1
|
Huang WL, Huang WT, Chen XF, Wu T, Tong LY, Xia TT, Wu BS, Lu F, Lai NW, Yang LT, Chen LS. Exogenous coumarin improves cell wall and plasma membrane stability and function by maintaining copper and calcium homeostasis in citrus roots under copper excess. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109949. [PMID: 40319587 DOI: 10.1016/j.plaphy.2025.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Most citrus trees are planted in acidic soil with high availability of copper (Cu). Little is known about the mechanisms by which coumarin (COU) reduces Cu excess in plants. 'Xuegan' (Citrus sinensis) seedlings were treated with 0.5 (Cu0.5) or 400 (Cu excess or Cu400) CuCl2 and 0 (COU0) or 100 (COU100) μM COU for 24 weeks. COU100 alleviated Cu400-induced alterations in gene expression and metabolite profiles, cell wall (CW) materials (CWMs), CW components (CWCs), and Fourier transform infrared (FTIR) spectra of CWMs in roots; increase in Cu concentration in roots, root CWMs (RCWMs), root CWCs (RCWCs), Cu and Ca fractions in RCWMs, and Cu fraction in CW pectin; and decrease in Ca concentrations in roots, RCWMs, and RCWCs. In addition, COU100 mitigated Cu400-induced increase in electrolyte leakage and concentrations of total coumarins, total phenolics, total falvonoids, and nonstructural carbohydrates (NCs) and decrease in total free amino acid concentration in roots, as well as impairment in root system architecture (RSA) and root growth. Our results corroborated the hypothesis that the alleviation of root Cu excess by COU was caused by the combination of following several aspects: (a) reduced impairment to root growth and RSA; (b) upregulated ability to maintain CW and plasma membrane stability and function by maintaining Cu and calcium homeostasis; (c) elevated adaptability of primary metabolism to Cu excess; and (d) upregulated biosynthesis and catabolism (turnover) of secondary metabolites (SMs) and less upregulation of SMs. COU0-treated roots underwent some physiological and molecular adaptations to Cu excess.
Collapse
Affiliation(s)
- Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei-Tao Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ti Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China.
| | - Liang-Yuan Tong
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Tian-Tian Xia
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Bi-Sha Wu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China.
| | - Fei Lu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ning-Wei Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Liang S, Duan Z, He X, Yang X, Yuan Y, Liang Q, Pan Y, Zhou G, Zhang M, Liu S, Tian Z. Natural variation in GmSW17 controls seed size in soybean. Nat Commun 2024; 15:7417. [PMID: 39198482 PMCID: PMC11358545 DOI: 10.1038/s41467-024-51798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Seed size/weight plays an important role in determining crop yield, yet only few genes controlling seed size have been characterized in soybean. Here, we perform a genome-wide association study and identify a major quantitative trait locus (QTL), named GmSW17 (Seed Width 17), on chromosome 17 that determine soybean seed width/weight in natural population. GmSW17 encodes a ubiquitin-specific protease, an ortholog to UBP22, belonging to the ubiquitin-specific protease (USPs/UBPs) family. Further functional investigations reveal that GmSW17 interacts with GmSGF11 and GmENY2 to form a deubiquitinase (DUB) module, which influences H2Bub levels and negatively regulates the expression of GmDP-E2F-1, thereby inhibiting the G1-to-S transition. Population analysis demonstrates that GmSW17 undergo artificial selection during soybean domestication but has not been fixed in modern breeding. In summary, our study identifies a predominant gene related to soybean seed weight, providing potential advantages for high-yield breeding in soybean.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuemei He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Pan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guoan Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Domínguez-Figueroa J, Gómez-Rojas A, Escobar C. Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1370532. [PMID: 38784063 PMCID: PMC11113014 DOI: 10.3389/fpls.2024.1370532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.
Collapse
Affiliation(s)
- Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro de Biotecnologia y Genomica de Plantas (CBGP), Universidad Politecnica de Madrid and Instituto de Investigacion y Tecnologia Agraria y Alimentaria-Consejo Superior de investigaciones Cientificas (UPM-INIA/CSIC), Madrid, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
4
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Singh D, Banerjee G, Verma N, Sinha AK. MAP kinases may mediate regulation of the cell cycle in rice by E2F2 phosphorylation. FEBS Lett 2023; 597:2993-3009. [PMID: 37843487 DOI: 10.1002/1873-3468.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
E2F is the key transcription factor that determines the proliferative status of cells by regulating the G1/S phase of the cell cycle. In this study, we show that in rice (Oryza sativa), OsE2F2 is a phosphorylation target of MAP kinases. The MAP kinases OsMPK3, OsMPK4, and OsMPK6 interact with and phosphorylate OsE2F2. Next, we determined the serine and threonine residues that could play a role in the phosphorylation of OsE2F2. Subsequently, our study suggests a possible link between MAP kinase-mediated OsE2F2 phosphorylation and its impact on DNA proliferation in the roots of rice seedlings. Finally, we found positive feedback regulation of OsMPK4 by OsE2F2. Therefore, our study hints at the potential impact of MAP kinase signaling on the cell cycle of rice plants.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | | |
Collapse
|
6
|
Dubois M, Achon I, Brench RA, Polyn S, Tenorio Berrío R, Vercauteren I, Gray JE, Inzé D, De Veylder L. SIAMESE-RELATED1 imposes differentiation of stomatal lineage ground cells into pavement cells. NATURE PLANTS 2023:10.1038/s41477-023-01452-7. [PMID: 37386150 DOI: 10.1038/s41477-023-01452-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
The leaf epidermis represents a multifunctional tissue consisting of trichomes, pavement cells and stomata, the specialized cellular pores of the leaf. Pavement cells and stomata both originate from regulated divisions of stomatal lineage ground cells (SLGCs), but whereas the ontogeny of the stomata is well characterized, the genetic pathways activating pavement cell differentiation remain relatively unexplored. Here, we reveal that the cell cycle inhibitor SIAMESE-RELATED1 (SMR1) is essential for timely differentiation of SLGCs into pavement cells by terminating SLGC self-renewal potency, which depends on CYCLIN A proteins and CYCLIN-DEPENDENT KINASE B1. By controlling SLGC-to-pavement cell differentiation, SMR1 determines the ratio of pavement cells to stomata and adjusts epidermal development to suit environmental conditions. We therefore propose SMR1 as an attractive target for engineering climate-resilient plants.
Collapse
Affiliation(s)
- Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Robert A Brench
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Julie E Gray
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
7
|
Zheng ZQ, Huang ZH, Liang YL, Zheng WH, Xu C, Li ZX, Liu N, Yang PY, Li YQ, Ma J, Sun Y, Tang LL, Wei D. VIRMA Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Upregulation of E2F7 in an m6A-Dependent Manner. J Biol Chem 2023; 299:104677. [PMID: 37028765 DOI: 10.1016/j.jbc.2023.104677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The N6-methyladenosine (m6A) modification possesses new and essential roles in tumor initiation and progression by regulating mRNA biology. However, the role of aberrant m6A regulation in nasopharyngeal carcinoma (NPC) remains unclear. Here, through comprehensive analyses of NPC cohorts from the GEO database and our internal cohort, we identified that VIRMA, an m6A writer, is significantly upregulated in NPC and plays an essential role in tumorigenesis and metastasis of NPC, both in vitro and in vivo. High VIRMA expression served as a prognostic biomarker and was associated with poor outcomes in patients with NPC. Mechanistically, VIRMA mediated the m6A methylation of E2F7 3'-UTR, then IGF2BP2 bound and maintained the stability of E2F7 mRNA. An integrative high-throughput sequencing approach revealed that E2F7 drives a unique transcriptome distinct from the classical E2F family in NPC, which functioned as an oncogenic transcriptional activator. E2F7 cooperated with CBFB-recruited RUNX1 in a non-canonical manner to transactivate ITGA2, ITGA5, and NTRK1, strengthening Akt signaling-induced tumor-promoting effect.
Collapse
Affiliation(s)
- Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhuo-Hui Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wei-Hong Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Cheng Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Pan-Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Ling-Long Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
8
|
Zhu X, Guo L, Zhu R, Zhou X, Zhang J, Li D, He S, Qiao Y. Phytophthora sojae effector PsAvh113 associates with the soybean transcription factor GmDPB to inhibit catalase-mediated immunity. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36972124 DOI: 10.1111/pbi.14043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phytophthora species are the most destructive plant pathogens worldwide and the main threat to agricultural and natural ecosystems; however, their pathogenic mechanism remains largely unknown. Here, we show that Avh113 effector is required for the virulence of Phytophthora sojae and is important for development of Phytophthora root and stem rot (PRSR) in soybean (Glycine max). Ectopic expression of PsAvh113 enhanced viral and Phytophthora infection in Nicotiana benthamiana. PsAvh113 directly associated with the soybean transcription factor GmDPB, inducing its degradation by the 26S proteasome. The internal repeat 2 (IR2) motif of PsAvh113 was important for its virulence and interaction with GmDPB, while silencing and overexpression of GmDPB in soybean hairy roots altered the resistance to P. sojae. Upon binding to GmDPB, PsAvh113 decreased the transcription of the downstream gene GmCAT1, which acts as a positive regulator of plant immunity. Furthermore, we revealed that PsAvh113 suppressed the GmCAT1-induced cell death by associating with GmDPB, thereby enhancing plant susceptibility to Phytophthora. Together, our findings reveal a vital role of PsAvh113 in inducing PRSR in soybean and offer a novel insight into the interplay between defence and counter-defence during the P. sojae infection of soybean.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ruiqing Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shidan He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Larriba E, Nicolás-Albujer M, Sánchez-García AB, Pérez-Pérez JM. Identification of Transcriptional Networks Involved in De Novo Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2022; 23:16112. [PMID: 36555756 PMCID: PMC9788163 DOI: 10.3390/ijms232416112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Some of the hormone crosstalk and transcription factors (TFs) involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. In previous work, we established Solanum lycopersicum "Micro-Tom" explants without the addition of exogenous hormones as a model to investigate wound-induced de novo organ formation. The current working model indicates that cell reprogramming and founder cell activation requires spatial and temporal regulation of auxin-to-cytokinin (CK) gradients in the apical and basal regions of the hypocotyl combined with extensive metabolic reprogramming of some cells in the apical region. In this work, we extended our transcriptomic analysis to identify some of the gene regulatory networks involved in wound-induced organ regeneration in tomato. Our results highlight a functional conservation of key TF modules whose function is conserved during de novo organ formation in plants, which will serve as a valuable resource for future studies.
Collapse
|
10
|
Guo L, Wang C, Chen J, Ju Y, Yu F, Jiao C, Fei Z, Ding Y, Wei Q. Cellular differentiation, hormonal gradient, and molecular alternation between the division zone and the elongation zone of bamboo internodes. PHYSIOLOGIA PLANTARUM 2022; 174:e13774. [PMID: 36050899 DOI: 10.1111/ppl.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Bamboo differentiates a cell division zone (DZ) and a cell elongation zone (EZ) to promote internode elongation during rapid growth. However, the biological mechanisms underlying this sectioned growth behavior are still unknown. Using histological, physiological, and genomic data, we found that the cell wall and other subcellular organelles such as chloroplasts are more developed in the EZ. Abundant hydrogen peroxide accumulated in the pith cells of the EZ, and stomata formed completely in the EZ. In contrast, most cells in the DZ were in an undifferentiated state with wrinkled cell walls and dense cytoplasm. Hormone detection revealed that the levels of gibberellin, auxin, cytokinin, and brassinosteroid were higher in the DZ than in the EZ. However, the levels of salicylic acid and jasmonic acid were higher in the EZ than in the DZ. Transcriptome analysis with qRT-PCR quantification revealed that the transcripts for cell division and primary metabolism had higher expression in the DZ, whereas the genes for photosynthesis, cell wall growth, and secondary metabolism were dramatically upregulated in the EZ. Overexpression of a MYB transcription factor, BmMYB83, promotes cell wall lignification in transgenic plants. BmMYB83 is specifically expressed in cells that may have lignin deposits, such as protoxylem vessels and fiber cells. Our results indicate that hormone gradient and transcriptome reprogramming, as well as specific expression of key genes such as BmMYB83, may lead to differentiation of cell growth in the bamboo internode.
Collapse
Affiliation(s)
- Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chunyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Ju
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Islam N, Krishnan HB, Natarajan SS. Protein profiling of fast neutron soybean mutant seeds reveals differential accumulation of seed and iron storage proteins. PHYTOCHEMISTRY 2022; 200:113214. [PMID: 35469783 DOI: 10.1016/j.phytochem.2022.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
A fast neutron (FN) radiated mutant soybean (Glycine max (L.) Merr., Fabaceae) displaying large duplications exhibited an increase in total seed protein content. A tandem mass tag (TMT) based protein profiling of matured seeds resulted in the identification of 4338 proteins. Gene duplication resulted in a significant increase in several seed storage proteins and protease inhibitors. Among the storage proteins, basic 7 S globulin, glycinin G4, and beta-conglycinin showed higher abundance in matured FN mutant seeds in addition to protease inhibitors. A significantly higher abundance of L-ascorbate peroxidases, acid phosphatases, and iron storage proteins was also observed. A higher amount of albumin, sucrose synthase, iron storage, and ascorbate family proteins in the mutant seeds was observed at the mid-stage of seed filling. We anticipate that the duplicated genes might have a cascading effect on the genome constituents, thus, resulting in increased storage and iron-containing protein content in the mutant seeds.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
12
|
Nemati I, Sedghi M, Hosseini Salekdeh G, Tavakkol Afshari R, Naghavi MR, Gholizadeh S. DELAY OF GERMINATION 1 ( DOG1) regulates dormancy in dimorphic seeds of Xanthium strumarium. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:742-758. [PMID: 35569923 DOI: 10.1071/fp21315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy ensures plant survival but many mechanisms remain unclear. A high-throughput RNA-seq analysis investigated the mechanisms involved in the establishment of dormancy in dimorphic seeds of Xanthium strumarium (L.) developing in one single burr. Results showed that DOG1 , the main dormancy gene in Arabidopsis thaliana L., was over-represented in the dormant seed leading to the formation of two seeds with different cell wall properties. Less expression of DME /EMB1649 , UBP26 , EMF2, MOM, SNL2, and AGO4 in the non-dormant seed was observed, which function in the chromatin remodelling of dormancy-associated genes through DNA methylation. However, higher levels of ATXR7 /SDG25, ELF6 , and JMJ16/PKDM7D in the non-dormant seed that act at the level of histone demethylation and activate germination were found. Dramatically lower expression in the splicing factors SUA, PWI , and FY in non-dormant seed may indicate that variation in RNA splicing for ABA sensitivity and transcriptional elongation control of DOG1 is of importance for inducing seed dormancy. Seed size and germination may be influenced by respiratory factors, and alterations in ABA content and auxin distribution and responses. TOR (a serine/threonine-protein kinase) is likely at the centre of a regulatory hub controlling seed metabolism, maturation, and germination. Over-representation of the respiration-associated genes (ACO3 , PEPC3 , and D2HGDH ) was detected in non-dormant seed, suggesting differential energy supplies in the two seeds. Degradation of ABA biosynthesis and/or proper auxin signalling in the large seed may control germinability, and suppression of endoreduplication in the small seed may be a mechanism for cell differentiation and cell size determination.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; and Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Reza Tavakkol Afshari
- Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Somayeh Gholizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Reynoso MA, Borowsky AT, Pauluzzi GC, Yeung E, Zhang J, Formentin E, Velasco J, Cabanlit S, Duvenjian C, Prior MJ, Akmakjian GZ, Deal RB, Sinha NR, Brady SM, Girke T, Bailey-Serres J. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev Cell 2022; 57:1177-1192.e6. [PMID: 35504287 DOI: 10.1016/j.devcel.2022.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; IBBM, FCE-UNLP CONICET, La Plata 1900, Argentina
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Germain C Pauluzzi
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elaine Yeung
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Jianhai Zhang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elide Formentin
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Department of Biology, University of Padova, Padova, Italy
| | - Joel Velasco
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sean Cabanlit
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Christine Duvenjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew J Prior
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Garo Z Akmakjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Thomas Girke
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
14
|
De S, Jose J, Pal A, Roy Choudhury S, Roy S. Exposure to Low UV-B Dose Induces DNA Double-Strand Breaks Mediated Onset of Endoreduplication in Vigna radiata (L.) R. Wilczek Seedlings. PLANT & CELL PHYSIOLOGY 2022; 63:463-483. [PMID: 35134223 DOI: 10.1093/pcp/pcac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Multiple lines of evidence indicate that solar UV-B light acts as an important environmental signal in plants, regulating various cellular and metabolic activities, gene expression, growth and development. Here, we show that low levels of UV-B (4.0 kJ m-2) significantly influence plant response during early seedling development in the tropical legume crop Vigna radiata (L.) R. Wilczek. Exposure to low doses of UV-B showed relatively less growth inhibition yet remarkably enhanced lateral root formation in seedlings. Both low and high (8.0 kJ m-2) doses of UV-B treatment induced DNA double-strand breaks and activated the SOG1-related ATM-ATR-mediated DNA damage response pathway. These effects led to G2-M-phase arrest with a compromised expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1 and CYCB1;1, respectively. However, along with these effects, imbibitional exposure of seeds to a low UV-B dose resulted in enhanced accumulation of FZR1/CCS52A, E2Fa and WEE1 kinase and prominent induction of endoreduplication in 7-day-old seedlings. Low dose of UV-B mediated phenotypical responses, while the onset of endoreduplication appeared to be regulated at least in part via UV-B induced reactive oxygen species accumulation. Transcriptome analyses further revealed a network of co-regulated genes associated with DNA repair, cell cycle regulation and oxidative stress response pathways that are activated upon exposure to low doses of UV-B.
Collapse
Affiliation(s)
- Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal 713104, India
| | - Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal 700054, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal 713104, India
| |
Collapse
|
15
|
Gómez MS, Sheridan ML, Casati P. E2Fb and E2Fa transcription factors independently regulate the DNA damage response after ultraviolet B exposure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1098-1115. [PMID: 34859915 DOI: 10.1111/tpj.15616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV)B radiation affects plant growth inhibiting cell proliferation. This inhibition is in part controlled by the activity of transcription factors from the E2F family. In particular, the participation of E2Fc and E2Fe in UV-B responses in Arabidopsis plants was previously reported. However, the E2Fa and E2Fb contribution to these processes has still not been investigated. Thus, in this work, we provide evidence that, in Arabidopsis, both E2Fa and E2Fb control leaf size under UV-B conditions without participating in the repair of cyclobutane pyrimidine dimers in the DNA. Nevertheless, in UV-B-exposed seedlings, E2Fa, but not E2Fb, regulates primary root elongation, cell proliferation, and programmed cell death in the meristematic zone. Using e2fa mutants that overexpress E2Fb, we showed that the role of E2Fa in the roots could not be replaced by E2Fb. Finally, our results show that E2Fa and E2Fb differentially regulate the expression of genes that activate the DNA damage response and cell cycle progression, both under conditions without UV-B and after exposure. Overall, we showed that both E2Fa and E2Fb have different and non-redundant roles in developmental and DNA damage responses in Arabidopsis plants exposed to UV-B.
Collapse
Affiliation(s)
- María Sol Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - María Luján Sheridan
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| |
Collapse
|
16
|
Mahapatra K, Roy S. SOG1 transcription factor promotes the onset of endoreduplication under salinity stress in Arabidopsis. Sci Rep 2021; 11:11659. [PMID: 34079040 PMCID: PMC8172935 DOI: 10.1038/s41598-021-91293-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/20/2021] [Indexed: 01/24/2023] Open
Abstract
As like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713 104, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713 104, India.
| |
Collapse
|
17
|
Perrotta L, Giordo R, Francis D, Rogers HJ, Albani D. Molecular Analysis of the E2F/DP Gene Family of Daucus carota and Involvement of the DcE2F1 Factor in Cell Proliferation. FRONTIERS IN PLANT SCIENCE 2021; 12:652570. [PMID: 33777085 PMCID: PMC7994507 DOI: 10.3389/fpls.2021.652570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
E2F transcription factors are key components of the RB/E2F pathway that, through the action of cyclin-dependent kinases, regulates cell cycle progression in both plants and animals. Moreover, plant and animal E2Fs have also been shown to regulate other cellular functions in addition to cell proliferation. Based on structural and functional features, they can be divided into different classes that have been shown to act as activators or repressors of E2F-dependent genes. Among the first plant E2F factors to be reported, we previously described DcE2F1, an activating E2F which is expressed in cycling carrot (Daucus carota) cells. In this study, we describe the identification of the additional members of the E2F/DP family of D. carota, which includes four typical E2Fs, three atypical E2F/DEL genes, and three related DP genes. Expression analyses of the carrot E2F and DP genes reveal distinctive patterns and suggest that the functions of some of them are not necessarily linked to cell proliferation. DcE2F1 was previously shown to transactivate an E2F-responsive promoter in transient assays but the functional role of this protein in planta was not defined. Sequence comparisons indicate that DcE2F1 could be an ortholog of the AtE2FA factor of Arabidopsis thaliana. Moreover, ectopic expression of the DcE2F1 cDNA in transgenic Arabidopsis plants is able to upregulate AtE2FB and promotes cell proliferation, giving rise to polycotyly with low frequency, effects that are highly similar to those observed when over-expressing AtE2FA. These results indicate that DcE2F1 is involved in the control of cell proliferation and plays important roles in the regulation of embryo and plant development.
Collapse
Affiliation(s)
- Lara Perrotta
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Roberta Giordo
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Dennis Francis
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Diego Albani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
18
|
Okumura T, Nomoto Y, Kobayashi K, Suzuki T, Takatsuka H, Ito M. MYB3R-mediated active repression of cell cycle and growth under salt stress in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:261-277. [PMID: 33580347 DOI: 10.1007/s10265-020-01250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Under environmental stress, plants are believed to actively repress their growth to save resource and alter its allocation to acquire tolerance against the stress. Although a lot of studies have uncovered precise mechanisms for responding to stress and acquiring tolerance, the mechanisms for regulating growth repression under stress are not as well understood. It is especially unclear which particular genes related to cell cycle control are involved in active growth repression. Here, we showed that decreased growth in plants exposed to moderate salt stress is mediated by MYB3R transcription factors that have been known to positively and negatively regulate the transcription of G2/M-specific genes. Our genome-wide gene expression analysis revealed occurrences of general downregulation of G2/M-specific genes in Arabidopsis under salt stress. Importantly, this downregulation is significantly and universally mitigated by the loss of MYB3R repressors by mutations. Accordingly, the growth performance of Arabidopsis plants under salt stress is significantly recovered in mutants lacking MYB3R repressors. This growth recovery involves improved cell proliferation that is possibly due to prolonging and accelerating cell proliferation, which were partly suggested by enlarged root meristem and increased number of cells positive for CYCB1;1-GUS. Our ploidy analysis further suggested that cell cycle progression at the G2 phase was delayed under salt stress, and this delay was recovered by loss of MYB3R repressors. Under salt stress, the changes in expression of MYB3R activators and repressors at both the mRNA and protein levels were not significant. This observation suggests novel mechanisms underlying MYB3R-mediated growth repression under salt stress that are different from the mechanisms operating under other stress conditions such as DNA damage and high temperature.
Collapse
Affiliation(s)
- Toru Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Chikusa, 464-8601, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kosuke Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Chikusa, 464-8601, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
19
|
Paolo D, Rotasperti L, Schnittger A, Masiero S, Colombo L, Mizzotti C. The Arabidopsis MADS-Domain Transcription Factor SEEDSTICK Controls Seed Size via Direct Activation of E2Fa. PLANTS 2021; 10:plants10020192. [PMID: 33498552 PMCID: PMC7909557 DOI: 10.3390/plants10020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Seed size is the result of complex molecular networks controlling the development of the seed coat (of maternal origin) and the two fertilization products, the embryo and the endosperm. In this study we characterized the role of Arabidopsis thaliana MADS-domain transcription factor SEEDSTICK (STK) in seed size control. STK is known to regulate the differentiation of the seed coat as well as the structural and mechanical properties of cell walls in developing seeds. In particular, we further characterized stk mutant seeds. Genetic evidence (reciprocal crosses) of the inheritance of the small-seed phenotype, together with the provided analysis of cell division activity (flow cytometry), demonstrate that STK acts in the earlier phases of seed development as a maternal activator of growth. Moreover, we describe a molecular mechanism underlying this activity by reporting how STK positively regulates cell cycle progression via directly activating the expression of E2Fa, a key regulator of the cell cycle. Altogether, our results unveil a new genetic network active in the maternal control of seed size in Arabidopsis.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Arp Schnittger
- Abteilung für Entwicklungsbiologie, Institut für Pflanzenforschung und Mikrobiologie, Universität Hamburg, 22609 Hamburg, Germany;
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
- Correspondence: ; Tel.: +39-02-503-14838
| |
Collapse
|
20
|
Xiao K, Chen W, Chen X, Zhu X, Guan P, Hu J. CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz). PROTOPLASMA 2020; 257:1333-1344. [PMID: 32367262 DOI: 10.1007/s00709-020-01505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Root-knot nematodes (RKNs) are highly invasive plant parasites that establish permanent feeding sites within the roots of the host plant. Successful establishment of the feeding site is essential for the survival of RKN. The formation and development of the feeding cell, also called giant cell, involve both cell division and endoreduplication. Here, we examined giant cell development and endoreduplication in Prunus sogdiana infected with the RKN. We found that feeding sites were established 3-5 days post inoculation (dpi) and matured at 21-28 dpi. The giant cells began to form 5 dpi and continued to increase in size from 7 to 21 dpi. The large numbers of dividing nuclei were observed in giant cells from 7 to 14 dpi. However, nuclear division was rarely observed after 28 days. RT-PCR and in situ hybridization analyses revealed that PsoCCS52A was abundantly expressed at 7-21 dpi and the PsoCCS52A signal observed in giant cell nucleus at 7-14 dpi. The PsoCCS52B is highly expressed at 14 dpi, and the hybridization signal was mainly in the cytoplasm of giant cells. The PsoDEL1 expression was lowest 7-21 dip, with negligible transcript detected in the giant cells. This indicates that the PsoCCS52A plays a role in the process of cell division, while the CCS52B plays a role in the development of giant cells. The PsoDEL1 plays a negative regulatory role in megakaryocyte nuclear replication. These data suggest that an increased expression of PsoCCS52A promotes nuclear division and produces a large number of polyploid nuclei, the area of giant cells and feeding sites increase, ultimately leading to the formation of galls in Prunus sogdiana.
Collapse
Affiliation(s)
- Kun Xiao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weiyang Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese, Guiyang, 550025, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
22
|
Carotenuto G, Volpe V, Russo G, Politi M, Sciascia I, de Almeida-Engler J, Genre A. Local endoreduplication as a feature of intracellular fungal accommodation in arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2019; 223:430-446. [PMID: 11386364 DOI: 10.1111/nph.15763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/22/2019] [Indexed: 05/14/2023]
Abstract
The intracellular accommodation of arbuscular mycorrhizal (AM) fungi is a paradigmatic feature of this plant symbiosis that depends on the activation of a dedicated signaling pathway and the extensive reprogramming of host cells, including striking changes in nuclear size and transcriptional activity. By combining targeted sampling of early root colonization sites, detailed confocal imaging, flow cytometry and gene expression analyses, we demonstrate that local, recursive events of endoreduplication are triggered in the Medicago truncatula root cortex during AM colonization. AM colonization induces an increase in ploidy levels and the activation of endocycle specific markers. This response anticipates the progression of fungal colonization and is limited to arbusculated and neighboring cells in the cortical tissue. Furthermore, endoreduplication is not induced in M. truncatula mutants for symbiotic signaling pathway genes. On this basis, we propose endoreduplication as part of the host cell prepenetration responses that anticipate AM fungal accommodation in the root cortex.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Giulia Russo
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Mara Politi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | | | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| |
Collapse
|
23
|
Li F, Wang L, Zhang Z, Li T, Feng J, Xu S, Zhang R, Guo D, Xue J. ZmSMR4, a novel cyclin-dependent kinase inhibitor (CKI) gene in maize (Zea mays L.), functions as a key player in plant growth, development and tolerance to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:120-131. [PMID: 30823990 DOI: 10.1016/j.plantsci.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 06/09/2023]
Abstract
Endoreduplication is a key cell cycle variant in the developing maize endosperm and has been associated with cell enlargement and dry matter accumulation. Therefore, identification of the key genes associated with endosperm development and endoreduplication would not only lay the groundwork for understanding the biological process of endoreduplication but also be important for maize breeding. Here, we identified 12 putative endoreduplication-related candidate genes as members of the Zea mays L. SIAMESE-RELATED (ZmSMR) gene family and denoted them ZmSMR1-ZmSMR12. Sequence analysis indicated that all the ZmSMR protein sequences exhibited modest sequence similarity to the SIAMESE gene from Arabidopsis. Further analyses suggested that most ZmSMR genes might be associated with the transition from mitosis to endoreduplication because the expression levels of most ZmSMR genes were upregulated in endosperm cells during the phase of switching to an endoreduplication cell cycle. Additionally, the ZmSMRs responded to various abiotic stresses at the transcriptional level. One member of the ZmSMR gene family, the ZmSMR4 (KY946768) gene, was isolated as the first maize endoreduplication-related gene and has been used to develop transgenic Arabidopsis plants. ZmSMR4 was localized to the nucleus and could interact with ZmCDKA and ZmCDKB. Moreover, ZmSMR4 was able to rescue the multicellular trichome phenotype of Arabidopsis sim mutants and enhanced the endoreduplication levels of transgenic Arabidopsis plants. Arabidopsis plants overexpressing ZmSMR4 not only displayed enhanced leaf margin serrations but also showed several interesting breeding phenotypes, such as early blossoming and fuller seeds. Taken together, our data suggest that the ZmSMR4 gene is plant-specific and functions as a key player in the signalling network that controls plant growth, development and responses to abiotic stress by regulating the transition between the mitotic cycle and endoreduplication.
Collapse
Affiliation(s)
- Feifei Li
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Licheng Wang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Zhengquan Zhang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ting Li
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jiaojiao Feng
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Shutu Xu
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Renhe Zhang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Dongwei Guo
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China.
| | - Jiquan Xue
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Gómez MS, Falcone Ferreyra ML, Sheridan ML, Casati P. Arabidopsis E2Fc is required for the DNA damage response under UV-B radiation epistatically over the microRNA396 and independently of E2Fe. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:749-764. [PMID: 30427087 DOI: 10.1111/tpj.14158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 05/17/2023]
Abstract
UV-B radiation inhibits plant growth, and this inhibition is, to a certain extent, regulated by miR396-mediated repression of Growth Regulating Transcription factors (GRFs). Moreover, E2Fe transcription factor also modulates Arabidopsis leaf growth. Here, we provide evidence that, at UV-B intensities that induce DNA damage, E2Fc participates in the inhibition of cell proliferation. We demonstrate that E2Fc-deficient plants show a lower inhibition of leaf size under UV-B conditions that damage DNA, decreased cell death after exposure and altered SOG1 and ATR expression. Interestingly, the previously reported participation of E2Fe in UV-B responses, which is a transcriptional target of E2Fc, is independent and different from that described for E2Fc. Conversely, we here demonstrate that E2Fc has an epistatic role over the miR396 pathway under UV-B conditions. Finally, we show that inhibition of cell proliferation by UV-B is independent of the regulation of class II TCP transcription factors. Together, our results demonstrate that E2Fc is required for miR396 activity on cell proliferation under UV-B, and that its role is independent of E2Fe, probably modulating DNA damage responses through the regulation of SOG1 and ATR transcript levels.
Collapse
Affiliation(s)
- María S Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María L Sheridan
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
25
|
Bourbousse C, Vegesna N, Law JA. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12453-E12462. [PMID: 30541889 PMCID: PMC6310815 DOI: 10.1073/pnas.1810582115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.
Collapse
Affiliation(s)
- Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Neeraja Vegesna
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
26
|
Lu S, Zhang M, Zhang Z, Wang Z, Wu N, Song Y, Wang P. Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines. PLoS One 2018; 13:e0208386. [PMID: 30532152 PMCID: PMC6285979 DOI: 10.1371/journal.pone.0208386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/18/2018] [Indexed: 11/21/2022] Open
Abstract
Leaf angle and leaf orientation value are important traits affecting planting density and photosynthetic efficiency. To identify the genes involved in controlling leaf angle and leaf orientation value, we utilized 1.49×10(6) single nucleotide polymorphism (SNP) markers obtained after sequencing 80 backbone inbred maize lines in Jilin Province, based on phenotype data from two years, and analyzed these two traits in a genome-wide association study (GWAS). A total of 33 SNPs were significantly associated (P<0.000001) with the two target traits. Twenty-two SNPs were significantly associated with leaf angle and distributed on chromosomes 1, 3, 4, 5, 6, 7, 8, and 9, explaining 21.62% of the phenotypic variation. Eleven SNPs were significantly associated with leaf orientation value and distributed on chromosomes 1, 3, 4, 5, 6, 7, and 9, explaining 29.63% of the phenotypic variation. Within the mean linkage disequilibrium (LD) distance of 9.7 kb for the significant SNP locus, 22 leaf angle candidate genes were detected, and 3 of these candidate genes harbored significant SNPs, with phenotype contribution rates greater than 10%. Two candidate genes at distances less than 100 bp from significant SNPs showed phenotype contribution rates greater than 8%. Seven leaf orientation value candidate genes were detected: 3 of these candidate genes harbored significant SNPs, with phenotype contribution rates greater than 10%. Eight inbred maize lines with significant differences in leaf angle and leaf orientation value were selected to test candidate gene expression levels from 182 recombinant inbred lines (RILs). The 5 leaf angle candidate genes and 3 leaf orientation value candidate genes were verified using quantitative real-time PCR (qRT-PCR). The results showed significant differences in the expression levels of the above eight genes between inbred maize lines with significant differences in leaf angle and leaf orientation value.
Collapse
Affiliation(s)
- Shi Lu
- Jilin Agricultural University, Chang Chun, China
| | - Mo Zhang
- Jilin Agricultural University, Chang Chun, China
| | - Zhuo Zhang
- Jilin Agricultural University, Chang Chun, China
| | - Zhenhui Wang
- Jilin Agricultural University, Chang Chun, China
| | - Nan Wu
- Jilin Agricultural University, Chang Chun, China
| | - Yang Song
- Jilin Agricultural University, Chang Chun, China
| | - Piwu Wang
- Jilin Agricultural University, Chang Chun, China
| |
Collapse
|
27
|
Mackelprang R, Okrent RA, Wildermuth MC. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. PHYTOCHEMISTRY 2017; 143:19-28. [PMID: 28743075 DOI: 10.1016/j.phytochem.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The GH3 family of adenylating enzymes conjugate acyl substrates such as the growth hormone indole-3-acetic acid (IAA) to amino acids via a two-step reaction of acyl substrate adenylation followed by amino acid conjugation. Arabidopsis thaliana GH3.5 was previously shown to be unusual in that it could adenylate both IAA and the defense hormone salicylic acid (SA, 2-hydroxybenzoate). Our detailed studies of the kinetics of GH3.5 on a variety of auxin and benzoate substrates provides insight into the acyl preference and reaction mechanism of GH3.5. For example, we found GH3.5 activity on substituted benzoates is not defined by the substitution position as it is for GH3.12/PBS3. Most importantly, we show that GH3.5 strongly prefers Asp as the amino acid conjugate and that the concentration of Asp dictates the functional activity of GH3.5 on IAA vs. SA. Not only is Asp used in amino acid biosynthesis, but it also plays an important role in nitrogen mobilization and in the production of downstream metabolites, including pipecolic acid which propagates defense systemically. During active growth, [IAA] and [Asp] are high and the catalytic efficiency (kcat/Km) of GH3.5 for IAA is 360-fold higher than with SA. GH3.5 is expressed under these conditions and conversion of IAA to inactive IAA-Asp would provide fine spatial and temporal control over local auxin developmental responses. By contrast, [SA] is dramatically elevated in response to (hemi)-biotrophic pathogens which also induce GH3.5 expression. Under these conditions, [Asp] is low and GH3.5 has equal affinity (Km) for SA and IAA with similar catalytic efficiencies. However, the concentration of IAA tends to be very low, well below the Km for IAA. Therefore, GH3.5 catalyzed formation of SA-Asp would occur, fine-tuning localized defensive responses through conversion of active free SA to SA-Asp. Taken together, we show how GH3.5, with dual activity on IAA and SA, can integrate cellular metabolic status via Asp to provide fine control of growth vs. defense outcomes and hormone homeostasis.
Collapse
Affiliation(s)
- Rebecca Mackelprang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Rachel A Okrent
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
28
|
Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:84-95. [PMID: 28224921 DOI: 10.1016/j.plantsci.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 05/22/2023]
Abstract
Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation.
Collapse
Affiliation(s)
- Arne Van Hoeck
- SCK●CEN, Boeretang, 200 2400, Mol, Belgium; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Nele Horemans
- SCK●CEN, Boeretang, 200 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium.
| | | | | | | | - Ronny Blust
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
29
|
Fina JP, Masotti F, Rius SP, Crevacuore F, Casati P. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1179. [PMID: 28740501 PMCID: PMC5502275 DOI: 10.3389/fpls.2017.01179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/20/2017] [Indexed: 05/17/2023]
Abstract
Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses.
Collapse
|
30
|
Kümpers BMC, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM. Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:177-189. [PMID: 28062590 PMCID: PMC5853325 DOI: 10.1093/jxb/erw488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 05/08/2023]
Abstract
Most terrestrial plants use C3 photosynthesis to fix carbon. In multiple plant lineages a modified system known as C4 photosynthesis has evolved. To better understand the molecular patterns associated with induction of C4 photosynthesis, the genus Flaveria that contains C3 and C4 species was used. A base to tip maturation gradient of leaf anatomy was defined, and RNA sequencing was undertaken along this gradient for two C3 and two C4 Flaveria species. Key C4 traits including vein density, mesophyll and bundle sheath cross-sectional area, chloroplast ultrastructure, and abundance of transcripts encoding proteins of C4 photosynthesis were quantified. Candidate genes underlying each of these C4 characteristics were identified. Principal components analysis indicated that leaf maturation and the photosynthetic pathway were responsible for the greatest amount of variation in transcript abundance. Photosynthesis genes were over-represented for a prolonged period in the C4 species. Through comparison with publicly available data sets, we identify a small number of transcriptional regulators that have been up-regulated in diverse C4 species. The analysis identifies similar patterns of expression in independent C4 lineages and so indicates that the complex C4 pathway is associated with parallel as well as convergent evolution.
Collapse
Affiliation(s)
- Britta M C Kümpers
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Steven J Burgess
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Richard Smith-Unna
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Chris Boursnell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
31
|
Sprangers K, Avramova V, Beemster GTS. Kinematic Analysis of Cell Division and Expansion: Quantifying the Cellular Basis of Growth and Sampling Developmental Zones in Zea mays Leaves. J Vis Exp 2016:54887. [PMID: 28060300 PMCID: PMC5226352 DOI: 10.3791/54887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Growth analyses are often used in plant science to investigate contrasting genotypes and the effect of environmental conditions. The cellular aspect of these analyses is of crucial importance, because growth is driven by cell division and cell elongation. Kinematic analysis represents a methodology to quantify these two processes. Moreover, this technique is easy to use in non-specialized laboratories. Here, we present a protocol for performing a kinematic analysis in monocotyledonous maize (Zea mays) leaves. Two aspects are presented: (1) the quantification of cell division and expansion parameters, and (2) the determination of the location of the developmental zones. This could serve as a basis for sampling design and/or could be useful for data interpretation of biochemical and molecular measurements with high spatial resolution in the leaf growth zone. The growth zone of maize leaves is harvested during steady-state growth. Individual leaves are used for meristem length determination using a DAPI stain and cell-length profiles using DIC microscopy. The protocol is suited for emerged monocotyledonous leaves harvested during steady-state growth, with growth zones spanning at least several centimeters. To improve the understanding of plant growth regulation, data on growth and molecular studies must be combined. Therefore, an important advantage of kinematic analysis is the possibility to correlate changes at the molecular level to well-defined stages of cellular development. Furthermore, it allows for a more focused sampling of specified developmental stages, which is useful in case of limited budget or time.
Collapse
|
32
|
Magyar Z, Bögre L, Ito M. DREAMs make plant cells to cycle or to become quiescent. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:100-106. [PMID: 27816815 DOI: 10.1016/j.pbi.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes.
Collapse
Affiliation(s)
- Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - László Bögre
- Royal Holloway, University of London, School of Biological Sciences, Egham, Surrey TW20 0EX, UK
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; JST, CREST, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
33
|
Xu P, Chen H, Ying L, Cai W. AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana. Sci Rep 2016; 6:27705. [PMID: 27297966 PMCID: PMC4906354 DOI: 10.1038/srep27705] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
In contrast to animals, plant development involves continuous organ formation, which requires strict regulation of cell proliferation. The core cell cycle machinery is conserved across plants and animals, but plants have developed new mechanisms that precisely regulate cell proliferation in response to internal and external stimuli. Here, we report that the DOF transcription factor OBP4 negatively regulates cell proliferation and expansion. OBP4 is a nuclear protein. Constitutive and inducible overexpression of OBP4 reduced the cell size and number, resulting in dwarf plants. Inducible overexpression of OBP4 in Arabidopsis also promoted early endocycle onset and inhibited cell expansion, while inducible overexpression of OBP4 fused to the VP16 activation domain in Arabidopsis delayed endocycle onset and promoted plant growth. Furthermore, gene expression analysis showed that cell cycle regulators and cell wall expansion factors were largely down-regulated in the OBP4 overexpression lines. Short-term inducible analysis coupled with in vivo ChIP assays indicated that OBP4 targets the CyclinB1;1, CDKB1;1 and XTH genes. These results strongly suggest that OBP4 is a negative regulator of cell cycle progression and cell growth. These findings increase our understanding of the transcriptional regulation of the cell cycle in plants.
Collapse
Affiliation(s)
- Peipei Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Lu Ying
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| |
Collapse
|
34
|
Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. THE ARABIDOPSIS BOOK 2016; 14:e0184. [PMID: 27489521 PMCID: PMC4957506 DOI: 10.1199/tab.0184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host.
Collapse
Affiliation(s)
- Hannah Kuhn
- RWTH Aachen University, Institute for Biology I, Unit of Plant
Molecular Cell Biology, Worringerweg 1, D-52056 Aachen, Germany
- Address correspondence to
| | | | | | | | | | | |
Collapse
|
35
|
Chandran D, Wildermuth M. Modulation of Host Endocycle During Plant–Biotroph Interactions. DEVELOPMENTAL SIGNALING IN PLANTS 2016; 40:65-103. [DOI: 10.1016/bs.enz.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol 2015; 16:168. [PMID: 26357925 PMCID: PMC4566308 DOI: 10.1186/s13059-015-0735-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To sustain the global requirements for food and renewable resources, unraveling the molecular networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and networks involved in final organ size have been proven successful, our understanding remains fragmentary. RESULTS Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf size and whole shoot traits at the seedling stage, complemented with measurements capturing growth dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we searched for association between the transcriptional variation in dividing cells of the growing leaf and final leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits. A number of these genes have a known function in leaf development. Additionally, we illustrated that two independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth. CONCLUSIONS Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define the relative contributions of the components and their mutual associations, facilitating dissection of the biological processes and regulatory networks underneath.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
37
|
Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC. Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 2015; 15:506-13. [PMID: 24721578 DOI: 10.1016/j.chom.2014.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 11/27/2013] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
In plants, the activation of immunity is often inversely correlated with growth. Mechanisms that control plant growth in the context of pathogen challenge and immunity are unclear. Investigating Arabidopsis infection with the powdery mildew fungus, we find that the Arabidopsis atypical E2F DEL1, a transcriptional repressor known to promote cell proliferation, represses accumulation of the hormone salicylic acid (SA), an established regulator of plant immunity. DEL1-deficient plants are more resistant to pathogens and slightly smaller than wild-type. The resistance and size phenotypes of DEL1-deficient plants are due to the induction of SA and activation of immunity in the absence of pathogen challenge. Moreover, Enhanced Disease Susceptibility 5 (EDS5), a SA transporter required for elevated SA and immunity, is a direct repressed target of DEL1. Together, these findings indicate that DEL1 control of SA levels contributes to regulating the balance between growth and immunity in developing leaves.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Joshua Rickert
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Yingxiang Huang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Michael A Steinwand
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Sharon K Marr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
38
|
Abstract
The tradeoff between growth and immunity is regulated by integrating hormonal cues, biotic signals, and developmental programs, and is fine-tuned to maximize organismal growth and survival. Four recent papers, including Chandran et al. (2014) in this issue of Cell Host & Microbe, provide insights into the underlying mechanisms in plants.
Collapse
Affiliation(s)
- Wenfei Wang
- Forestry and Biotechnology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2657-66. [PMID: 24323507 PMCID: PMC4557542 DOI: 10.1093/jxb/ert411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Alex de Mendoza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
40
|
Blomme J, Inzé D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2715-30. [PMID: 24298000 DOI: 10.1093/jxb/ert388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
41
|
Sablowski R, Carnier Dornelas M. Interplay between cell growth and cell cycle in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2703-14. [PMID: 24218325 DOI: 10.1093/jxb/ert354] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marcelo Carnier Dornelas
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, CEP 13083-862, Brazil
| |
Collapse
|
42
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
43
|
Breuer C, Braidwood L, Sugimoto K. Endocycling in the path of plant development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:78-85. [PMID: 24507498 DOI: 10.1016/j.pbi.2013.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/29/2023]
Abstract
Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.
Collapse
Affiliation(s)
- Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
44
|
Apri M, Kromdijk J, de Visser PHB, de Gee M, Molenaar J. Modelling cell division and endoreduplication in tomato fruit pericarp. J Theor Biol 2014; 349:32-43. [PMID: 24486251 DOI: 10.1016/j.jtbi.2014.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 11/17/2022]
Abstract
In many developing plant tissues and organs, differentiating cells switch from the classical cell cycle to an alternative partial cycle. This partial cycle bypasses mitosis and allows for multiple rounds of genome duplication without cell division, giving rise to cells with high ploidy numbers. This partial cycle is referred to as endoreduplication. Cell division and endoreduplication are important processes for biomass allocation and yield in tomato. Quantitative trait loci for tomato fruit size or weight are frequently associated with variations in the pericarp cell number, and due to the tight connection between endoreduplication and cell expansion and the prevalence of polyploidy in storage tissues, a functional correlation between nuclear ploidy number and cell growth has also been implicated (karyoplasmic ratio theory). In this paper, we assess the applicability of putative mechanisms for the onset of endoreduplication in tomato pericarp cells via development of a mathematical model for the cell cycle gene regulatory network. We focus on targets for regulation of the transition to endoreduplication by the phytohormone auxin, which is known to play a vital role in the onset of cell expansion and differentiation in developing tomato fruit. We show that several putative mechanisms are capable of inducing the onset of endoreduplication. This redundancy in explanatory mechanisms is explained by analysing system behaviour as a function of their combined action. Namely, when all these routes to endoreduplication are used in a combined fashion, robustness of the regulation of the transition to endoreduplication is greatly improved.
Collapse
Affiliation(s)
- Mochamad Apri
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands; Industrial and Financial Mathematics Group, Bandung Institute of Technology, Bandung 40132, Indonesia.
| | - Johannes Kromdijk
- Greenhouse Horticulture, Wageningen University and Research Center, The Netherlands
| | - Pieter H B de Visser
- Greenhouse Horticulture, Wageningen University and Research Center, The Netherlands
| | - Maarten de Gee
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands
| | - Jaap Molenaar
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. PLANT MOLECULAR BIOLOGY 2014; 84:203-26. [PMID: 24222213 PMCID: PMC3840290 DOI: 10.1007/s11103-013-0128-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Miao-Ju Wei
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Lien
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Huang-Hsien Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Swee-Suak Ko
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Zin-Huang Liu
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
46
|
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:362. [PMID: 25132838 PMCID: PMC4116805 DOI: 10.3389/fpls.2014.00362] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shweta Kalve
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium ; Department of Mathematics and Computer Science, University of Antwerp Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| |
Collapse
|
47
|
Dante RA, Larkins BA, Sabelli PA. Cell cycle control and seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:493. [PMID: 25295050 PMCID: PMC4171995 DOI: 10.3389/fpls.2014.00493] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/05/2014] [Indexed: 05/18/2023]
Abstract
Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.
Collapse
Affiliation(s)
- Ricardo A. Dante
- Embrapa Agricultural InformaticsCampinas, Brazil
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Brian A. Larkins
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| |
Collapse
|
48
|
Nishihama R, Kohchi T. Evolutionary insights into photoregulation of the cell cycle in the green lineage. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:630-7. [PMID: 23978389 DOI: 10.1016/j.pbi.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/18/2023]
Abstract
Plant growth depends solely on light energy, which drives photosynthesis. Thus, linking growth control to light signals during certain developmental events, such as seed or spore germination and organ formation, is a crucial feature that plants evolved to use energy efficiently. How light controls the cell cycle depends on growth habitats, body plans (unicellular vs. multicellular), and photosensors. For example, the photosensors mediating light signaling to promote cell division appear to differ between green algae and land plants. In this review, we focus on cell-cycle regulation by light and discuss the transition of its molecular mechanisms during evolution. Recent advances show that light-dependent cell-cycle control involves global changes in transcription of cell-cycle genes, and is mediated by auxin and cytokinin.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
49
|
Siddappaji MH, Scholes DR, Bohn M, Paige KN. Overcompensation in response to herbivory in Arabidopsis thaliana: the role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway. Genetics 2013; 195:589-98. [PMID: 23934891 PMCID: PMC3781983 DOI: 10.1534/genetics.113.154351] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/01/2013] [Indexed: 01/17/2023] Open
Abstract
That some plants benefit from being eaten is counterintuitive, yet there is now considerable evidence demonstrating enhanced fitness following herbivory (i.e., plants can overcompensate). Although there is evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction following herbivory. We took advantage of the compensatory variation in recombinant inbred lines of Arabidopsis thaliana, combined with microarray and QTL analyses to assess the molecular basis of overcompensation. We found three QTL explaining 11.4, 10.1, and 26.7% of the variation in fitness compensation, respectively, and 109 differentially expressed genes between clipped and unclipped plants of the overcompensating ecotype Columbia. From the QTL/microarray screen we uncovered one gene that plays a significant role in overcompensation: glucose-6-phosphate-1-dehydrogenase (G6PDH1). Knockout studies of Transfer-DNA (T-DNA) insertion lines and complementation studies of G6PDH1 verify its role in compensation. G6PDH1 is a key enzyme in the oxidative pentose-phosphate pathway that plays a central role in plant metabolism. We propose that plants capable of overcompensating reprogram their transcriptional activity by up-regulating defensive genes and genes involved in energy metabolism and by increasing DNA content (via endoreduplication) with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression.
Collapse
Affiliation(s)
| | - Daniel R. Scholes
- School of Integrative Biology, University of Illinois, Urbana, Illinois 61801
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois 61801
| | - Martin Bohn
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Ken N. Paige
- School of Integrative Biology, University of Illinois, Urbana, Illinois 61801
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
50
|
Vieira P, Kyndt T, Gheysen G, Engler JDA. An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment. PLANT SIGNALING & BEHAVIOR 2013; 8:e24223. [PMID: 23518580 PMCID: PMC3907419 DOI: 10.4161/psb.24223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode's life cycle and reproduction.
Collapse
Affiliation(s)
- Paulo Vieira
- Institut National de la Recherche Agronomique; Centre National de la Recherche Scientifique; Université de Nice-Sophia Antipolis; Sophia-Antipolis, France
| | - Tina Kyndt
- Department of Molecular Biotechnology; Ghent University; Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology; Ghent University; Ghent, Belgium
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique; Centre National de la Recherche Scientifique; Université de Nice-Sophia Antipolis; Sophia-Antipolis, France
- Correspondence to: Janice de Almeida Engler,
| |
Collapse
|