1
|
Agathokleous E, Guedes RNC, Calabrese EJ. Reimagining agrochemical pollution mitigation: Leveraging hormesis for sustainable environmental solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175165. [PMID: 39084370 DOI: 10.1016/j.scitotenv.2024.175165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Emerging evidence reveals that low doses of stress stimulate, and high doses suppress, organism responses - a phenomenon known as hormesis. Here, we propose a framework for harnessing hormesis principles to optimize agrochemical use and mitigate pollution. We discuss how hormesis can be applied in agrochemical context and highlight challenges and needs beyond scientific research, offering a perspective for sustainable environmental solutions.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Saburov V, Kazakova E, Moiseev A, Kazakov E, Podlutskii M, Babina D, Korol M, Gorbatova I, Volkova P. Combining clinostating and proton irradiation for modeling the space environment: a case study with a Chernobyl accession of Arabidopsis thaliana. Int J Radiat Biol 2024:1-15. [PMID: 39353463 DOI: 10.1080/09553002.2024.2409665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE The study of mechanisms of plant responses to extreme conditions, particularly, microgravity and ionizing radiation, is crucial for space exploration. Modern space biology of plants focuses on increasing plant tolerance to harsh conditions of space environment. Given the limited access to the International Space Station, we designed and assembled the 3D clinostat for mimicking microgravity, which, in combination with proton irradiation, allows simulating space conditions. As a case study for testing the device, we studied the effect of clinostating on Arabidopsis thaliana accession originating from the Chernobyl exclusion zone. MATERIALS AND METHODS Using the combined clinostating and proton irradiation, we simulated the conditions of long-term space flight for Arabidopsis thaliana plants of the Chernobyl accession - progeny of chronically irradiated plants, grown from field-collected (Masa-0) and laboratory-cultivated (Masa-0-1) seeds, and for wild-type Col-8. The clinostating and irradiation of plants were also carried out separately. Plant responses were studied as photosynthetic and phenotypic endpoints of seedlings. RESULTS AND CONCLUSIONS Parameters of chlorophyll fluorescence estimated immediately after exposure showed that Masa-0-1 plants were resistant to the simulated space conditions, while Masa-0 demonstrated modulation of non-photochemical fluorescence quenching. Proton irradiation generally inhibited photosynthesis of Masa-0, Masa-0-1, and Col-8 seedlings. The combined effect of irradiation and clinostating modulated the photosynthetic activity of Col-8 seedlings. The leaf area of seedlings did not change after exposure to simulated conditions. The 3D clinostat model and software are published along with this article for researchers interested in the field of space biology.
Collapse
Affiliation(s)
- Vyacheslav Saburov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Elizaveta Kazakova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Alexander Moiseev
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Evgeniy Kazakov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Mikhail Podlutskii
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Darya Babina
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Marina Korol
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Irina Gorbatova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | | |
Collapse
|
3
|
Jiao Q, Li G, Li L, Lin D, Xu Z, Fan L, Zhang J, Shen F, Liu S, Seth CS, Liu H. Hormetic responses to cadmium exposure in wheat seedlings: insights into morphological, physiological, and biochemical adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57701-57719. [PMID: 39292310 DOI: 10.1007/s11356-024-34915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Cadmium is commonly recognized as toxic to plant growth, low-level Cd has promoting effects on growth performance, which is so-called hormesis. Although Cd toxicity in wheat has been widely investigated, knowledge of growth response to a broad range of Cd concentrations, especially extremely low concentrations, is still unknown. In this study, the morphological, physiological, and biochemical performance of wheat seedlings to a wide range of Cd concentrations (0-100 µΜ) were explored. Low Cd treatment (0.1-0.5 µM) improved wheat biomass and root development by enhancing the photosynthetic system and antioxidant system ability. Photosynthetic rate (Pn) was improved by 5.72% under lower Cd treatment (1 µΜ), but inhibited by 6.05-49.85% from 5 to 100 µΜ. Excessive Cd accumulation induced oxidative injury manifesting higher MDA content, resulting in lower photosynthetic efficiency, stunted growth, and reduction of biomass. Further, the contents of ascorbate, glutathione, non-protein thiols, and phytochelatins were improved under 5-100 µΜ Cd treatment. The ascorbate peroxidase activity in the leaf showed a hormetic dose-response characteristic. Correlation analysis and partial least squares (PLS) results indicated that antioxidant enzymes and metabolites were closely correlated with Cd tolerance and accumulation. The results of the element network, correlation analysis, and PLS showed a crucial role for exogenous Cd levels in K, Fe, Cu, and Mn uptake and accumulation. These results provided a deeper understanding of the hormetic effect of Cd in wheat, which would be beneficial for improving the quality of hazard and risk assessments.
Collapse
Affiliation(s)
- Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lantao Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Di Lin
- College of Forestry, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zhengyang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengmin Shen
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | | | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
4
|
Echeveste P, Fernández-Juárez V, Brito-Echeverría J, Rodríguez-Romero A, Tovar-Sánchez A, Agawin NS. Toxicity of inorganic nanoparticles and commercial sunscreens on marine bacteria. CHEMOSPHERE 2024; 364:143066. [PMID: 39128774 DOI: 10.1016/j.chemosphere.2024.143066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The Balearic Islands, a top tourist destination for sunny beaches, face physical and chemical pressures from human activities, impacting keystone species like the endemic seagrass Posidonia oceanica and its associated microbiome. This study evaluated the effects of ZnO and TiO2 nanoparticles and three commercial sunscreens with varying protection factors (50 or 90) and chemical complexities (1- SPF50_E "eco-friendly"; 2- SPF50 not "eco-friendly"; 3- SPF90 not "eco-friendly") on five heterotrophic bacteria (Pseudomonas azotifigens, Marinobacterium litorale, Thiothrix nivea, Sedimenticola thiotaurini and Cobetia sp) and two autotrophic cyanobacteria (Halothece sp. and Fischerella muscicola) associated to P. oceanica, as well as a natural leaf epiphytic community. Results indicated that TiO2 affected all heterotrophic bacteria, while ZnO was toxic to only two species, while autotrophs were unaffected. Commercial sunscreens impacted three heterotrophs and the natural epiphytic community, while autotrophs were only affected by SPF50. SPF50_E reduced phosphorus uptake, and both SPF50 and SPF90 decreased alkaline phosphatase activity. Reactive oxygen species production was mainly induced by SPF90, followed by SPF50_E and SPF50. Generally, the smallest bacteria were most sensitive to UV-filters (UVFs). This study indicates that UVFs exposure may alter the epiphytic community structure of P. oceanica.
Collapse
Affiliation(s)
- Pedro Echeveste
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain.
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | | | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Nona S Agawin
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain
| |
Collapse
|
5
|
Hoshika Y, Agathokleous E, Moura BB, Paoletti E. Ozone risk assessment with free-air controlled exposure (FACE) experiments: A critical revisit. ENVIRONMENTAL RESEARCH 2024; 255:119215. [PMID: 38782333 DOI: 10.1016/j.envres.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Since risk assessments of tropospheric ozone (O3) are crucial for agricultural and forestry sectors, there is a growing body for realistic assessments by a stomatal flux-based approach in Free-Air Controlled Exposure (FACE) facilities. Ozone risks are normally described as relative risks (RRs), which are calculated by assuming the biomass or yield at zero O3 dose as "reference". However, the estimation of the reference biomass or yield is challenging due to a lack of O3-clean-air treatment at the FACEs and the extrapolation without data in a low O3 range increases the bias for estimating the reference values. Here, we reviewed a current methodology for the risk assessment at FACEs and presented a simple and effective way ("modified Paoletti's approach") of defining RRs just using biomass or yield data with a range of expected impacts under the FACE conditions hypothesizing three possible scenarios based on prediction limits using 95% credible intervals (CI) (1. Best fit using the intercept as reference, 2. Optimistic scenario using a lower CI and 3. Worst scenario using an upper CI). As a result, O3-sensitive species show a relatively narrow effect range (optimistic vs. worst scenario) whereas a wide range of response may be possibly taken in resistant species. Showing a possible effect range allows for a comprehensive understanding of the potential risks and its uncertainties related to a species sensitivity to O3. As a supporting approach, we also recommend to use scientifically relevant tools (i.e., ethylenediurea treatments; mechanistic plant models) for strengthening the obtained results for the RRs against O3. Interestingly, the moderately sensitive or resistant species showed non-linear rather than linear dose-response relationships, suggesting a need for the flexible functional form for the risk assessment to properly describe the complex plant response such as hormesis, which depends on their plasticity to O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
6
|
Zhang R, Wu Y, Qu X, Yang W, Wu Q, Huang L, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wang X, Wei Y, Xu Q. The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function. Nat Commun 2024; 15:6905. [PMID: 39134523 PMCID: PMC11319775 DOI: 10.1038/s41467-024-51249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.
Collapse
Affiliation(s)
- Rongrong Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wenjuan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Tryfon P, Sperdouli I, Moustaka J, Adamakis IDS, Giannousi K, Dendrinou-Samara C, Moustakas M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int J Mol Sci 2024; 25:8350. [PMID: 39125918 PMCID: PMC11312163 DOI: 10.3390/ijms25158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m-2 s-1) and at high irradiance (HI) (1000 μmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | | | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
8
|
Yang W, Zhang Z, Yuan T, Li Y, Zhao Q, Dong Y. Intercropping improves faba bean photosynthesis and reduces disease caused by Fusarium commune and cinnamic acid-induced stress. BMC PLANT BIOLOGY 2024; 24:650. [PMID: 38977959 PMCID: PMC11232231 DOI: 10.1186/s12870-024-05326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Modern intensive cropping systems often contribute to the accumulation of phenolic acids in the soil, which promotes the development of soilborne diseases. This can be suppressed by intercropping. This study analyzed the effects of intercropping on Fusarium wilt based on its effect on photosynthesis under stress by the combination of Fusarium commune and cinnamic acid. The control was not inoculated with F. commune, while the faba bean plants (Vicia faba L.) were inoculated with this pathogen in the other treatments. The infected plants were also treated with cinnamic acid. This study examined the development of Fusarium wilt together with its effects on the leaves, absorption of nutrients, chlorophyll fluorescence parameters, contents of photosynthetic pigments, activities of photosynthetic enzymes, gas exchange parameters, and the photosynthetic assimilates of faba bean from monocropping and intercropping systems. Under monocropping conditions, the leaves of the plants inoculated with F. commune grew significantly less, and there was enhanced occurrence of the Fusarium wilt compared with the control. Compared with the plants solely inoculated with F. commune, the exogenous addition of cinnamic acid to the infected plants significantly further reduced the growth of faba bean leaves and increased the occurrence of Fusarium wilt. A comparison of the combination of F. commune and cinnamic acid in intercropped wheat and faba bean compared with monocropping showed that intercropping improved the absorption of nutrients, increased photosynthetic pigments and its contents, electron transport, photosynthetic enzymes, and photosynthetic assimilates. The combination of these factors reduced the occurrence of Fusarium wilt in faba bean and increased the growth of its leaves. These results showed that intercropping improved the photosynthesis, which promoted the growth of faba bean, thus, reducing the development of Fusarium wilt following the stress of infection by F. commune and cinnamic acid. This research should provide more information to enhance sustainable agriculture.
Collapse
Affiliation(s)
- Wenhao Yang
- College of Resources and Environment, Yunnan Agricultural University, No. 452 Fengyuan, Kunming, Yunnan, 650500, China
| | - Zhenyu Zhang
- College of Resources and Environment, Yunnan Agricultural University, No. 452 Fengyuan, Kunming, Yunnan, 650500, China
| | - Tingting Yuan
- College of Resources and Environment, Yunnan Agricultural University, No. 452 Fengyuan, Kunming, Yunnan, 650500, China
| | - Yu Li
- College of Resources and Environment, Yunnan Agricultural University, No. 452 Fengyuan, Kunming, Yunnan, 650500, China
| | - Qian Zhao
- College of Resources and Environment, Yunnan Agricultural University, No. 452 Fengyuan, Kunming, Yunnan, 650500, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, No. 452 Fengyuan, Kunming, Yunnan, 650500, China.
| |
Collapse
|
9
|
You X, Chen X, Jiang Y, Chen H, Liu J, Wu Z, Sun W, Ni J. 6PPD-quinone affects the photosynthetic carbon fixation in cyanobacteria by extracting photosynthetic electrons. Innovation (N Y) 2024; 5:100630. [PMID: 38800352 PMCID: PMC11126802 DOI: 10.1016/j.xinn.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Photosynthetic carbon fixation by cyanobacteria plays a pivotal role in the global carbon cycle but is threatened by environmental pollutants. To date, the impact of quinones, with electron shuttling properties, on cyanobacterial photosynthesis is unknown. Here, we present the first study investigating the effects of an emerging quinone pollutant, i.e., 6PPD-Q (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone), on the cyanobacterium Synechocystis sp. over a 400-generation exposure period. Synechocystis sp. exhibited distinct sequential phases, including hormesis, toxicity, and eventual recovery, throughout this exposure. Extensive evidence, including results of thylakoid membrane morphological and photosynthetic responses, carbon fixation rate, and key gene/protein analyses, strongly indicates that 6PPD-Q is a potent disruptor of photosynthesis. 6PPD-Q accepts photosynthetic electrons at the plastoquinone QB site in photosystem II (PSII) and the phylloquinone A1 site in PSI, leading to a sustained decrease in the carbon fixation of cyanobacteria after an ephemeral increase. This work revealed the specific mechanism by which 6PPD-Q interferes with photosynthetic carbon fixation in cyanobacteria, which is highly important for the global carbon cycle.
Collapse
Affiliation(s)
- Xiuqi You
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Ximin Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Juan Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Zhen Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
10
|
Wang Y, Cui Y, Li J, Xu N, Shi T, Sun Y, Zhang C. Glyphosate hormesis stimulates tomato (Solanum lycopersicum L.) plant growth and enhances tolerance against environmental abiotic stress by triggering nonphotochemical quenching. PEST MANAGEMENT SCIENCE 2024; 80:3628-3639. [PMID: 38456569 DOI: 10.1002/ps.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glyphosate is the most widely applied herbicide in the world. Hormesis caused by low glyphosate doses has been widely documented in many plant species. However, the specific adaptative mechanism of plants responding to glyphosate hormesis stimulation remains unclear. This study focused on the biphasic relationship between glyphosate dose and tomato plant growth, and how glyphosate hormesis stimulates plant growth and enhances tolerance to environmental stress. RESULTS We constructed a hormesis model to describe the biphasic relationship with a maximal stimulation (MAX) of 162% above control by glyphosate at 0.063 g ha-1. Low-dose glyphosate increased photosynthetic pigment contents and improve photosynthetic efficiency, leading to plant growth stimulation. We also found that glyphosate hormesis enhanced plant tolerance to diuron (DCMU; a representative photosynthesis inhibitor) by triggering the nonphotochemical chlorophyll fluorescence quenching (NPQ) reaction to dissipate excess energy stress from photosystem II (PSII). Transcriptomic analysis and quantitative real-time polymerase chain reaction results revealed that the photosynthesis-antenna proteins pathway was the most sensitive to glyphosate hormesis, and PsbS (encoding photosystem II subunit S), ZEP (encoding zeaxanthin epoxidase) and VDE (encoding violaxanthin de-epoxidase) involved in NPQ played crucial roles in the plant response to glyphosate hormesis. CONCLUSION These results provide novel insights into the mechanisms of plant hormesis and is meaningful to the application of glyphosate hormesis in agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuru Wang
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Yidi Cui
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Jing Li
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Nuo Xu
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chao Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
11
|
Kwidzińska K, Zalewska M, Aksmann A, Kobos J, Mazur-Marzec H, Caban M. Multi-biomarker response of cyanobacteria Synechocystis salina and Microcystis aeruginosa to diclofenac. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134373. [PMID: 38678710 DOI: 10.1016/j.jhazmat.2024.134373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.
Collapse
Affiliation(s)
- Klaudia Kwidzińska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Martyna Zalewska
- University of Gdansk, Faculty of Biology, Department of Plant Experimental Biology and Biotechnology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Aksmann
- University of Gdansk, Faculty of Biology, Department of Plant Experimental Biology and Biotechnology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Justyna Kobos
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
12
|
Sperdouli I, Panteris E, Moustaka J, Aydın T, Bayçu G, Moustakas M. Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress. Int J Mol Sci 2024; 25:5728. [PMID: 38891916 PMCID: PMC11171592 DOI: 10.3390/ijms25115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m-2 s-1) and high light (HL, 900 μmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece;
| | - Emmanuel Panteris
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
13
|
Agathokleous E, Calabrese EJ, Barceló D. Environmental hormesis: New developments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167450. [PMID: 37806016 DOI: 10.1016/j.scitotenv.2023.167450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
14
|
de Faria GS, Carlos L, Jakelaitis A, de Freitas STF, Vicentini TA, Silva IOF, Vasconcelos Filho SC, Lourenço LL, Farnese FS, Batista MA, Vitorino LC. Hormetic Effect Caused by Sublethal Doses of Glyphosate on Toona ciliata M. Roem. PLANTS (BASEL, SWITZERLAND) 2023; 12:4163. [PMID: 38140490 PMCID: PMC10747235 DOI: 10.3390/plants12244163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to evaluate the response of Toona ciliata seedlings to sublethal doses of glyphosate. The increasing use of glyphosate in agriculture concerns the scientific community, as the drift of this pollutant into aquatic systems or atmospheric currents can affect non-target species. Therefore, we need to understand how non-target species respond to small doses of this herbicide. T. ciliata seedlings (clone BV-1110) were exposed to sublethal doses of glyphosate (0, 9.6, 19.2, 38.4, 76.8 g ae ha-1). Anatomical, physiological, and photochemical analyses were performed 60 days after herbicide application, and growth assessments were carried out after 160 days of cultivation. We found that sublethal doses of glyphosate above 19.2 g ae ha-1 induced toxicity symptoms in Toona ciliata leaves. These symptoms were mild in some cases, such as chlorosis, but severe in other cases, such as tissue necrosis. We observed a positive relationship between increased plant height and photochemical yield with plant exposure to sub-doses 9.6 and 19.2 g ae ha-1. A sublethal dose of 38.4 g ae ha-1 improved the photosynthetic rate and carboxylation efficiency. Thus, we confirmed the hypothesis of a hormetic effect when T. ciliata was exposed to sub-doses of glyphosate equal to or lower than 38.4 g ae ha-1. However, the sublethal dose of 76.8 g ae ha-1 must be considered toxic, impacting photosynthetic activity and, consequently, the height of T. ciliata. The stem diameter of T. ciliata responded positively to increasing glyphosate doses. This occurs to compensate for the negative effect of glyphosate on water absorption. Further research will provide valuable information for harnessing the potential benefits of hormesis to improve the productivity of T. ciliata.
Collapse
Affiliation(s)
- Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Leandro Carlos
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Adriano Jakelaitis
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Samylla Tassia Ferreira de Freitas
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Taíza Andressa Vicentini
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Igor Olacir Fernandes Silva
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Sebastião Carvalho Vasconcelos Filho
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Lucas Loram Lourenço
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Fernanda Santos Farnese
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Marco Aurélio Batista
- Programa de Pós-Graduação em Recursos Naturais do Cerrado, Universidade Estadual de Goiás, BR-153, Km 99, Qd. Área, Km 99, Campus Bairro São João, Anápolis 75132-903, GO, Brazil;
| | - Luciana Cristina Vitorino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| |
Collapse
|
15
|
Moustakas M, Sperdouli I, Adamakis IDS, Şaş B, İşgören S, Moustaka J, Morales F. Mechanistic Approach on Melatonin-Induced Hormesis of Photosystem II Function in the Medicinal Plant Mentha spicata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4025. [PMID: 38068660 PMCID: PMC10708495 DOI: 10.3390/plants12234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024]
Abstract
Melatonin (MT) is considered a new plant hormone having a universal distribution from prokaryotic bacteria to higher plants. It has been characterized as an antistress molecule playing a positive role in the acclimation of plants to stress conditions, but its impact on plants under non-stressed conditions is not well understood. In the current research, we evaluated the impact of MT application (10 and 100 μM) on photosystem II (PSII) function, reactive oxygen species (ROS) generation, and chlorophyll content on mint (Mentha spicata L.) plants in order to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process that under non-stressed conditions is still unclear. Seventy-two hours after the foliar spray of mint plants with 100 μM MT, the improved chlorophyll content imported a higher amount of light energy capture, which caused a 6% increase in the quantum yield of PSII photochemistry (ΦPSII) and electron transport rate (ETR). Nevertheless, the spray with 100 μM MT reduced the efficiency of the oxygen-evolving complex (OEC), causing donor-side photoinhibition, with a simultaneous slight increase in ROS. Even so, the application of 100 μM MT decreased the excess excitation energy at PSII implying superior PSII efficiency. The decreased excitation pressure at PSII, after 100 μM MT foliar spray, suggests that MT induced stomatal closure through ROS production. The response of ΦPSII to MT spray corresponds to a J-shaped hormetic curve, with ΦPSII enhancement by 100 μM MT. It is suggested that the hormetic stimulation of PSII functionality was triggered by the non-photochemical quenching (NPQ) mechanism that stimulated ROS production, which enhanced the photosynthetic function. It is concluded that MT molecules can be used under both stress and non-stressed conditions as photosynthetic biostimulants for enhancing crop yields.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 19710 Saint-Petersburg, Russia
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
16
|
López HL, Beltrán Beache M, Ochoa Fuentes YM, Cerna Chavez E, del Ángel EC, Delgado Ortiz JC. Phytotoxicity of Extracts of Argemone mexicana and Crotalaria longirostrata on Tomato Seedling Physiology. PLANTS (BASEL, SWITZERLAND) 2023; 12:3856. [PMID: 38005753 PMCID: PMC10675373 DOI: 10.3390/plants12223856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Phytotoxicity caused by secondary metabolites of botanical extracts is a drawback in agriculture. The objective of this study was to evaluate the phytotoxic effects of methanolic extracts of Crotalaria longirostrata and Argemone mexicana on the germination and physiological variables of tomato seedlings. The results indicated that high doses of both extracts (Clong500 and Amex500) inhibited tomato seed germination, while their mixture (Cl50 + Am50) promoted germination by 100%. At 30 days after transplanting (dat), the plant height increased by 15.4% with a high dose of C. longirostrata (Clong500) compared to the control. At 30 dat, the vigor index displayed a notable increase with Cl50 + Am50, reaching 29.5%. The root length increased with the mean dose of A. mexicana (Amex95) at 10, 20, and 30 dat (59.7%, 15.1%, and 22.4%, respectively). The chlorophyll content increased with Amex95 by 66.1% in 10 dat, 22.6% at 20 dat, and 19.6% at 30 dat. On the other hand, Amex95 had a higher nitrogen content throughout the trial. Amex95 produced the greatest increase in root dry weight by 731.5% and 209.4% at 10 and 20 dat. The foliage dry weight increased by 85.7% at 10 dat with Amex95 and up to 209.7% with Amex50 at 30 dat. The present investigation reveals the ability of the extracts to stimulate tomato growth at low and medium doses, though at high doses they exhibit allelopathic effects.
Collapse
Affiliation(s)
- Henry López López
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | - Mariana Beltrán Beache
- Centro de Ciencias Agropecuarias, Epartamento de Fitotecnia, Universidad Autónoma de Aguascalientes, Aguascalientes C.P. 20700, Mexico
| | - Yisa María Ochoa Fuentes
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | - Ernesto Cerna Chavez
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | - Epifanio Castro del Ángel
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | | |
Collapse
|
17
|
Agathokleous E, Blande JD, Masui N, Calabrese EJ, Zhang J, Sicard P, Guedes RNC, Benelli G. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. ENVIRONMENTAL RESEARCH 2023; 237:116876. [PMID: 37573021 DOI: 10.1016/j.envres.2023.116876] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
An increasing number of studies have reported stimulation of various organisms in the presence of environmental contaminants. This has created a need to critically evaluate sublethal stimulation and hormetic responses of arthropod parasitoids and parasites following exposure to pesticides and other contaminants. Examining this phenomenon with a focus on arthropods of agricultural and environmental importance serves as the framework for this literature review. This review shows that several pesticides, with diverse chemical structures and different modes of action, applied individually or in combination at sublethal doses, commonly stimulate an array of arthropod parasitoids and parasites. Exposure at sublethal doses can enhance responses related to physiology (e.g., respiration, total lipid content, and total protein content), behavior (e.g., locomotor activity, antennal drumming frequency, host location, and parasitization), and fitness (longevity, growth, fecundity, population net and gross reproduction). Concordantly, the parasitic potential (e.g., infestation efficacy, parasitization rate, and parasitoid/parasite emergence) can be increased, and as a result host activities inhibited. There is some evidence illustrating hormetic dose-responses, but the relevant literature commonly included a limited number and range of doses, precluding a robust differentiation between sub- and superNOAEL (no-observed-adverse-effect level) stimulation. These results reveal a potentially significant threat to ecological health, through stimulation of harmful parasitic organisms by environmental contaminants, and highlight the need to include sublethal stimulation and hormetic responses in relevant ecological pesticide risk assessments. Curiously, considering a more utilitarian view, hormesis may also assist in optimizing mass rearing of biological control agents for field use, a possibility that also remains neglected.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Noboru Masui
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | | | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
18
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Dendrinou-Samara C, Moustakas M. Modification of Tomato Photosystem II Photochemistry with Engineered Zinc Oxide Nanorods. PLANTS (BASEL, SWITZERLAND) 2023; 12:3502. [PMID: 37836242 PMCID: PMC10575289 DOI: 10.3390/plants12193502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
We recently proposed the use of engineered irregularly shaped zinc oxide nanoparticles (ZnO NPs) coated with oleylamine (OAm), as photosynthetic biostimulants, to enhance crop yield. In the current research, we tested newly engineered rod-shaped ZnO nanorods (NRs) coated with oleylamine (ZnO@OAm NRs) regarding their in vivo behavior related to photosynthetic function and reactive oxygen species (ROS) generation in tomato (Lycopersicon esculentum Mill.) plants. ZnO@OAm NRs were produced via solvothermal synthesis. Their physicochemical assessment revealed a crystallite size of 15 nm, an organic coating of 8.7% w/w, a hydrodynamic diameter of 122 nm, and a ζ-potential of -4.8 mV. The chlorophyll content of tomato leaflets after a foliar spray with 15 mg L-1 ZnO@OAm NRs presented a hormetic response, with an increased content 30 min after the spray, which dropped to control levels 90 min after the spray. Simultaneously, 90 min after the spray, the efficiency of the oxygen-evolving complex (OEC) decreased significantly (p < 0.05) compared to control values, with a concomitant increase in ROS generation, a decrease in the maximum efficiency of PSII photochemistry (Fv/Fm), a decrease in the electron transport rate (ETR), and a decrease in the effective quantum yield of PSII photochemistry (ΦPSII), indicating reduced PSII efficiency. The decreased ETR and ΦPSII were due to the reduced efficiency of PSII reaction centers (Fv'/Fm'). There were no alterations in the excess excitation energy at PSII or the fraction of open PSII reaction centers (qp). We discovered that rod-shaped ZnO@OAm NRs reduced PSII photochemistry, in contrast to irregularly shaped ZnO@OAm NPs, which enhanced PSII efficiency. Thus, the shape and organic coating of the nanoparticles play a critical role in the mechanism of their action and their impact on crop yield when they are used in agriculture.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Fan D, Sun Y, Chen M, Zhu Y, Agathokleous E, Zhu F, Han J. The role of the ABF1 gene in regulation of Cd-induced hormesis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131991. [PMID: 37459756 DOI: 10.1016/j.jhazmat.2023.131991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Hormesis is important in plant performance in contaminated environments, but the underlying genetic mechanisms are poorly understood. This study aimed at mining key genes in regulating Cd-induced hormesis in Arabidopsis thaliana and verifying their biological function. Hormesis of fresh weight, dry weight, and root length occurred at concentrations of 0.003-2.4, 0.03-0.6, and 0.03-0.6 µM Cd, respectively. Superoxide dismutase and catalase activities, and chlorophyll content displayed inverted U-shaped curves, indicating that the antioxidant defense system and photosynthesis system played roles in hormesis. Based on KEGG pathway analysis with the trend chart of differentially expressed genes and weighted correlation network analysis, the key gene ABF1 in the metabolic pathway of abscisic acid was identified. Subsequently, genetic experiments with wild, overexpressing, and knockdown lines of A. thaliana were conducted to further verify the biological function of ABF1 involving Cd-induced hormesis in A. thaliana. The results revealed that the resistance capability of the overexpressing type to Cd stress was significantly enhanced and implicated that the ABF1 gene is essential for Cd-induced hormesis in A. thaliana. Mining key genes that regulate Cd-induced hormesis in plants and stimulate them could have a transformative impact on the phytoremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Diwu Fan
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yong Sun
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Moxian Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongli Zhu
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Fuyuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiangang Han
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
20
|
Naqqash T, Aziz A, Gohar M, Khan J, Ali S, Radicetti E, Babar M, Siddiqui MH, Haider G. Heavy metal-resistant rhizobacteria fosters to alleviate the cadmium toxicity in Arabidopsis by upregulating the plant physiological responses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:557-568. [PMID: 37705142 DOI: 10.1080/15226514.2023.2253923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
This study was designed to investigate the role of Morganella morganii strains in alleviating Cd stress in Arabidopsis seedlings under controlled conditions. Both M. morganii strains ABT3 (ON316873) and ABT9 (ON316874) strains isolated from salt-affected areas showed higher resistance against Cd and possess plant growth-promoting traits such as nitrogen fixation, indole-acetic acid production, ammonia production, phosphate solubilization, and, catalase, gelatinase and protease enzyme production. Plant inoculation assay showed that varying concentration of Cd (1.5 mM and 2.5 mM) significantly reduced Arabidopsis growth, quantum yield (56.70%-66.49%), and chlorophyll content (31.90%-42.70%). Cd toxicity also triggered different associations between lipid peroxidation (43.61%-69.77%) and enzymatic antioxidant mechanisms. However, when both strains were applied to the Arabidopsis seedlings, the shoot and root length and fresh and dry weights were improved in the control and Cd-stressed plants. Moreover, both strains enhanced the resistance against Cd stress by increasing antioxidant enzyme activities [catalase (19.47%-27.39%) and peroxidase (37.50%-48.07%)]that ultimately cause a substantial reduction in lipid peroxidation (27.71%-41.90%). Both strains particularly ABT3 also showed positive results in improving quantum yield (73.84%-98.64%) and chlorophyll content (41.13%-48.63%), thus increasing the growth of Arabidopsis seedlings. The study suggests that PGPR can protect plants from Cd toxicity, and Cd-tolerant rhizobacterial strains can remediate heavy metal polluted sites and improve plant growth.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aeman Aziz
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Madiha Gohar
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Jallat Khan
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering, and Information Technology, Pakistan
| | - Shahbaz Ali
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering, and Information Technology, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Muhammad Babar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
21
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
22
|
Moustaka J, Moustakas M. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. BIOSENSORS 2023; 13:796. [PMID: 37622882 PMCID: PMC10452221 DOI: 10.3390/bios13080796] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll a fluorescence imaging, which can evaluate spatiotemporal leaf changes, permitting the pre-symptomatic monitoring of plant physiological status long before any visible symptoms develop, allowing for high-throughput assessment. Here, we review different examples of how chlorophyll a fluorescence imaging analysis can be used to evaluate biotic and abiotic stress. Chlorophyll a is able to detect biotic stress as early as 15 min after Spodoptera exigua feeding, or 30 min after Botrytis cinerea application on tomato plants, or on the onset of water-deficit stress, and thus has potential for early stress detection. Chlorophyll fluorescence (ChlF) analysis is a rapid, non-invasive, easy to perform, low-cost, and highly sensitive method that can estimate photosynthetic performance and detect the influence of diverse stresses on plants. In terms of ChlF parameters, the fraction of open photosystem II (PSII) reaction centers (qp) can be used for early stress detection, since it has been found in many recent studies to be the most accurate and appropriate indicator for ChlF-based screening of the impact of environmental stress on plants.
Collapse
Affiliation(s)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
23
|
Gulenturk C, Alp-Turgut FN, Arikan B, Tofan A, Ozfidan-Konakci C, Yildiztugay E. Polyamine, 1,3-diaminopropane, regulates defence responses on growth, gas exchange, PSII photochemistry and antioxidant system in wheat under arsenic toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107886. [PMID: 37451004 DOI: 10.1016/j.plaphy.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metalloid arsenic (As) is extremely hazardous to all living organisms, including plants. Pollution with As is very detrimental to the photosynthetic machinery, cell division, energy generation, and redox status. In order to cope with stress, the use of growth regulators such as polyamines (PA), which strengthen the antioxidant system of plants, has become widespread in recent years. PAs can modulate the plant growth through basic mechanisms common to all living organisms, such as membrane stabilization, free radical scavenging, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and protein synthesis, enzyme activities and second messengers. However, the effect of 1,3- diaminopropane (Dap), which is a product of PA catabolism, is not clear enough in plants exposed to As toxicity. In the current study, the different concentrations of 1,3-diaminopropane (0.1, 0.5 and 1 mM Dap) were hydroponically treated to wheat (Triticum aestivum) under arsenic stress (100 μM As) and then relative growth rate (RGR), relative water content (RWC), proline content (Pro), gas exchange parameters, PSII photochemistry, chlorophyll fluorescence kinetics, antioxidant activity and lipid peroxidation were assessed. RGR, RWC, osmotic potential and Pro content decreased in As-applied plants. The inhibition of these parameters could be reversed by Dap treatments. Besides, Dap applications mitigated the As toxicity-induced suppression on chlorophyll fluorescence (Fv/Fm, Fv/Fo and Fo/Fm) and the performance of PSII photochemistry. As impaired the balance on antioxidant capacity by decreased activities of catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and the contents of ascorbate (AsA) and glutathione (GSH) and then lipid peroxidation (TBARS content) increased. In the presence of Dap under As stress, the plants exhibited an increase in superoxide dismutase (SOD), POX, and GPX. Dap treatments contributed to the maintenance of cellular redox state (AsA/DHA and GSH/GSSG) by regulating the activities/contents of enzyme/non-enzyme involved in the AsA-GSH cycle. After Dap applications against stress, ROS accumulation (H2O2 content) and lipid peroxidation (TBARS) were effectively reduced. The findings showed that by eliminating As-induced oxidative damage and protecting the biochemical processes of photosynthesis, Dap treatments have a substantial potential to give resistance to wheat.
Collapse
Affiliation(s)
- Cagri Gulenturk
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Aysenur Tofan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
24
|
Agathokleous E, Sonne C, Benelli G, Calabrese EJ, Guedes RNC. Low-dose chemical stimulation and pest resistance threaten global crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162989. [PMID: 36948307 DOI: 10.1016/j.scitotenv.2023.162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
25
|
Xu N, Sun Y, Wang Y, Cui Y, Jiang Y, Zhang C. Hormesis effects in tomato plant growth and photosynthesis due to acephate exposure based on physiology and transcriptomic analysis. PEST MANAGEMENT SCIENCE 2023; 79:2029-2039. [PMID: 36693821 DOI: 10.1002/ps.7381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hormesis is a common phenomenon in toxicology described as low-dose stimulation due to a toxin which causes inhibition at a high dose. Pesticide hormesis in plants has attracted considerable research interest in recent years; however, the specific mechanism has not yet been clarified. Acephate is an organophosphorus insecticide that is used worldwide. Here, hormesis in tomato (Solanum lycopersicum L.) plant growth and photosynthesis after acephate exposure is confirmed, as stimulation occurred at low stress levels, whereas inhibition occurred after exposure to high concentrations. RESULTS We found that low acephate concentration (5-fold lower than recommended application dosage) could enhance chlorophyll biosynthesis and stimulate photosynthesis effects, and thus improve S. lycopersicum growth. A high level of acephate (5-fold higher than recommended application dosage) stress inhibited chlorophyll accumulation, decreased photosystem II efficiency and blocked antioxidant reactions in leaves, increasing reactive oxygen species levels and damaging plant growth. Transcriptomic analysis and quantitative real-time PCR results revealed that the photosynthesis - antenna proteins pathway played a crucial role in the hormesis effect, and that LHCB7 as well as LHCP from the pathway were the most sensitive to acephate hormesis. CONCLUSION Our results showed that acephate could induce hormesis in tomato plant growth and photosynthesis, and that photosystem II and the photosynthesis - antenna proteins pathway played important roles in hormesis. These results provide novel insights into the scientific and safe application of chemical pesticides, and new guidance for investigation into utilizing pesticide hormesis in agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nuo Xu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuru Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yidi Cui
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yuanjin Jiang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Chao Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
26
|
Agathokleous E, Kitao M, Hoshika Y, Haworth M, Tang Y, Koike T. Ethylenediurea protects against ozone phytotoxicity not by adding nitrogen or controlling stomata in a stomata-unresponsive hybrid poplar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162672. [PMID: 36894106 DOI: 10.1016/j.scitotenv.2023.162672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ozone (O3) pollution is a persistent environmental issue worldwide, which causes widespread damage to vegetation, deteriorating plant health and reducing plant productivity. Ethylenediurea (EDU) is a synthetic chemical that has been widely applied in scientific studies as a protectant against O3 phytotoxicities. Despite four decades of active research, the exact mechanisms to explain its mode of action remain unclear. Here, we aimed to reveal whether EDU's phytoprotective property is due to its control over stomatal regulation and/or its action as a nitrogen (N) fertilizer, utilizing stomatal-unresponsive plants of a hybrid poplar (Populus koreana × trichocarpa cv. Peace) grown in a free-air O3-concenctration enrichment (FACE) facility. Plants were treated with water (WAT), EDU (400 mg L-1), or EDU's constitutive amount of N every nine days, and exposed to ambient (AOZ) or elevated (EOZ) O3 during a growing season (June-September). EOZ led to extensive foliar injuries (but protected against rust disease), lower photosynthetic rate (A), impaired dynamics of responses of A to changes in light intensity, and smaller total plant leaf area. EDU protected against common phytotoxicities caused by EOZ without inducing stomatal closure, since stomatal conductance (gs) was generally unresponsive to the experimental treatments. EDU also modulated the dynamic response of A to light fluctuations under O3 stress. N addition acted as a fertilizer but did not satisfactorily protect plants against O3 phytotoxicities. The results suggest that EDU protects against O3 phytotoxicity not by adding N or controlling stomata, which provides a new insight into our understanding of the mode of action of EDU as a protectant against O3 phytotoxicity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, China; Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan; Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Matthew Haworth
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Yanhong Tang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
27
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
28
|
Li X, Meng X, Yang X, Duan D. Characterization of Chlorophyll Fluorescence and Antioxidant Defense Parameters of Two Gracilariopsis lemaneiformis Strains under Different Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:1670. [PMID: 37111893 PMCID: PMC10146300 DOI: 10.3390/plants12081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In this study, two Gracilariopsis lemaneiformis strains-the wild type and a green-pigmented mutant-were cultured at three temperatures (8, 20, and 30 °C) for 7 days to explore their temperature tolerance using photosynthetic performance and antioxidant defense parameters. When the two strains of G. lemaneiformis were separately cultured at 30 °C, the fast chlorophyll fluorescence intensity of the wild type decreased, whereas the green mutant showed no significant change. The decrease in the performance index on absorption basis value under heat stress was lower in the green mutant than in the wild type. In addition, the green mutant had stronger antioxidant activity at 30 °C. Furthermore, a greater decrease in the values of maximum photochemical quantum yield and performance index on an absorption basis in the green mutant indicated that it had a greater degree of inhibition of photosynthetic performance under low temperatures. However, the green mutant produced less reactive oxygen species under low temperatures, suggesting that the antioxidant potential of the green mutant might be higher. In conclusion, the green mutant exhibited heat tolerance and could recover from low-temperature damage; therefore, it has the potential for large-scale cultivation.
Collapse
Affiliation(s)
- Xiaomei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
29
|
Tsaballa A, Xanthopoulou A, Sperdouli I, Bantis F, Boutsika A, Chatzigeorgiou I, Tsaliki E, Koukounaras A, Ntinas GK, Ganopoulos I. LED omics in Rocket Salad ( Diplotaxis tenuifolia): Comparative Analysis in Different Light-Emitting Diode (LED) Spectrum and Energy Consumption. PLANTS (BASEL, SWITZERLAND) 2023; 12:1203. [PMID: 36986894 PMCID: PMC10059670 DOI: 10.3390/plants12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
By applying three different LED light treatments, designated as blue (B), red (R)/blue (B), red (R) and white (W) light, as well as the control, the effect on Diplotaxis tenuifolia phenotype (yield and quality), and physiological, biochemical, and molecular status, as well as growing system resource use efficiency, was examined. We observed that basic leaf characteristics, such as leaf area, leaf number, relative chlorophyll content, as well as root characteristics, such as total root length and root architecture, remained unaffected by different LEDs. Yield expressed in fresh weight was slightly lower in LED lights than in the control (1113 g m-2), with R light producing the least (679 g m-2). However, total soluble solids were significantly affected (highest, 5.5° Brix, in R light) and FRAP was improved in all LED lights (highest, 191.8 μg/g FW, in B) in comparison to the control, while the nitrate content was less (lowest, 949.2 μg/g FW, in R). Differential gene expression showed that B LED light affected more genes in comparison to R and R/B lights. Although total phenolic content was improved under all LED lights (highest, 1.05 mg/g FW, in R/B), we did not detect a significant amount of DEGs in the phenylpropanoid pathway. R light positively impacts the expression of the genes encoding for photosynthesis components. On the other hand, the positive impact of R light on SSC was possibly due to the expression of key genes being induced, such as SUS1. In summary, this research is an integrative and innovative study, where the exploration of the effect of different LED lights on rocket growing under protected cultivation, in a closed chamber cultivation system, was performed at multiple levels.
Collapse
Affiliation(s)
- Aphrodite Tsaballa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Filippos Bantis
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ioanna Chatzigeorgiou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Athanasios Koukounaras
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| |
Collapse
|
30
|
Afshar AS, Abbaspour H. Mycorrhizal symbiosis alleviate salinity stress in pistachio plants by altering gene expression and antioxidant pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:263-276. [PMID: 36875732 PMCID: PMC9981847 DOI: 10.1007/s12298-023-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how inoculation of salt-stressed Pistacia vera seedlings with Rhizophagus irregularis, an arbuscular mycorrhizal fungus (AMF), affects their biomass, oxidative damage, antioxidant enzyme activity, and gene expression. Pistachio seedlings (N:36) were randomly assigned to AMF inoculation and non-inoculation groups in a pot experiment with 9 replications. Each group was further divided and randomly assigned to two salinity treatments (0 and 300 mM NaCl). At the end of week 4, three pistachio plantlets were randomly selected from each group for Rhizophagus irregularis colonization inspection, physiological and biochemical assays, and biomass measurements. Salinity activated enzymatic and non-enzymatic antioxidant systems in the pistachio plants were studied. The negative effects of salinity included reduced biomass and relative water content (RWC), increased O2 ·-, H2O2, MDA, and electrolytic leakage. Generally, Rhizophagus irregularis was found to mitigate the adverse effects of salinity in pistachio seedlings. AMF inoculation resulted in even further increases in the activities of SODs, POD, CAT, and GR enzymes, upregulating Cu/Zn-SOD, Fe-SOD, Mn-SOD, and GR genes expression in plants under salinity stress. Moreover, AMF significantly increased AsA, α-tocopherol, and carotenoids under both control and salinity conditions. The study concludes with a call for future research into the mechanisms of mycorrhiza-induced tolerance in plants under salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01279-8.
Collapse
Affiliation(s)
| | - Hossein Abbaspour
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Moustakas M, Ahmad P. 5-Aminolevulinic Acid Induces Chromium [Cr(VI)] Tolerance in Tomatoes by Alleviating Oxidative Damage and Protecting Photosystem II: A Mechanistic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:502. [PMID: 36771587 PMCID: PMC9920640 DOI: 10.3390/plants12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
Chromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (H2O2) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tolerance to Cr(VI) toxicity through the foliar application of 5-ALA for three days, fifteen days before Cr treatment. Chromium alone decreased plant biomass and photosynthetic pigments, but increased oxidative stress markers, i.e., H2O2 and lipid peroxidation (as MDA equivalent). Electrolyte leakage (EL), NO, nitrate reductase (NR), phytochelatins (PCs), glutathione (GSH), and enzymatic and non-enzymatic antioxidants were also increased. Foliar application of 5-ALA before Cr treatment improved plant growth and photosynthetic pigments, diminished H2O2, MDA content, and EL, and resulted in additional enhancements of enzymatic and non-enzymatic antioxidants, NR activity, and NO synthesis. In Cr-treated tomato seedlings, 5-ALA enhanced GSH and PCs, which modulated Cr sequestration to make it nontoxic. 5-ALA-induced Cr tolerance was further enhanced by sodium nitroprusside (SNP), a NO donor. When sodium tungstate (ST), a NR inhibitor, was supplied together with 5-ALA to Cr-treated plants, it eliminated the beneficial effects of 5-ALA by decreasing NR activity and NO synthesis, while the addition of SNP inverted the adverse effects of ST. We conclude that the mechanism by which 5-ALA induced Cr tolerance in tomato seedlings is mediated by NR-generated NO. Thus, NR and NO are twin players, reducing Cr toxicity in tomato plants via antioxidant signalling cascades.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54600, Pakistan
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Parvaiz Ahmad
- Department of Botany, GDC, Jammu and Kashmir, Pulwama 192301, India
| |
Collapse
|
32
|
Du J, Izquierdo D, Naoum J, Ohlund L, Sleno L, Beisner BE, Lavaud J, Juneau P. Pesticide responses of Arctic and temperate microalgae differ in relation to ecophysiological characteristics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106323. [PMID: 36435012 DOI: 10.1016/j.aquatox.2022.106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Polar ecosystems play an important role in global primary production. Microalgae have adaptations that enable them to live under low temperature environments where irradiance and day length change drastically. Their adaptations, leading to different ecophysiological characteristics relative to temperate species, could also alter their sensitivity to pollutants such as pesticides. This study's objective was to understand how different ecophysiological characteristics influence the response of Arctic phytoplankton to pesticides in relation to the responses of their temperate counterparts. Ecophysiological endpoints were related to growth, cell biovolume, pigment content, photosynthetic activity, photoprotective mechanisms (NPQ, antioxidant enzyme activities), and reactive oxygen species (ROS) content. The Arctic species Micromonas polaris was more resistant to atrazine and simazine than its temperate counterpart Micromonas bravo. However, the other Arctic species Chaetoceros neogracilis was more sensitive to these herbicides than its temperate counterpart Chaetoceros neogracile. With respect to two other pesticide toxicity, both temperate microalgae were more sensitive to trifluralin, while Arctic microalgae were more sensitive to chlorpyrifos (insecticide). All differences could be ascribed to differences in the eco-physiological features of the two microalgal groups, which can be explained by cell size, pigment content, ROS content and protective mechanisms (NPQ and antioxidant enzymes).
Collapse
Affiliation(s)
- Juan Du
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Disney Izquierdo
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Jonathan Naoum
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Leanne Ohlund
- Chemistry Department, Université du Québec à Montréal, EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Beatrix E Beisner
- Department of Biological Sciences, Groupe de recherche interuniversitaire en limnologie (GRIL), Université du Québec à Montréal, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Johann Lavaud
- TAKUVIK International Research Laboratory IRL3376, Université Laval (Canada) - CNRS (France), Pavillon Alexandre-Vachon, 1045 av. de la Médecine, local 2064, G1V 0A6 Québec, Canada; LEMAR-Laboratory of Environmental Marine Sciences, UMR6539, CNRS/Univ Brest/Ifremer/IRD, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, 29280 Plouzané, France
| | - Philippe Juneau
- Department of Biological Sciences, Université du Québec à Montréal, GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec H3C 3P8, Canada.
| |
Collapse
|
33
|
Agathokleous E, Zhou B, Geng C, Xu J, Saitanis CJ, Feng Z, Tack FMG, Rinklebe J. Mechanisms of cerium-induced stress in plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158352. [PMID: 36063950 DOI: 10.1016/j.scitotenv.2022.158352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive evaluation of the effects of cerium on plants is lacking even though cerium is extensively applied to the environment. Here, the effects of cerium on plants were meta-analyzed using a newly developed database consisting of approximately 8500 entries of published data. Cerium affects plants by acting as oxidative stressor causing hormesis, with positive effects at low concentrations and adverse effects at high doses. Production of reactive oxygen species and its linked induction of antioxidant enzymes (e.g. catalase and superoxide dismutase) and non-enzymatic antioxidants (e.g. glutathione) are major mechanisms driving plant response mechanisms. Cerium also affects redox signaling, as indicated by altered GSH/GSSG redox pair, and electrolyte leakage, Ca2+, K+, and K+/Na+, indicating an important role of K+ and Na+ homeostasis in cerium-induced stress and altered mineral (ion) balance. The responses of the plants to cerium are further extended to photosynthesis rate (A), stomatal conductance (gs), photosynthetic efficiency of PSII, electron transport rate, and quantum yield of PSII. However, photosynthesis response is regulated not only by physiological controls (e.g. gs), but also by biochemical controls, such as via changed Hill reaction and RuBisCO carboxylation. Cerium concentrations <0.1-25 mg L-1 commonly enhance chlorophyll a and b, gs, A, and plant biomass, whereas concentrations >50 mg L-1 suppress such fitness-critical traits at trait-specific concentrations. There was no evidence that cerium enhances yields. Observations were lacking for yield response to low concentrations of cerium, whereas concentrations >50 mg Kg-1 suppress yields, in line with the response of chlorophyll a and b. Cerium affects the uptake and tissue concentrations of several micro- and macro-nutrients, including heavy metals. This study enlightens the understanding of some mechanisms underlying plant responses to cerium and provides critical information that can pave the way to reducing the cerium load in the environment and its associated ecological and human health risks.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Boya Zhou
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Caiyu Geng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Jianing Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany
| |
Collapse
|
34
|
Agathokleous E. On the meta-analysis of hormetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158273. [PMID: 36028035 DOI: 10.1016/j.scitotenv.2022.158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The evidence for hormetic responses with chemical effects at doses lower than the no-observed-adverse-effect-level (sub-NOAEL) is increasing, creating a need for meta-analyses of sub-NOAEL effects across studies. However, the distinct features of hormetic responses complicate the procedures of meta-analyses aiming to study sub-NOAEL, hormetic effects, and there is no standardized methodology to serve as a guideline. In this piece, a protocol is proposed, which covers the selection of more holistic keywords to be integrated into the literature search queries, the designation of control, and the identification of NOAEL (and thus sub-NOAEL dose responses). It also considers the selection of the response indicators and the incorporation of time and dose as sources of variation. This protocol can serve as a reference point for a harmonized and more robust methodology to meta-analyze sub-NOAEL effects of chemicals on living organisms.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Tejeda A, Valencia-Botín AJ, Zurita F. Resistance evaluation of Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia to phytotoxic characteristics of diluted tequila vinasses in wetland microcosms. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022:1-10. [PMID: 36382673 DOI: 10.1080/15226514.2022.2145266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tequila vinasse has a high contaminating capacity due to its physicochemical characteristics. Efficient and low-cost alternative treatments are required to reduce and control the environmental impacts caused by raw vinasse discharges, mainly from micro and small factories. One option is wetland technologies in which vegetation plays an important role in the proper functioning of the system; thus, the species to be used must be properly selected based on their resistance and tolerance to the toxic effects of vinasse. Therefore, this study aims to evaluate the resistance of four macrophyte species to tequila vinasse in wetland microcosms that is, Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia which were exposed to 5, 7, 10, 12, and 15% of vinasse diluted with domestic wastewater. The control parameters (relative content, evapotranspiration, pH, electrical conductivity, and apparent color) showed that the plants in general developed stress symptoms. However, statistical analysis revealed a significant difference (p < 0.05) between plant species and vinasse treatments, further evidencing that I. sibirica is the species with the greatest potential to be used as emergent vegetation in treatment wetlands for the purification of tequila vinasse.
Collapse
Affiliation(s)
- Allan Tejeda
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| | - Alberto J Valencia-Botín
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| | - Florentina Zurita
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| |
Collapse
|
36
|
Moustakas M, Guidi L, Calatayud A. Editorial: Chlorophyll fluorescence analysis in biotic and abiotic stress, volume II. FRONTIERS IN PLANT SCIENCE 2022; 13:1066865. [PMID: 36452095 PMCID: PMC9703056 DOI: 10.3389/fpls.2022.1066865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angeles Calatayud
- Instituto Valenciano de Investigaciones Agrarias, Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Valencia, Spain
| |
Collapse
|
37
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
38
|
Moustakas M, Sperdouli I, Adamakis IDS, Moustaka J, İşgören S, Şaş B. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants. Int J Mol Sci 2022; 23:ijms23137038. [PMID: 35806045 PMCID: PMC9266436 DOI: 10.3390/ijms23137038] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA), an essential plant hormone, has received much attention due to its role in modulating the adverse effects of biotic and abiotic stresses, acting as an antioxidant and plant growth regulator. However, its role in photosynthesis under non stress conditions is controversial. By chlorophyll fluorescence imaging analysis, we evaluated the consequences of foliar applied 1 mM SA on photosystem II (PSII) efficiency of tomato (Solanum lycopersicum L.) plants and estimated the reactive oxygen species (ROS) generation. Tomato leaves sprayed with 1 mM SA displayed lower chlorophyll content, but the absorbed light energy was preferentially converted into photochemical energy rather than dissipated as thermal energy by non-photochemical quenching (NPQ), indicating photoprotective effects provided by the foliar applied SA. This decreased NPQ, after 72 h treatment by 1 mM SA, resulted in an increased electron transport rate (ETR). The molecular mechanism by which the absorbed light energy was more efficiently directed to photochemistry in the SA treated leaves was the increased fraction of the open PSII reaction centers (qp), and the increased efficiency of open reaction centers (Fv’/Fm’). SA induced a decrease in chlorophyll content, resulting in a decrease in non-regulated energy dissipated in PSII (ΦNO) under high light (HL) treatment, suggesting a lower amount of triplet excited state chlorophyll (3Chl*) molecules available to produce singlet oxygen (1O2). Yet, the increased efficiency, compared to the control, of the oxygen evolving complex (OEC) on the donor side of PSII, associated with lower formation of hydrogen peroxide (H2O2), also contributed to less creation of ROS. We conclude that under non stress conditions, foliar applied SA decreased chlorophyll content and suppressed phototoxicity, offering PSII photoprotection; thus, it can be regarded as a mechanism that reduces photoinhibition and photodamage, improving PSII efficiency in crop plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Correspondence:
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| |
Collapse
|
39
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|
40
|
Agathokleous E, Calabrese EJ. Editorial Overview: Hormesis and Dose-Response. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|