1
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Koutromanos I, Legaki E, Gazouli M, Vasilopoulos E, Kouzoupis A, Tzavellas E. Gut microbiome in alcohol use disorder: Implications for health outcomes and therapeutic strategies-a literature review. World J Methodol 2024; 14:88519. [PMID: 38577203 PMCID: PMC10989405 DOI: 10.5662/wjm.v14.i1.88519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Alcohol use disorder (AUD) represents a major public health issue which affects millions of people globally and consist a chronic relapsing condition associated with substantial morbidity and mortality. The gut microbiome plays a crucial role in maintaining overall health and has emerged as a significant contributor to the pathophysiology of various psychiatric disorders. Recent evidence suggests that the gut microbiome is intimately linked to the development and progression of AUD, with alcohol consumption directly impacting its composition and function. This review article aims to explore the intricate relationship between the gut microbiome and AUD, focusing on the implications for mental health outcomes and potential therapeutic strategies. We discuss the bidirectional communication between the gut microbiome and the brain, highlighting the role of microbiota-derived metabolites in neuroinflammation, neurotransmission, and mood regulation. Furthermore, we examine the influence of AUD-related factors, such as alcohol-induced gut dysbiosis and increased intestinal permeability, on mental health outcomes. Finally, we explore emerging therapeutic avenues targeting the gut microbiome in the management of AUD, including prebiotics, probiotics, and fecal microbiota transplantation. Understanding the complex interplay between the gut microbiome and AUD holds promise for developing novel interventions that could improve mental health outcomes in individuals with AUD.
Collapse
Affiliation(s)
- Ilias Koutromanos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Evangelia Legaki
- Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Anastasios Kouzoupis
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
3
|
Koh AP, Smith MI, Dando R. Bitter taste function-related genes are implicated in the behavioral association between taste preference and ethanol preference in male mice. Physiol Behav 2024; 276:114473. [PMID: 38262572 DOI: 10.1016/j.physbeh.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.
Collapse
Affiliation(s)
- Anna P Koh
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Molly I Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
4
|
Puga T, Liu Y, Xiao P, Dai R, Dai HD. Genetic and environmental influence on alcohol intent and alcohol sips among U.S. children-Effects across sex, race, and ethnicity. PLoS One 2024; 19:e0298456. [PMID: 38359015 PMCID: PMC10868864 DOI: 10.1371/journal.pone.0298456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Alcohol intent (the susceptibility to initiating alcohol use) and alcohol sips (the initiation of alcohol) in youth are a multifactorial puzzle with many components. This research aims to examine the connection between genetic and environmental factors across sex, race and ethnicity. METHODS Data was obtained from the twin hub of the Adolescent Brain Cognitive Development (ABCD) study at baseline (2016-2018). Variance component models were conducted to dissect the additive genetic (A), common (C) and unique environmental (E) effects on alcohol traits. The proportion of the total alcohol phenotypic variation attributable to additive genetic factors is reported as heritability (h2). RESULTS The sample (n = 1,772) included an approximately equal male-female distribution. The 886 same-sex twin pairs were 60.4% dizygotic (DZ), 39.6% monozygotic (MZ), 65.4% non-Hispanic Whites, 13.9% non-Hispanic Blacks, 10.8% of Hispanics with a mean age of 121.2 months. Overall, genetic predisposition was moderate for alcohol intent (h2 = 28%, p = .006) and low for alcohol initiation (h2 = 4%, p = 0.83). Hispanics (h2 = 53%, p < .0001) and Blacks (h2 = 48%, p < .0001) demonstrated higher alcohol intent due to additive genetic factors than Whites (h2 = 34%, p < .0001). Common environmental factors explained more variation in alcohol sips in females (c2 = 63%, p = .001) than in males (c2 = 55%, p = .003). Unique environmental factors largely attributed to alcohol intent, while common environmental factors explained the substantial variation in alcohol initiation. CONCLUSION Sex and racial/ethnic disparities in genetic and environmental risk factors for susceptibility to alcohol initiation can lead to significant health disparities. Certain populations may be at greater risk for alcohol use due to their genetic and ecological factors at an early age.
Collapse
Affiliation(s)
- Troy Puga
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
- College of Osteopathic Medicine, Kansas City University, Kanas City, MO, United States of America
| | - Yadi Liu
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Peng Xiao
- Dept. of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ran Dai
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Hongying Daisy Dai
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
5
|
Sepe-Forrest L, Bailey AJ, Quinn PD, Carver FW, Hetrick WP, O’Donnell BF. Alcohol consumption's effects on working memory: Examining familial confounding. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2024; 38:153-159. [PMID: 37326533 PMCID: PMC10721736 DOI: 10.1037/adb0000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The purpose of our study was to provide a more rigorous test of the causal hypothesis that chronic alcohol use impairs working memory performance. METHOD We measured linear associations between a latent factor representing alcohol consumption and accuracy across four working memory tasks before and after accounting for familial confounding using a cotwin control design. Specifically, this study examined accuracy through a latent working memory score, the National Institutes of Health (NIH) Toolbox List Sorting, NIH Toolbox Picture Sequence, Penn Word Memory, and 2-back tasks. The study included data from 158 dizygotic and 278 monozygotic twins (Mage = 29 ± 3 years). RESULTS In our initial sample-wide analysis, we did not detect any statistically significant associations between alcohol use and working memory accuracy. However, our cotwin control analyses showed that twins with greater levels of alcohol use exhibited worse scores on the latent working memory composite measure (B = -.25, CI [-.43, -.08], p < .01), Picture Sequence (B = -.31, CI [-.55, -.08], p < .01), and List Sorting (B = -.28, CI [-.51, -.06 ], p = .01) tasks than did their cotwins. CONCLUSIONS These results are consistent with a potentially causal relationship between alcohol use and working memory performance that can be detected only after accounting for confounding familial factors. This highlights the importance of understanding the mechanisms that may underlie negative associations between alcohol use and cognitive performance, as well as the potential factors that influence both alcohol behaviors and cognition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Linnea Sepe-Forrest
- Department of Psychological & Brain Sciences, Indiana University
- Program in Neuroscience, Indiana University
| | - Allen J. Bailey
- Department of Psychological & Brain Sciences, Indiana University
| | - Patrick D. Quinn
- Department of Psychological & Brain Sciences, Indiana University
- Program in Neuroscience, Indiana University
- School of Public Health, Indiana University
| | | | - William P. Hetrick
- Department of Psychological & Brain Sciences, Indiana University
- Program in Neuroscience, Indiana University
| | - Brian F. O’Donnell
- Department of Psychological & Brain Sciences, Indiana University
- Program in Neuroscience, Indiana University
| |
Collapse
|
6
|
Bramness JG, Lien L, Moe JS, Toft H, Pandey S, Lid TG, Strømmen M, Andersen JR, Bolstad I. Bariatric surgery patients in AUD treatment in Norway-an exploratory cross-sectional study. Alcohol Alcohol 2024; 59:agae007. [PMID: 38369663 PMCID: PMC11445783 DOI: 10.1093/alcalc/agae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Patients who have undergone some forms of bariatric surgery have increased risk of developing alcohol use disorder (AUD). In the present observational study, we compared patients with AUD who themselves reported to having undergone bariatric surgery with other patients in treatment for AUD. MATERIALS One-hundred-and-six consecutively enrolled patients in residential treatment for AUD were asked if they had undergone bariatric surgery. Sociodemographics, mental health-related, and alcohol use-related parameters were compared between those who had and those who had not undergone bariatric surgery. RESULTS Of the 106 patients with AUD, seven (6.6%; 95% confidence interval, 2.7%-13.1%) had undergone bariatric surgery. Six of seven patients had undergone such surgery were women (P < .001). The patients with AUD who had undergone bariatric surgery were similar to other patients with AUD on most other parameters, the exception being a larger number of alcohol units ingested to feel an effect of alcohol (adjusted odds ratio 7.1; 95% confidence interval 2.0-12.2; P = .007). CONCLUSION The high number of patients with AUD that reported having undergone bariatric surgery emphasizes the risks following such a procedure. The overrepresentation of women may reflect than more women undergo such procedures. The unexpected finding that patients with AUD having undergone bariatric surgery seemed to need more alcohol to feel intoxicated warrants further research.
Collapse
Affiliation(s)
- Jørgen G Bramness
- Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, P.O.Box 222 Skøyen, 0213 Oslo, Norway
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Kjonerud kompetansesenter, Løvstadveien 7, 2312 Ottestad, Innlandet Hospital Trust, Brumunddal, Norway
- Institute Clinical of Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Lars Lien
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Kjonerud kompetansesenter, Løvstadveien 7, 2312 Ottestad, Innlandet Hospital Trust, Brumunddal, Norway
- Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, P.O.Box 400 Vestad, 2418 Elverum, Norway
| | - Jenny S Moe
- Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, P.O.Box 222 Skøyen, 0213 Oslo, Norway
- Institute Clinical of Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Helge Toft
- Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, P.O.Box 400 Vestad, 2418 Elverum, Norway
| | - Susmita Pandey
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Kjonerud kompetansesenter, Løvstadveien 7, 2312 Ottestad, Innlandet Hospital Trust, Brumunddal, Norway
| | - Torgeir G Lid
- Centre for Alcohol and Drug Research, Stavanger University Hospital, P.O. Box 8100, 4068 Stavanger, Norway
- Faculty of Health Sciences, University of Stavanger, Telegrafdirektør Heftyes vei 73, 4021 Stavanger, Norway
| | - Magnus Strømmen
- Centre for Obesity Research, Clinic of Surgery, St. Olav’s University Hospital, Postboks 3250 Torgarden, 7006 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - John R Andersen
- Department of Health and Caring Sciences, Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Svanehaugvegen 1, 6812 Førde, Norway
- Førde Hospital Trust, P.O. Box 1000, 6807 Førde, Norway
| | - Ingeborg Bolstad
- Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, P.O.Box 400 Vestad, 2418 Elverum, Norway
| |
Collapse
|
7
|
Na P, Zhou H, Montalvo-Ortiz JL, Cabrera-Mendoza B, Petrakis IL, Krystal JH, Polimanti R, Gelernter J, Pietrzak RH. Positive personality traits moderate persistent high alcohol consumption, determined by polygenic risk in U.S. military veterans: results from a 10-year, population-based, observational cohort study. Psychol Med 2023; 53:7893-7901. [PMID: 37642191 DOI: 10.1017/s003329172300199x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Understanding the interplay between psychosocial factors and polygenic risk scores (PRS) may help elucidate the biopsychosocial etiology of high alcohol consumption (HAC). This study examined the psychosocial moderators of HAC, determined by polygenic risk in a 10-year longitudinal study of US military veterans. We hypothesized that positive psychosocial traits (e.g. social support, personality traits, optimism, gratitude) may buffer risk of HAC in veterans with greater polygenic liability for alcohol consumption (AC). METHODS Data were analyzed from 1323 European-American US veterans who participated in the National Health and Resilience in Veterans Study, a 10-year, nationally representative longitudinal study of US military veterans. PRS reflecting genome-wide risk for AC (AUDIT-C) was derived from a Million Veteran Program genome-wide association study (N = 200 680). RESULTS Among the total sample, 328 (weighted 24.8%) had persistent HAC, 131 (weighted 9.9%) had new-onset HAC, 44 (weighted 3.3%) had remitted HAC, and 820 (weighted 62.0%) had no/low AC over the 10-year study period. AUDIT-C PRS was positively associated with persistent HAC relative to no/low AC [relative risk ratio (RRR) = 1.43, 95% confidence interval (CI) = 1.23-1.67] and remitted HAC (RRR = 1.63, 95% CI = 1.07-2.50). Among veterans with higher AUDIT-C PRS, greater baseline levels of agreeableness and greater dispositional gratitude were inversely associated with persistent HAC. CONCLUSIONS AUDIT-C PRS was prospectively associated with persistent HAC over a 10-year period, and agreeableness and dispositional gratitude moderated this association. Clinical interventions designed to target these modifiable psychological traits may help mitigate risk of persistent HAC in veterans with greater polygenic liability for persistent HAC.
Collapse
Affiliation(s)
- Peter Na
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Hang Zhou
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Janitza L Montalvo-Ortiz
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ismene L Petrakis
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
8
|
Janardhanan M, Sen S, Shankarappa B, Purushottam M. Molecular genetics of neuropsychiatric illness: some musings. Front Genet 2023; 14:1203017. [PMID: 38028602 PMCID: PMC10646253 DOI: 10.3389/fgene.2023.1203017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Research into the genetic underpinnings of neuropsychiatric illness has occurred at many levels. As more information accumulates, it appears that many approaches may each offer their unique perspective. The search for low penetrance and common variants, that may mediate risk, has necessitated the formation of many international consortia, to pool resources, and achieve the large sample sizes needed to discover these variants. There has been the parallel development of statistical methods to analyse large datasets and present summary statistics which allows data comparison across studies. Even so, the results of studies on well-characterised clinical datasets of modest sizes can be enlightening and provide important clues to understanding these complex disorders. We describe the use of common variants, at multiallelic loci like TOMM40 and APOE to study dementia, weighted genetic risk scores for alcohol-induced liver cirrhosis and whole exome sequencing to identify rare variants in genes like PLA2G6 in familial psychoses and schizophrenia in our Indian population.
Collapse
Affiliation(s)
| | | | | | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
9
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Smith ML, Sergi Z, Mignogna KM, Rodriguez NE, Tatom Z, MacLeod L, Choi KB, Philip V, Miles MF. Identification of Genetic and Genomic Influences on Progressive Ethanol Consumption in Diversity Outbred Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554349. [PMID: 37745421 PMCID: PMC10515943 DOI: 10.1101/2023.09.15.554349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.
Collapse
Affiliation(s)
- M L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K M Mignogna
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - N E Rodriguez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Tatom
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - L MacLeod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K B Choi
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - V Philip
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Gage GA, Muench MA, Jee C, Kearns DN, Chen H, Tunstall BJ. Intermittent-access operant alcohol self-administration promotes binge-like drinking and drinking despite negative consequences in male and female heterogeneous stock rats. Neuropharmacology 2023; 235:109564. [PMID: 37149215 PMCID: PMC10247413 DOI: 10.1016/j.neuropharm.2023.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The study of Alcohol Use Disorders (AUD) in preclinical models is hampered by difficulty in training rodents to voluntarily consume high levels of alcohol. The intermittency of alcohol access/exposure is well known to modulate alcohol consumption (e.g., alcohol deprivation effect, intermittent-access two-bottle-choice) and recently, intermittent access operant self-administration procedures have been used to produce more intense and binge-like self-administration of intravenous psychostimulant and opioid drugs. In the present study, we sought to systematically manipulate the intermittency of operant self-administered alcohol access to determine the feasibility of promoting more intensified, binge-like alcohol consumption. To this end, 24 male and 23 female NIH Heterogeneous Stock rats were trained to self-administer 10% w/v ethanol, before being split into three different-access groups. Short Access (ShA) rats continued receiving 30-min training sessions, Long Access (LgA) rats received 16-h sessions, and Intermittent Access (IntA) rats received 16-h sessions, wherein the hourly alcohol-access periods were shortened over sessions, down to 2 min. IntA rats demonstrated an increasingly binge-like pattern of alcohol drinking in response to restriction of alcohol access, while ShA and LgA rats maintained stable intake. All groups were tested on orthogonal measures of alcohol-seeking and quinine-punished alcohol drinking. The IntA rats displayed the most punishment-resistant drinking. In a separate experiment, we replicated our main finding, that intermittent access promotes a more binge-like pattern of alcohol self-administration using 8 male and 8 female Wistar rats. In conclusion, intermittent access to self-administered alcohol promotes more intensified self-administration. This approach may be useful in developing preclinical models of binge-like alcohol consumption in AUD.
Collapse
Affiliation(s)
- Grey A Gage
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marissa A Muench
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David N Kearns
- Psychology Department, American University, Washington, DC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
12
|
Bonea M, Coroama CI, Popp RA, Miclutia IV. The association between the CCDC88A gene polymorphism at rs1437396 and alcohol use disorder, with or without major depression disorder. Arh Hig Rada Toksikol 2023; 74:127-133. [PMID: 37357876 PMCID: PMC10291494 DOI: 10.2478/aiht-2023-74-3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
Girdin is a protein involved in neuronal migration and hippocampal development. It is encoded by the coiled-coil domain-containing 88A (CCDC88A) gene, located on the short arm of chromosome 2 (2p). The CCDC88A gene is modulated by the intergenic single-nucleotide polymorphism (SNP) of the rs1437396, situated 9.5 kb downstream from its transcription stop site. As recent genome-wide research has associated the T allele of the SNP with increased risk of alcohol use disorder (AUD), we wanted to validate this finding in an independent cohort and to test further for an association with comorbid major depressive disorder (MDD). The study included 226 AUD patients (AUD group), 53 patients with comorbid MDD, and 391 controls selected randomly. The participants were genotyped for the rs1437396 polymorphism using the real-time polymerase chain reaction. The association between the rs1437396 polymorphism and increased risk of AUD and AUD+MDD was tested with logistic regression. Our results show significantly higher frequency of the T risk allele in the AUD group (p=0.027) and even higher in the AUD+MDD group (p=0.016). In conclusion, this is the first study that has validated the association between the rs1437396 polymorphism of the CCDC88A gene and AUD with or without MDD. Studies on larger samples of patients are needed to further investigate the mechanism of this association.
Collapse
Affiliation(s)
- Maria Bonea
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Neurosciences – Psychiatry, Cluj-Napoca, Romania
| | | | - Radu Anghel Popp
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Medical Genetics, Cluj-Napoca, Romania
| | - Ioana Valentina Miclutia
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Neurosciences – Psychiatry, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Wang Z, Luo C, Zhou EW, Sandhu AF, Yuan X, Williams GE, Cheng J, Sinha B, Akbar M, Bhattacharya P, Zhou S, Song BJ, Wang X. Molecular Toxicology and Pathophysiology of Comorbid Alcohol Use Disorder and Post-Traumatic Stress Disorder Associated with Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108805. [PMID: 37240148 DOI: 10.3390/ijms24108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The increasing comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) associated with traumatic brain injury (TBI) is a serious medical, economic, and social issue. However, the molecular toxicology and pathophysiological mechanisms of comorbid AUD and PTSD are not well understood and the identification of the comorbidity state markers is significantly challenging. This review summarizes the main characteristics of comorbidity between AUD and PTSD (AUD/PTSD) and highlights the significance of a comprehensive understanding of the molecular toxicology and pathophysiological mechanisms of AUD/PTSD, particularly following TBI, with a focus on the role of metabolomics, inflammation, neuroendocrine, signal transduction pathways, and genetic regulation. Instead of a separate disease state, a comprehensive examination of comorbid AUD and PTSD is emphasized by considering additive and synergistic interactions between the two diseases. Finally, we propose several hypotheses of molecular mechanisms for AUD/PTSD and discuss potential future research directions that may provide new insights and translational application opportunities.
Collapse
Affiliation(s)
- Zufeng Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Edward W Zhou
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron F Sandhu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Yuan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George E Williams
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jialu Cheng
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Moreira-Júnior RE, Guimarães MADF, Etcheverria da Silva M, Maioli TU, Faria AMC, Brunialti-Godard AL. Animal model for high consumption and preference of ethanol and its interplay with high sugar and butter diet, behavior, and neuroimmune system. Front Nutr 2023; 10:1141655. [PMID: 37063320 PMCID: PMC10097969 DOI: 10.3389/fnut.2023.1141655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Mechanisms that dictate the preference for ethanol and its addiction are not only restricted to the central nervous system (CNS). An increasing body of evidence has suggested that abusive ethanol consumption directly affects the immune system, which in turn interacts with the CNS, triggering neuronal responses and changes, resulting in dependence on the drug. It is known that neuroinflammation and greater immune system reactivity are observed in behavioral disorders and that these can regulate gene transcription. However, there is little information about these findings of the transcriptional profile of reward system genes in high consumption and alcohol preference. In this regard, there is a belief that, in the striatum, an integrating region of the brain reward system, the interaction of the immune response and the transcriptional profile of the Lrrk2 gene that is associated with loss of control and addiction to ethanol may influence the alcohol consumption and preference. Given this information, this study aimed to assess whether problematic alcohol consumption affects the transcriptional profile of the Lrrk2 gene, neuroinflammation, and behavior and whether these changes are interconnected. Methods An animal model developed by our research group has been used in which male C57BL/6 mice and knockouts for the Il6 and Nfat genes were subjected to a protocol of high fat and sugar diet intake and free choice of ethanol in the following stages: Stage 1 (T1)-Dietary treatment, for 8 weeks, in which the animals receive high-calorie diet, High Sugar and Butter (HSB group), or standard diet, American Institute of Nutrition 93-Growth (AIN93G group); and Stage 2 (T2)-Ethanol consumption, in which the animals are submitted, for 4 weeks, to alcohol within the free choice paradigm, being each of them divided into 10 groups, four groups continued with the same diet and in the other six the HSB diet is substituted by the AIN93G diet. Five groups had access to only water, while the five others had a free choice between water and a 10% ethanol solution. The weight of the animals was evaluated weekly and the consumption of water and ethanol daily. At the end of the 12-week experiment, anxiety-like behavior was evaluated by the light/dark box test; compulsive-like behavior by Marble burying, transcriptional regulation of genes Lrrk2, Tlr4, Nfat, Drd1, Drd2, Il6, Il1β, Il10, and iNOS by RT-qPCR; and inflammatory markers by flow cytometry. Animals that the diet was replaced had an ethanol high preference and consumption. Results and discussion We observed that high consumption and preference for ethanol resulted in (1) elevation of inflammatory cells in the brain, (2) upregulation of genes associated with cytokines (Il6 and Il1β) and pro-inflammatory signals (iNOS and Nfat), downregulation of anti-inflammatory cytokine (Il10), dopamine receptor (Drd2), and the Lrrk2 gene in the striatum, and (3) behavioral changes such as decreased anxiety-like behavior, and increased compulsive-like behavior. Our findings suggest that interactions between the immune system, behavior, and transcriptional profile of the Lrrk2 gene influence the ethanol preferential and abusive consumption.
Collapse
Affiliation(s)
- Renato Elias Moreira-Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Etcheverria da Silva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Ferguson LB, Mayfield RD, Messing RO. RNA biomarkers for alcohol use disorder. Front Mol Neurosci 2022; 15:1032362. [PMID: 36407766 PMCID: PMC9673015 DOI: 10.3389/fnmol.2022.1032362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol use disorder (AUD) is highly prevalent and one of the leading causes of disability in the US and around the world. There are some molecular biomarkers of heavy alcohol use and liver damage which can suggest AUD, but these are lacking in sensitivity and specificity. AUD treatment involves psychosocial interventions and medications for managing alcohol withdrawal, assisting in abstinence and reduced drinking (naltrexone, acamprosate, disulfiram, and some off-label medications), and treating comorbid psychiatric conditions (e.g., depression and anxiety). It has been suggested that various patient groups within the heterogeneous AUD population would respond more favorably to specific treatment approaches. For example, there is some evidence that so-called reward-drinkers respond better to naltrexone than acamprosate. However, there are currently no objective molecular markers to separate patients into optimal treatment groups or any markers of treatment response. Objective molecular biomarkers could aid in AUD diagnosis and patient stratification, which could personalize treatment and improve outcomes through more targeted interventions. Biomarkers of treatment response could also improve AUD management and treatment development. Systems biology considers complex diseases and emergent behaviors as the outcome of interactions and crosstalk between biomolecular networks. A systems approach that uses transcriptomic (or other -omic data, e.g., methylome, proteome, metabolome) can capture genetic and environmental factors associated with AUD and potentially provide sensitive, specific, and objective biomarkers to guide patient stratification, prognosis of treatment response or relapse, and predict optimal treatments. This Review describes and highlights state-of-the-art research on employing transcriptomic data and artificial intelligence (AI) methods to serve as molecular biomarkers with the goal of improving the clinical management of AUD. Considerations about future directions are also discussed.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States,*Correspondence: Laura B. Ferguson,
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
16
|
Deak JD, Levey DF, Wendt FR, Zhou H, Galimberti M, Kranzler HR, Gaziano JM, Stein MB, Polimanti R, Gelernter J. Genome-Wide Investigation of Maximum Habitual Alcohol Intake in US Veterans in Relation to Alcohol Consumption Traits and Alcohol Use Disorder. JAMA Netw Open 2022; 5:e2238880. [PMID: 36301540 PMCID: PMC9614582 DOI: 10.1001/jamanetworkopen.2022.38880] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
Importance Alcohol genome-wide association studies (GWASs) have generally focused on alcohol consumption and alcohol use disorder (AUD); few have examined habitual drinking behaviors like maximum habitual alcohol intake (MaxAlc). Objectives To identify genetic loci associated with MaxAlc and to elucidate the genetic architecture across alcohol traits. Design, Setting, and Participants This MaxAlc genetic association study was performed among Million Veteran Program participants enrolled from January 10, 2011, to September 30, 2020. Ancestry-specific GWASs were conducted in participants with European (n = 218 623) and African (n = 29 132) ancestry, then meta-analyzed (N = 247 755). Linkage-disequilibrium score regression was used to estimate single nucleotide variant (SNV)-heritability and genetic correlations (rg) with other alcohol and psychiatric traits. Genomic structural equation modeling (gSEM) was used to evaluate genetic associations between MaxAlc and other alcohol traits. Mendelian randomization was used to examine potential causal relationships between MaxAlc and liver enzyme levels. MTAG (multitrait analysis of GWAS) was used to analyze MaxAlc and problematic alcohol use (PAU) jointly. Exposures Genetic associations. Main Outcomes and Measures MaxAlc was defined from the following survey item: "in a typical month, what is/was the largest number of drinks of alcohol you may have had in one day?" with ordinal responses from 0 to 15 or more drinks. Results GWASs were conducted on sample sizes of as many as 247 455 US veterans. Participants were 92.68% male and had mean (SD) age of 65.92 (11.70) years. The MaxAlc GWAS resulted in 15 genome-wide significant loci. Top associations in European-ancestry and African-ancestry participants were with known functional variants in the ADH1B gene, namely rs1229984 (P = 3.12 × 10-101) and rs2066702 (P = 6.30 × 10-17), respectively. Novel associations were also found. SNV-heritability was 6.65% (SE, 0.41) in European-ancestry participants and 3.42% (SE, 1.46) in African-ancestry participants. MaxAlc was positively correlated with PAU (rg = 0.79; P = 3.95 × 10-149) and AUD (rg = 0.76; P = 1.26 × 10-127) and had negative rg with the UK Biobank "alcohol usually taken with meals" (rg = -0.53; P = 1.40 × 10-50). For psychiatric traits, MaxAlc had the strongest genetic correlation with suicide attempt (rg = 0.40; P = 3.02 × 10-21). gSEM supported a 2-factor model with MaxAlc loading on a factor with PAU and AUD and other alcohol consumption measures loading on a separate factor. Mendelian randomization supported an association between MaxAlc and the liver enzyme gamma-glutamyltransferase (β = 0.012; P = 2.66 × 10-10). MaxAlc MTAG resulted in 31 genome-wide significant loci. Conclusions and Relevance The findings suggest that MaxAlc closely aligns genetically with PAU traits. This study improves understanding of the mechanisms associated with normative alcohol consumption vs problematic habitual use and AUD as well as how MaxAlc relates to psychiatric and medical conditions genetically and biologically.
Collapse
Affiliation(s)
- Joseph D. Deak
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| | - Daniel F. Levey
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| | - Frank R. Wendt
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| | - Hang Zhou
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| | - Marco Galimberti
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia
- Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - J. Michael Gaziano
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs Healthcare System, Boston
- Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Murray B. Stein
- University of California, San Diego, La Jolla
- VA San Diego Healthcare System, San Diego, California
| | - Renato Polimanti
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| | - Joel Gelernter
- Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare Center, West Haven, Connecticut
| |
Collapse
|
17
|
Schwartz EKC, Wolkowicz NR, De Aquino JP, MacLean RR, Sofuoglu M. Cocaine Use Disorder (CUD): Current Clinical Perspectives. Subst Abuse Rehabil 2022; 13:25-46. [PMID: 36093428 PMCID: PMC9451050 DOI: 10.2147/sar.s337338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cocaine use disorder (CUD) is a devastating disorder, impacting both individuals and society. Individuals with CUD face many barriers in accessing treatment for CUD, and most individuals with CUD never receive treatment. In this review, we provide an overview of CUD, including risk factors for CUD, common co-occurring disorders, acute and chronic effects of cocaine use, and currently available pharmacological and behavioral treatments. There are no FDA-approved pharmacological treatments for CUD. Future studies with larger sample sizes and testing treatment combinations are warranted. However, individuals with CUD and co-occurring disorders (eg, a mood or anxiety disorder) may benefit from medication treatments. There are behavioral interventions that have demonstrated efficacy in treating CUD – contingency management (CM) and cognitive-behavioral therapy for substance use disorders (CBT-SUD) in particular – however many barriers remain in delivering these treatments to patients. Following the discussion of current treatments, we highlight some promising emerging treatments, as well as offer a framework that can be used in building a treatment plan for individuals with CUD.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
- Correspondence: Elizabeth KC Schwartz, Tel +1-203-932-5711, Fax +1-203-937-3472, Email
| | - Noah R Wolkowicz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - R Ross MacLean
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
18
|
Denham AN, Drake J, Gavrilov M, Taylor ZN, Bacanu SA, Vladimirov VI. Long Non-Coding RNAs: The New Frontier into Understanding the Etiology of Alcohol Use Disorder. Noncoding RNA 2022; 8:59. [PMID: 36005827 PMCID: PMC9415279 DOI: 10.3390/ncrna8040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, debilitating condition impacting millions worldwide. Genetic, environmental, and epigenetic factors are known to contribute to the development of AUD. Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs, commonly referred to as the "dark matter" of the genome, with little to no protein-coding potential. LncRNAs have been implicated in numerous processes critical for cell survival, suggesting that they play important functional roles in regulating different cell processes. LncRNAs were also shown to display higher tissue specificity than protein-coding genes and have a higher abundance in the brain and central nervous system, demonstrating a possible role in the etiology of psychiatric disorders. Indeed, genetic (e.g., genome-wide association studies (GWAS)), molecular (e.g., expression quantitative trait loci (eQTL)) and epigenetic studies from postmortem brain tissues have identified a growing list of lncRNAs associated with neuropsychiatric and substance use disorders. Given that the expression patterns of lncRNAs have been associated with widespread changes in the transcriptome, including methylation, chromatin architecture, and activation or suppression of translational activity, the regulatory nature of lncRNAs may be ubiquitous and an innate component of gene regulation. In this review, we present a synopsis of the functional impact that lncRNAs may play in the etiology of AUD. We also discuss the classifications of lncRNAs, their known functional roles, and therapeutic advancements in the field of lncRNAs to further clarify the functional relationship between lncRNAs and AUD.
Collapse
Affiliation(s)
- Allie N. Denham
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- MSCI Program, Texas A&M University, Bryan, TX 77807, USA
| | - Matthew Gavrilov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
| | - Zachary N. Taylor
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
- Texas A&M Institute for Neuroscience, College Station, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, College Station, Texas A&M University, College Station, TX 77843, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
de Marco A, Scozia G, Manfredi L, Conversi D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes (Basel) 2022; 13:genes13081303. [PMID: 35893041 PMCID: PMC9330731 DOI: 10.3390/genes13081303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
It is currently unknown which genetic polymorphisms are involved in substance use disorder (SUD) comorbid with bipolar disorder (BD). The research on polymorphisms in BD comorbid with SUD (BD + SUD) is summarized in this systematic review. We looked for case-control studies that genetically compared adults and adolescents with BD and SUD, healthy controls, and BD without SUD. PRISMA was used to create our protocol, which is PROSPERO-registered (identification: CRD4221270818). The following bibliographic databases were searched indefinitely until December 2021 to identify potentially relevant articles: PubMed, PsycINFO, Scopus, and Web of Science. This systematic review, after the qualitative analysis of the study selection, included 17 eligible articles. In the selected studies, 66 polymorphisms in 29 genes were investigated. The present work delivers a group of potentially valuable genetic polymorphisms associated with BD + SUD: rs11600996 (ARNTL), rs228642/rs228682/rs2640909 (PER3), PONQ192R (PON1), rs945032 (BDKRB2), rs1131339 (NR4A3), and rs6971 (TSPO). It is important to note that none of those findings have been confirmed by two or more studies; thus, we believe that all the polymorphisms identified in this review require additional evidence to be confirmed.
Collapse
Affiliation(s)
- Adriano de Marco
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - Gabriele Scozia
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- PhD Program in Behavioral Neuroscience, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
| | - Lucia Manfredi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - David Conversi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- Correspondence:
| |
Collapse
|
20
|
Liu Y, Zhang H. RNA m6A Modification Changes in Postmortem Nucleus Accumbens of Subjects with Alcohol Use Disorder: A Pilot Study. Genes (Basel) 2022; 13:958. [PMID: 35741720 PMCID: PMC9222907 DOI: 10.3390/genes13060958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is a key brain structure mediating the rewarding effect of alcohol and drug abuse. Chronic alcohol consumption may alter RNA methylome (or epitranscriptome) in the NAc, leading to altered gene expression and thus behavioral neuroadaptation to alcohol. METHODS This pilot study profiled the epitranscriptomes of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in postmortem NAc of three male Caucasian subjects with alcohol use disorder (AUD) and three matched male Caucasian control subjects using Arraystar's m6A-mRNA&lncRNA Epitranscriptomic Microarray assay. Differentially methylated (DM) RNAs and the function of DM RNAs were analyzed by biostatistics and bioinformatics programs. RESULTS 26 mRNAs were hypermethylated and three mRNAs were hypomethylated in the NAc of AUD subjects (≥2-fold changes and p ≤ 0.05). Most of these 29 DM mRNAs are involved in immune-related pathways (e.g., IL-17 signaling). Moreover, four lncRNAs were hypermethylated and one lncRNA was hypomethylated in the NAc of AUD subjects (≥2-fold changes and p ≤ 0.05). Additionally, three miRNAs were hypermethylated in the NAc of AUD subjects (≥2-fold changes and p ≤ 0.05). CONCLUSIONS This study revealed RNA methylomic changes in the NAc of AUD subjects, suggesting that chronic alcohol consumption may lead to AUD through epitranscriptomic RNA modifications. Our findings need to be replicated in a larger sample.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
21
|
Kapfhammer HP. [Comorbidity of posttraumatic stress disorder and addiction from a biopsychosocial perspective]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2022; 36:1-18. [PMID: 33439473 PMCID: PMC8916999 DOI: 10.1007/s40211-020-00384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder and substance use disorder often co-occur within the health care system. Their comorbidity is associated with more serious acute clinical symptomatology, more frequent hospital admissions in state of emergency and significantly lower chances of improvement by psychological and pharmacological treatment. Their comorbidity contributes to dramatically unfavourable courses of illness as regards all biopsychosocial levels. The survey presented will discuss empirical findings from various perspectives: general epidemiology, substance use disorder as risk factor of trauma and PTSD, trauma and PTSD as risk factor of SUD, neurobiological effects of SUD converging towards neurobiology of PTSD, shared common factors of genetics/epigenetics, personality traits, and early developmental stress and trauma. The main focus of analysis will be put on processes that are intrinsically linked to the development and course of both disorders.
Collapse
Affiliation(s)
- Hans-Peter Kapfhammer
- Universitätsklinik für Psychiatrie und Psychotherapeutische Medizin, Medizinische Universität Graz, Auenbruggerplatz 31, 8036, Graz, Österreich.
| |
Collapse
|
22
|
Kalmijn M. Intergenerational transmission of health behaviors in a changing demographic context: The case of smoking and alcohol consumption. Soc Sci Med 2022; 296:114736. [DOI: 10.1016/j.socscimed.2022.114736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
23
|
Elam KK, Ha T, Neale Z, Aliev F, Dick D, Lemery-Chalfant K. Age varying polygenic effects on alcohol use in African Americans and European Americans from adolescence to adulthood. Sci Rep 2021; 11:22425. [PMID: 34789846 PMCID: PMC8599703 DOI: 10.1038/s41598-021-01923-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
Genetic effects on alcohol use can vary over time but are often examined using longitudinal models that predict a distal outcome at a single time point. The vast majority of these studies predominately examine effects using White, European American (EA) samples or examine the etiology of genetic variants identified from EA samples in other racial/ethnic populations, leading to inconclusive findings about genetic effects on alcohol use. The current study examined how genetic influences on alcohol use varied by age across a 15 year period within a diverse ethnic/racial sample of adolescents. Using a multi-ethnic approach, polygenic risk scores were created for African American (AA, n = 192) and EA samples (n = 271) based on racially/ethnically aligned genome wide association studies. Age-varying associations between polygenic scores and alcohol use were examined from age 16 to 30 using time-varying effect models separately for AA and EA samples. Polygenic risk for alcohol use was found to be associated with alcohol use from age 22-27 in the AA sample and from age 24.50 to 29 in the EA sample. Results are discussed relative to the intersection of alcohol use and developmental genetic effects in diverse populations.
Collapse
Affiliation(s)
- Kit K Elam
- Department of Applied Health Science, Indiana University, 1025 E. 7th St., Suite 116, Bloomington, IN, 47405, USA.
| | - Thao Ha
- Department of Psychology, Arizona State University, Tempe, USA
| | - Zoe Neale
- Department of Psychology, Virgina Commonwealth University, Richmond, USA
| | - Fazil Aliev
- Department of Psychology, Virgina Commonwealth University, Richmond, USA
| | - Danielle Dick
- Department of Psychology, Virgina Commonwealth University, Richmond, USA
| | | |
Collapse
|
24
|
Biernacka JM, Coombes BJ, Batzler A, Ho AMC, Geske JR, Frank J, Hodgkinson C, Skime M, Colby C, Zillich L, Pozsonyiova S, Ho MF, Kiefer F, Rietschel M, Weinshilboum R, O’Malley SS, Mann K, Anton R, Goldman D, Karpyak VM. Genetic contributions to alcohol use disorder treatment outcomes: a genome-wide pharmacogenomics study. Neuropsychopharmacology 2021; 46:2132-2139. [PMID: 34302059 PMCID: PMC8505452 DOI: 10.1038/s41386-021-01097-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Naltrexone can aid in reducing alcohol consumption, while acamprosate supports abstinence; however, not all patients with alcohol use disorder (AUD) benefit from these treatments. Here we present the first genome-wide association study of AUD treatment outcomes based on data from the COMBINE and PREDICT studies of acamprosate and naltrexone, and the Mayo Clinic CITA study of acamprosate. Primary analyses focused on treatment outcomes regardless of pharmacological intervention and were followed by drug-stratified analyses to identify treatment-specific pharmacogenomic predictors of acamprosate and naltrexone response. Treatment outcomes were defined as: (1) time until relapse to any drinking (TR) and (2) time until relapse to heavy drinking (THR; ≥ 5 drinks for men, ≥4 drinks for women in a day), during the first 3 months of treatment. Analyses were performed within each dataset, followed by meta-analysis across the studies (N = 1083 European ancestry participants). Single nucleotide polymorphisms (SNPs) in the BRE gene were associated with THR (min p = 1.6E-8) in the entire sample, while two intergenic SNPs were associated with medication-specific outcomes (naltrexone THR: rs12749274, p = 3.9E-8; acamprosate TR: rs77583603, p = 3.1E-9). The top association signal for TR (p = 7.7E-8) and second strongest signal in the THR (p = 6.1E-8) analysis of naltrexone-treated patients maps to PTPRD, a gene previously implicated in addiction phenotypes in human and animal studies. Leave-one-out polygenic risk score analyses showed significant associations with TR (p = 3.7E-4) and THR (p = 2.6E-4). This study provides the first evidence of a polygenic effect on AUD treatment response, and identifies genetic variants associated with potentially medication-specific effects on AUD treatment response.
Collapse
Affiliation(s)
- Joanna M. Biernacka
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Brandon J. Coombes
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Anthony Batzler
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Ada Man-Choi Ho
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Jennifer R. Geske
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Josef Frank
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Colin Hodgkinson
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, Rockville, MD USA
| | - Michelle Skime
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Colin Colby
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Lea Zillich
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sofia Pozsonyiova
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Ming-Fen Ho
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Falk Kiefer
- grid.7700.00000 0001 2190 4373Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Weinshilboum
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | | | - Karl Mann
- grid.7700.00000 0001 2190 4373Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ray Anton
- grid.259828.c0000 0001 2189 3475Medical University of South Carolina, Charleston, SC USA
| | - David Goldman
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, Rockville, MD USA
| | - Victor M. Karpyak
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
25
|
Abstract
Substance use disorders (SUDs) are prevalent and result in an array of negative consequences. They are influenced by genetic factors (h2 = ~50%). Recent years have brought substantial progress in our understanding of the genetic etiology of SUDs and related traits. The present review covers the current state of the field for SUD genetics, including the epidemiology and genetic epidemiology of SUDs, findings from the first-generation of SUD genome-wide association studies (GWAS), cautions about translating GWAS findings to clinical settings, and suggested prioritizations for the next wave of SUD genetics efforts. Recent advances in SUD genetics have been facilitated by the assembly of large GWAS samples, and the development of state-of-the-art methods modeling the aggregate effect of genome-wide variation. These advances have confirmed that SUDs are highly polygenic with many variants across the genome conferring risk, the vast majority of which are of small effect. Downstream analyses have enabled finer resolution of the genetic architecture of SUDs and revealed insights into their genetic relationship with other psychiatric disorders. Recent efforts have also prioritized a closer examination of GWAS findings that have suggested non-uniform genetic influences across measures of substance use (e.g. consumption) and problematic use (e.g. SUD). Additional highlights from recent SUD GWAS include the robust confirmation of loci in alcohol metabolizing genes (e.g. ADH1B and ALDH2) affecting alcohol-related traits, and loci within the CHRNA5-CHRNA3-CHRNB4 gene cluster influencing nicotine-related traits. Similar successes are expected for cannabis, opioid, and cocaine use disorders as sample sizes approach those assembled for alcohol and nicotine.
Collapse
Affiliation(s)
- Joseph D. Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder. Biol Psychiatry 2021; 91:43-52. [PMID: 34274109 PMCID: PMC8558111 DOI: 10.1016/j.biopsych.2021.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome.
Collapse
|
27
|
Palmer RHC, Johnson EC, Won H, Polimanti R, Kapoor M, Chitre A, Bogue MA, Benca‐Bachman CE, Parker CC, Verma A, Reynolds T, Ernst J, Bray M, Kwon SB, Lai D, Quach BC, Gaddis NC, Saba L, Chen H, Hawrylycz M, Zhang S, Zhou Y, Mahaffey S, Fischer C, Sanchez‐Roige S, Bandrowski A, Lu Q, Shen L, Philip V, Gelernter J, Bierut LJ, Hancock DB, Edenberg HJ, Johnson EO, Nestler EJ, Barr PB, Prins P, Smith DJ, Akbarian S, Thorgeirsson T, Walton D, Baker E, Jacobson D, Palmer AA, Miles M, Chesler EJ, Emerson J, Agrawal A, Martone M, Williams RW. Integration of evidence across human and model organism studies: A meeting report. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12738. [PMID: 33893716 PMCID: PMC8365690 DOI: 10.1111/gbb.12738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
The National Institute on Drug Abuse and Joint Institute for Biological Sciences at the Oak Ridge National Laboratory hosted a meeting attended by a diverse group of scientists with expertise in substance use disorders (SUDs), computational biology, and FAIR (Findability, Accessibility, Interoperability, and Reusability) data sharing. The meeting's objective was to discuss and evaluate better strategies to integrate genetic, epigenetic, and 'omics data across human and model organisms to achieve deeper mechanistic insight into SUDs. Specific topics were to (a) evaluate the current state of substance use genetics and genomics research and fundamental gaps, (b) identify opportunities and challenges of integration and sharing across species and data types, (c) identify current tools and resources for integration of genetic, epigenetic, and phenotypic data, (d) discuss steps and impediment related to data integration, and (e) outline future steps to support more effective collaboration-particularly between animal model research communities and human genetics and clinical research teams. This review summarizes key facets of this catalytic discussion with a focus on new opportunities and gaps in resources and knowledge on SUDs.
Collapse
Affiliation(s)
- Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| | - Emma C. Johnson
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Hyejung Won
- Department of Genetics and Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Renato Polimanti
- Department of PsychiatryYale University School of MedicineWest HavenConnecticutUSA
| | - Manav Kapoor
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Apurva Chitre
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Chelsie E. Benca‐Bachman
- Behavioral Genetics of Addiction Laboratory, Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| | - Clarissa C. Parker
- Department of Psychology and Program in NeuroscienceMiddlebury CollegeMiddleburyVermontUSA
| | - Anurag Verma
- Biomedical and Translational Informatics LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Jason Ernst
- Department of Biological ChemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Michael Bray
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Soo Bin Kwon
- Department of Biological ChemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dongbing Lai
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Bryan C. Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Nathan C. Gaddis
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Laura Saba
- Department of Pharmaceutical SciencesUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and ToxicologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Shan Zhang
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichiganUSA
| | - Yuan Zhou
- Department of Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Colorado DenverAuroraColoradoUSA
| | - Christian Fischer
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Sandra Sanchez‐Roige
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Anita Bandrowski
- Department of NeuroscienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Qing Lu
- Department of Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Joel Gelernter
- Department of PsychiatryYale University School of MedicineWest HavenConnecticutUSA
| | - Laura J. Bierut
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Howard J. Edenberg
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Eric O. Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Pjotr Prins
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Desmond J. Smith
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, UCLALos AngelesCaliforniaUSA
| | - Schahram Akbarian
- Friedman Brain Institute and Departments of Psychiatry and NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | | | - Erich Baker
- Department of Computer ScienceBaylor UniversityWacoTexasUSA
| | - Daniel Jacobson
- Computational and Predictive Biology, BiosciencesOak Ridge National LaboratoryOak RidgeTennesseeUSA
- Department of PsychologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Genomic Medicine, University of California San DiegoLa JollaCaliforniaUSA
| | - Michael Miles
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | | | - Arpana Agrawal
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Maryann Martone
- Department of NeuroscienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Robert W. Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
28
|
Céspedes IC, Ota VK, Mazzotti DR, Wscieklica T, Conte R, Galduróz JCF, Varela P, Pesquero JB, Souza-Formigoni MLO. Association between polymorphism in gene related to the dopamine circuit and motivations for drinking in patients with alcohol use disorder. Psychiatry Res 2021; 295:113563. [PMID: 33199027 DOI: 10.1016/j.psychres.2020.113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023]
Abstract
The development of alcohol use disorder (AUD) is influenced by genetic, psychological, and social factors. However, the identification of the load of each of these factors and the association between them is still debatable. This study aimed to explore the load of the association between AUD and polymorphisms in genes of the dopaminergic system, as well as with drinking triggers. The study comprised 227 inpatients with AUD and 174 controls. The pattern and motivations for drinking were evaluated using the Alcohol Use Disorders Identification Test (AUDIT) and the Inventory of Drinking Situations (IDS). Analyses of genetic variation in genes encoding dopaminergic were performed using next generation sequencing. We observed an significant association between a polymorphism in DDC (rs11575457) and AUD. Positive reinforcement factors as urges/temptations to drink and pleasant emotion, in isolation, were the significantly related elements to drinking. In addition, negative (physical discomfort) and positive reinforcement factors (testing personal control; pleasant time with others) significantly reinforced the interaction with DDC genetic variant for increased odds of an individual presenting AUD. These results indicated a complex relationship between the dopaminergic system and the drug-seeking behavior profiles.
Collapse
Affiliation(s)
- Isabel Cristina Céspedes
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740 - 1o. andar - Edifício Leitão da Cunha, Zip code 04023-900, São Paulo, SP, Brazil.
| | - Vanessa Kiyomi Ota
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740 - 1o. andar - Edifício Leitão da Cunha, Zip code 04023-900, São Paulo, SP, Brazil
| | - Diego Robles Mazzotti
- Chronobiology and Sleep Institute, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA, USA
| | - Tatiana Wscieklica
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Zip code 11015-020, Santos, SP, Brazil
| | - Rafael Conte
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740 - 1o. andar - Edifício Leitão da Cunha, Zip code 04023-900, São Paulo, SP, Brazil
| | - José Carlos Fernandes Galduróz
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 - 1o. andar, Zip code 04023-062, São Paulo, SP, Brazil
| | - Patrícia Varela
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740 - 1o. andar, Zip code 04023-900, São Paulo, SP, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740 - 1o. andar, Zip code 04023-900, São Paulo, SP, Brazil
| | - Maria Lucia Oliveira Souza-Formigoni
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 - 1o. andar, Zip code 04023-062, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Blum K, Baron D, Jalali R, Modestino EJ, Steinberg B, Elman I, Badgaiyan RD, Gold MS. Polygenic and multi locus heritability of alcoholism: Novel therapeutic targets to overcome psychological deficits. ACTA ACUST UNITED AC 2020; 7. [PMID: 34707891 PMCID: PMC8547332 DOI: 10.15761/jsin.1000240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Pomona, CA, USA.,Institute of Psychology, ELTE Eotvos Lorand University, Budapest, Hungary.,Division of Nutrigenomics, Genomic Testing Center Geneus Health, LLC, San Antonio, TX, USA.,Department of Psychiatry, University of Vermont, VT, USA.,Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH., USA.,The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | - David Baron
- Western University Health Sciences, Pomona, CA, USA
| | - Rehan Jalali
- The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | | | | | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy I Memorial VA Hospital, San Antonio, TX. and Long School of Medicine, University of Texas Medical Center, San Antonio TX, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo. USA
| |
Collapse
|
30
|
CUX2, BRAP and ALDH2 are associated with metabolic traits in people with excessive alcohol consumption. Sci Rep 2020; 10:18118. [PMID: 33093602 PMCID: PMC7583246 DOI: 10.1038/s41598-020-75199-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular mechanisms that prompt or mitigate excessive alcohol consumption could be partly explained by metabolic shifts. This genome-wide association study aims to identify the susceptibility gene loci for excessive alcohol consumption by jointly measuring weekly alcohol consumption and γ-GT levels. We analysed the Taiwan Biobank data of 18,363 Taiwanese people, including 1945 with excessive alcohol use. We found that one or two copies of the G allele in rs671 (ALDH2) increased the risk of excessive alcohol consumption, while one or two copies of the C allele in rs3782886 (BRAP) reduced the risk of excessive alcohol consumption. To minimize the influence of extensive regional linkage disequilibrium, we used the ridge regression. The ridge coefficients of rs7398833, rs671 and rs3782886 were unchanged across different values of the shrinkage parameter. The three variants corresponded to posttranscriptional activity, including cut-like homeobox 2 (a protein coded by CUX2), Glu504Lys of acetaldehyde dehydrogenase 2 (a protein encoded by ALDH2) and Glu4Gly of BRCA1-associated protein (a protein encoded by BRAP). We found that Glu504Lys of ALDH2 and Glu4Gly of BRAP are involved in the negative regulation of excessive alcohol consumption. The mechanism underlying the γ-GT-catalytic metabolic reaction in excessive alcohol consumption is associated with ALDH2, BRAP and CUX2. Further study is needed to clarify the roles of ALDH2, BRAP and CUX2 in the liver–brain endocrine axis connecting metabolic shifts with excessive alcohol consumption.
Collapse
|
31
|
Trinidad SB, Shaw JL, Dirks LG, Ludman EJ, Burke W, Dillard DA. Perceptions of alcohol misuse among Alaska native health care system stakeholders: A qualitative exploration. J Ethn Subst Abuse 2020; 19:635-658. [PMID: 30714494 DOI: 10.1080/15332640.2018.1556766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although alcohol misuse is a priority for health care systems serving Alaska Native and American Indian (ANAI) people, stakeholders' perceptions of misuse are understudied. Patients (n = 34), providers (n = 20), and leaders (n = 16) at a Tribally owned and operated health care system reported that alcohol misuse results from the interaction of factors, including colonization, structural factors, social alienation, social norms about overdrinking introduced at the time of colonizing contact, coping with emotions, and beliefs about ANAI people and alcohol. Childhood exposure to alcohol misuse leads some ANAI people to avoid alcohol altogether, shedding light on the high levels of abstinence observed in ANAI communities.
Collapse
Affiliation(s)
| | | | | | - Evette J Ludman
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Wylie Burke
- University of Washington, Seattle, Washington
| | | |
Collapse
|
32
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
33
|
Lin H, Wang F, Rosato AJ, Farrer LA, Henderson DC, Zhang H. Prefrontal cortex eQTLs/mQTLs enriched in genetic variants associated with alcohol use disorder and other diseases. Epigenomics 2020; 12:789-800. [PMID: 32496132 DOI: 10.2217/epi-2019-0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: This study aimed to investigate the function of genome-wide association study (GWAS)-identified variants associated with alcohol use disorder (AUD)/comorbid psychiatric disorders. Materials & methods: Genome-wide genotype, transcriptome and DNA methylome data were obtained from postmortem prefrontal cortex (PFC) of 48 Caucasians (24 AUD cases/24 controls). Expression/methylation quantitative trait loci (eQTL/mQTL) were identified and their enrichment in GWAS signals for the above disorders were analyzed. Results: PFC cis-eQTLs (923 from cases+controls, 27 from cases and 98 from controls) and cis-mQTLs (9,932 from cases+controls, 264 from cases and 695 from controls) were enriched in GWAS-identified genetic variants for the above disorders. Cis-eQTLs from AUD cases were mapped to morphine addiction-related genes. Conclusion: PFC cis-eQTLs/cis-mQTLs influence gene expression/DNA methylation patterns, thus increasing the disease risk.
Collapse
Affiliation(s)
- Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA, USA.,Boston University's & National Heart, Lung & Blood Institute's Framingham Heart Study, MA, USA
| | - Fan Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, OH, USA
| | - Andrew J Rosato
- Department of Psychiatry, Boston University School of Medicine, MA, USA
| | - Lindsay A Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, MA, USA
| | - David C Henderson
- Department of Psychiatry, Boston University School of Medicine, MA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, MA, USA.,Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, MA, USA
| |
Collapse
|
34
|
Friedel E, Walter H, Veer IM, Zimmermann US, Heinz A, Frieling H, Zindler T. Impact of Long‐Term Alcohol Consumption and Relapse on Genome‐Wide DNA Methylation Changes in Alcohol‐Dependent Subjects: A Longitudinal Study. Alcohol Clin Exp Res 2020; 44:1356-1365. [DOI: 10.1111/acer.14354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Eva Friedel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthCharité Campus Mitte (CCM) Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Henrik Walter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthCharité Campus Mitte (CCM) Berlin Germany
| | - Ilya M. Veer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthCharité Campus Mitte (CCM) Berlin Germany
| | - Ulrich S. Zimmermann
- Department of Addiction Medicine and Psychotherapykbo Isar‐Amper‐Klinikum Munich Germany
| | - Andreas Heinz
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthCharité Campus Mitte (CCM) Berlin Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical School Hannover Germany
| | - Tristan Zindler
- Department of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical School Hannover Germany
| |
Collapse
|
35
|
Sanchez-Roige S, Palmer AA, Clarke TK. Recent Efforts to Dissect the Genetic Basis of Alcohol Use and Abuse. Biol Psychiatry 2020; 87:609-618. [PMID: 31733789 PMCID: PMC7071963 DOI: 10.1016/j.biopsych.2019.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Alcohol use disorder (AUD) is defined by several symptom criteria, which can be dissected further at the genetic level. Over the past several years, our understanding of the genetic factors influencing alcohol use and abuse has progressed tremendously; numerous loci have been implicated in different aspects of alcohol use. Previously known associations with alcohol-metabolizing enzymes (ADH1B, ALDH2) have been replicated definitively. In addition, novel associations with loci containing the genes KLB, GCKR, CRHR1, and CADM2 have been reported. Downstream analyses have leveraged these genetic findings to reveal important relationships between alcohol use behaviors and both physical and mental health. AUD and aspects of alcohol misuse have been shown to overlap strongly with psychiatric disorders, whereas aspects of alcohol consumption have shown stronger links to metabolism. These results demonstrate that the genetic architecture of alcohol consumption only partially overlaps with the genetics of clinically defined AUD. We discuss the limitations of using quantitative measures of alcohol use as proxy measures for AUD, and we outline how future studies will require careful phenotype harmonization to properly capture the genetic liability to AUD.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California; Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Park CI, Kim HW, Hwang SS, Kang JI, Kim SJ. Association of PPM1G methylation with risk-taking in alcohol use disorder. Sci Rep 2020; 10:5490. [PMID: 32218500 PMCID: PMC7099006 DOI: 10.1038/s41598-020-62504-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic and relapsing disease with a substantial genetic influence. Given the recent discovery of the association of PPM1G methylation with alcohol use disorder (AUD) from a genome-wide methylation study, we sought to verify and extend the previous work of AUD-related impulsivity in a Korean population with AUD. A total of 244 men with AUD were assessed for psychological characteristics and behavioral impulsivity using stop signal task (response inhibition) and Balloon Analog Risk Task (risk-taking). Leukocyte DNA methylation at PPM1G was quantified using pyrosequencing. The effects of PPM1G methylation on severity of problematic drinking measured by Alcohol Use Disorder Identification Test (AUDIT) and multidimensional impulsivity were tested using linear regression analyses. Hypermethylation of PPM1G was significantly associated with risk-taking propensity among men with AUD. No significant association of PPM1G methylation was found to be associated with AUDIT scores and response inhibition. Our findings indicate that altered methylation of PPM1G may influence the impulsive choice of risk-taking in AUD. Further research is required in order to determine the role of PPM1G in the pathophysiology of AUD and multidimensional impulsivity.
Collapse
Affiliation(s)
- Chun Il Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Medical Education, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Syung Shick Hwang
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Deak JD, Gizer IR, Otto JM, Bizon C, Wilhelmsen KC. Effects of Common and Rare Chromosome 4 GABAergic Gene Variation on Alcohol Use and Antisocial Behavior. J Stud Alcohol Drugs 2019; 80:585-593. [PMID: 31790348 PMCID: PMC6900988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Epidemiological estimates suggest that nearly half of individuals diagnosed with alcohol use disorder will be diagnosed with another mental health disorder, with strong associations involving other externalizing disorders. Molecular genetic studies investigating the relation between alcohol use disorder and externalizing behaviors (e.g., antisocial behavior) have focused on a cluster of chromosome 4 γ-aminobutyric acid (GABA) receptor genes (GABRG1-A2-A4-B1) but have generated varying results. METHOD The current study examined associations between common and rare variation in this region with alcohol use disorder and antisocial behavior using genetic sequencing data. Specifically, the University of California at San Francisco Family Alcoholism Sample (n = 1,610; 62% female) was used to conduct common and rare variant association tests in the GABRG1-A2-A4-B1 cluster with DSM-5 alcohol use disorder symptom counts, antisocial behavior, and a product term representing their interaction. RESULTS Gene-based analyses of rare variation resulted in a significant association between rare GABRA2 variation and the interaction term. Single-variant analysis yielded only nominally significant associations. The strongest association for alcohol use disorder (rs3756007) was located in GABRA2, the strongest association for antisocial behavior (rs11941860) was located in GABRG1, and the interaction term yielded top associations in GABRA2 (rs2119183) and the intergenic region between GABRA2 and GABRG1 (rs536599). Common and rare variant associations for the interaction remained similar when covarying for the effects of the other type of variation, suggesting that the significant rare variant signal is independent of common variant contributions. CONCLUSIONS The present study suggests that both rare and common variant associations in GABRA2 confer risk for alcohol use disorder and antisocial behaviors, indicating a potential liability toward externalizing behavior more broadly.
Collapse
Affiliation(s)
- Joseph D. Deak
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Jacqueline M. Otto
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Chris Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kirk C. Wilhelmsen
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics and Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
38
|
Wang L, Li M, Bu Q, Li H, Xu W, Liu C, Gu H, Zhang J, Wan X, Zhao Y, Cen X. Chronic alcohol causes alteration of lipidome profiling in brain. Toxicol Lett 2019; 313:19-29. [DOI: 10.1016/j.toxlet.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
|
39
|
Just-Østergaard E, Flensborg-Madsen T, Knop J, Sørensen HJ, Becker U, Mortensen EL. Intelligence in young adulthood and alcohol use disorders in a prospective cohort study of Danish men: the role of psychiatric disorders and parental psychiatric history. BMJ Open 2019; 9:e028997. [PMID: 31488478 PMCID: PMC6731796 DOI: 10.1136/bmjopen-2019-028997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The aims were to estimate the association between intelligence measured in young adulthood and risk of alcohol use disorders (AUD) in men and to investigate the potential modification of this association by psychiatric disorders, parental AUD and parental psychiatric disorders. DESIGN Prospective cohort study based on a linkage of intelligence test scores from draft board examinations and register data on AUD diagnoses during 36 years of follow-up. SETTING Denmark. PARTICIPANTS 3287 Danish men from the Copenhagen Perinatal Cohort (born 1959-1961) who appeared before the draft board at a mean age of 18.7 years. PRIMARY OUTCOME MEASURE First registration with AUD during follow-up was the primary outcome. Information on AUD was based on diagnoses retrieved from national hospital and outpatient treatment registers, defined according to the International Classification of Diseases. RESULTS 361 (11.0%) men were registered with AUD during follow-up. Low intelligence scores were associated with increased odds of AUD adjusting for parental AUD, parental psychiatric disorders, maternal smoking during pregnancy, birth weight, maternal age at birth, parity and childhood socioeconomic position (OR per SD decrease in intelligence=1.69, 95% CI 1.49 to 1.92). Separate analyses indicated significant interaction (p<0.001) between intelligence and psychiatric disorders. The adjusted OR per SD decrease in intelligence score was 2.04 (95% CI 1.67 to 2.49) in men without other psychiatric disorders whereas the OR was 1.21 (95% CI 1.01 to 1.46) in men with other psychiatric disorders. No interaction was found between intelligence and parental AUD or between intelligence and parental psychiatric disorders. CONCLUSIONS The association between intelligence in young adulthood and AUD is modified by other psychiatric disorders as low intelligence is primarily a risk factor for men without other psychiatric disorders. Future studies should take other psychiatric disorders into account when investigating associations between intelligence and AUD.
Collapse
Affiliation(s)
| | | | - Joachim Knop
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrik Becker
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | | |
Collapse
|