1
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
2
|
Jiang Q, Liang X, Ye T, Zhang Y, Lou B. Metabonomics and Transcriptomics Analyses Reveal the Development Process of the Auditory System in the Embryonic Development Period of the Small Yellow Croaker under Background Noise. Int J Mol Sci 2024; 25:1954. [PMID: 38396633 PMCID: PMC10888356 DOI: 10.3390/ijms25041954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Underwater noise pollution has become a potential threat to aquatic animals in the natural environment. The main causes of such pollution are frequent human activities creating underwater environmental noise, including commercial shipping, offshore energy platforms, scientific exploration activities, etc. However, in aquaculture environments, underwater noise pollution has also become an unavoidable problem due to background noise created by aquaculture equipment. Some research has shown that certain fish show adaptability to noise over a period of time. This could be due to fish's special auditory organ, i.e., their "inner ear"; meanwhile, otoliths and sensory hair cells are the important components of the inner ear and are also essential for the function of the auditory system. Recently, research in respect of underwater noise pollution has mainly focused on adult fish, and there is a lack of the research on the effects of underwater noise pollution on the development process of the auditory system in the embryonic development period. Thus, in this study, we collected embryo-larval samples of the small yellow croaker (Larimichthys polyactis) in four important stages of otic vesicle development through artificial breeding. Then, we used metabonomics and transcriptomics analyses to reveal the development process of the auditory system in the embryonic development period under background noise (indoor and underwater environment sound). Finally, we identified 4026 differentially expressed genes (DEGs) and 672 differential metabolites (DMs), including 37 DEGs associated with the auditory system, and many differences mainly existed in the neurula stage (20 h of post-fertilization/20 HPF). We also inferred the regulatory mode and process of some important DEGs (Dnmt1, CPS1, and endothelin-1) in the early development of the auditory system. In conclusion, we suggest that the auditory system development of L. polyactis begins at least in the neurula stage or earlier; the other three stages (tail bud stage, caudal fin fold stage, and heart pulsation stage, 28-35 HPF) mark the rapid development period. We speculate that the effect of underwater noise pollution on the embryo-larval stage probably begins even earlier.
Collapse
Affiliation(s)
| | | | | | | | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Q.J.); (X.L.); (T.Y.); (Y.Z.)
| |
Collapse
|
3
|
Nazari B, Jaquet V, Krause KH. NOX family NADPH oxidases in mammals: Evolutionary conservation and isoform-defining sequences. Redox Biol 2023; 66:102851. [PMID: 37595375 PMCID: PMC10458973 DOI: 10.1016/j.redox.2023.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
NADPH oxidases are superoxide-producing enzymes that play a role in host defense, biosynthetic pathways, as well as cellular signaling. Humans have 7 NOX isoforms (NOX1-5, DUOX1,2), while mice and rats lack NOX5 and therefore have only 6 NOX isoforms. Whether all human NOX isoforms or their subunits (CYBA, NCF1, 2, 4, NOXO1, NOXA1, DUOXA1, 2) are present and conserved in other mammalian species is unknown. In this study, we have analyzed the conservation of the NOX family during mammalian evolution using an in-silico approach. Complete genomic sequences of 164 mammalian species were available. The possible absence of genes coding for NOX isoforms was investigated using the NCBI orthologs database followed by manual curation. Conservation of a given NOX isoform during mammalian evolution was evaluated by multiple alignment and identification of highly conserved sequences. There was no convincing evidence for the absence of NOX2, 3, 4, and DUOX1, 2 in all the available mammalian genome. However, NOX5 was absent in 27 of 31 rodent, in 2 of 3 lagomorph and in 2 out of 18 bat species. NOX1 was absent in all sequenced Afrotheria and Monotremata species, as well as in 3 of 18 bat species. NOXA1 was absent in all Afrotheria and in 3 out of 4 Eulipotyphla species. We also investigated amino acid sequence conservation among given NOX isoforms. Highly conserved sequences were observed for most isoforms except for NOX5. Interestingly, the highly conserved region of NOX2 sequence was relatively small (11 amino acids), as compared to NOX1, 3, 4. The highly conserved domains are different from one NOX isoform to the other, raising the possibility of distinct evolutionary conserved functional domains. Our results shed a new light on the essentiality of different NOX isoforms. We also identified isoform-defining sequences, i.e., hitherto undescribed conserved domains within specific NOX isoforms.
Collapse
Affiliation(s)
- Bahareh Nazari
- Department of Pathology & Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology & Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Huang S, Qian S. Advances in otolith-related protein research. Front Neurosci 2022; 16:956200. [PMID: 35958995 PMCID: PMC9361852 DOI: 10.3389/fnins.2022.956200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Otoliths are biological crystals formed by a layer of calcium carbonate crystal that adhere to the ciliary surface of the utricular and saccular receptors in the vestibule of all vertebrates inner ear, enabling the utricle and saccule to better perceive the changes in linear and gravitational acceleration. However, the molecular etiology of otolith related diseases is still unclear. In this review, we have summarized the recent findings and provided an overview of the proteins that play important roles in otolith formation and maintenance (Otoconin-90, Otolin-1, Otolith Matrix Protein-1, Cochlin, Otogelin, α-Tectorin, β-Tectorin, Otopetrin-1, and Otopetrin-2, PMCA2, etc.), providing new insight for the prevention and management of benign paroxysmal positional vertigo (BPPV) with basis for otolith-related proteins as potential biomarkers of vestibular disease.
Collapse
Affiliation(s)
- Shouju Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuxia Qian
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Shuxia Qian,
| |
Collapse
|
5
|
Rousset F, Nacher-Soler G, Kokje VBC, Sgroi S, Coelho M, Krause KH, Senn P. NADPH Oxidase 3 Deficiency Protects From Noise-Induced Sensorineural Hearing Loss. Front Cell Dev Biol 2022; 10:832314. [PMID: 35273964 PMCID: PMC8902251 DOI: 10.3389/fcell.2022.832314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The reactive oxygen species (ROS)-generating NADPH oxidase NOX3 isoform is highly and specifically expressed in the inner ear. NOX3 is needed for normal vestibular development but NOX-derived ROS have also been implicated in the pathophysiology of sensorineural hearing loss. The role of NOX-derived ROS in noise-induced hearing loss, however, remains unclear and was addressed with the present study. Two different mouse strains, deficient in NOX3 or its critical subunit p22phox, were subjected to a single noise exposure of 2 h using an 8-16 kHz band noise at an intensity of 116-120 decibel sound pressure level. In the hours following noise exposure, there was a significant increase in cochlear mRNA expression of NOX3 in wild type animals. By using RNAscope in situ hybridization, NOX3 expression was primarily found in the Rosenthal canal area, colocalizing with auditory neurons. One day after the noise trauma, we observed a high frequency hearing loss in both knock-out mice, as well as their wild type littermates. At day seven after noise trauma however, NOX3 and p22phox knockout mice showed a significantly improved hearing recovery and a marked preservation of neurosensory cochlear structures compared to their wild type littermates. Based on these findings, an active role of NOX3 in the pathophysiology of noise-induced hearing loss can be demonstrated, in line with recent evidence obtained in other forms of acquired hearing loss. The present data demonstrates that the absence of functional NOX3 enhances the hearing recovery phase following noise trauma. This opens an interesting clinical window for pharmacological or molecular intervention aiming at post prevention of noise-induced hearing loss.
Collapse
Affiliation(s)
- Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - German Nacher-Soler
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vivianne Beatrix Christina Kokje
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL and Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Stéphanie Sgroi
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marta Coelho
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL and Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Hebbar S, Knust E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 2021; 43:e2100096. [PMID: 34260754 DOI: 10.1002/bies.202100096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules produced in cells. So far, they have mostly been connected to diseases and pathological conditions. More recent results revealed a somewhat unexpected role of ROS in control of developmental processes. In this review, we elaborate on ROS in development, focussing on their connection to epithelial tissue morphogenesis. After briefly summarising unique characteristics of epithelial cells, we present some characteristic features of ROS species, their production and targets, with a focus on proteins important for epithelial development and function. Finally, we provide examples of regulation of epithelial morphogenesis by ROS, and also of developmental genes that regulate the overall redox status. We conclude by discussing future avenues of research that will further elucidate ROS regulation in epithelial development.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
7
|
Byun H, Chung JH, Jeong JH, Ryu J, Lee SH. Incidence of peripheral vestibular disorders in individuals with obstructive sleep apnea. J Vestib Res 2021; 32:155-162. [PMID: 34250919 DOI: 10.3233/ves-210012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obstructive sleep apnea(OSA) could influence peripheral vestibular function adversely via intermittent hypoxia and its consequences. OBJECTIVE This study aimed to evaluate the risk of peripheral vestibular disorders in OSA using a nationwide population-based retrospective cohort study. METHODS The National Health Insurance Service-National Sample Cohort represents the entire Korean population from 2002 to 2015. OSA was defined as individuals who had used medical services twice or more under a diagnosis of OSA(G47.33 in ICD-10). A comparison cohort consisted of socio-demographically matched non-OSA subjects in a ratio of 1:4. The incidences of benign paroxysmal positional vertigo(BPPV), Meniere's disease, and vestibular neuritis were evaluated in each cohort. RESULTS A total of 2,082 individuals with OSA and 8,328 matched non-OSA subjects were identified. The incidence rates(IRs) of peripheral vertigo in OSA and non-OSA were 149.86 and 23.88 per 10,000 persons, respectively (Ratio of IR, IRR = 6.28, 95%CI 4.89 to 8.08). In multivariable analysis, the risk of peripheral vertigo was significantly higher in OSA(adjusted HR = 6.64, 95%CI 5.20 to 8.47), old age(adjusted HR = 1.03, 95%CI 1.02 to 1.04), female sex(adjusted HR = 1.92, 95%CI 1.48 to 2.50), and comorbidities(adjusted HR = 1.09, 95%CI 1.003 to 1.19). The IRRs of each vestibular disorder in the two groups were 7.32(95%CI 4.80 to 11.33) for BPPV, 3.61(95%CI 2.24 to 5.81) for Meniere's disease, and 9.51(95%CI 3.97 to 25.11) for vestibular neuritis. CONCLUSIONS Subjects diagnosed with OSA had a higher incidence of peripheral vestibular disorders than those without OSA, according to national administrative claims data. It is recommended to take peripheral vertigo into account when counseling OSA.
Collapse
Affiliation(s)
- Hayoung Byun
- Departments of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jae Ho Chung
- Departments of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea.,Department of HY-KIST Bio-convergence, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jin Hyeok Jeong
- Departments of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jiin Ryu
- Biostatistical Consulting and Research Laboratory, Medical Research Collaborating Center, Hanyang University, Seoul, Republic of Korea
| | - Seung Hwan Lee
- Departments of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mohri H, Ninoyu Y, Sakaguchi H, Hirano S, Saito N, Ueyama T. Nox3-Derived Superoxide in Cochleae Induces Sensorineural Hearing Loss. J Neurosci 2021; 41:4716-4731. [PMID: 33849947 PMCID: PMC8260246 DOI: 10.1523/jneurosci.2672-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidases (Nox) contribute to the development of different types of sensorineural hearing loss (SNHL), a common impairment in humans with no established treatment. Although the essential role of Nox3 in otoconia biosynthesis and its possible involvement in hearing have been reported in rodents, immunohistological methods targeted at detecting Nox3 expression in inner ear cells reveal ambiguous results. Therefore, the mechanism underlying Nox3-dependent SNHL remains unclear and warrants further investigation. We generated Nox3-Cre knock-in mice, in which Nox3 was replaced with Cre recombinase (Cre). Using Nox3-Cre;tdTomato mice of either sex, in which tdTomato is expressed under the control of the Nox3 promoter, we determined Nox3-expressing regions and cell types in the inner ear. Nox3-expressing cells in the cochlea included various types of supporting cells, outer hair cells, inner hair cells, and spiral ganglion neurons. Nox3 expression increased with cisplatin, age, and noise insults. Moreover, increased Nox3 expression in supporting cells and outer hair cells, especially at the basal turn of the cochlea, played essential roles in ROS-related SNHL. The extent of Nox3 involvement in SNHL follows the following order: cisplatin-induced hearing loss > age-related hearing loss > noise-induced hearing loss. Here, on the basis of Nox3-Cre;tdTomato, which can be used as a reporter system (Nox3-Cre+/-;tdTomato+/+ and Nox3-Cre+/+;tdTomato+/+), and Nox3-KO (Nox3-Cre+/+;tdTomato+/+) mice, we demonstrate that Nox3 inhibition in the cochlea is a promising strategy for ROS-related SNHL, such as cisplatin-induced HL, age-related HL, and noise-induced HL.SIGNIFICANCE STATEMENT We found Nox3-expressing regions and cell types in the inner ear, especially in the cochlea, using Nox3-Cre;tdTomato mice, a reporter system generated in this study. Nox3 expression increased with cisplatin, age, and noise insults in specific cell types in the cochlea and resulted in the loss (apoptosis) of outer hair cells. Thus, Nox3 might serve as a molecular target for the development of therapeutics for sensorineural hearing loss, particularly cisplatin-induced, age-related, and noise-induced hearing loss.
Collapse
Affiliation(s)
- Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
9
|
Xu Y, Yang L, Zhao X, Zhang Y, Jones TA, Jones SM, Lundberg YW. Functional cooperation between two otoconial proteins Oc90 and Nox3. J Vestib Res 2021; 31:441-449. [PMID: 33554930 DOI: 10.3233/ves-201591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Otoconia-related vertigo and balance deficits are common in humans, but the molecular etiology is unknown at present. OBJECTIVE In order to study mechanisms of otoconia formation and maintenance, we have investigated whether otoconin-90 (Oc90), the predominant otoconial constituent protein, and the NADPH oxidase Nox3, an essential regulatory protein for otoconia formation, are functionally interlinked. METHODS We performed balance behavioral, electrophysiological, morphological and molecular cellular analyses. RESULTS Double heterozygous mutant mice for Oc90 and Nox3 show severe imbalance, albeit less profound than double null mutants. In contrast, single heterozygous mutant mice have normal balance. Double heterozygous mice have otoconia defects and double null mice have no otoconia. In addition, some hair bundles in the latter mice go through accelerated degeneration. In vitro calcification analysis in cells stably expressing these proteins singly and doubly shows much more intense calcification in the double transfectants. CONCLUSIONS Oc90 and Nox3 augment each other's function, which is not only critical for otoconia formation but also for hair bundle maintenance.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Liping Yang
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA.,Current address: Changsha Environmental Protection College, 10 Jinggui Rd, Yuhua Qu, Changsha, Hunan, China
| | - Xing Zhao
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Yan Zhang
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
10
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
11
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
12
|
NoxO1 Knockout Promotes Longevity in Mice. Antioxidants (Basel) 2020; 9:antiox9030226. [PMID: 32164269 PMCID: PMC7139303 DOI: 10.3390/antiox9030226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the free radical theory of aging, reactive oxygen species (ROS) have been proposed to be a major cause of aging for a long time. Meanwhile, it became clear that ROS have diverse functions in a healthy organism. They act as second messengers, and as transient inhibitors of phosphatases and others. In fact, their detrimental role is highly dependent on the context of their production. NADPH oxidases (Nox) have been discovered as a controllable source of ROS. NoxO1 enables constitutive ROS formation by Nox1 by acting as a constitutively active cytosolic subunit of the complex. We previously found that both Nox1 and NoxO1 were highly expressed in the colon, and that NoxO1-/- deficiency reduces colon health. We hypothesized that a healthy colon potentially contributes to longevity and NoxO1 deficiency would reduce lifetime, at least in mouse. In contrast, here we provide evidence that the knockout of NoxO1 results in an elongated life expectancy of mice. No better endothelial function, nor an improved expression of genes related to longevity, such as Sirt1, were found, and therefore may not serve as an explanation for a longer life in NoxO1 deficiency. Rather minor systemic differences, such as lower body weight occur. As a potential reason for longer life, we suggest better DNA repair capacity in NoxO1 deficient mice. Although final fatal DNA damage appears similar between wildtype and NoxO1 knockout animals, we identified less intermediate DNA damage in colon cells of NoxO1-/- mice, while the number of cells with intact DNA is elevated in NoxO1-/- colons. We conclude that NoxO1 deficiency prolongs lifetime of mice, which correlates with less intermediate and potentially fixable DNA damage at least in colon cells.
Collapse
|
13
|
Thiessen KD, Grzegorski SJ, Chin Y, Higuchi LN, Wilkinson CJ, Shavit JA, Kramer KL. Zebrafish otolith biomineralization requires polyketide synthase. Mech Dev 2019; 157:1-9. [PMID: 30974150 PMCID: PMC6531356 DOI: 10.1016/j.mod.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 11/20/2022]
Abstract
Deflecting biomineralized crystals attached to vestibular hair cells are necessary for maintaining balance. Zebrafish (Danio rerio) are useful organisms to study these biomineralized crystals called otoliths, as many required genes are homologous to human otoconial development. We sought to identify and characterize the causative gene in a trio of homozygous recessive mutants, no content (nco) and corkscrew (csr), and vanished (vns), which fail to develop otoliths during early ear development. We show that nco, csr, and vns have potentially deleterious mutations in polyketide synthase (pks1), a multi-modular protein that has been previously implicated in biomineralization events in chordates and echinoderms. We found that Otoconin-90 (Oc90) expression within the otocyst is diffuse in nco and csr; therefore, it is not sufficient for otolith biomineralization in zebrafish. Similarly, normal localization of Otogelin, a protein required for otolith tethering in the otolithic membrane, is not sufficient for Oc90 attachment. Furthermore, eNOS signaling and Endothelin-1 signaling were the most up- and down-regulated pathways during otolith agenesis in nco, respectively. Our results demonstrate distinct processes for otolith nucleation and biomineralization in vertebrates and will be a starting point for models that are independent of Oc90-mediated seeding. This study will serve as a basis for investigating the role of eNOS signaling and Endothelin-1 signaling during otolith formation.
Collapse
Affiliation(s)
- Kevin D Thiessen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Steven J Grzegorski
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Yvonne Chin
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Lisa N Higuchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States.
| |
Collapse
|
14
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives. Initially, they were considered as metabolic by-products (of mitochondria in particular), which consistently lead to aging and disease. Over the last decades, however, it became increasingly apparent that virtually all eukaryotic cells possess specifically ROS-producing enzymes, namely, NOX NADPH oxidases. In most mammals, there are seven NOX isoforms: three closely related isoforms, NOX1, 2, 3, which are activated by cytoplasmic subunits; NOX4, which appears to be constitutively active; and the EF-hand-containing Ca2+-activated isoforms NOX5 and DUOX1 and 2. Loss-of-function mutations in NOX genes can lead to serious human disease. NOX2 deficiency leads to primary immune deficiency, while DUOX2 deficiency presents as congenital hypothyroidism. Nox-deficient mice provide important tools to explore the physiological functions of various NADPH oxidases as a loss of function in Nox2, Nox3, and Duox2 leads to a spontaneous phenotype. The genetic absence of Nox1, Nox4, and Duox1 does not result in an obvious mouse phenotype (the NOX5 gene is absent in rodents and can therefore not be studied using knockout mice). Since the discovery of the NOX family at the turn of the millennium, much progress in understanding the biochemistry and the physiology of NOX has been made; however many questions remain unanswered to date. This chapter is an overview of our present knowledge on mammalian NOX/DUOX enzymes.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Moll F, Walter M, Rezende F, Helfinger V, Vasconez E, De Oliveira T, Greten FR, Olesch C, Weigert A, Radeke HH, Schröder K. NoxO1 Controls Proliferation of Colon Epithelial Cells. Front Immunol 2018; 9:973. [PMID: 29867954 PMCID: PMC5951971 DOI: 10.3389/fimmu.2018.00973] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Aim Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. Results NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. Conclusion NoxO1 affects colon epithelium homeostasis and prevents inflammation.
Collapse
Affiliation(s)
- Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Estefania Vasconez
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Tiago De Oliveira
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | | | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| |
Collapse
|
17
|
Rezende F, Moll F, Walter M, Helfinger V, Hahner F, Janetzko P, Ringel C, Weigert A, Fleming I, Weissmann N, Kuenne C, Looso M, Rieger MA, Nawroth P, Fleming T, Brandes RP, Schröder K. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice. Redox Biol 2018; 15:12-21. [PMID: 29195137 PMCID: PMC5723277 DOI: 10.1016/j.redox.2017.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
AIM NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes. RESULTS In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice. INNOVATION AND CONCLUSION ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Fabian Hahner
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Patrick Janetzko
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Christian Ringel
- Institute for Patho Biochemistry, Goethe University, Frankfurt, Germany
| | - Andreas Weigert
- Institute for Patho Biochemistry, Goethe University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Bioinformatics Core Facility, Bad Nauheim, Germany
| | - Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Bioinformatics Core Facility, Bad Nauheim, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe-University, Frankfurt, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany.
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany.
| |
Collapse
|
18
|
Schröder K, Weissmann N, Brandes RP. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 2017; 109:22-32. [PMID: 28336130 DOI: 10.1016/j.freeradbiomed.2017.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Prieto-Bermejo R, Hernández-Hernández A. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis. Antioxidants (Basel) 2017; 6:antiox6020032. [PMID: 28505091 PMCID: PMC5488012 DOI: 10.3390/antiox6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells have to cope with the constant generation of reactive oxygen species (ROS). Although the excessive production of ROS might be deleterious for cell biology, there is a plethora of evidence showing that moderate levels of ROS are important for the control of cell signaling and gene expression. The family of the nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases or Nox) has evolved to produce ROS in response to different signals; therefore, they fulfil a central role in the control of redox signaling. The role of NADPH oxidases in vascular physiology has been a field of intense study over the last two decades. In this review we will briefly analyze how ROS can regulate signaling and gene expression. We will address the implication of NADPH oxidases and redox signaling in angiogenesis, and finally, the therapeutic possibilities derived from this knowledge will be discussed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|
20
|
Xu Y, Zhang Y, Lundberg YW. Spatiotemporal differences in otoconial gene expression. Genesis 2016; 54:613-625. [PMID: 27792272 DOI: 10.1002/dvg.22990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/02/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022]
Abstract
Otoconia are minute biocrystals composed of glycoproteins, proteoglycans, and CaCO3 , and are indispensable for sensory processing in the utricle and saccule. Otoconia abnormalities and degeneration can cause or facilitate crystal dislocation to the ampulla, leading to vertigo and imbalance in humans. In order to better understand the molecular mechanism controlling otoconia formation and maintenance, we have examined the spatial and temporal expression differences of otoconial genes in the mouse inner ear at developmental, mature and aging stages using whole transcriptome sequencing (RNA-Seq) and quantitative RT-PCR. We show that the expression levels of most otoconial genes are much higher in the utricle and saccule compared with other inner ear tissues before postnatal stages in C57Bl/6J mice, and the expression of a few of these genes is restricted to the embryonic utricle and saccule. After the early postnatal stages, expression of all otoconial genes in the utricle and saccule is drastically reduced, while a few genes gain expression dominance in the aging ampulla, indicating a potential for ectopic debris formation in the latter tissue at old ages. The data suggest that the expression of otoconial genes is tightly regulated spatially and temporally during developmental stages and can become unregulated at aging stages. Birth Defects Research (Part A) 106:613-625, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA.,Cell Electrophysiology Laboratory, Shanghai Research Center of Acupuncture and Meridians, Shanghai, 201203, China
| | - Yan Zhang
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA
| | - Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA
| |
Collapse
|
21
|
Brandes RP, Harenkamp S, Schürmann C, Josipovic I, Rashid B, Rezende F, Löwe O, Moll F, Epah J, Eresch J, Nayak A, Kopaliani I, Penski C, Mittelbronn M, Weissmann N, Schröder K. The Cytosolic NADPH Oxidase Subunit NoxO1 Promotes an Endothelial Stalk Cell Phenotype. Arterioscler Thromb Vasc Biol 2016; 36:1558-65. [PMID: 27283741 DOI: 10.1161/atvbaha.116.307132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Reactive oxygen species generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases contribute to angiogenesis and vascular repair. NADPH oxidase organizer 1 (NoxO1) is a cytosolic protein facilitating assembly of constitutively active NADPH oxidases. We speculate that NoxO1 also contributes to basal reactive oxygen species formation in the vascular system and thus modulates angiogenesis. APPROACH AND RESULTS A NoxO1 knockout mouse was generated, and angiogenesis was studied in cultured cells and in vivo. Angiogenesis of the developing retina and after femoral artery ligation was increased in NoxO1(-/-) when compared with wild-type animals. Spheroid outgrowth assays revealed greater angiogenic capacity of NoxO1(-/-) lung endothelial cells (LECs) and a more tip-cell-like phenotype than wild-type LECs. Usually signaling by the Notch pathway switches endothelial cells from a tip into a stalk cell phenotype. NoxO1(-/-) LECs exhibited attenuated Notch signaling as a consequence of an attenuated release of the Notch intracellular domain on ligand stimulation. This release is mediated by proteolytic cleavage involving the α-secretase ADAM17. For maximal activity, ADAM17 has to be oxidized, and overexpression of NoxO1 promoted this mode of activation. Moreover, the activity of ADAM17 was reduced in NoxO1(-/-) LECs when compared with wild-type LECs. CONCLUSIONS NoxO1 stimulates α-secretase activity probably through reactive oxygen species-mediated oxidation. Deletion of NoxO1 attenuates Notch signaling and thereby promotes a tip-cell phenotype that results in increased angiogenesis.
Collapse
Affiliation(s)
- Ralf P Brandes
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Sabine Harenkamp
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Christoph Schürmann
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Ivana Josipovic
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Beliza Rashid
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Flavia Rezende
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Oliver Löwe
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Franziska Moll
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Jeremy Epah
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Jeanette Eresch
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Arnab Nayak
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Irakli Kopaliani
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Cornelia Penski
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Michel Mittelbronn
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Norbert Weissmann
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.)
| | - Katrin Schröder
- From the Institute for Cardiovascular Physiology (R.P.B., S.H., C.S., I.J., B.R., F.R., O.L., F.M., J.E., K.S.), Pharmazentrum Frankfurt (J.E.), Institute for Biochemistry II (A.N.), and Neurological Institute (Edinger Institute) (C.P., M.M.), Goethe University, Frankfurt, Germany; Department of Physiology, Medical Faculty, TU Dresden, Dresden, Germany (I.K.); Justus-Liebig Universität Giessen, Giessen, Germany (N.W.); and German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (R.P.B., C.S., I.J., F.R., O.L., F.M., K.S.).
| |
Collapse
|
22
|
Absence of cytoglobin promotes multiple organ abnormalities in aged mice. Sci Rep 2016; 6:24990. [PMID: 27146058 PMCID: PMC4857093 DOI: 10.1038/srep24990] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb(-/-) mice. Twenty-six percent of young Cygb(-/-) mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb(-/-) mice (1-2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb(-/-) mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by N(G)-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb(-/-) mice. Moreover, compared with HSC(+/+), HSC(-/-) showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1-6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence.
Collapse
|
23
|
Sirokmány G, Donkó Á, Geiszt M. Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends Pharmacol Sci 2016; 37:318-327. [DOI: 10.1016/j.tips.2016.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
|
24
|
A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci Rep 2016; 6:22389. [PMID: 26975635 PMCID: PMC4792161 DOI: 10.1038/srep22389] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/10/2016] [Indexed: 01/12/2023] Open
Abstract
Osteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes. Blocking the activity of Nox with Ewha-18278 inhibited the responses of BMMs to RANKL, including reactive oxygen species (ROS) generation, activation of mitogen-activated protein (MAP) kinases and NF-κB, and OC differentiation. To evaluate the anti-osteoporotic function of Ewha-18278, the derivative was applied to estrogen-deficient ovariectomized (OVX) ddY mice. Oral administration of Ewha-18278 (10 mg/kg/daily, 4 weeks) into the mice recovered bone mineral density, trabecular bone volume, trabecular bone length, number and thickness, compared to control OVX ddY mice. Moreover, treatment of OVX ddY mice with Ewha-18278 increased bone strength by increasing cortical bone thickness. We provide that Ewha-18278 displayed Nox inhibition and blocked the RANKL-dependent cell signaling cascade leading to reduced differentiation of OCs. Our results implicate Ewha-18278 as a novel therapeutic agent for the treatment of osteoporosis.
Collapse
|
25
|
Casas AI, Dao VTV, Daiber A, Maghzal GJ, Di Lisa F, Kaludercic N, Leach S, Cuadrado A, Jaquet V, Seredenina T, Krause KH, López MG, Stocker R, Ghezzi P, Schmidt HHHW. Reactive Oxygen-Related Diseases: Therapeutic Targets and Emerging Clinical Indications. Antioxid Redox Signal 2015; 23:1171-85. [PMID: 26583264 PMCID: PMC4657512 DOI: 10.1089/ars.2015.6433] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic.
Collapse
Affiliation(s)
- Ana I Casas
- 1 Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - V Thao-Vi Dao
- 1 Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Andreas Daiber
- 2 2nd Medical Department, Molecular Cardiology, University Medical Center , Mainz, Germany
| | - Ghassan J Maghzal
- 3 Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales , Sydney, New South Wales, Australia
| | - Fabio Di Lisa
- 4 Department of Biomedical Sciences, University of Padova , Italy .,5 Neuroscience Institute , CNR, Padova, Italy
| | | | - Sonia Leach
- 6 Brighton and Sussex Medical School , Falmer, United Kingdom
| | - Antonio Cuadrado
- 7 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| | - Vincent Jaquet
- 8 Department of Pathology and Immunology, Medical School, University of Geneva , Geneva, Switzerland
| | - Tamara Seredenina
- 8 Department of Pathology and Immunology, Medical School, University of Geneva , Geneva, Switzerland
| | - Karl H Krause
- 8 Department of Pathology and Immunology, Medical School, University of Geneva , Geneva, Switzerland
| | - Manuela G López
- 9 Teofilo Hernando Institute, Department of Pharmacology, Faculty of Medicine. Autonomous University of Madrid , Madrid, Spain
| | - Roland Stocker
- 3 Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales , Sydney, New South Wales, Australia
| | - Pietro Ghezzi
- 6 Brighton and Sussex Medical School , Falmer, United Kingdom
| | - Harald H H W Schmidt
- 1 Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
26
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
27
|
Morimoto H, Kanatsu-Shinohara M, Shinohara T. ROS-Generating Oxidase Nox3 Regulates the Self-Renewal of Mouse Spermatogonial Stem Cells1. Biol Reprod 2015; 92:147. [DOI: 10.1095/biolreprod.114.127647] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/01/2015] [Indexed: 12/17/2022] Open
|
28
|
Peguero B, Tempel BL. A Chromosome 17 Locus Engenders Frequency-Specific Non-Progressive Hearing Loss that Contributes to Age-Related Hearing Loss in Mice. J Assoc Res Otolaryngol 2015; 16:459-71. [PMID: 25940139 DOI: 10.1007/s10162-015-0519-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
The 129S6/SvEvTac (129S6) inbred mouse is known for its resistance to noise-induced hearing loss (NIHL). However, less is understood of its unique age-related hearing loss (AHL) phenotype and its potential relationship with the resistance to NIHL. Here, we studied the physiological characteristics of hearing loss in 129S6 and asked if noise resistance (NR) and AHL are genetically linked to the same chromosomal region. We used auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to examine hearing sensitivity between 1 and 13 months of age of recombinant-inbred (congenic) mice with an NR phenotype. We identified a region of proximal chromosome (Chr) 17 (D17Mit143-D17Mit100) that contributes to a sensory, non-progressive hearing loss (NPHL) affecting exclusively the high-frequencies (>24 kHz) and maps to the nr1 locus on Chr 17. ABR experiments showed that 129S6 and CBA/CaJ F1 (CBACa) hybrid mice exhibit normal hearing, indicating that the hearing loss in 129S6 mice is inherited recessively. An allelic complementation test between the 129S6 and 101/H (101H) strains did not rescue hearing loss, suggesting genetic allelism between the nphl and phl1 loci of these strains, respectively. The hybrids had a milder hearing loss than either parental strain, which indicate a possible interaction with other genes in the mouse background or a digenic interaction between different genes that reside in the same genomic region. Our study defines a locus for nphl on Chr 17 affecting frequencies greater than 24 kHz.
Collapse
Affiliation(s)
- Braulio Peguero
- The Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA, 98195, USA
| | | |
Collapse
|
29
|
Vijayakumar S, Lever TE, Pierce J, Zhao X, Bergstrom D, Lundberg YW, Jones TA, Jones SM. Vestibular dysfunction, altered macular structure and trait localization in A/J inbred mice. Mamm Genome 2015; 26:154-72. [PMID: 25645995 DOI: 10.1007/s00335-015-9556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
Abstract
A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the study of mechanisms underlying otoconial formation and maintenance.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 301 Barkley Memorial Center, Lincoln, NE, 68583, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
31
|
NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2014; 12:5-23. [PMID: 25263488 DOI: 10.1038/cmi.2014.89] [Citation(s) in RCA: 641] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022] Open
Abstract
Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.
Collapse
|
32
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
33
|
Street VA, Kujawa SG, Manichaikul A, Broman KW, Kallman JC, Shilling DJ, Iwata AJ, Robinson LC, Robbins CA, Li J, Liberman MC, Tempel BL. Resistance to noise-induced hearing loss in 129S6 and MOLF mice: identification of independent, overlapping, and interacting chromosomal regions. J Assoc Res Otolaryngol 2014; 15:721-38. [PMID: 24952082 DOI: 10.1007/s10162-014-0472-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a prevalent health risk. Inbred mouse strains 129S6/SvEvTac (129S6) and MOLF/EiJ (MOLF) show strong NIHL resistance (NR) relative to CBA/CaJ (CBACa). In this study, we developed quantitative trait locus (QTL) maps for NR. We generated F1 animals by intercrossing (129S6 × CBACa) and (MOLF × CBACa). In each intercross, NR was recessive. N2 animals were produced by backcrossing F1s to their respective parental strain. The 232 N2-129S6 and 225 N2-MOLF progenies were evaluated for NR using auditory brainstem response. In 129S6, five QTL were identified on chromosomes (Chr) 17, 18, 14, 11, and 4, referred to as loci nr1, nr2, nr3, nr4, and nr5, respectively. In MOLF, four QTL were found on Chr 4, 17, 6, and 12, referred to as nr7, nr8, nr9, and nr10, respectively. Given that NR QTL were discovered on Chr 4 and 17 in both the N2-129S6 and N2-MOLF cross, we generated two consomic strains by separately transferring 129S6-derived Chr 4 and 17 into an otherwise CBACa background and a double-consomic strain by crossing the two strains. Phenotypic analysis of the consomic strains indicated that whole 129S6 Chr 4 contributes strongly to mid-frequency NR, while whole 129S6 Chr 17 contributes markedly to high-frequency NR. Therefore, we anticipated that the double-consomic strain containing Chr 4 and 17 would demonstrate NR across the mid- and high-frequency range. However, whole 129S6 Chr 17 masks the expression of mid-frequency NR from whole 129S6 Chr 4. To further dissect NR on 129S6 Chr 4 and 17, CBACa.129S6 congenic strains were generated for each chromosome. Phenotypic analysis of the Chr 17 CBACa.129S6 congenic strains further defined the NR region on proximal Chr 17, uncovered another NR locus (nr6) on distal Chr 17, and revealed an epistatic interaction between proximal and distal 129S6 Chr 17.
Collapse
Affiliation(s)
- Valerie A Street
- The V.M. Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, 98195, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lőrincz ÁM, Szarvas G, Smith SME, Ligeti E. Role of Rac GTPase activating proteins in regulation of NADPH oxidase in human neutrophils. Free Radic Biol Med 2014; 68:65-71. [PMID: 24321316 DOI: 10.1016/j.freeradbiomed.2013.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/15/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
Precise spatiotemporal regulation of O2(-)-generating NADPH oxidases (Nox) is a vital requirement. In the case of Nox1-3, which depend on the small GTPase Rac, acceleration of GTP hydrolysis by GTPase activating protein (GAP) could represent a feasible temporal control mechanism. Our goal was to investigate the molecular interactions between RacGAPs and phagocytic Nox2 in neutrophilic granulocytes. In structural studies we revealed that simultaneous interaction of Rac with its effector protein p67(phox) and regulatory protein RacGAP was sterically possible. The effect of RacGAPs was experimentally investigated in a cell-free O2(-)-generating system consisting of isolated membranes and recombinant p47(phox) and p67(phox) proteins. Addition of soluble RacGAPs decreased O2(-) production and there was no difference in the effect of four RacGAPs previously identified in neutrophils. Depletion of membrane-associated RacGAPs had a selective effect: a decrease in ARHGAP1 or ARHGAP25 level increased O2(-) production but a depletion of ARHGAP35 had no effect. Only membrane-localized RacGAPs seem to be able to interact with Rac when it is assembled in the Nox2 complex. Thus, in neutrophils multiple RacGAPs are involved in the control of O2(-) production by Nox2, allowing selective regulation via different signaling pathways.
Collapse
Affiliation(s)
- Ákos M Lőrincz
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Gábor Szarvas
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Susan M E Smith
- Department of Biology and Physics, Kennesaw State University, 1000 Chastain Road, Building 12, Room 308, Kennesaw, GA 30144, USA
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
35
|
Hu X, Yang R, Zhang X, Chen L, Xiang X, Gong C, Wu X. Molecular cloning and functional characterization of the dual oxidase (BmDuox) gene from the silkworm Bombyx mori. PLoS One 2013; 8:e70118. [PMID: 23936382 PMCID: PMC3732266 DOI: 10.1371/journal.pone.0070118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/17/2013] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) from nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and their related dual oxidases are known to have significant roles in innate immunity and cell proliferation. In this study, the 5,545 bp cDNA of the silkworm Bombyx mori dual oxidase (BmDuox) gene containing a full-length open reading frame was cloned. It was shown to include an N-terminal signal peptide consisting of 28 amino acid residues, a 240 bp 5′-terminal untranslated region (5′-UTR), an 802 bp 3′-terminal region (3′-UTR), which contains nine ATTTA motifs, and a 4,503 bp open reading frame encoding a polypeptide of 1,500 amino acid residues. Structural analysis indicated that BmDuox contains a typical peroxidase domain at the N-terminus followed by a calcium-binding domain, a ferric-reducing domain, six transmembrane regions and binding domains for flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD). Transcriptional analysis revealed that BmDuox mRNA was expressed more highly in the head, testis and trachea compared to the midgut, hemocyte, Malpighian tube, ovary, fat bodies and silk glands. BmDuox mRNA was expressed during all the developmental stages of the silkworm. Subcellular localization revealed that BmDoux was present mainly in the periphery of the cells. Some cytoplasmic staining was detected, with rare signals in the nucleus. Expression of BmDuox was induced significantly in the larval midgut upon challenge by Escherichia coli and Bombyx mori nucleopolyhedrovirus (BmNPV). BmDuox-deleted larvae showed a marked increase in microbial proliferation in the midgut after ingestion of fluorescence-labeled bacteria compared to the control. We conclude that reducing BmDuox expression greatly increased the bacterial load, suggesting BmDuox has an important role in inhibiting microbial proliferation and the maintenance of homeostasis in the silkworm midgut.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Davisson MT, Bergstrom DE, Reinholdt LG, Donahue LR. Discovery Genetics - The History and Future of Spontaneous Mutation Research. ACTA ACUST UNITED AC 2012; 2:103-118. [PMID: 25364627 DOI: 10.1002/9780470942390.mo110200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Historically, spontaneous mutations in mice have served as valuable models of heritable human diseases, contributing substantially to our understanding of both disease mechanisms and basic biological pathways. While advances in molecular technologies have improved our ability to create mouse models of human disease through targeted mutagenesis and transgenesis, spontaneous mutations continue to provide valuable research tools for discovery of novel genes and functions. In addition, the genetic defects caused by spontaneous mutations are molecularly similar to mutations in the human genome and, therefore often produce phenotypes that more closely resemble those characteristic of human disease than do genetically engineered mutations. Due to the rarity with which spontaneous mutations arise and the animal intensive nature of their genetic analysis, large-scale spontaneous mutation analysis has traditionally been limited to large mammalian genetics institutes. More recently, ENU mutagenesis and new screening methods have increased the rate of mutant strain discovery, and high-throughput DNA sequencing has enabled rapid identification of the underlying genes and their causative mutations. Here, we discuss the continued value of spontaneous mutations for biomedical research.
Collapse
|
38
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 610] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
39
|
Abstract
Reactive oxygen species (ROS) have profound influences on cellular homeostasis. In excess, they can potentiate the oxidation of numerous molecules, including proteins, lipids, and nucleic acids, affecting function. Furthermore, ROS-mediated oxidation of proteins can directly or indirectly modulate gene expression via effects on redox-sensitive transcription factors or via effects on phospho-relay-mediated signal transduction. In doing so, ROS impact numerous fundamental cellular processes, and have thus been implicated as critical mediators of both homeostasis and disease pathogenesis. Vascular reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major contributor of ROS within the lung. The generation of ROS in the pulmonary vasculature has a pivotal role in endothelial cell (EC) activation and function. Alterations in EC phenotype contribute to vascular tone, permeability, and inflammatory responses and, thus, have been implicated in numerous diseases of the lung, including pulmonary hypertension, ischemic-reperfusion injury, and adult respiratory distress syndrome. Thus, although a detailed understanding of NOX-derived ROS in pulmonary EC biology in the context of health and disease is nascent, there is mounting evidence implicating these enzymes as critical modifiers of diseases of the lung and pulmonary circulation. The purpose of this review is to focus specifically on known as well as putative roles for pulmonary EC NOX, with attention to studies on the intact lung.
Collapse
Affiliation(s)
- Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
40
|
Streeter J, Thiel W, Brieger K, Miller Jr. FJ. Opportunity Nox: The Future of NADPH Oxidases as Therapeutic Targets in Cardiovascular Disease. Cardiovasc Ther 2012; 31:125-37. [DOI: 10.1111/j.1755-5922.2011.00310.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
41
|
Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells 2011; 32:491-509. [PMID: 22207195 PMCID: PMC3887685 DOI: 10.1007/s10059-011-0276-3] [Citation(s) in RCA: 455] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide (H(2)O(2)) are thought to be byproducts of aerobic respiration with damaging effects on DNA, protein, and lipid. A growing body of evidence indicates, however, that ROS are involved in the maintenance of redox homeostasis and various cellular signaling pathways. ROS are generated from diverse sources including mitochondrial respiratory chain, enzymatic activation of cytochrome p450, and NADPH oxidases further suggesting involvement in a complex array of cellular processes. This review summarizes the production and function of ROS. In particular, how cytosolic and membrane proteins regulate ROS generation for intracellular redox signaling will be detailed.
Collapse
Affiliation(s)
- Yun Soo Bae
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Hyunjin Oh
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Sue Goo Rhee
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Korea
| |
Collapse
|
42
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 820] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
43
|
Ghouleh IA, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 2011; 51:1271-88. [PMID: 21722728 PMCID: PMC3205968 DOI: 10.1016/j.freeradbiomed.2011.06.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. The complexity of this family's effects on cellular processes stems from the fact that there are seven members, each with unique tissue distribution, cellular localization, and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.
Collapse
Affiliation(s)
- Imad Al Ghouleh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Nicholas K.H. Khoo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ulla G. Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Rhian M. Touyz
- Ottawa Hospital Research Institute, Univ of Ottawa, Ottawa, Ontario, Canada
| | - Victor J. Thannickal
- Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Aaron Barchowsky
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - William M. Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
- Veterans Administration Medical Center, Iowa City, IA
| | - Eric E. Kelley
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA
| | - Phillip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Bruce A. Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Pulmonary, Allergy & Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Patrick J. Pagano
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
44
|
Flaherty JP, Fairfield HE, Spruce CA, McCarty CM, Bergstrom DE. Molecular characterization of an allelic series of mutations in the mouse Nox3 gene. Mamm Genome 2011; 22:156-69. [PMID: 21161235 PMCID: PMC3056917 DOI: 10.1007/s00335-010-9309-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/19/2010] [Indexed: 11/29/2022]
Abstract
The inner ear consists of the cochlea (the organ of hearing) and the vestibular system (the organs of balance). Within the vestibular system, linear acceleration and gravity are detected by the saccule and utricle. Resting above the neurosensory epithelia of these organs are otoconia, minute proteinaceous and crystalline (calcite) inertial masses that shift under the physical forces imparted by linear movements and gravity. It is the transduction and sensation of these movements and their integration with vision and proprioceptive inputs that contribute to the sensation of balance. It has been proposed that a reactive oxygen species- (ROS-) generating NADPH oxidase comprising the gene products of the Nox3, Noxo1, and Cyba genes plays a critical and constructive role in the process of inner-ear development, specifically, the deposition of otoconia. Inactivation in mouse of any of the NADPH oxidase components encoded by the Nox3, Noxo1, or Cyba gene results in the complete congenital absence of otoconia and profound vestibular dysfunction. Here we describe our use of PCR, reverse transcription-PCR (RT-PCR), and rapid amplification of cDNA ends (RACE) with traditional and high-throughput (HTP) sequencing technologies to extend and complete the molecular characterization of an allelic series of seven mutations in the Nox3 gene. Collectively, the mutation spectrum includes an endogenous retrovirus insertion, two missense mutations, a splice donor mutation, a splice acceptor mutation, premature translational termination, and a small duplication. Together, these alleles provide tools to investigate the mechanisms of otoconial deposition over development, throughout aging, and in various disease states.
Collapse
Affiliation(s)
- John P Flaherty
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
45
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
46
|
Flaherty JP, Spruce CA, Fairfield HE, Bergstrom DE. Generation of a conditional null allele of NADPH oxidase activator 1 (NOXA1). Genesis 2011; 48:568-75. [PMID: 20645308 DOI: 10.1002/dvg.20655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NADPH oxidase complexes are multiprotein assemblies that generate reactive oxygen species in a variety of mammalian tissues. The canonical phagocytic oxidase consists of a heterodimeric, enzymatic core comprised of the transmembrane proteins, CYBB andCYBA and is regulated, in part, by an "organizing" function of NCF1 and an "activating" activity of NCF2. In contexts outside of the phagocyte, these regulatory functions may be encoded not only by NCF1 and NCF2, but also alternatively by their respective paralogues, NOXO1 and NOXA1. To allow tissue-specific dissection of Noxa1 function in mouse, we have generated an allele of Noxa1 suitable for conditional inactivation. Moreover, by crossing Noxa1 conditional allele carriers to B6.129S4-Meox2(tm1(Cre)Sor)/J mice, we have generated first, Noxa1-null heterozygotes, and ultimately, Noxa1-null homozygotes. Through the thoughtful use of tissue-specific, Cre-expressing mouse strains, the Noxa1 conditional allele will offer insight into the roles of NOXA1 in the variety of tissues in which it is expressed.
Collapse
Affiliation(s)
- John P Flaherty
- New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, New York, USA
| | | | | | | |
Collapse
|
47
|
Donkó A, Ruisanchez E, Orient A, Enyedi B, Kapui R, Péterfi Z, de Deken X, Benyó Z, Geiszt M. Urothelial cells produce hydrogen peroxide through the activation of Duox1. Free Radic Biol Med 2010; 49:2040-8. [PMID: 21146788 DOI: 10.1016/j.freeradbiomed.2010.09.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/08/2010] [Accepted: 09/27/2010] [Indexed: 02/07/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) has important messenger and effector functions in the plant and animal kingdom. Phagocytes produce H(2)O(2) to kill pathogens, and epithelial cells of large airways have also been reported to produce H(2)O(2) for signaling and host defense purposes. In this report, we show for the first time that urothelial cells produce H(2)O(2) in response to a calcium signal. Using a gene-deficient mouse model we also demonstrate that H(2)O(2) is produced by the NADPH oxidase Duox1, which is expressed in the mouse urothelium. In contrast, we found no evidence for the expression of lactoperoxidase, an enzyme that has been shown to cooperate with Duox enzymes. We also found that specific activation of TRPV4 calcium channels elicits a calcium signal and stimulates H(2)O(2) production in urothelial cells. Furthermore, we detected altered pressure responses in the urinary bladders of Duox1 knockout animals. Our results raise the possibility that mechanosensing in epithelial cells involves calcium-dependent H(2)O(2) production similar to that observed in plants.
Collapse
Affiliation(s)
- Agnes Donkó
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Deans MR, Peterson JM, Wong GW. Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1. PLoS One 2010; 5:e12765. [PMID: 20856818 PMCID: PMC2939893 DOI: 10.1371/journal.pone.0012765] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 08/23/2010] [Indexed: 01/29/2023] Open
Abstract
Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction.
Collapse
Affiliation(s)
- Michael R. Deans
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan M. Peterson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lu W, Zhou D, Freeman JJ, Thalmann I, Ornitz DM, Thalmann R. In vitro effects of recombinant otoconin 90 upon calcite crystal growth. Significance of tertiary structure. Hear Res 2010; 268:172-83. [PMID: 20595020 DOI: 10.1016/j.heares.2010.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 01/27/2023]
Abstract
Otoconia are biomineral particles of microscopic size essential for perception of gravity and maintenance of balance. Millions of older Americans are affected in their mobility, quality of life and in their health by progressive demineralization of otoconia. Currently, no effective means to prevent or counteract this process are available. Because of prohibitive anatomical and biological constraints, otoconial research is lagging far behind other systems such as bone and teeth. We have overcome these obstacles by generating otoconial matrix proteins by recombinant techniques. In the present study, we evaluated the effects of recombinant Otoconin 90 (OC90), the principal soluble matrix protein upon calcite crystal growth patterns in vitro. Our findings highlight multiple effects, including facilitation of nucleation, and inhibition of crystal growth in a concentration-dependent manner. Moreover, OC90 induces morphologic changes characteristic of native otoconia. OC90 is considerably less acidic than the prototypical invertebrate CaCO(3) -associated protein, but is nevertheless an effective modulator of calcite crystal growth. Based on homology modeling of the sPLA2-like domains of OC90, we propose that the lower density of acidic residues of the primary sequence is compensated by formation of major anionic surface clusters upon folding into tertiary conformation.
Collapse
Affiliation(s)
- Wenfu Lu
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Li L, He Q, Huang X, Man Y, Zhou Y, Wang S, Wang J, Li J. NOX3-derived reactive oxygen species promote TNF-alpha-induced reductions in hepatocyte glycogen levels via a JNK pathway. FEBS Lett 2010; 584:995-1000. [PMID: 20102709 DOI: 10.1016/j.febslet.2010.01.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 12/24/2022]
Abstract
TNF-alpha-induced insulin resistance is associated with generation of reactive oxygen species (ROS). This study aims at defining the link between ROS production and hepatic insulin resistance. Treatment with TNF-alpha increased ROS generation through activating NADPH oxidase 3 (NOX3) in HepG2 hepatocytes. Down-regulation of NOX3 using siRNA prevented TNF-alpha-induced decrease of cellular glycogen. In the cells treated with TNF-alpha, there were NOX3-dependent activation of JNK, inhibition of IRS1 and phosphorylation of AKT/PKB and GSK. In conclusion, the effects of TNF-alpha on hepatic insulin resistance appear to be, at least in part, mediated by NOX3-derived ROS through a JNK pathway.
Collapse
Affiliation(s)
- Lanfang Li
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | | | | | | | | | | | | | | |
Collapse
|