcome, adding value to the WFNS score, and is a promising surrogate end point in clinical trials.
Collapse
Affiliation(s)
- Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matt Morton
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ardalan Zolnourian
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Durnford
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ben Gaastra
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jamie Toombs
- UK Dementia Research Institute, University College London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute, University College London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - John More
- R&D, Bio Products Laboratory Limited, Elstree, Hertfordshire, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Diederik O Bulters
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
38
|
Silva-Spínola A, Lima M, Leitão MJ, Durães J, Tábuas-Pereira M, Almeida MR, Santana I, Baldeiras I. Serum neurofilament light chain as a surrogate of cognitive decline in sporadic and familial frontotemporal dementia. Eur J Neurol 2021; 29:36-46. [PMID: 34375485 DOI: 10.1111/ene.15058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Neurofilament light chain (NfL) has recently been proposed as a promising biomarker in frontotemporal dementia (FTD). We investigated the correlation of both cerebrospinal fluid (CSF) and serum NfL with detailed neuropsychological data and cognitive decline in a cohort of sporadic and familial FTD. METHODS CSF and serum NfL, as well as conventional CSF Alzheimer's disease (AD) biomarkers (Aβ42, t-Tau, p-Tau181), were determined in 63 FTD patients (30 sporadic-FTD, 20 with progranulin (GRN) mutations [FTD-GRN], 13 with chromosome 9 open reading frame 72 [C9orf72] expansions [C9orf72-FTD]), 37 AD patients, and 31 neurologic controls. Serum NfL was also quantified in 37 healthy individuals. Correlations between baseline CSF and serum NfL levels, standardized neuropsychological tests, and the rate of cognitive decline in FTD patients were assessed. RESULTS CSF and serum NfL presented with significantly higher levels in FTD than in AD patients and both control groups. Within FTD subtypes, genetic cases, and particularly FTD-GRN, had higher CSF and serum NfL levels. Significant correlations between NfL levels and overall cognitive function, abstract reasoning (CSF and serum), executive functions, memory, and language (serum) were found. A relationship between increased baseline CSF and serum NfL and a decay in cognitive performance over time was also observed. CONCLUSIONS Our findings highlight the potential of serum NfL as a useful surrogate end point of disease severity in upcoming targeted treatments.
Collapse
Affiliation(s)
- Anuschka Silva-Spínola
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Department of Informatics Engineering, Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Psychology and Educational Sciences, Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Coimbra, Portugal
| | - Maria João Leitão
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Durães
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Tábuas-Pereira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Almeida
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Borroni B, Graff C, Hardiman O, Ludolph AC, Moreno F, Otto M, Piccininni M, Remes AM, Rowe JB, Seelaar H, Stefanova E, Traykov L, Logroscino G. FRONTotemporal dementia Incidence European Research Study-FRONTIERS: Rationale and design. Alzheimers Dement 2021; 18:498-506. [PMID: 34338439 PMCID: PMC9291221 DOI: 10.1002/alz.12414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/22/2021] [Accepted: 06/09/2021] [Indexed: 01/26/2023]
Abstract
Introduction The incidence of Frontotemporal Lobar Degeneration (FTLD)–related disorders and their characteristics are not well known. The “FRONTotemporal dementia Incidence European Research Study” (FRONTIERS) is designed to fill this gap. Methods FRONTIERS is a European prospective, observational population study based on multinational registries. FRONTIERS comprises 11 tertiary referral centers across Europe with long‐lasting experience in FTLD‐related disorders and comprehensive regional referral networks, enabling incidence estimation over well‐defined geographical areas. Endpoints The primary endpoints are (1) the incidence of FTLD‐related disorders across Europe; (2) geographic trends of FTLD‐related disorders; (3) the distribution of FTLD phenotypes in different populations and ethnicities in Europe; (4) inheritance of FTLD‐related disorders, including the frequencies of monogenic FTLD as compared to overall disease burden; and (5) implementation of data banking for clinical and biological material. Expected impacts FRONTIERS will improve the understanding of FTLD‐related disorders and their epidemiology, promoting appropriate public health service policies and treatment strategies.
Collapse
Affiliation(s)
- Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, ASST Spedali Civili Brescia and University of Brescia, Brescia, Italy
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Albert C Ludolph
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Fermin Moreno
- Department of Neurology, Cognitive Disorders Unit, Hospital Universitario Donostia, San Sebastian, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Marco Piccininni
- Institute of Public Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - James B Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Harro Seelaar
- Department of Neurology and Alzheimer center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elka Stefanova
- Faculty of Medicine, Neurology Clinic, University of Belgrade, University Clinical Center Serbia, Serbia
| | - Latchezar Traykov
- Department of Neurology, UH "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione di Culto e Religione, Cardinale Giovanni Panico, University of Bari-Aldo Moro, Bari, Italy
| | | |
Collapse
|
40
|
Lagarde J, Olivieri P, Bottlaender M, Sarazin M. Diagnosi clinicolaboratoristica della malattia di Alzheimer. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Zhang M, Bian Z. The Emerging Role of Circular RNAs in Alzheimer's Disease and Parkinson's Disease. Front Aging Neurosci 2021; 13:691512. [PMID: 34322012 PMCID: PMC8311738 DOI: 10.3389/fnagi.2021.691512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two neurodegenerative diseases (NDDs) commonly found in elderly patients that are difficult to diagnose and lack effective treatment. Currently, the available diagnostic methods for these two NDDs do not meet clinical diagnostic expectations. Circular RNAs (circRNAs) are a diverse group of endogenous non-coding RNAs (ncRNAs) found in eukaryotic cells. Emerging studies suggest that altered expression of circRNAs is involved in the pathological processes of NDDs. CircRNAs could also prove to be promising biomarkers for the early diagnosis of NDDs such as AD and PD. Growing evidence has improved our knowledge of the roles of circRNAs in NDDs, which may lead to new therapeutic approaches that target transcription for preventing neurodegeneration. In this review, we describe the formation mechanisms and functions of circRNAs as well as methods of validation. We also discuss the emerging role of circRNAs in the pathophysiology of AD and PD and their potential value as biomarkers and therapeutic targets for AD and PD in the future.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
43
|
Bergström S, Remnestål J, Yousef J, Olofsson J, Markaki I, Carvalho S, Corvol JC, Kultima K, Kilander L, Löwenmark M, Ingelsson M, Blennow K, Zetterberg H, Nellgård B, Brosseron F, Heneka MT, Bosch B, Sanchez-Valle R, Månberg A, Svenningsson P, Nilsson P. Multi-cohort profiling reveals elevated CSF levels of brain-enriched proteins in Alzheimer's disease. Ann Clin Transl Neurol 2021; 8:1456-1470. [PMID: 34129723 PMCID: PMC8283172 DOI: 10.1002/acn3.51402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Decreased amyloid beta (Aβ) 42 together with increased tau and phospho-tau in cerebrospinal fluid (CSF) is indicative of Alzheimer's disease (AD). However, the molecular pathophysiology underlying the slowly progressive cognitive decline observed in AD is not fully understood and it is not known what other CSF biomarkers may be altered in early disease stages. METHODS We utilized an antibody-based suspension bead array to analyze levels of 216 proteins in CSF from AD patients, patients with mild cognitive impairment (MCI), and controls from two independent cohorts collected within the AETIONOMY consortium. Two additional cohorts from Sweden were used for biological verification. RESULTS Six proteins, amphiphysin (AMPH), aquaporin 4 (AQP4), cAMP-regulated phosphoprotein 21 (ARPP21), growth-associated protein 43 (GAP43), neurofilament medium polypeptide (NEFM), and synuclein beta (SNCB) were found at increased levels in CSF from AD patients compared with controls. Next, we used CSF levels of Aβ42 and tau for the stratification of the MCI patients and observed increased levels of AMPH, AQP4, ARPP21, GAP43, and SNCB in the MCI subgroups with abnormal tau levels compared with controls. Further characterization revealed strong to moderate correlations between these five proteins and tau concentrations. INTERPRETATION In conclusion, we report six extensively replicated candidate biomarkers with the potential to reflect disease development. Continued evaluation of these proteins will determine to what extent they can aid in the discrimination of MCI patients with and without an underlying AD etiology, and if they have the potential to contribute to a better understanding of the AD continuum.
Collapse
Affiliation(s)
- Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jamil Yousef
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Carvalho
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Assistance-Publique Hôpitaux de Paris, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Assistance-Publique Hôpitaux de Paris, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, Paris, France
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Bengt Nellgård
- Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg
| | - Frederic Brosseron
- Universitätsklinikum Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Beatriz Bosch
- Alzheimer's and other cognitive disorders Unit. Service of Neurology, Hospital Clínic de Barcelona, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's and other cognitive disorders Unit. Service of Neurology, Hospital Clínic de Barcelona, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
44
|
Keep RF, Jones HC, Drewes LR. Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood-brain barrier and neurovascular unit. Fluids Barriers CNS 2021; 18:24. [PMID: 34020685 PMCID: PMC8138848 DOI: 10.1186/s12987-021-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothelium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the recently completed Fluids Barriers CNS thematic series entitled, Advances in in vitro modeling of the bloodbrain barrier and neurovascular unit. Such in vitro modeling is progressing rapidly.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA. .,Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, R5018 BSRB, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
45
|
Haseloff RF, Trudel S, Birke R, Schümann M, Krause E, Gomila C, Heard JM, Blasig IE, Ausseil J. Surrogate Cerebrospinal Fluid Biomarkers for Assessing the Efficacy of Gene Therapy in Hurler Syndrome. Front Neurol 2021; 12:640547. [PMID: 34054689 PMCID: PMC8155356 DOI: 10.3389/fneur.2021.640547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of the lysosomal hydroxylase alpha-l-iduronidase (IDUA). The resulting accumulation of dermatan and heparan sulfate induces intellectual disabilities and pre-mature death, and only a few treatment options are available. In a previous study, we demonstrated the feasibility, safety, and efficacy of gene therapy by injecting recombinant adeno-associated viral vector serotype (AAV)2/5-IDUA into the brain of a canine model of MPS I. We report on a quantitative proteomic analysis of control dogs and untreated dogs with MPS I cerebrospinal fluid (CSF) that had been collected throughout the study in the MPS I dogs. Mass spectrometry (MS) analysis identified numerous proteins present at altered levels in MPS I CSF samples. Quantitative immunoblotting, performed on CSF from healthy controls, untreated MPS I dogs, and MPS I dogs early treated and late treated by gene therapy, confirmed the MS data for a subset of proteins with higher abundance (neuronal pentraxin 1, chitinase 3-like 1, monocyte differentiation antigen CD14, and insulin-like growth factor-binding protein 2). Scoring of the results shows that the expression levels of these proteins are close to those of the control group for dogs that underwent gene therapy early in life but not for older treated animals. Our results disclose four novel predictive biomarker candidates that might be valuable in monitoring the course of the neurological disease in MPS patients at diagnosis, during clinical follow-up, and after treatment.
Collapse
Affiliation(s)
- Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Stephanie Trudel
- INSERM U1043, Centre de Physiopathologie de Toulouse-Purpan, Université Toulouse III Paul Sabatier, Toulouse, France.,Service de Biochimie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Ramona Birke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Michael Schümann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Cathy Gomila
- INSERM U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jérôme Ausseil
- INSERM U1043, Centre de Physiopathologie de Toulouse-Purpan, Université Toulouse III Paul Sabatier, Toulouse, France.,Service de Biochimie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
46
|
Neurofilaments as Emerging Biomarkers of Neuroaxonal Damage to Differentiate Behavioral Frontotemporal Dementia from Primary Psychiatric Disorders: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11050754. [PMID: 33922390 PMCID: PMC8146697 DOI: 10.3390/diagnostics11050754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
The behavioral variant of frontotemporal dementia (bvFTD) is a clinical syndrome resulting from various causes of neuronal demises associated with frontotemporal lobar degeneration. Symptoms include behavioral and personality changes, social cognitive impairment, and executive function deficits. There is a significant clinical overlap between this syndrome and various primary psychiatric disorders (PPD). Structural and functional neuroimaging are considered helpful to support the diagnosis of bvFTD, but their sensitivity and specificity remain imperfect. There is growing evidence concerning the potential of neurofilaments as biomarkers reflecting axonal and neuronal lesions. Ultrasensitive analytic platforms have recently enabled neurofilament light chains’ (NfL) detection not only from cerebrospinal fluid but also from peripheral blood samples in FTD patients. In this short review, we present recent advances and perspectives for the use of NfL assessments as biomarkers of neuroaxonal damage to differentiate bvFTD from primary psychiatric disorders.
Collapse
|
47
|
Bellomo G, Indaco A, Chiasserini D, Maderna E, Paolini Paoletti F, Gaetani L, Paciotti S, Petricciuolo M, Tagliavini F, Giaccone G, Parnetti L, Di Fede G. Machine Learning Driven Profiling of Cerebrospinal Fluid Core Biomarkers in Alzheimer's Disease and Other Neurological Disorders. Front Neurosci 2021; 15:647783. [PMID: 33867925 PMCID: PMC8044304 DOI: 10.3389/fnins.2021.647783] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Amyloid-beta (Aβ) 42/40 ratio, tau phosphorylated at threonine-181 (p-tau), and total-tau (t-tau) are considered core biomarkers for the diagnosis of Alzheimer’s disease (AD). The use of fully automated biomarker assays has been shown to reduce the intra- and inter-laboratory variability, which is a critical factor when defining cut-off values. The calculation of cut-off values is often influenced by the composition of AD and control groups. Indeed, the clinically defined AD group may include patients affected by other forms of dementia, while the control group is often very heterogeneous due to the inclusion of subjects diagnosed with other neurological diseases (OND). In this context, unsupervised machine learning approaches may overcome these issues providing unbiased cut-off values and data-driven patient stratification according to the sole distribution of biomarkers. In this work, we took advantage of the reproducibility of automated determination of the CSF core AD biomarkers to compare two large cohorts of patients diagnosed with different neurological disorders and enrolled in two centers with established expertise in AD biomarkers. We applied an unsupervised Gaussian mixture model clustering algorithm and found that our large series of patients could be classified in six clusters according to their CSF biomarker profile, some presenting a typical AD-like profile and some a non-AD profile. By considering the frequencies of clinically defined OND and AD subjects in clusters, we subsequently computed cluster-based cut-off values for Aβ42/Aβ40, p-tau, and t-tau. This approach promises to be useful for large-scale biomarker studies aimed at providing efficient biochemical phenotyping of neurological diseases.
Collapse
Affiliation(s)
- Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Indaco
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Davide Chiasserini
- Section of Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emanuela Maderna
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maya Petricciuolo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Fabrizio Tagliavini
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giorgio Giaccone
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Di Fede
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| |
Collapse
|
48
|
Xu MM, Zhou MT, Li SW, Zhen XC, Yang S. Glycoproteins as diagnostic and prognostic biomarkers for neurodegenerative diseases: A glycoproteomic approach. J Neurosci Res 2021; 99:1308-1324. [PMID: 33634546 DOI: 10.1002/jnr.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are incurable and can develop progressively debilitating disorders, including dementia and ataxias. Alzheimer's disease and Parkinson's disease are the most common NDs that mainly affect the elderly people. There is an urgent need to develop new diagnostic tools so that patients can be accurately stratified at an early stage. As a common post-translational modification, protein glycosylation plays a key role in physiological and pathological processes. The abnormal changes in glycosylation are associated with the altered biological pathways in NDs. The pathogenesis-related proteins, like amyloid-β and microtubule-associated protein tau, have altered glycosylation. Importantly, specific glycosylation changes in cerebrospinal fluid, blood and urine are valuable for revealing neurodegeneration in the early stages. This review describes the emerging biomarkers based on glycoproteomics in NDs, highlighting the potential applications of glycoprotein biomarkers in the early detection of diseases, monitoring of the disease progression, and measurement of the therapeutic responses. The mass spectrometry-based strategies for characterizing glycoprotein biomarkers are also introduced.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
49
|
Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 2021; 4:63. [PMID: 33437055 PMCID: PMC7803963 DOI: 10.1038/s42003-020-01583-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The study of metabolomics and disease has enabled the discovery of new risk factors, diagnostic markers, and drug targets. For neurological and psychiatric phenotypes, the cerebrospinal fluid (CSF) is of particular importance. However, the CSF metabolome is difficult to study on a large scale due to the relative complexity of the procedure needed to collect the fluid. Here, we present a metabolome-wide association study (MWAS), which uses genetic and metabolomic data to impute metabolites into large samples with genome-wide association summary statistics. We conduct a metabolome-wide, genome-wide association analysis with 338 CSF metabolites, identifying 16 genotype-metabolite associations (metabolite quantitative trait loci, or mQTLs). We then build prediction models for all available CSF metabolites and test for associations with 27 neurological and psychiatric phenotypes, identifying 19 significant CSF metabolite-phenotype associations. Our results demonstrate the feasibility of MWAS to study omic data in scarce sample types.
Collapse
Grants
- R01 AG037639 NIA NIH HHS
- UL1 TR000427 NCATS NIH HHS
- T15 LM007359 NLM NIH HHS
- T32 LM012413 NLM NIH HHS
- RF1 AG027161 NIA NIH HHS
- T32 AG000213 NIA NIH HHS
- P2C HD047873 NICHD NIH HHS
- UL1 TR002373 NCATS NIH HHS
- P30 AG062715 NIA NIH HHS
- P50 AG033514 NIA NIH HHS
- R01 AG027161 NIA NIH HHS
- R01 AG054047 NIA NIH HHS
- P30 AG017266 NIA NIH HHS
- R21 AG067092 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
- NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- This research is supported by National Institutes of Health (NIH) grants R01AG27161 (Wisconsin Registry for Alzheimer Prevention: Biomarkers of Preclinical AD), R01AG054047 (Genomic and Metabolomic Data Integration in a Longitudinal Cohort at Risk for Alzheimer’s Disease), R21AG067092 (Identifying Metabolomic Risk Factors in Plasma and Cerebrospinal Fluid for Alzheimer’s Disease), R01AG037639 (White Matter Degeneration: Biomarkers in Preclinical Alzheimer’s Disease), P30AG017266 (Center for Demography of Health and Aging), and P50AG033514 and P30AG062715 (Wisconsin Alzheimer’s Disease Research Center Grant), the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, State of Wisconsin, the Clinical and Translational Science Award (CTSA) program through the NIH National Center for Advancing Translational Sciences (NCATS) grant UL1TR000427, and the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. This research was supported in part by the Intramural Research Program of the National Institute on Aging. Computational resources were supported by a core grant to the Center for Demography and Ecology at the University of Wisconsin-Madison (P2CHD047873). Author DJP was supported by an NLM training grant to the Bio-Data Science Training Program (T32LM012413). Author BFD was supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM 5T15LM007359). Author YKD was supported by a training grant from the National Institute on Aging (T32AG000213). Author HK was supported by National Science Foundation (NSF) grant DMS-1811414 (Theory and Methods for Inferring Causal Effects with Mendelian Randomization).
Collapse
Affiliation(s)
- Daniel J Panyard
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI, 53726, USA
| | - Kyeong Mo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Burcu F Darst
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, 90033, USA
| | - Yuetiva K Deming
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI, 53726, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
| | - Xiaoyuan Zhong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI, 53726, USA
| | - Yuchang Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI, 53726, USA
| | - Hyunseung Kang
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI, 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI, 53726, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI, 53726, USA.
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
50
|
Álvarez I, Diez-Fairen M, Aguilar M, González JM, Ysamat M, Tartari JP, Carcel M, Alonso A, Brix B, Arendt P, Pastor P. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol 2020; 28:1142-1152. [PMID: 33236496 DOI: 10.1111/ene.14658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Recently, some emerging cerebrospinal fluid (CSF) markers have been proposed as diagnostic tools for Alzheimer disease (AD) that can have an effect on disease progression. We analyze the accuracy of these CSF markers for diagnosis of AD in reference to brain amyloid positron emission tomography (PET). We also investigated whether they help in differentiating AD from other dementias and examined their influence in tracing the progression to dementia. METHODS Amyloid-β (Aβ) 1-42, total tau (t-tau), phosphorylated tau, Aβ40 , Aβ38 , beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), neurogranin (ng), phosphorylated neurofilament heavy-chain, and α-synuclein (α-syn) CSF levels were analyzed in 319 subjects, among whom 57 also underwent an amyloid PET scan. We also analyzed longitudinal clinical data from 239 subjects. RESULTS Emerging CSF markers, especially ng/BACE-1 ratio (area under the curve = 0.77) and their combinations with core AD CSF markers (all AUCs >0.85), showed high accuracy to discriminate amyloid PET positivity. Subjects with AD had higher CSF BACE-1, ng, and α-syn levels than those with non-AD dementia. CSF t-tau/α-syn ratio was higher in subjects with dementia with Lewy bodies than in those with frontotemporal dementia. Most emerging/core AD ratios predicted a faster conversion from mild cognitive impairment (MCI) stage to AD and appeared to be helpful when core AD CSF markers were discordant. In addition, the rate of cognitive decline was associated with all CSF core AD markers, several emerging/core AD two-marker ratios, and CSF ng levels. CONCLUSIONS These results suggest that emerging biomarkers in conjunction with core AD markers improve diagnosis of AD, are associated with the conversion from MCI into AD, and predict a faster progression of dementia.
Collapse
Affiliation(s)
- Ignacio Álvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Jose Manuel González
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Montse Ysamat
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Juan Pablo Tartari
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Maria Carcel
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Britta Brix
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Philipp Arendt
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| |
Collapse
|