1
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
3
|
Mahr AR, Bennett-Boehm MMC, Rothemejer FH, Weber IS, Regan AK, Franzen JQ, Bisson CR, Truong AN, Olesen R, Schleimann MH, Rauter CM, Smith AL, El-Gamal D, Søgaard OS, Tolstrup M, Denton PW. TLR9 agonism differentially impacts human NK cell-mediated direct killing and antibody-dependent cell-mediated cytotoxicity. Sci Rep 2024; 14:14595. [PMID: 38918496 PMCID: PMC11199698 DOI: 10.1038/s41598-024-65576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
There are two known mechanisms by which natural killer (NK) cells recognize and kill diseased targets: (i) direct killing and (ii) antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated an indirect NK cell activation strategy for the enhancement of human NK cell killing function. We did this by leveraging the fact that toll-like receptor 9 (TLR9) agonism within pools of human peripheral blood mononuclear cells (PBMCs) results in a robust interferon signaling cascade that leads to NK cell activation. After TLR9 agonist stimulation, NK cells were enriched and incorporated into assays to assess their ability to kill tumor cell line targets. Notably, differential impacts of TLR9 agonism were observed-direct killing was enhanced while ADCC was not increased. To ensure that the observed differential effects were not attributable to differences between human donors, we recapitulated the observation using our Natural Killer-Simultaneous ADCC and Direct Killing Assay (NK-SADKA) that controls for human-to-human differences. Next, we observed a treatment-induced decrease in NK cell surface CD16-known to be shed by NK cells post-activation. Given the essential role of CD16 in ADCC, such shedding could account for the observed differential impact of TLR9 agonism on NK cell-mediated killing capacity.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Toll-Like Receptor 9/agonists
- Toll-Like Receptor 9/metabolism
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/drug effects
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
Collapse
Affiliation(s)
- Anna R Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Maia M C Bennett-Boehm
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Frederik H Rothemejer
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Isabelle S Weber
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Alexander K Regan
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Josh Q Franzen
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Cami R Bisson
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Angela N Truong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Claudia M Rauter
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Audrey L Smith
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
4
|
Song J, Li Y, Wu K, Hu Y, Fang L. MyD88 and Its Inhibitors in Cancer: Prospects and Challenges. Biomolecules 2024; 14:562. [PMID: 38785969 PMCID: PMC11118248 DOI: 10.3390/biom14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The interplay between the immune system and cancer underscores the central role of immunotherapy in cancer treatment. In this context, the innate immune system plays a critical role in preventing tumor invasion. Myeloid differentiation factor 88 (MyD88) is crucial for innate immunity, and activation of MyD88 promotes the production of inflammatory cytokines and induces infiltration, polarization, and immune escape of immune cells in the tumor microenvironment. Additionally, abnormal MyD88 signaling induces tumor cell proliferation and metastasis, which are closely associated with poor prognosis. Therefore, MyD88 could serve as a novel tumor biomarker and is a promising target for cancer therapy. Current strategies targeting MyD88 including inhibition of signaling pathways and protein multimerization, have made substantial progress, especially in inflammatory diseases and chronic inflammation-induced cancers. However, the specific role of MyD88 in regulating tumor immunity and tumorigenic mechanisms remains unclear. Therefore, this review describes the involvement of MyD88 in tumor immune escape and disease therapy. In addition, classical and non-classical MyD88 inhibitors were collated to provide insights into potential cancer treatment strategies. Despite several challenges and complexities, targeting MyD88 is a promising avenue for improving cancer treatment and has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiali Song
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yuying Li
- Ruian People’s Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325000, China;
| | - Ke Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yan Hu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| |
Collapse
|
5
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
7
|
Rolfo C, Giovannetti E, Martinez P, McCue S, Naing A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis Oncol 2023; 7:26. [PMID: 36890302 PMCID: PMC9995514 DOI: 10.1038/s41698-023-00364-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Toll-like receptors (TLRs), which serve as a bridge between innate and adaptive immunity, may be viable treatment targets. TLRs are the first line of defense against microbes and activate signaling cascades that induce immune and inflammatory responses. Patients with "hot" versus "cold" tumors may respond more favorably to immune checkpoint inhibition, and through their downstream effects, TLR agonists have the potential to convert "cold tumors" into "hot tumors" making TLRs in combination with immune checkpoint inhibitors, potential targets for cancer therapies. Imiquimod is a topical TLR7 agonist, approved by the FDA for antiviral and skin cancer treatments. Other TLR adjuvants are used in several vaccines including Nu Thrax, Heplisav, T-VEC, and Cervarix. Many TLR agonists are currently in development as both monotherapy and in combination with immune checkpoint inhibitors. In this review, we describe the TLR agonists that are being evaluated clinically as new therapies for solid tumors.
Collapse
Affiliation(s)
- Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA.
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | | | | | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Yin L, Li H, Shi L, Chen K, Pan H, Han W. Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. Int J Cancer 2023; 152:807-821. [PMID: 35984398 DOI: 10.1002/ijc.34256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023]
Abstract
The systematic treatment of colorectal cancer (CRC) still has room for improvement. The efficacy of chemotherapy, that of anti-vascular therapy, and that of immunotherapy have been unsatisfactory. In recent years, nanomaterials have been used as carriers to improve the bioavailability of anticancer drugs. For the treatment of colorectal cancer, nanodrugs increase the possibility of more precise targeted delivery. However, the actual benefits may cover more aspects. Nanocarriers can produce synergistic effects with anticancer drugs, including the scavenging of reactive oxygen species and co-delivery of a variety of drugs. Currently, immunotherapy has very limited clinical applications in CRC. Modified nanocarriers can activate the immune microenvironment, which can be used for staging antigen recognition or the immune response. Cancer vaccines based on nanomaterials and modified immune checkpoint inhibitors have shown therapeutic potential in animal models. Considering the direct or indirect relationship between the intestinal microflora and CRC, a variety of nanodrugs that regulate microbial function have been explored as an anticancer strategy, and the special structure of microorganisms can also be used as a basis for improving the delivery of traditional nanoparticles (NPs). This review summarizes recent research performed on nanocarriers in in vivo and in vitro models and the synergistic anticancer effects of nanocarriers, focusing on the interaction between NPs and the body, resulting in enhanced efficacy and immune activation. Furthermore, this review describes the current trend of NPs used in the treatment of CRC.
Collapse
Affiliation(s)
- Luxi Yin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haozhe Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
10
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
CpG ODN (K3)-toll-like receptor 9 agonist-induces Th1-type immune response and enhances cytotoxic activity in advanced lung cancer patients: a phase I study. BMC Cancer 2022; 22:744. [PMID: 35799134 PMCID: PMC9264631 DOI: 10.1186/s12885-022-09818-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) (K3)—a novel synthetic single-stranded DNA immune adjuvant for cancer immunotherapy—induces a potential Th1-type immune response against cancer cells. We conducted a phase I study of CpG ODN (K3) in patients with lung cancer to assess its safety and patients’ immune responses. Methods The primary endpoint was the proportion of dose-limiting toxicities (DLTs) at each dose level. Secondary endpoints included safety profile, an immune response, including dynamic changes in immune cell and cytokine production, and progression-free survival (PFS). In a 3 + 3 dose-escalation design, the dosage levels for CpG ODN (K3) were 5 or 10 mg/body via subcutaneous injection and 0.2 mg/kg via intravenous administration on days 1, 8, 15, and 29. Results Nine patients (eight non-small-cell lung cancer; one small-cell lung cancer) were enrolled. We found no DLTs at any dose level and observed no serious treatment-related adverse events. The median observation period after registration was 55 days (range: 46–181 days). Serum IFN-α2 levels, but not inflammatory cytokines, increased in six patients after the third administration of CpG ODN (K3) (mean value: from 2.67 pg/mL to 3.61 pg/mL after 24 hours). Serum IFN-γ (mean value, from 9.07 pg/mL to 12.7 pg/m after 24 hours) and CXCL10 levels (mean value, from 351 pg/mL to 676 pg/mL after 24 hours) also increased in eight patients after the third administration. During the treatment course, the percentage of T-bet-expressing CD8+ T cells gradually increased (mean, 49.8% at baseline and 59.1% at day 29, p = 0.0273). Interestingly, both T-bet-expressing effector memory (mean, 52.7% at baseline and 63.7% at day 29, p = 0.0195) and terminally differentiated effector memory (mean, 82.3% at baseline and 90.0% at day 29, p = 0.0039) CD8+ T cells significantly increased. The median PFS was 398 days. Conclusions This is the first clinical study showing that CpG ODN (K3) activated innate immunity and elicited Th1-type adaptive immune response and cytotoxic activity in cancer patients. CpG ODN (K3) was well tolerated at the dose settings tested, although the maximum tolerated dose was not determined. Trial registration UMIN-CTR number 000023276. Registered 1 September 2016, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000026649 Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09818-4.
Collapse
|
12
|
Lende SSF, Pahus MH, Monrad I, Olesen R, Mahr AR, Vibholm LK, Østergaard L, Søgaard OS, Andersen AHF, Denton PW, Tolstrup M. CD169 (Siglec-1) as a Robust Human Cell Biomarker of Toll-Like Receptor 9 Agonist Immunotherapy. Front Cell Infect Microbiol 2022; 12:919097. [PMID: 35865810 PMCID: PMC9294151 DOI: 10.3389/fcimb.2022.919097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is a promising therapeutic area in cancer and chronic viral infections. An important component of immunotherapy in these contexts is the activation of innate immunity. Here we investigate the potential for CD169 (Siglec 1) expression on monocytes to serve as a robust biomarker for activation of innate immunity and, particular, as a proxy for IFN-α production. Specifically, we investigated the effects of Toll-like receptor 9 agonism with MGN1703 (lefitolimod) across experimental conditions ex vivo, in humanized mice, and in clinical trial participants. Ex vivo we observed that the percentage of classical monocytes expressing CD169 increased dramatically from 10% pre-stimulation to 97% 24 hrs after MGN1703 stimulation (p<0.0001). In humanized NOG mice, we observed prominent upregulation of the proportions of monocytes expressing CD169 after two doses of MGN1703 where 73% of classical monocytes were CD169 positive in bone marrow following MGN1703 treatment vs 19% in vehicle treated mice (p=0.0159). Finally, in a clinical trial in HIV-infected individuals receiving immunotherapy treatment with MGN1703, we observed a uniform upregulation of CD169 on monocytes after dosing with 97% of classical monocytes positive for CD169 (p=0.002). Hence, in this comprehensive evaluation ex vivo, in an animal model, and in a clinical trial, we find increases in the percentage of CD169 positive monocytes to be a reliable and robust biomarker of immune activation following TLR9 agonist treatment.
Collapse
Affiliation(s)
| | - Marie Høst Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ida Monrad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Line K. Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Martin Tolstrup,
| |
Collapse
|
13
|
Rostamizadeh L, Molavi O, Rashid M, Ramazani F, Baradaran B, Lavasanaifar A, Lai R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. BIOIMPACTS : BI 2022; 12:261-290. [PMID: 35677663 PMCID: PMC9124882 DOI: 10.34172/bi.2022.23896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
![]()
Immunotherapy is considered a promising approach for cancer treatment. An important strategy for cancer immunotherapy is the use of cancer vaccines, which have been widely used for cancer treatment. Despite the great potential of cancer vaccines for cancer treatment, their therapeutic effects in clinical settings have been limited. The main reason behind the lack of significant therapeutic outcomes for cancer vaccines is believed to be the immunosuppressive tumor microenvironment (TME). The TME counteracts the therapeutic effects of immunotherapy and provides a favorable environment for tumor growth and progression. Therefore, overcoming the immunosuppressive TME can potentially augment the therapeutic effects of cancer immunotherapy in general and therapeutic cancer vaccines in particular. Among the strategies developed for overcoming immunosuppression in TME, the use of toll-like receptor (TLR) agonists has been suggested as a promising approach to reverse immunosuppression. In this paper, we will review the application of the four most widely studied TLR agonists including agonists of TLR3, 4, 7, and 9 in cancer immunotherapy.
Collapse
Affiliation(s)
- Leila Rostamizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramazani
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Lavasanaifar
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
15
|
Zhang Z, Kuo JCT, Yao S, Zhang C, Khan H, Lee RJ. CpG Oligodeoxynucleotides for Anticancer Monotherapy from Preclinical Stages to Clinical Trials. Pharmaceutics 2021; 14:73. [PMID: 35056969 PMCID: PMC8780291 DOI: 10.3390/pharmaceutics14010073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
CpG oligodeoxynucleotides (CpG ODNs), the artificial versions of unmethylated CpG motifs that were originally discovered in bacterial DNA, are demonstrated not only as potent immunoadjuvants but also as anticancer agents by triggering toll-like receptor 9 (TLR9) activation in immune cells. TLR9 activation triggered by CpG ODN has been shown to activate plasmacytoid dendritic cells (pDCs) and cytotoxic T lymphocytes (CTLs), enhancing T cell-mediated antitumor immunity. However, the extent of antitumor immunity carried by TLR agonists has not been optimized individually or in combinations with cancer vaccines, resulting in a decreased preference for TLR agonists as adjuvants in clinical trials. Although various combination therapies involving CpG ODNs have been applied in clinical trials, none of the CpG ODN-based drugs have been approved by the FDA, owing to the short half-life of CpG ODNs in serum that leads to low activation of natural killer cells (NK cells) and CTLs, along with increases of pro-inflammatory cytokine productions. This review summarized the current innovation on CpG ODNs that are under clinical investigation and explored the future direction for CpG ODN-based nanomedicine as an anticancer monotherapy.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
| | - Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Hira Khan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| |
Collapse
|
16
|
Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells 2021; 11:cells11010077. [PMID: 35011639 PMCID: PMC8750418 DOI: 10.3390/cells11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Since its discovery 35 years ago, there have been no therapeutic interventions shown to enable full HIV-1 remission. Combined antiretroviral therapy (cART) has achieved the sustained control of HIV-1 replication, however, the life-long treatment does not eradicate long-lived latently infected reservoirs and can result in multiple side effects including the development of multidrug-resistant escape mutants. Antibody-based treatments have emerged as alternative approaches for a HIV-1 cure. Here, we will review clinical advances in coreceptor-targeting antibodies, with respect to anti-CCR5 antibodies in particular, which are currently being generated to target the early stages of infection. Among the Env-specific antibodies widely accepted as relevant in cure strategies, the potential role of those targeting CD4-induced (CD4i) epitopes of the CD4-binding site (CD4bs) in eliminating HIV-1 infected cells has gained increasing interest and will be presented. Together, with approaches targeting the HIV-1 replication cycle, we will discuss the strategies aimed at boosting and modulating specific HIV-1 immune responses, highlighting the harnessing of TLR agonists for their dual role as latency reverting agents (LRAs) and immune-modulatory compounds. The synergistic combinations of different approaches have shown promising results to ultimately enable a HIV-1 cure.
Collapse
|
17
|
Orlacchio A, Mazzone P. The Role of Toll-like Receptors (TLRs) Mediated Inflammation in Pancreatic Cancer Pathophysiology. Int J Mol Sci 2021; 22:12743. [PMID: 34884547 PMCID: PMC8657588 DOI: 10.3390/ijms222312743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal forms of cancer, characterized by its aggressiveness and metastatic potential. Despite significant improvements in PC treatment and management, the complexity of the molecular pathways underlying its development has severely limited the available therapeutic opportunities. Toll-like receptors (TLRs) play a pivotal role in inflammation and immune response, as they are involved in pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Activation of TLRs initiates a signaling cascade, which in turn, leads to the transcription of several genes involved in inflammation and anti-microbial defense. TLRs are also deregulated in several cancers and can be used as prognostic markers and potential targets for cancer-targeted therapy. In this review we discuss the current knowledge about the role of TLRs in PC progression, focusing on the available TLRs-targeting compounds and their possible use in PC therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche Gaetano Salvatore, 83031 Ariano Irpino, Italy
| |
Collapse
|
18
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
19
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
20
|
Pahlavanneshan S, Sayadmanesh A, Ebrahimiyan H, Basiri M. Toll-Like Receptor-Based Strategies for Cancer Immunotherapy. J Immunol Res 2021; 2021:9912188. [PMID: 34124272 PMCID: PMC8166496 DOI: 10.1155/2021/9912188] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are expressed and play multiple functional roles in a variety of immune cell types involved in tumor immunity. There are plenty of data on the pharmacological targeting of TLR signaling using agonist molecules that boost the antitumor immune response. A recent body of research has also demonstrated promising strategies for improving the cell-based immunotherapy methods by inducing TLR signaling. These strategies include systemic administration of TLR antagonist along with immune cell transfer and also genetic engineering of the immune cells using TLR signaling components to improve the function of genetically engineered immune cells such as chimeric antigen receptor-modified T cells. Here, we explore the current status of the cancer immunotherapy approaches based on manipulation of TLR signaling to provide a perspective of the underlying rationales and potential clinical applications. Altogether, reviewed publications suggest that TLRs make a potential target for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Saghar Pahlavanneshan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamidreza Ebrahimiyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
21
|
Jin Y, Zhuang Y, Dong X, Liu M. Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev Anticancer Ther 2021; 21:841-851. [PMID: 33831324 DOI: 10.1080/14737140.2021.1915136] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Toll-like receptor-9(TLR9) can recognize the foreign unmethylated CpG DNA, and thus intrigue a strong Th1 response which plays a crucial role in the innate and adaptive immune responses. To date, CpG oligodeoxynucleotide (ODN)-based TLR9 agonists have undergone four generations. Each generations' breakthroughs in immune activation, safety profiles and pharmacokinetic properties were confirmed by both preclinical and clinical studies. AREAS COVERED We reviewed the development and major clinical trials of TLR9 agonists and summarized the optimization strategies of each generation. The applications, limitations and prospects of TLR9 agonists in cancer immunotherapy are also discussed. EXPERT OPINION Clinical trials of CpG ODN TLR9 agonists as a single agent demonstrated insufficient efficacy to reverse the immunosuppressive status of majority of patients with high tumor burden. Therefore, more efforts are now been carried out in combination with chemotherapy, radiotherapy and immunotherapy maintenance therapy as well as vaccine adjuvant. Importantly, the synergistic and complementary effect of TLR9 agonists and tumor immune checkpoint inhibitor therapy is expected to exert greater potential. On the other hand, the double-edged sword effect of TLR9 activation in tumor and toxic effect reported in combination therapies should be noted and further studies required.
Collapse
Affiliation(s)
- Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yuxin Zhuang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Mei Liu
- Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, P.R. China
| |
Collapse
|
22
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|
23
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
Luchner M, Reinke S, Milicic A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics 2021; 13:142. [PMID: 33499143 PMCID: PMC7911620 DOI: 10.3390/pharmaceutics13020142] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Modern vaccines have largely shifted from using whole, killed or attenuated pathogens to being based on subunit components. Since this diminishes immunogenicity, vaccine adjuvants that enhance the immune response to purified antigens are critically needed. Further advantages of adjuvants include dose sparing, increased vaccine efficacy in immunocompromised individuals and the potential to protect against highly variable pathogens by broadening the immune response. Due to their ability to link the innate with the adaptive immune response, Toll-like receptor (TLR) agonists are highly promising as adjuvants in vaccines against life-threatening and complex diseases such as cancer, AIDS and malaria. TLRs are transmembrane receptors, which are predominantly expressed by innate immune cells. They can be classified into cell surface (TLR1, TLR2, TLR4, TLR5, TLR6) and intracellular TLRs (TLR3, TLR7, TLR8, TLR9), expressed on endosomal membranes. Besides a transmembrane domain, each TLR possesses a leucine-rich repeat (LRR) segment that mediates PAMP/DAMP recognition and a TIR domain that delivers the downstream signal transduction and initiates an inflammatory response. Thus, TLRs are excellent targets for adjuvants to provide a "danger" signal to induce an effective immune response that leads to long-lasting protection. The present review will elaborate on applications of TLR ligands as vaccine adjuvants and immunotherapeutic agents, with a focus on clinically relevant adjuvants.
Collapse
Affiliation(s)
- Marina Luchner
- Department of Biochemistry, Magdalen College Oxford, University of Oxford, Oxford OX1 4AU, UK;
| | - Sören Reinke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK;
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
25
|
O' Donovan DH, Mao Y, Mele DA. The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy. Curr Med Chem 2020; 27:5654-5674. [PMID: 31250749 DOI: 10.2174/0929867326666190620103105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
The recent success of checkpoint blocking antibodies has sparked a revolution in cancer immunotherapy. Checkpoint inhibition activates the adaptive immune system leading to durable responses across a range of tumor types, although this response is limited to patient populations with pre-existing tumor-infiltrating T cells. Strategies to stimulate the immune system to prime an antitumor response are of intense interest and several groups are now working to develop agents to activate the Pattern Recognition Receptors (PRRs), proteins which detect pathogenic and damageassociated molecules and respond by activating the innate immune response. Although early efforts focused on the Toll-like Receptor (TLR) family of membrane-bound PRRs, TLR activation has been associated with both pro- and antitumor effects. Nonetheless, TLR agonists have been deployed as potential anticancer agents in a range of clinical trials. More recently, the cytosolic PRR Stimulator of IFN Genes (STING) has attracted attention as another promising target for anticancer drug development, with early clinical data beginning to emerge. Besides STING, several other cytosolic PRR targets have likewise captured the interest of the drug discovery community, including the RIG-Ilike Receptors (RLRs) and NOD-like Receptors (NLRs). In this review, we describe the outlook for activators of PRRs as anticancer therapeutic agents and contrast the earlier generation of TLR agonists with the emerging focus on cytosolic PRR activators, both as single agents and in combination with other cancer immunotherapies.
Collapse
Affiliation(s)
| | - Yumeng Mao
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Deanna A Mele
- Oncology R&D, AstraZeneca, Waltham, Massachusetts, United States
| |
Collapse
|
26
|
Keshavarz A, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 2020; 73:10-25. [PMID: 33217774 DOI: 10.1002/iub.2412] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
At the forefront of the battle against pathogens or any endogenously released molecules, toll-like receptors (TLRs) play an important role as the most noble pattern recognition receptors. The ability of these receptors in distinguishing "self" and "non-self" antigens is a cornerstone in the innate immunity system; however, misregulation links inflammatory responses to the development of human cancers. It has been known for some time that aberrant expression and regulation of TLRs not only endows cancer cells an opportunity to escape from the immune system but also supports them through enhancing proliferation and angiogenesis. Over the past decades, cancer research studies have witnessed a number of preclinical and clinical breakthroughs in the field of TLR modulators and some of the agents have exceptionally performed well in advanced clinical trials. In the present review, we have provided a comprehensive review of different TLR agonists and antagonists and discuss their limitations, toxicities, and challenges to outline their future incorporation in cancer treatment strategies.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Narayanankutty A, Sasidharan A, Job JT. Targeting Toll like Receptors in Cancer: Role of TLR Natural and Synthetic Modulators. Curr Pharm Des 2020; 26:5040-5053. [DOI: 10.2174/1381612826666200720235058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
Background:
Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the
broad class pattern recognition receptors (PRR), involved in recognition of Pathogen Associated Molecular Patterns
(PAMPs) thereby inducing an immune response. Apart from these exogenous PAMPs, numerous endogenous
PAMPs are also ligands for various TLRs thereby activating the TLR dependent immune response, subsequently
leading to the onset of an inflammatory response. Prolonged activation of TLR by these endogenous
PAMPs leads to chronic inflammatory insults to the body and which in turn alters the proliferative patterns of the
cells, which ultimately leads to the development of cancer.
Objectives:
The present review aims to provide a detailed outline of the differential roles of various TLRs in
cancer and the possible use of them as a therapeutic target.
Methods:
Data were collected from PubMed/Sciencedirect/Web of Science database and sorted; the latest literature
on TLRs was incorporated in the review.
Results:
Among the different TLRs, few are reported to be anti-neoplastic, which controls the cell growth and
multiplication in response to the endogenous signals. On the contrary, numerous studies have reported the procarcinogenic
potentials of TLRs. Hence, TLRs have emerged as a potential target for the prevention and treatment
of various types of cancers. Several molecules, such as monoclonal antibodies, small molecule inhibitors and
natural products have shown promising anticancer potential by effectively modulating the TLR signalling.
Conclusion:
Toll-like receptors play vital roles in the process of carcinogenesis, hence TLR targeting is a promising
approach for cancer prevention.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
| | | | - Joice T. Job
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
| |
Collapse
|
28
|
Karapetyan L, Luke JJ, Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther 2020; 13:10039-10060. [PMID: 33116588 PMCID: PMC7553670 DOI: 10.2147/ott.s247050] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a pattern recognition receptor that is predominantly located intracellularly in immune cells, including dendritic cells, macrophages, natural killer cells, and other antigen-presenting cells (APC). The primary ligands for TLR9 receptors are unmethylated cytidine phosphate guanosine (CpG) oligodinucleotides (ODN). TLR9 agonists induce inflammatory processes that result in the enhanced uptake and killing of microorganisms and cancer cells as well as the generation of adaptive immune responses. Preclinical studies of TLR9 agonists suggested efficacy both as monotherapy and in combination with several agents, which led to clinical trials in patients with advanced cancer. In these studies, intravenous, intratumoral, and subcutaneous routes of administration have been tested; with anti-tumor responses in both treated and untreated metastatic sites. TLR9 agonist monotherapy is safe, although efficacy is minimal in advanced cancer patients; conversely, combinations appear to be more promising. Several ongoing phase I and II clinical trials are evaluating TLR9 agonists in combination with a variety of agents including chemotherapy, radiotherapy, targeted therapy, and immunotherapy agents. In this review article, we describe the distribution, structure and signaling of TLR9; discuss the results of preclinical studies of TLR9 agonists; and review ongoing clinical trials of TLR9 agonists singly and in combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Lilit Karapetyan
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA
| | - Jason J Luke
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diwakar Davar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Groer C, Zhang T, Lu R, Cai S, Mull D, Huang A, Forrest M, Berkland C, Aires D, Forrest ML. Intratumoral Cancer Chemotherapy with a Carrier-Based Immunogenic Cell-Death Eliciting Platinum (IV) Agent. Mol Pharm 2020; 17:4334-4345. [PMID: 32975949 DOI: 10.1021/acs.molpharmaceut.0c00781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A carrier-based, immunogenic cell death (ICD)-eliciting platinum(IV) chemotherapeutic agent was synthesized via complexation between an axially derivatized Pt(IV)-tocopherol and hyaluronan (HA)-tocopherol nanocarrier. The resultant HA-Pt(IV) complex demonstrated antiproliferative activity and induced calreticulin translocation, an indicator of ICD, in murine and human head and neck cancer (HNC) cells. The intratumorally administered HA-Pt(IV) treatments were tolerable and efficacious in both immunocompetent and immunodeficient mice with HNC, partially because of the direct cytotoxicity. Superior efficacy and survival were observed in the immunocompetent group, suggesting a possible Pt(IV)-induced immunological response, which would only manifest in animals with an intact immune system. Subsequent imaging of tumor tissues demonstrated increased macrophage infiltration in the HA-Pt(IV)-treated tumors compared to the nontreated controls and the cisplatin-treated tumors, suggesting favorable inflammatory activation. RNA sequencing of HA-Pt(IV)-treated tumors indicated that carbohydrate and vitamin metabolisms were the most important Kyoto Encyclopedia of Genes and Genomes pathways, and molecular function, biological process, and cellular component were highly enriched gene ontology categories.
Collapse
Affiliation(s)
- Chad Groer
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ti Zhang
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Shuang Cai
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Derek Mull
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Melanie Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, Lawrence, Kansas 66045, United States
| | - Daniel Aires
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Division of Dermatology, Department of Internal Medicine, School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160, United States
| | - Marcus Laird Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| |
Collapse
|
30
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
31
|
Narayanankutty A. Toll-like Receptors as a Novel Therapeutic Target for Natural Products Against Chronic Diseases. Curr Drug Targets 2020; 20:1068-1080. [PMID: 30806312 DOI: 10.2174/1389450120666190222181506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLR) are one among the initial responders of the immune system which participate in the activation inflammatory processes. Several different types of TLR such as TLR2, TLR4, TLR7 and TLR9 have been identified in various cell types, each having distinct ligands like lipids, lipoproteins, nucleic acids and proteins. Though its prime concern is xenobiotic defences, TLR signalling has also recognized as an activator of inflammation and associated development of chronic degenerative disorders (CDDs) including obesity, type 2 diabetes mellitus (T2DM), fatty liver disease, cardiovascular and neurodegenerative disorders as well as various types of cancers. Numerous drugs are in use to prevent these disorders, which specifically inhibit different pathways associated with the development of CDDs. Compared to these drug targets, inhibition of TLR, which specifically responsible for the inflammatory insults has proven to be a better drug target. Several natural products have emerged as inhibitors of CDDs, which specifically targets TLR signalling, among these, many are in the clinical trials. This review is intended to summarize the recent progress on TLR association with CDDs and to list possible use of natural products, their combinations and their synthetic derivative in the prevention of TLR-driven CDD development.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 680 555, India
| |
Collapse
|
32
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
33
|
Martinsen JT, Gunst JD, Højen JF, Tolstrup M, Søgaard OS. The Use of Toll-Like Receptor Agonists in HIV-1 Cure Strategies. Front Immunol 2020; 11:1112. [PMID: 32595636 PMCID: PMC7300204 DOI: 10.3389/fimmu.2020.01112] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors and part of the first line of defense against invading microbes. In humans, we know of 10 different TLRs, which are expressed to varying degrees in immune cell subsets. Engaging TLRs through their specific ligands leads to activation of the innate immune system and secondarily priming of the adaptive immune system. Because of these unique properties, TLR agonists have been investigated as immunotherapy in cancer treatment for many years, but in recent years there has also been growing interest in the use of TLR agonists in the context of human immunodeficiency virus type 1 (HIV-1) cure research. The primary obstacle to curing HIV-1 is the presence of a latent viral reservoir in transcriptionally silent immune cells. Due to the very limited transcription of the integrated HIV-1 proviruses, latently infected cells cannot be targeted and cleared by immune effector mechanisms. TLR agonists are very interesting in this context because of their potential dual effects as latency reverting agents (LRAs) and immune modulatory compounds. Here, we review preclinical and clinical data on the impact of TLR stimulation on HIV-1 latency as well as antiviral and HIV-1-specific immunity. We also focus on the promising role of TLR agonists in combination strategies in HIV-1 cure research. Different combinations of TLR agonists and broadly neutralizing antibodies or TLRs agonists as adjuvants in HIV-1 vaccines have shown very encouraging results in non-human primate experiments and these concepts are now moving into clinical testing.
Collapse
Affiliation(s)
| | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
34
|
Takahama S, Yamamoto T. Pattern Recognition Receptor Ligands as an Emerging Therapeutic Agent for Latent HIV-1 Infection. Front Cell Infect Microbiol 2020; 10:216. [PMID: 32457851 PMCID: PMC7225283 DOI: 10.3389/fcimb.2020.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Toll-like receptors (TLRs) were first identified as molecular sensors that transduce signals from specific structural patterns derived from pathogens; their underlying molecular mechanisms of recognition and signal transduction are well-understood. To date, more than 20 pattern-recognition receptors (PRRs) have been reported in humans, some of which are membrane-bound, similar to TLRs, whereas others are cytosolic, including retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and stimulator of interferon genes (STING). Clinically, PRR ligands have been developed as vaccine adjuvants to activate innate immunity and enhance subsequent antigen-specific immune responses. Recently, PRR ligands have been used as direct immunostimulators to enhance immune responses against infectious diseases and cancers. HIV-1 remains one of the world's most significant public health challenges. Without the elimination of HIV-1 latently infected cells, patients require lifelong combination antiretroviral therapy (cART), while research aimed at a functional cure for HIV-1 infection continues. Based on the concept of "shock and kill," a latency-reversing agent (LRA) has been developed to reactivate latently infected cells and induce cell death. However, previous research has shown that LRAs have limited efficacy in the eradication of these reservoirs in vivo. Besides, PRR ligands with anti-retroviral drugs have been developed for use in HIV treatment for these years. This mini-review summarizes the current understanding of the role of PRR ligands in AIDS research, suggests directions for future research, and proposes potential clinical applications.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Flórez-Álvarez L, Ruiz-Perez L, Taborda N, Hernandez JC. Toll-like receptors as a therapeutic target in cancer, infections and inflammatory diseases. Immunotherapy 2020; 12:311-322. [PMID: 32237938 DOI: 10.2217/imt-2019-0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptors (TLRs) are widely expressed pattern recognition receptors that bind to conserved molecular patterns expressed by pathogens and damaged cells. After recognition, activated TLRs induce the expression of various proinflammatory and antiviral molecules. Thus, TLRs are potential targets for treatment strategies aimed at boosting the adaptive immune response to vaccines, controlling infections, enhancing immune responses during tumor treatment and attenuating immune responses in inflammatory disorders. This Special Report examines the potential of TLRs as targets for the treatment of cancer, infections and inflammatory diseases. Here, we make a particular emphasis on molecules capable of modulating TLRs and their therapeutic applications.
Collapse
Affiliation(s)
- Lizdany Flórez-Álvarez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.,Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA; Calle 70 No. 52-21, Medellín, Colombia
| | - Lanie Ruiz-Perez
- School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth WA 6845, Australia
| | - Natalia Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA; Calle 70 No. 52-21, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
36
|
Otandault A, Anker P, Al Amir Dache Z, Guillaumon V, Meddeb R, Pastor B, Pisareva E, Sanchez C, Tanos R, Tousch G, Schwarzenbach H, Thierry AR. Recent advances in circulating nucleic acids in oncology. Ann Oncol 2020; 30:374-384. [PMID: 30753271 DOI: 10.1093/annonc/mdz031] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) is one of the fastest growing and most exciting areas in oncology in recent years. Its potential clinical uses cover now each phase of cancer patient management care (predictive information, detection of the minimal residual disease, early detection of resistance, treatment monitoring, recurrence surveillance, and cancer early detection/screening). This review relates the recent advances in the application of circulating DNA or RNA in oncology building on unpublished or initial findings/work presented at the 10th international symposium on circulating nucleic acids in plasma and serum held in Montpellier from the 20th to the 22nd of September 2017. This year, presenters revealed their latest data and crucial observations notably in relation to (i) the circulating cell-free (cfDNA) structure and implications regarding their optimal detection; (ii) their role in the metastatic or immunological processes; (iii) evaluation of miRNA panels for cancer patient follow up; (iv) the detection of the minimal residual disease; (v) the evaluation of a screening tests for cancer using cfDNA analysis; and (vi) elements of preanalytical guidelines. This work reviews the recent progresses in the field brought to light in the meeting, as well as in the most important reports from the literature, past and present. It proposes a broader picture of the basic research and its potential, and of the implementation and current challenges in the use of circulating nucleic acids in oncology.
Collapse
Affiliation(s)
- A Otandault
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - P Anker
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - Z Al Amir Dache
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - V Guillaumon
- Regional Institute of Cancer of Montpellier, Montpellier; SIRIC, Integrated Cancer Research Site, Montpellier, France
| | - R Meddeb
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - B Pastor
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - E Pisareva
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - C Sanchez
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - R Tanos
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - G Tousch
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier
| | - H Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier; INSERM, U1194, Montpellier; Department of Oncology, Montpellier University, Montpellier; Regional Institute of Cancer of Montpellier, Montpellier.
| |
Collapse
|
37
|
Thomas M, Ponce-Aix S, Navarro A, Riera-Knorrenschild J, Schmidt M, Wiegert E, Kapp K, Wittig B, Mauri C, Dómine Gómez M, Kollmeier J, Sadjadian P, Fröhling KP, Huber RM, Wolf M. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann Oncol 2019; 29:2076-2084. [PMID: 30137193 PMCID: PMC6225892 DOI: 10.1093/annonc/mdy326] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The immune surveillance reactivator lefitolimod (MGN1703), a DNA-based TLR9 agonist, might foster innate and adaptive immune response and thus improve immune-mediated control of residual cancer disease. The IMPULSE phase II study evaluated the efficacy and safety of lefitolimod as maintenance treatment in extensive-stage small-cell lung cancer (ES-SCLC) after objective response to first-line chemotherapy, an indication with a high unmet medical need and stagnant treatment improvement in the last decades. Patients and methods 103 patients with ES-SCLC and objective tumor response (as per RECIST 1.1) following four cycles of platinum-based first-line induction therapy were randomized to receive either lefitolimod maintenance therapy or local standard of care at a ratio of 3 : 2 until progression or unacceptable toxicity. Results From 103 patients enrolled, 62 were randomized to lefitolimod, 41 to the control arm. Patient demographics and response patterns to first-line therapy were balanced. Lefitolimod exhibited a favorable safety profile and pharmacodynamic assessment confirmed the mode-of-action showing a clear activation of monocytes and production of interferon-gamma-induced protein 10 (IP-10). While in the intent-to-treat (ITT) population no relevant effect of lefitolimod on progression-free and overall survival (OS) could be observed, two predefined patient subgroups indicated promising results, favoring lefitolimod with respect to OS: in patients with a low frequency of activated CD86+ B cells (hazard ratio, HR 0.53, 95% CI: 0.26–1.08; n = 38 of 88 analyzed) and in patients with reported chronic obstructive pulmonary disease (COPD) (HR 0.48, 95% CI: 0.20–1.17, n = 25 of 103). Conclusions The IMPULSE study showed no relevant effect of lefitolimod on the main efficacy end point OS in the ITT, but (1) the expected pharmacodynamic response to lefitolimod, (2) positive OS efficacy signals in two predefined subgroups and (3) a favorable safety profile. These data support further exploration of lefitolimod in SCLC.
Collapse
Affiliation(s)
- M Thomas
- Thoraxklinik im Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany.
| | | | - A Navarro
- Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - J Riera-Knorrenschild
- Hämatologie, Onkologie und Immunologie, Klinikum der Philipps Universität Marburg, Marburg, Germany
| | - M Schmidt
- Early & Translational R&D Department, MOLOGEN AG, Berlin, Germany
| | - E Wiegert
- Clinical Science Department, MOLOGEN AG, Berlin, Germany
| | - K Kapp
- Early & Translational R&D Department, MOLOGEN AG, Berlin, Germany
| | - B Wittig
- Advisor, MOLOGEN AG, Berlin, Germany
| | - C Mauri
- Division of Medicine, University College London, London, UK
| | - M Dómine Gómez
- Medical Oncology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - J Kollmeier
- Klinik für Pneumonologie, HELIOS Klinikum Emil von Behring GmbH, Berlin, Germany
| | - P Sadjadian
- Abteilung Pneumonologie, Johannes Wesling Klinikum Minden, Minden, Germany
| | - K-P Fröhling
- Klinik für Innere Medizin/Pneumologie, Schlaf- und Beatmungsmedizin, Kath. Klinikum Koblenz-Montabaur, Koblenz, Germany
| | - R M Huber
- Comprehensive Pneumology Center (CPC-M), University of Munich and Thoracic Oncology Centre Munich, Munich, Germany
| | - M Wolf
- Klinikum Kassel, Medizinische Klinik IV, Kassel, Germany
| | | |
Collapse
|
38
|
Macedo AB, Novis CL, Bosque A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol 2019; 10:2450. [PMID: 31681325 PMCID: PMC6804373 DOI: 10.3389/fimmu.2019.02450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The elimination of both cellular and tissue latent reservoirs is a challenge toward a successful HIV cure. "Shock and Kill" are among the therapeutic strategies that have been more extensively studied to target these reservoirs. These strategies are aimed toward the reactivation of the latent reservoir using a latency-reversal agent (LRA) with the subsequent killing of the reactivated cell either by the cytotoxic arm of the immune system, including NK and CD8 T cells, or by viral cytopathic mechanisms. Numerous LRAs are currently being investigated in vitro, ex vivo as well as in vivo for their ability to reactivate and reduce latent reservoirs. Among those, several toll-like receptor (TLR) agonists have been shown to reactivate latent HIV. In humans, there are 10 TLRs that recognize different pathogen-associated molecular patterns. TLRs are present in several cell types, including CD4 T cells, the cell compartment that harbors the majority of the latent reservoir. Besides their ability to reactivate latent HIV, TLR agonists also increase immune activation and promote an antiviral response. These combined properties make TLR agonists unique among the different LRAs characterized to date. Additionally, some of these agonists have shown promise toward finding an HIV cure in animal models. When in combination with broadly neutralizing antibodies, TLR-7 agonists have shown to impact the SIV latent reservoir and delay viral rebound. Moreover, there are FDA-approved TLR agonists that are currently being investigated for cancer therapy and other diseases. All these has prompted clinical trials using TLR agonists either alone or in combination toward HIV eradication approaches. In this review, we provide an extensive characterization of the state-of-the-art of the use of TLR agonists toward HIV eradication strategies and the mechanism behind how TLR agonists target both cellular and tissue HIV reservoirs.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, The University of Utah, Salt Lake City, UT, United States
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
39
|
Kapp K, Volz B, Oswald D, Wittig B, Baumann M, Schmidt M. Beneficial modulation of the tumor microenvironment and generation of anti-tumor responses by TLR9 agonist lefitolimod alone and in combination with checkpoint inhibitors. Oncoimmunology 2019; 8:e1659096. [PMID: 31741757 PMCID: PMC6844329 DOI: 10.1080/2162402x.2019.1659096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022] Open
Abstract
Activation of Toll-like receptor 9 (TLR9) is known to foster innate and adaptive immune responses and thus improve immune-mediated control of malignant disease. Lefitolimod is a potent TLR9 agonist without chemical modification developed for immunotherapeutic strategies. Modulation of the tumor microenvironment (TME) is a crucial requirement for the response to various immunotherapies: Immunogenic (“hot”) tumors, characterized by their T cell-infiltrated TME, respond better compared to non-immunogenic (“cold”) tumors. It has been speculated that the mode-of-action of lefitolimod provides the necessary signals for activation of immune cells, their differentiation into anti-tumor effector cells and their recruitment into the TME. We investigated the effect of lefitolimod on TME, and its potency to induce synergistic anti-tumor effects when combined with immune checkpoint inhibitory antibodies (CPI) in a murine model. Indeed, we could show that treatment with single-agent lefitolimod beneficially modulated the TME, via infiltration of activated CD8+ cells and a shift in the macrophage population toward M1 phenotype. The result was a pronounced anti-tumor effect correlated with the magnitude of infiltrated immune cells and tumor-specific T cell responses. In line with this, lefitolimod led to persistent anti-tumor memory in the EMT-6 model after tumor re-challenge. This was accompanied by an increase of tumor-specific T cell responses and cross-reactivity against different tumor cells. Lefitolimod clearly augmented the limited anti-tumor effect of the CPI anti-PD1 in an A20 and anti-PD-L1 in a CT26 model. These properties of potent immune surveillance reactivation render lefitolimod an ideal candidate as therapeutic agent for immuno-oncology, e.g. improving CPI strategies.
Collapse
Affiliation(s)
| | | | | | - Burghardt Wittig
- Mologen AG (advisor), Berlin, Germany.,MolBio2Math - Molecular Biology & Integral Biomathics, Berlin, Germany
| | | | | |
Collapse
|
40
|
Jahchan NS, Mujal AM, Pollack JL, Binnewies M, Sriram V, Reyno L, Krummel MF. Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Front Immunol 2019; 10:1611. [PMID: 31402908 PMCID: PMC6673698 DOI: 10.3389/fimmu.2019.01611] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) of diverse cancer types is often characterized by high levels of infiltrating myeloid cells including monocytes, macrophages, dendritic cells, and granulocytes. These cells perform a variety of functions in the TME, varying from immune suppressive to immune stimulatory roles. In this review, we summarize the different myeloid cell populations in the TME and the intratumoral myeloid targeting approaches that are being clinically investigated, and discuss strategies that identify new myeloid subpopulations within the TME. The TME therapies include agents that modulate the functional activities of myeloid populations, that impact recruitment and survival of myeloid subpopulations, and that functionally reprogram or activate myeloid populations. We discuss the benefits, limitations and potential side effects of these therapeutic approaches.
Collapse
Affiliation(s)
| | - Adriana M. Mujal
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | | | | | | | - Leonard Reyno
- Pionyr Immunotherapeutics, South San Francisco, CA, United States
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Schleimann MH, Kobberø ML, Vibholm LK, Kjær K, Giron LB, Busman-Sahay K, Chan CN, Nekorchuk M, Schmidt M, Wittig B, Damsgaard TE, Ahlburg P, Hellfritzsch MB, Zuwala K, Rothemejer FH, Olesen R, Schommers P, Klein F, Dweep H, Kossenkov A, Nyengaard JR, Estes JD, Abdel-Mohsen M, Østergaard L, Tolstrup M, Søgaard OS, Denton PW. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine 2019; 45:328-340. [PMID: 31300344 PMCID: PMC6642412 DOI: 10.1016/j.ebiom.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells. As a pre-defined sub-study within our clinical trial investigating TLR9 agonist MGN1703 (lefitolimod) treatment in the context of developing HIV cure strategies (NCT02443935), we assessed TLR9 agonist-mediated effects in lymph nodes. Methods Participants received MGN1703 for 24 weeks concurrent with antiretroviral therapy. Seven participants completed the sub-study including lymph node resection at baseline and after 24 weeks of treatment. A variety of tissue-based immunologic and virologic parameters were assessed. Findings MGN1703 dosing increased B cell differentiation; activated pDCs, NK cells, and T cells; and induced a robust interferon response in lymph nodes. Expression of Activation-Induced cytidine Deaminase, an essential regulator of B cell diversification and somatic hypermutation, was highly elevated. During MGN1703 treatment IgG production increased and antibody glycosylation patterns were changed. Interpretation Our data present novel evidence that the TLR9 agonist MGN1703 modulates human lymph node B cells in vivo. These findings warrant further considerations in the development of TLR9 agonists as immunotherapy against cancers and infectious diseases. Fund This work was supported by Aarhus University Research Foundation, the Danish Council for Independent Research and the NovoNordisk Foundation. Mologen AG provided study drug free of charge.
Collapse
Affiliation(s)
- Mariane H Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA.
| | | | - Line K Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Kathrine Kjær
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Leila B Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - Burghardt Wittig
- Mologen AG, Berlin, Germany; MolBio2Math - Molecular Biology & Integral Biomathics, a non-profit Foundation Institute, Berlin, Germany
| | - Tine E Damsgaard
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Plastic and Breast Surgery, Plastic Surgery Research Unit, Aarhus University Hospital, Denmark
| | - Peter Ahlburg
- Department of Anesthesiology, Aarhus University Hospital, Denmark
| | - Michel B Hellfritzsch
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Radiology, Aarhus University Hospital, Denmark
| | - Kaja Zuwala
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Phillipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Harsh Dweep
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Jens R Nyengaard
- Department of Clinical Medicine, Aarhus University, Denmark; Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Paul W Denton
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
42
|
Abstract
DESIGN This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60 mg × 2 weekly) therapy. METHODS We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study. The primary outcome was reduction in total CD4 T-cell viral DNA levels. Secondary outcomes included safety, detailed immunological and virological analyses, and time to viral rebound (viral load > 5000 copies/ml) after randomization into an analytical treatment interruption (ATI). RESULTS A total of 12 individuals completed the treatment phase and nine completed the ATI. Adverse events were limited and consistent with previous reports for MGN1703. Although the dosing regimen led to potent T-cell activation and increased HIV-1-specific T-cell responses, there were no cohort-wide changes in persistent virus (total CD4 T cells viral DNA; P = 0.34). No difference in time to rebound was observed between the ATI arms (log rank P = 0.25). One of nine ATI participants, despite harboring a large replication-competent reservoir, controlled viremia for 150 days via both HIV-1-specific cellular and antibody-mediated immune responses. CONCLUSION A period of 24 weeks of MGN1703 treatment was safe and improved innate as well as HIV-1-specific adaptive immunity in HIV-1+ individuals. These findings support the incorporation of TLR9 agonism into combination HIV-1 cure strategies. TRIAL NAME AND REGISTRATION TLR9 Enhancement of antiviral immunity in chronic HIV-1 infection: a phase 1B/2A trial; ClinicalTrials.gov NCT02443935.
Collapse
|
43
|
Advani S, Kopetz S. Ongoing and future directions in the management of metastatic colorectal cancer: Update on clinical trials. J Surg Oncol 2019; 119:642-652. [PMID: 30852840 DOI: 10.1002/jso.25441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
Metastatic colorectal cancer (mCRC) continues to show poor outcomes, with many patients exhausting effective standard-of-care therapy. To explore the current landscape of clinical trials for mCRC, we reviewed over 600 clinical trials that are currently ongoing for mCRC patients. Immunotherapeutic agents form approximately 39% (includes monoclonal antibodies, viruses, vaccines, and immunomodulators) of all agents and targeted therapy forms 45% (tyrosine kinase inhibitors, epigenetic modulators, and others) of all agents being investigated for mCRC.
Collapse
Affiliation(s)
- Shailesh Advani
- Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
44
|
EnanDIM - a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy. J Immunother Cancer 2019; 7:5. [PMID: 30621769 PMCID: PMC6323716 DOI: 10.1186/s40425-018-0470-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Toll-like receptor 9 agonists are potent activators of the immune system. Their clinical potential in immunotherapy against metastatic cancers is being evaluated across a number of clinical trials. TLR9 agonists are DNA-based molecules that contain several non-methylated CG-motifs for TLR9 recognition. Chemical modifications of DNA backbones are usually employed to prevent degradation by nucleases. These, however, can promote undesirable off-target effects and therapeutic restrictions. Methods Within the EnanDIM® family members of TLR9 agonists described here, D-deoxyribose nucleotides at the nuclease-accessible 3′-ends are replaced by nuclease-resistant L-deoxyribose nucleotides. EnanDIM® molecules with varying sequences were screened for their activation of human peripheral blood mononuclear cells based on secretion of IFN-alpha and IP-10 as well as activation of immune cells. Selected molecules were evaluated in mice in a maximum feasible dose study and for analysis of immune activation. The ability to modulate the tumor-microenvironment and anti-tumor responses after EnanDIM® administration was analyzed in syngeneic murine tumor models. Results The presence of L-deoxyribose containing nucleotides at their 3′-ends is sufficient to prevent EnanDIM® molecules from nucleolytic degradation. EnanDIM® molecules show broad immune activation targeting specific components of both the innate and adaptive immune systems. Activation was strictly dependent on the presence of CG-motifs, known to be recognized by TLR9. The absence of off-target effects may enable a wide therapeutic window. This advantageous anti-tumoral immune profile also promotes increased T cell infiltration into CT26 colon carcinoma tumors, which translates into reduced tumor growth. EnanDIM® molecules also drove regression of multiple other murine syngeneic tumors including MC38 colon carcinoma, B16 melanoma, A20 lymphoma, and EMT-6 breast cancer. In A20 and EMT-6, EnanDIM® immunotherapy cured a majority of mice and established persistent anti-tumor immune memory as evidenced by the complete immunity of these mice to subsequent tumor re-challenge. Conclusions In summary, EnanDIM® comprise a novel family of TLR9 agonists that facilitate an efficacious activation of both innate and adaptive immunity. Their proven potential in onco-immunotherapy, as shown by cytotoxic activity, beneficial modulation of the tumor microenvironment, inhibition of tumor growth, and induction of long-lasting, tumor-specific memory, supports EnanDIM® molecules for further preclinical and clinical development. Electronic supplementary material The online version of this article (10.1186/s40425-018-0470-3) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Chihab H, Zaidane I, Elhabazi A, Jadid FZ, El Fihri R, Elmessaoudi-Idrissi M, Chair M, Badre W, Tahiri M, Pineau P, Chemin I, Ezzikouri S, Benjelloun S. Toll-like receptor 9 polymorphisms and Hepatitis B virus clearance in Moroccan chronic carriers. Gene 2018; 687:212-218. [PMID: 30453064 DOI: 10.1016/j.gene.2018.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Toll-like receptor 9 (TLR9) plays a crucial role in the innate immune response against viral infections. The failure of this system may result, in an attenuated immune response against HBV. Recent research has focused on the possibility of targeting the defects in TLR9 pathway as a novel approach for anti-HBV treatment. Our study aimed to assess the impact of both TLR9 rs5743836 and rs187084 polymorphisms on spontaneous HBV clearance in Moroccan chronic HBV carriers. METHODS In this study, 239 individuals chronically infected with HBV (CHB) and 133 subjects who spontaneously resolved the infection (SRB) were genotyped using a Taqman allelic discrimination assay. RESULTS/CONCLUSION Remarkably, we observed a dosage effect of both SNPs on viral loads; with a significant increase of circulating HBV DNA within AA, AG to GG rs5743836 genotypes, whereas the inverse phenomenon was noticed within rs187084 genotypes. There were no consistent association between TLR9 polymorphisms and spontaneous clearance of HBV, however, a significant association was observed between rs187084 AA genotype and HBV progression to advanced liver disease. Further studies on larger populations might be necessary to understand the modulating effect of TLR9 polymorphisms on HBV loads that remain a viral factor of paramount importance to predict HCC development.
Collapse
Affiliation(s)
- Hajar Chihab
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de Biotechnologie, Biochimie et Nutrition - Université Chouaib Doukkali, Faculté des Sciences d'El Jadida, 24000 El Jadida, Morocco
| | - Imane Zaidane
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abdellah Elhabazi
- Laboratoire de Biotechnologie, Biochimie et Nutrition - Université Chouaib Doukkali, Faculté des Sciences d'El Jadida, 24000 El Jadida, Morocco
| | - Fatima-Zahra Jadid
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Raouia El Fihri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Mohammed Chair
- Laboratoire de Biotechnologie, Biochimie et Nutrition - Université Chouaib Doukkali, Faculté des Sciences d'El Jadida, 24000 El Jadida, Morocco
| | - Wafaa Badre
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Isabelle Chemin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon Université Claude Bernard, Lyon, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
46
|
Morano F, Sclafani F. Duration of first-line treatment for metastatic colorectal cancer: Translating the available evidence into general recommendations for routine practice. Crit Rev Oncol Hematol 2018; 131:53-65. [PMID: 30293706 DOI: 10.1016/j.critrevonc.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/22/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Over the last two decades the number of front-line regimens for metastatic colorectal cancer has progressively increased. Nevertheless, there is still no consensus on the optimal duration of treatment or the role of de-escalated/maintenance strategies after induction chemotherapy. In this article we provide an overview of the studies that addressed the duration of first-line systemic treatment with cytotoxic agents plus or minus targeted therapies highlighting caveats and limitations of the same. Also, we try to translate the available evidence into practical recommendations that can be used in everyday practice to inform treatment decisions. The main conclusion of our review article is that continuing induction treatment until progression may improve disease control but there is no evidence to suggest that adopting this practice can prolong survival. On the other hand, de-escalated treatment strategies offer an opportunity to reduce the burden of toxicity while maintaining satisfactory oncological outcomes.
Collapse
Affiliation(s)
- Federica Morano
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Sclafani
- The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom.
| |
Collapse
|
47
|
TLR Agonists as Adjuvants for Cancer Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1024:195-212. [PMID: 28921471 DOI: 10.1007/978-981-10-5987-2_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) are one of the best characterised families of pattern recognition receptors (PRRs) and play a critical role in the host defence to infection. Accumulating evidence indicates that TLRs also participate in maintaining tissue homeostasis by controlling inflammation and tissue repair, as well as promoting antitumour effects via activation and modulation of adaptive immune responses. TLR agonists have successfully been exploited to ameliorate the efficacy of various cancer therapies. In this chapter, we will discuss the rationales of using TLR agonists as adjuvants to cancer treatments and summarise the recent findings of preclinical and clinical studies of TLR agonist-based cancer therapies.
Collapse
|
48
|
Interaction between Toll-Like Receptor 9-CpG Oligodeoxynucleotides and Hepatitis B Virus Virions Leads to Entry Inhibition in Hepatocytes and Reduction of Alpha Interferon Production by Plasmacytoid Dendritic Cells. Antimicrob Agents Chemother 2018; 62:AAC.01741-17. [PMID: 29439958 DOI: 10.1128/aac.01741-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
We previously reported that Toll-like receptor 9 (TLR9)-CpG oligonucleotides could inhibit the establishment of hepatitis B virus (HBV) infections in hepatocytes. Our aim was to uncover the underlying mechanisms of this inhibition. HepaRG cells, RPMI-B lymphoblastoma cells, and primary plasmacytoid dendritic cells (pDCs) exposed to HBV and TLR9 ligands/agonists in various configurations were used. We observed an inhibition of HBV infection upon TLR9 stimulations only when agonist was applied during inoculation. This inhibition was independent of interleukin-6 (IL-6)/interferon-inducible protein 10 (IP-10) production as well as of TLR9 expression in hepatocytes. We further demonstrated an entry inhibition mechanism by showing a noncovalent binding of TLR9 agonist to HBV particles. Besides inhibiting HBV entry into hepatocytes, this biophysical interaction between HBV virions and TLR9 agonist was responsible for a reduction of alpha interferon (IFN-α) expression by pDCs. Interestingly, subviral particles composed of only HBsAg were able to genuinely inhibit the TLR9 pathway, without titrating TLR9 ligands. To conclude, our data suggest that synthetic TLR9-CpG oligonucleotides can strongly inhibit HBV entry by "coating" HBV virions and thereby preventing their interaction with cellular receptor. This titration effect of TLR9 agonist is also artifactually responsible for the inhibition of TLR9 engagement in pDCs, whereas a genuine inhibition of this innate pathway was confirmed with HBsAg subviral particles.
Collapse
|
49
|
Dredge K, Brennan TV, Hammond E, Lickliter JD, Lin L, Bampton D, Handley P, Lankesheer F, Morrish G, Yang Y, Brown MP, Millward M. A Phase I study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. Br J Cancer 2018. [PMID: 29531325 PMCID: PMC5931096 DOI: 10.1038/s41416-018-0006-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background PG545 (pixatimod) is a novel immunomodulatory agent, which has been demonstrated to stimulate innate immune responses against tumours in preclinical cancer models. Methods This Phase I study investigated the safety, tolerability, pharmacokinetics, pharmacodynamics and preliminary efficacy of PG545 monotherapy. Escalating doses of PG545 were administered to patients with advanced solid malignancies as a weekly 1-h intravenous infusion. Results Twenty-three subjects were enrolled across four cohorts (25, 50, 100 and 150 mg). Three dose-limiting toxicities (DLTs)—hypertension (2), epistaxis (1)—occurred in the 150 mg cohort. No DLTs were noted in the 100 mg cohort, which was identified as the maximum-tolerated dose. No objective responses were reported. Best response was stable disease up to 24 weeks, with the disease control rate in evaluable subjects of 38%. Exposure was proportional up to 100 mg and mean half-life was 141 h. The pharmacodynamic data revealed increases in innate immune cell activation, plasma IFNγ, TNFα, IP-10 and MCP-1. Conclusion PG545 demonstrated a tolerable safety profile, proportional PK, evidence of immune cell stimulation and disease control in some subjects. Taken together, these data support the proposed mechanism of action, which represents a promising approach for use in combination with existing therapies.
Collapse
Affiliation(s)
| | - Todd V Brennan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Liwen Lin
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Fleur Lankesheer
- Progen Pharmaceuticals Ltd, Brisbane, QLD, Australia.,School of Humanities and Social Science, The University of Newcastle, Newcastle, NSW, Australia
| | | | - Yiping Yang
- Departments of Medicine and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael P Brown
- Cancer Clinical Trials Unit, Royal Adelaide Hospital; Centre for Cancer Biology, SA Pathology and University of South Australia; Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael Millward
- Linear Clinical Research; Sir Charles Gairdner Hospital, University of Western Australia, WA, Perth, Australia
| |
Collapse
|
50
|
Abstract
The promising results of clinical trials using immune checkpoint inhibitors revived interests in cancer immunotherapy. However, it also became apparent that efficacy of immune checkpoint blockade can benefit from combining it with immunostimulatory strategies. Here, we review prior and re-emerging approaches using Toll-like Receptor 9 (TLR9) agonists, CpG oligodeoxynucleotides (ODNs), focused on the generation of antitumor immune responses in cancer patients. While numerous early clinical trials using TLR9 ligands in monotherapies provided evidence of CpG ODNs tolerability and safety, they failed to demonstrate sufficient antitumor efficacy. Recent studies unraveled multiple levels of negative regulation of immunostimulatory TLR9 signaling in immune cells by the tumor microenvironment that can stifle immune activity in cancer patients. Therefore, CpG ODNs-based strategies can greatly benefit from combination with strategies targeting immune checkpoint regulation. The most recent clinical trials of CpG ODNs together with immune checkpoint inhibitors have a chance to generate novel, more effective and safer cancer immunotherapies.
Collapse
|