1
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
2
|
Kong SG, Yamazaki Y, Shimada A, Kijima ST, Hirose K, Katoh K, Ahn J, Song HG, Han JW, Higa T, Takano A, Nakamura Y, Suetsugu N, Kohda D, Uyeda TQP, Wada M. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement. THE PLANT CELL 2024; 36:1159-1181. [PMID: 38134410 PMCID: PMC10980345 DOI: 10.1093/plcell/koad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yosuke Yamazaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Saku T Kijima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Jeongsu Ahn
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Hyun-Geun Song
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Jae-Woo Han
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Takeshi Higa
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Akira Takano
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Nakamura
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Xu L, Cao L, Li J, Staiger CJ. Cooperative actin filament nucleation by the Arp2/3 complex and formins maintains the homeostatic cortical array in Arabidopsis epidermal cells. THE PLANT CELL 2024; 36:764-789. [PMID: 38057163 PMCID: PMC10896301 DOI: 10.1093/plcell/koad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.
Collapse
Affiliation(s)
- Liyuan Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- EMBRIO Institute, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Cui X, Zou M, Li J. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:191-206. [PMID: 37537721 DOI: 10.1111/nph.19149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.
Collapse
Affiliation(s)
- Xuan Cui
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Zhang Y, Dong G, Wu L, Wang X, Chen F, Xiong E, Xiong G, Zhou Y, Kong Z, Fu Y, Zeng D, Ma D, Qian Q, Yu Y. Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. PLANT PHYSIOLOGY 2023; 191:280-298. [PMID: 36102807 PMCID: PMC9806613 DOI: 10.1093/plphys/kiac427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, 30601, USA
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences, Shenzhen, 100018, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
6
|
Muresan CG, Sun ZG, Yadav V, Tabatabai AP, Lanier L, Kim JH, Kim T, Murrell MP. F-actin architecture determines constraints on myosin thick filament motion. Nat Commun 2022; 13:7008. [PMID: 36385016 PMCID: PMC9669029 DOI: 10.1038/s41467-022-34715-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Active stresses are generated and transmitted throughout diverse F-actin architectures within the cell cytoskeleton, and drive essential behaviors of the cell, from cell division to migration. However, while the impact of F-actin architecture on the transmission of stress is well studied, the role of architecture on the ab initio generation of stresses remains less understood. Here, we assemble F-actin networks in vitro, whose architectures are varied from branched to bundled through F-actin nucleation via Arp2/3 and the formin mDia1. Within these architectures, we track the motions of embedded myosin thick filaments and connect them to the extent of F-actin network deformation. While mDia1-nucleated networks facilitate the accumulation of stress and drive contractility through enhanced actomyosin sliding, branched networks prevent stress accumulation through the inhibited processivity of thick filaments. The reduction in processivity is due to a decrease in translational and rotational motions constrained by the local density and geometry of F-actin.
Collapse
Affiliation(s)
- Camelia G Muresan
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zachary Gao Sun
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - A Pasha Tabatabai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Laura Lanier
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - June Hyung Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
7
|
Nast-Kolb T, Bleicher P, Payr M, Bausch AR. VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Mol Biol Cell 2022; 33:ar91. [PMID: 35830600 PMCID: PMC9582628 DOI: 10.1091/mbc.e21-11-0577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Actin bundles constitute important cytoskeleton structures and enable a scaffold for force transmission inside cells. Actin bundles are formed by proteins, with multiple F-actin binding domains cross-linking actin filaments to each other. Vasodilator-stimulated phosphoprotein (VASP) has mostly been reported as an actin elongator, but it has been shown to be a bundling protein as well and is found in bundled actin structures at filopodia and adhesion sites. Based on in vitro experiments, it remains unclear when and how VASP can act as an actin bundler or elongator. Here we demonstrate that VASP bound to membranes facilitates the formation of large actin bundles during polymerization. The alignment by polymerization requires the fluidity of the lipid bilayers. The mobility within the bilayer enables VASP to bind to filaments and capture and track growing barbed ends. VASP itself phase separates into a protein-enriched phase on the bilayer. This VASP-rich phase nucleates and accumulates at bundles during polymerization, which in turn leads to a reorganization of the underlying lipid bilayer. Our findings demonstrate that the nature of VASP localization is decisive for its function. The up-concentration based on VASP’s affinity to actin during polymerization enables it to simultaneously fulfill the function of an elongator and a bundler.
Collapse
Affiliation(s)
- T Nast-Kolb
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and
| | - P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - M Payr
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhoferstr. 1, 69117 Heidelberg, Germany
| | - A R Bausch
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| |
Collapse
|
8
|
Ma Z, Sun Y, Zhu X, Yang L, Chen X, Miao Y. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. THE PLANT CELL 2022; 34:374-394. [PMID: 34726756 PMCID: PMC8774048 DOI: 10.1093/plcell/koab261] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 05/23/2023]
Abstract
The assembly of macromolecules on the plasma membrane concentrates cell surface biomolecules into nanometer- to micrometer-scale clusters (nano- or microdomains) that help the cell initiate or respond to signals. In plant-microbe interactions, the actin cytoskeleton undergoes rapid remodeling during pathogen-associated molecular pattern-triggered immunity (PTI). The nanoclustering of formin-actin nucleator proteins at the cell surface has been identified as underlying actin nucleation during plant innate immune responses. Here, we show that the condensation of nanodomain constituents and the self-assembly of remorin proteins enables this mechanism of controlling formin condensation and activity during innate immunity in Arabidopsis thaliana. Through intrinsically disordered region-mediated remorin oligomerization and formin interaction, remorin gradually recruits and condenses formins upon PTI activation in lipid bilayers, consequently increasing actin nucleation in a time-dependent manner postinfection. Such nanodomain- and remorin-mediated regulation of plant surface biomolecules is expected to be a general feature of plant innate immune responses that creates spatially separated biochemical compartments and fine tunes membrane physicochemical properties for transduction of immune signals in the host.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yanbiao Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Centre, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Centre, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
9
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Plant biology: Plant formins roll out the welcome wagon for microbes. Curr Biol 2021; 31:R788-R791. [PMID: 34157262 DOI: 10.1016/j.cub.2021.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions of microbes with plant cells can radically change plant-cell form and function. A new study shows how a specialised formin protein paves the way for nitrogen-fixing bacteria to make homes in legumes.
Collapse
|
11
|
Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J Cell Sci 2021; 134:237818. [PMID: 33589498 PMCID: PMC8121067 DOI: 10.1242/jcs.253708] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhibits retrograde flow of myosin 2 filaments and contraction of stress fibers. We further checked the effect of SMIFH2 on non-muscle myosin 2A and skeletal muscle myosin 2 in vitro, and found that SMIFH2 inhibits activity of myosin ATPase and the ability to translocate actin filaments in the gliding actin in vitro motility assay. Inhibition of non-muscle myosin 2A in vitro required a higher concentration of SMIFH2 compared with that needed to inhibit retrograde flow and stress fiber contraction in cells. We also found that SMIFH2 inhibits several other non-muscle myosin types, including bovine myosin 10, Drosophila myosin 7a and Drosophila myosin 5, more efficiently than it inhibits formins. These off-target inhibitions demand additional careful analysis in each case when solely SMIFH2 is used to probe formin functions. This article has an associated First Person interview with Yukako Nishimura, joint first author of the paper.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Shidong Shi
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Fang Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuharu Takagi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Virgile Viasnoff
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,CNRS UMI 3639 BMC, Singapore 117411, Singapore.,Department of Biological Sciences, National university of Singapore, Singapore 117558, Singapore
| | - James R Sellers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Ma Z, Liu X, Nath S, Sun H, Tran TM, Yang L, Mayor S, Miao Y. Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Rep 2021; 34:108884. [PMID: 33789103 DOI: 10.1016/j.celrep.2021.108884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Plants respond to bacterial infection acutely with actin remodeling during plant immune responses. The mechanisms by which bacterial virulence factors (VFs) modulate plant actin polymerization remain enigmatic. Here, we show that plant-type-I formin serves as the molecular sensor for actin remodeling in response to two bacterial VFs: Xanthomonas campestris pv. campestris (Xcc) diffusible signal factor (DSF), and pathogen-associated molecular pattern (PAMP) flagellin in pattern-triggered immunity (PTI). Both VFs regulate actin assembly by tuning the clustering and nucleation activity of formin on the plasma membrane (PM) at the nano-sized scale. By being integrated within the cell-wall-PM-actin cytoskeleton (CW-PM-AC) continuum, the dynamic behavior and function of formins are highly dependent on each scaffold layer's composition within the CW-PM-AC continuum during both DSF and PTI signaling. Our results reveal a central mechanism for rapid actin remodeling during plant-bacteria interactions, in which bacterial signaling molecules fine tune plant formin nanoclustering in a host mechanical-structure-dependent manner.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore 560065, India; Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen 518055, China
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore 560065, India; National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
13
|
Diao M, Huang S. An Update on the Role of the Actin Cytoskeleton in Plasmodesmata: A Focus on Formins. FRONTIERS IN PLANT SCIENCE 2021; 12:647123. [PMID: 33659020 PMCID: PMC7917184 DOI: 10.3389/fpls.2021.647123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication in plants is mediated by plasmodesmata (PD) whose permeability is tightly regulated during plant growth and development. The actin cytoskeleton has been implicated in regulating the permeability of PD, but the underlying mechanism remains largely unknown. Recent characterization of PD-localized formin proteins has shed light on the role and mechanism of action of actin in regulating PD-mediated intercellular trafficking. In this mini-review article, we will describe the progress in this area.
Collapse
Affiliation(s)
- Min Diao
- iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Du P, Wang J, He Y, Zhang S, Hu B, Xue X, Miao L, Ren H. AtFH14 crosslinks actin filaments and microtubules in different manners. Biol Cell 2021; 113:235-249. [PMID: 33386758 DOI: 10.1111/boc.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND INFORMATION In many cellular processes including cell division, the synergistic dynamics of actin filaments and microtubules play vital roles. However, the regulatory mechanisms of these synergistic dynamics are not fully understood. Proteins such as formins are involved in actin filament-microtubule interactions and Arabidopsis thaliana formin 14 (AtFH14) may function as a crosslinker between actin filaments and microtubules in cell division, but the molecular mechanism underlying such crosslinking remains unclear. RESULTS Without microtubules, formin homology (FH) 1/FH2 of AtFH14 nucleated actin polymerisation from actin monomers and capped the barbed end of actin filaments. However, in the presence of microtubules, quantitative analysis showed that the binding affinity of AtFH14 FH1FH2 to microtubules was higher than that to actin filaments. Moreover, microtubule-bound AtFH14 FH1FH2 neither nucleated actin polymerisation nor inhibited barbed end elongation. In contrast, tubulin did not affect AtFH14 FH1FH2 to nucleate actin polymerisation and inhibit barbed end elongation. Nevertheless, microtubule-bound AtFH14 FH1FH2 bound actin filaments and the bound actin filaments slid and elongated along the microtubules or elongated away from the microtubules, which induced bundling or crosslinking of actin filaments and microtubules. Pharmacological analyses indicated that AtFH14 FH1FH2 promoted crosslinking of actin filaments and microtubules in vivo. Additionally, co-sedimentation and fluorescent dye-labelling experiments of AtFH14 FH2-truncated proteins in vitro revealed the essential motifs of bundling actin filaments or microtubules, which were 63-92 aa and 42-62 aa in the AtFH14 FH2 N-terminal, respectively, and 42-62 aa was the essential motif to crosslink actin filaments and microtubules. CONCLUSIONS AND SIGNIFICANCE Our results aid in explaining how AtFH14 functions as a crosslinker between actin filaments and microtubules to regulate their dynamics via different manners during cell division. They also facilitate further understanding of the molecular mechanisms of the interactions between actin filaments and microtubules.
Collapse
Affiliation(s)
- Pingzhou Du
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yunqiu He
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Bailing Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Xiuhua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
15
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Martiel JL, Michelot A, Boujemaa-Paterski R, Blanchoin L, Berro J. Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties. Biophys J 2019; 118:182-192. [PMID: 31791547 DOI: 10.1016/j.bpj.2019.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Bundles of actin filaments are central to a large variety of cellular structures such as filopodia, stress fibers, cytokinetic rings, and focal adhesions. The mechanical properties of these bundles are critical for proper force transmission and force bearing. Previous mathematical modeling efforts have focused on bundles' rigidity and shape. However, it remains unknown how bundle length and buckling are controlled by external physical factors. In this work, we present a biophysical model for dynamic bundles of actin filaments submitted to an external load. In combination with in vitro motility assays of beads coated with formins, our model allowed us to characterize conditions for bead movement and bundle buckling. From the deformation profiles, we determined key biophysical properties of tethered actin bundles such as their rigidity and filament density.
Collapse
Affiliation(s)
- Jean-Louis Martiel
- CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France; CNRS, CHU Grenoble-Alpes, Inserm, TIMC-IMAG, University Grenoble-Alpes, Grenoble, France.
| | - Alphée Michelot
- CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France; CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille University, Marseille, France
| | - Rajaa Boujemaa-Paterski
- CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Laurent Blanchoin
- CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
| | - Julien Berro
- CytomorphoLab, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
17
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
18
|
Della Coletta R, Hirsch CN, Rouse MN, Lorenz A, Garvin DF. Genomic Dissection of Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:392-400. [PMID: 30261155 DOI: 10.1094/mpmi-08-18-0220-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.
Collapse
Affiliation(s)
- Rafael Della Coletta
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
- 2 CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Candice N Hirsch
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
| | - Matthew N Rouse
- 3 USDA-ARS Cereal Disease Laboratory, St. Paul, MN, U.S.A
- 4 Department of Plant Pathology, University of Minnesota; and
| | - Aaron Lorenz
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
| | - David F Garvin
- 1 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, U.S.A
- 5 USDA-ARS Plant Science Research Unit, St. Paul, MN, U.S.A
| |
Collapse
|
19
|
Courtemanche N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys Rev 2018; 10:1553-1569. [PMID: 30392063 DOI: 10.1007/s12551-018-0468-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, 420 Washington Ave SE, 6-130 MCB, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S. Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 2018; 7:e36316. [PMID: 30113309 PMCID: PMC6126924 DOI: 10.7554/elife.36316] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
Here, we demonstrate that Arabidopsis thaliana Formin 2 (AtFH2) localizes to plasmodesmata (PD) through its transmembrane domain and is required for normal intercellular trafficking. Although loss-of-function atfh2 mutants have no overt developmental defect, PD's permeability and sensitivity to virus infection are increased in atfh2 plants. Interestingly, AtFH2 functions in a partially redundant manner with its closest homolog AtFH1, which also contains a PD localization signal. Strikingly, targeting of Class I formins to PD was also confirmed in rice, suggesting that the involvement of Class I formins in regulating actin dynamics at PD may be evolutionarily conserved in plants. In vitro biochemical analysis showed that AtFH2 fails to nucleate actin assembly but caps and stabilizes actin filaments. We also demonstrate that the interaction between AtFH2 and actin filaments is crucial for its function in vivo. These data allow us to propose that AtFH2 regulates PD's permeability by anchoring actin filaments to PD.
Collapse
Affiliation(s)
- Min Diao
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute of Botany, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sulin Ren
- Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Qiannan Wang
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Lichao Qian
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijingChina
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yule Liu
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijingChina
| | - Shanjin Huang
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
21
|
Sassmann S, Rodrigues C, Milne SW, Nenninger A, Allwood E, Littlejohn GR, Talbot NJ, Soeller C, Davies B, Hussey PJ, Deeks MJ. An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Curr Biol 2018; 28:2136-2144.e7. [PMID: 29937351 PMCID: PMC6041470 DOI: 10.1016/j.cub.2018.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 03/21/2018] [Accepted: 05/04/2018] [Indexed: 11/20/2022]
Abstract
Cell wall appositions (CWAs) are produced reactively by the plant immune system to arrest microbial invasion through the local inversion of plant cell growth. This process requires the controlled invagination of the plasma membrane (PM) in coordination with the export of barrier material to the volume between the plant PM and cell wall. Plant actin dynamics are essential to this response, but it remains unclear how exocytosis and the cytoskeleton are linked in space and time to form functional CWAs. Here, we show that actin-dependent trafficking to immune response sites of Arabidopsis thaliana delivers membrane-integrated FORMIN4, which in turn contributes to local cytoskeletal dynamics. Total internal reflection fluorescence (TIRF) microscopy combined with controlled induction of FORMIN4-GFP expression reveals a dynamic population of vesicular bodies that accumulate to form clusters at the PM through an actin-dependent process. Deactivation of FORMIN4 and its close homologs partially compromises subsequent defense and alters filamentous actin (F-actin) distribution at mature CWAs. The localization of FORMIN4 is stable and segregated from the dynamic traffic of the endosomal network. Moreover, the tessellation of FORMIN4 at the PM with meso-domains of PEN3 reveals a fine spatial segregation of destinations for actin-dependent immunity cargo. Together, our data suggest a model where FORMIN4 is a spatial feedback element in a multi-layered, temporally defined sequence of cytoskeletal response. This positional feedback makes a significant contribution to the distribution of actin filaments at the dynamic CWA boundary and to the outcomes of pre-invasion defense.
Collapse
Affiliation(s)
- Stefan Sassmann
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Stephen W Milne
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Anja Nenninger
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ellen Allwood
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | - Christian Soeller
- Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Brendan Davies
- School of Biology, University of Leeds, Miall Building, Leeds LS2 9JT, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Michael J Deeks
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
22
|
Sun H, Qiao Z, Chua KP, Tursic A, Liu X, Gao YG, Mu Y, Hou X, Miao Y. Profilin Negatively Regulates Formin-Mediated Actin Assembly to Modulate PAMP-Triggered Plant Immunity. Curr Biol 2018; 28:1882-1895.e7. [PMID: 29861135 DOI: 10.1016/j.cub.2018.04.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/01/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
Profilin functions with formin in actin assembly, a process that regulates multiple aspects of plant development and immune responses. High-level eukaryotes contain multiple isoforms of profilin, formin, and actin, whose partner-specific interactions in actin assembly are not completely understood in plant development and defense responses. To examine the functionally distinct interactions between profilin and formin, we studied all five Arabidopsis profilins and their interactions with formin by using both in vitro biochemical and in vivo cell biology approaches. Unexpectedly, we found a previously undescribed negative regulatory function of AtPRF3 in AtFH1-mediated actin polymerization. The N-terminal 37 residues of AtPRF3 were identified to play a predominant role in inhibiting formin-mediated actin nucleation via their high affinity for the formin polyproline region and their triggering of the oligomerization of AtPRF3. Both in vivo and in vitro mechanistic studies of AtPRF3 revealed a universal mechanism in which the weak interaction between profilin and formin positively regulates actin assembly by ensuring rapid recycling of profilin, whereas profilin oligomerization negatively regulates actin polymerization. Upon recognition of the pathogen-associated molecular pattern, the gene transcription and protein degradation of AtPRF3 are modulated for actin assembly during plant innate immunity. The prf3 Arabidopsis plants show higher sensitivity to the bacterial flagellum peptide in both the plant growth and ROS responses. These findings demonstrate a profilin-mediated actin assembly mechanism underlying the plant immune responses.
Collapse
Affiliation(s)
- He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Khi Pin Chua
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637371, Singapore
| | - Alma Tursic
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
23
|
Rückerl F, Lenz M, Betz T, Manzi J, Martiel JL, Safouane M, Paterski-Boujemaa R, Blanchoin L, Sykes C. Adaptive Response of Actin Bundles under Mechanical Stress. Biophys J 2017; 113:1072-1079. [PMID: 28877490 PMCID: PMC5611681 DOI: 10.1016/j.bpj.2017.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022] Open
Abstract
Actin is one of the main components of the architecture of cells. Actin filaments form different polymer networks with versatile mechanical properties that depend on their spatial organization and the presence of cross-linkers. Here, we investigate the mechanical properties of actin bundles in the absence of cross-linkers. Bundles are polymerized from the surface of mDia1-coated latex beads, and deformed by manipulating both ends through attached beads held by optical tweezers, allowing us to record the applied force. Bundle properties are strikingly different from the ones of a homogeneous isotropic beam. Successive compression and extension leads to a decrease in the buckling force that we attribute to the bundle remaining slightly curved after the first deformation. Furthermore, we find that the bundle is solid, and stiff to bending, along the long axis, whereas it has a liquid and viscous behavior in the transverse direction. Interpretation of the force curves using a Maxwell visco-elastic model allows us to extract the bundle mechanical parameters and confirms that the bundle is composed of weakly coupled filaments. At short times, the bundle behaves as an elastic material, whereas at long times, filaments flow in the longitudinal direction, leading to bundle restructuring. Deviations from the model reveal a complex adaptive rheological behavior of bundles. Indeed, when allowed to anneal between phases of compression and extension, the bundle reinforces. Moreover, we find that the characteristic visco-elastic time is inversely proportional to the compression speed. Actin bundles are therefore not simple force transmitters, but instead, complex mechano-transducers that adjust their mechanics to external stimulation. In cells, where actin bundles are mechanical sensors, this property could contribute to their adaptability.
Collapse
Affiliation(s)
- Florian Rückerl
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Martin Lenz
- CNRS, LPTMS, University Paris-Sud, Orsay, France
| | - Timo Betz
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - John Manzi
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Jean-Louis Martiel
- CNRS/CEA/INRA/UJF, Laboratoire de Physiologie Cellulaire Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France
| | - Mahassine Safouane
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Rajaa Paterski-Boujemaa
- CNRS/CEA/INRA/UJF, Laboratoire de Physiologie Cellulaire Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France
| | - Laurent Blanchoin
- CNRS/CEA/INRA/UJF, Laboratoire de Physiologie Cellulaire Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France.
| | - Cécile Sykes
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France.
| |
Collapse
|
24
|
Pfisterer SG, Gateva G, Horvath P, Pirhonen J, Salo VT, Karhinen L, Varjosalo M, Ryhänen SJ, Lappalainen P, Ikonen E. Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage. Nat Commun 2017; 8:14858. [PMID: 28361956 PMCID: PMC5380971 DOI: 10.1038/ncomms14858] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/01/2017] [Indexed: 11/10/2022] Open
Abstract
Lipid droplets (LDs) are cellular organelles specialized in triacylglycerol (TG) storage undergoing homotypic clustering and fusion. In non-adipocytic cells with numerous LDs this is balanced by poorly understood droplet dissociation mechanisms. We identify non-muscle myosin IIa (NMIIa/MYH-9) and formin-like 1 (FMNL1) in the LD proteome. NMIIa and actin filaments concentrate around LDs, and form transient foci between dissociating LDs. NMIIa depletion results in decreased LD dissociations, enlarged LDs, decreased hydrolysis and increased storage of TGs. FMNL1 is required for actin assembly on LDs in vitro and for NMIIa recruitment to LDs in cells. We propose a novel acto-myosin structure regulating lipid storage: FMNL1-dependent assembly of myosin II-functionalized actin filaments on LDs facilitates their dissociation, thereby affecting LD surface-to-volume ratio and enzyme accessibility to TGs. In neutrophilic leucocytes from MYH9-related disease patients NMIIa inclusions are accompanied by increased lipid storage in droplets, suggesting that NMIIa dysfunction may contribute to lipid imbalance in man.
Collapse
Affiliation(s)
- Simon G. Pfisterer
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Gergana Gateva
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Peter Horvath
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland
- Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, BRC, Szeged H-6726, Hungary
| | - Juho Pirhonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Veijo T. Salo
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Leena Karhinen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Samppa J. Ryhänen
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Elina Ikonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| |
Collapse
|
25
|
Prezel E, Stoppin-Mellet V, Elie A, Zala N, Denarier E, Serre L, Arnal I. TIRF assays for real-time observation of microtubules and actin coassembly: Deciphering tau effects on microtubule/actin interplay. Methods Cell Biol 2017; 141:199-214. [DOI: 10.1016/bs.mcb.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Zhang S, Liu C, Wang J, Ren Z, Staiger CJ, Ren H. A Processive Arabidopsis Formin Modulates Actin Filament Dynamics in Association with Profilin. MOLECULAR PLANT 2016; 9:900-10. [PMID: 26996265 DOI: 10.1016/j.molp.2016.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/08/2023]
Abstract
Formins are conserved regulators of actin cytoskeletal organization and dynamics that have been implicated to be important for cell division and cell polarity. The mechanism by which diverse formins regulate actin dynamics in plants is still not well understood. Using in vitro single-molecule imaging technology, we directly observed that the FH1-FH2 domain of an Arabidopsis thaliana formin, AtFH14, processively attaches to the barbed end of actin filaments as a dimer and slows their elongation rate by 90%. The attachment persistence of FH1-FH2 is concentration dependent. Furthermore, by use of the triple-color total internal reflection fluorescence microscopy, we found that ABP29, a barbed-end capping protein, competes with FH1-FH2 at the filament barbed end, where its binding is mutually exclusive with AtFH14. In the presence of different plant profilin isoforms, FH1-FH2 enhances filament elongation rates from about 10 to 42 times. Filaments buckle when FH1-FH2 is anchored specifically to cover slides, further indicating that AtFH14 moves processively on the elongating barbed end. At high concentration, AtFH14 bundles actin filaments randomly into antiparallel or parallel spindle-like structures; however, the FH1-FH2-mediated bundles become thinner and longer in the presence of plant profilins. This is the direct demonstration of a processive formin from plants. Our results also illuminate the molecular mechanism of AtFH14 in regulating actin dynamics via association with profilin.
Collapse
Affiliation(s)
- Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhanhong Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Research Building, West Lafayette, IN 47907-2064, USA
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
27
|
Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:488-504. [PMID: 26738547 DOI: 10.1093/pcp/pcv209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/24/2015] [Indexed: 05/03/2023]
Abstract
Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Colombian Institute for Agricultural Research-CORPOICA-Turipana, Km 13 via Monteria, Cereté, Cordoba, Colombia Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 586/11, CZ 783 71 Olomouc-Holice, Czech Republic
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Lenka Stillerová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Petra Schiebertová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Michal Grunt
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| |
Collapse
|
28
|
Shevchenko G. Participation of proteins binding both actin filaments and microtubules in higher plant cell growth. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271504009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Gressin L, Guillotin A, Guérin C, Blanchoin L, Michelot A. Architecture dependence of actin filament network disassembly. Curr Biol 2015; 25:1437-47. [PMID: 25913406 DOI: 10.1016/j.cub.2015.04.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Turnover of actin networks in cells requires the fast disassembly of aging actin structures. While ADF/cofilin and Aip1 have been identified as central players, how their activities are modulated by the architecture of the networks remains unknown. Using our ability to reconstitute a diverse array of cellular actin organizations, we found that ADF/cofilin binding and ADF/cofilin-mediated disassembly both depend on actin geometrical organization. ADF/cofilin decorates strongly and stabilizes actin cables, whereas its weaker interaction to Arp2/3 complex networks is correlated with their dismantling and their reorganization into stable architectures. Cooperation of ADF/cofilin with Aip1 is necessary to trigger the full disassembly of all actin filament networks. Additional experiments performed at the single-molecule level indicate that this cooperation is optimal above a threshold of 23 molecules of ADF/cofilin bound as clusters along an actin filament. Our results indicate that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. Our data support a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.
Collapse
Affiliation(s)
- Laurène Gressin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Audrey Guillotin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Christophe Guérin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Laurent Blanchoin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| | - Alphée Michelot
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| |
Collapse
|
30
|
Abstract
Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and
| | | | | |
Collapse
|
31
|
Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments. Mol Cell Biol 2014; 34:3053-65. [PMID: 24934443 DOI: 10.1128/mcb.00651-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking.
Collapse
|
32
|
Mohan K, Purnapatra SB, Mondal PP. Three dimensional fluorescence imaging using multiple light-sheet microscopy. PLoS One 2014; 9:e96551. [PMID: 24911061 PMCID: PMC4050046 DOI: 10.1371/journal.pone.0096551] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/08/2014] [Indexed: 01/29/2023] Open
Abstract
We developed a multiple light-sheet microscopy (MLSM) system capable of 3D fluorescence imaging. Employing spatial filter in the excitation arm of a SPIM system, we successfully generated multiple light-sheets. This improves upon the existing SPIM system and is capable of 3D volume imaging by simultaneously illuminating multiple planes in the sample. Theta detection geometry is employed for data acquisition from multiple specimen layers. This detection scheme inherits many advantages including, background reduction, cross-talk free fluorescence detection and high-resolution at long working distance. Using this technique, we generated equi-intense light-sheets of thickness approximately with an inter-sheet separation of . Moreover, the light-sheets generated by MLSM is found to be 2 times thinner than the state-of-art SPIM system. Imaging of fluorescently coated yeast cells of size (encaged in Agarose gel-matrix) is achieved. Proposed imaging technique may accelerate the field of fluorescence microscopy, cell biology and biophotonics.
Collapse
Affiliation(s)
- Kavya Mohan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Subhajit B. Purnapatra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Partha Pratim Mondal
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Applied Photonics Initiative, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
33
|
Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 2014; 94:235-63. [PMID: 24382887 DOI: 10.1152/physrev.00018.2013] [Citation(s) in RCA: 870] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.
Collapse
|
34
|
Hoffmann C, Moes D, Dieterle M, Neumann K, Moreau F, Tavares Furtado A, Dumas D, Steinmetz A, Thomas C. Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1. J Cell Sci 2014; 127:583-98. [PMID: 24284066 DOI: 10.1242/jcs.134536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crosslinking of actin filaments into bundles is essential for the assembly and stabilization of specific cytoskeletal structures. However, relatively little is known about the molecular mechanisms underlying actin bundle formation. The two LIM-domain-containing proteins define a novel and evolutionarily conserved family of actin-bundling proteins whose actin-binding and -crosslinking activities primarily rely on their LIM domains. Using TIRF microscopy, we describe real-time formation of actin bundles induced by tobacco NtWLIM1 in vitro. We show that NtWLIM1 binds to single filaments and subsequently promotes their interaction and zippering into tight bundles of mixed polarity. NtWLIM1-induced bundles grew by both elongation of internal filaments and addition of preformed fragments at their extremities. Importantly, these data are highly consistent with the modes of bundle formation and growth observed in transgenic Arabidopsis plants expressing a GFP-fused Arabidopsis AtWLIM1 protein. Using two complementary live cell imaging approaches, a close relationship between NtWLIM1 subcellular localization and self-association was established. Indeed, both BiFC and FLIM-FRET data revealed that, although unstable NtWLIM1 complexes can sporadically form in the cytosol, stable complexes concentrate along the actin cytoskeleton. Remarkably, disruption of the actin cytoskeleton significantly impaired self-association of NtWLIM1. In addition, biochemical analyses support the idea that F-actin facilitates the switch of purified recombinant NtWLIM1 from a monomeric to a di- or oligomeric state. On the basis of our data, we propose a model in which actin binding promotes the formation and stabilization of NtWLIM1 complexes, which in turn might drive the crosslinking of actin filaments.
Collapse
Affiliation(s)
- Céline Hoffmann
- Centre de Recherche Public-Santé, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jia H, Li J, Zhu J, Fan T, Qian D, Zhou Y, Wang J, Ren H, Xiang Y, An L. Arabidopsis CROLIN1, a novel plant actin-binding protein, functions in cross-linking and stabilizing actin filaments. J Biol Chem 2013; 288:32277-32288. [PMID: 24072702 DOI: 10.1074/jbc.m113.483594] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments.
Collapse
Affiliation(s)
- Honglei Jia
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jisheng Li
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingen Zhu
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tingting Fan
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuelong Zhou
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiaojiao Wang
- the Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- the Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yun Xiang
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lizhe An
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
36
|
Junemann A, Winterhoff M, Nordholz B, Rottner K, Eichinger L, Gräf R, Faix J. ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells. Eur J Cell Biol 2013; 92:201-12. [PMID: 23906540 DOI: 10.1016/j.ejcb.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Abstract
Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of β-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development.
Collapse
Affiliation(s)
- Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Jaiswal R, Breitsprecher D, Collins A, Corrêa IR, Xu MQ, Goode BL. The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol 2013; 23:1373-9. [PMID: 23850281 DOI: 10.1016/j.cub.2013.06.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/25/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022]
Abstract
Filopodia are slender cellular protrusions that dynamically extend and retract to facilitate directional cell migration, pathogen sensing, and cell-cell adhesion. Each filopodium contains a rigid and organized bundle of parallel actin filaments, which are elongated at filopodial tips by formins and Ena/VASP proteins. However, relatively little is known about how the actin filaments in the filopodial shaft are spatially organized to form a bundle with appropriate dimensions and mechanical properties. Here, we report that the mammalian formin Daam1 (Disheveled-associated activator of morphogenesis 1) is a potent actin-bundling protein and localizes all along the filopodial shaft, which differs from other formins that localize specifically to the tips. Silencing of Daam1 led to severe defects in filopodial number, integrity, and architecture, similar to silencing of the bundling protein fascin. This led us to investigate the potential relationship between Daam1 and fascin. Fascin and Daam1 coimmunoprecipitated from cell extracts, and silencing of fascin led to a striking loss of Daam1 localization to filopodial shafts, but not tips. Furthermore, purified fascin bound directly to Daam1, and multicolor single-molecule TIRF imaging revealed that fascin recruited Daam1 to and stabilized Daam1 on actin bundles in vitro. Our results reveal an unanticipated and direct collaboration between Daam1 and fascin in bundling actin, which is required for proper filopodial formation.
Collapse
Affiliation(s)
- Richa Jaiswal
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
38
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
39
|
van Gisbergen PAC, Bezanilla M. Plant formins: membrane anchors for actin polymerization. Trends Cell Biol 2013; 23:227-33. [PMID: 23317636 DOI: 10.1016/j.tcb.2012.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022]
Abstract
In plants, the actin cytoskeleton plays a fundamental role in intracellular transport, cell growth, and morphology. Formins are central regulators of actin polymerization and actin-based processes in many eukaryotes. Plants have a diverse family of formins and this diversity arose early in land plant evolution, probably deriving from family expansion and domain acquisition. Recently, formins from different plant lineages have been studied and the focus of these studies is beginning to shift from biochemical characterization to in vivo function. In vivo studies have shown that distinct biochemical activities confer specific cellular functions. Despite these differences, many plant formins have in common a direct link to the plasma membrane, suggesting that formins in plants are important links between the plasma membrane and actin remodeling.
Collapse
|
40
|
Abstract
Two recent studies highlight how tandems of previously described actin nucleators collaborate to produce new actin filaments. One key player in these collaborations is formin, which appears to function as a modulator of filament elongation.
Collapse
Affiliation(s)
- Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire et Végétale, institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| | | |
Collapse
|
41
|
Rosero A, Žárský V, Cvrčková F. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64. [PMID: 23202131 PMCID: PMC3542049 DOI: 10.1093/jxb/ers351] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Zheng Y, Xin H, Lin J, Liu CM, Huang S. An Arabidopsis class II formin, AtFH19, nucleates actin assembly, binds to the barbed end of actin filaments, and antagonizes the effect of AtFH1 on actin dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:800-13. [PMID: 22947203 DOI: 10.1111/j.1744-7909.2012.01160.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Formin is a major protein responsible for regulating the nucleation of actin filaments, and as such, it permits the cell to control where and when to assemble actin arrays. It is encoded by a multigene family comprising 21 members in Arabidopsis thaliana. The Arabidopsis formins can be separated into two phylogenetically-distinct classes: there are 11 class I formins and 10 class II formins. Significant questions remain unanswered regarding the molecular mechanism of actin nucleation and elongation stimulated by each formin isovariant, and how the different isovariants coordinate to regulate actin dynamics in cells. Here, we characterize a class II formin, AtFH19, biochemically. We found that AtFH19 retains all general properties of the formin family, including nucleation and barbed end capping activity. It can also generate actin filaments from a pool of actin monomers bound to profilin. However, both the nucleation and barbed end capping activities of AtFH19 are less efficient compared to those of another well-characterized formin, AtFH1. Interestingly, AtFH19 FH1FH2 competes with AtFH1 FH1FH2 in binding actin filament barbed ends, and inhibits the effect of AtFH1 FH1FH2 on actin. We thus propose a mechanism in which two quantitatively different formins coordinate to regulate actin dynamics by competing for actin filament barbed ends.
Collapse
Affiliation(s)
- Yiyan Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
43
|
Cvrčková F. Formins: emerging players in the dynamic plant cell cortex. SCIENTIFICA 2012; 2012:712605. [PMID: 24278734 PMCID: PMC3820618 DOI: 10.6064/2012/712605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/16/2012] [Indexed: 05/11/2023]
Abstract
Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague, Czech Republic
| |
Collapse
|
44
|
Thomas C. Bundling actin filaments from membranes: some novel players. FRONTIERS IN PLANT SCIENCE 2012; 3:188. [PMID: 22936939 PMCID: PMC3426786 DOI: 10.3389/fpls.2012.00188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/01/2012] [Indexed: 05/04/2023]
Abstract
Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Collapse
Affiliation(s)
- Clément Thomas
- Laboratory of Molecular and Cellular Oncology, Department of Oncology, Public Research Centre for Health (CRP-Santé)Luxembourg, Luxembourg
| |
Collapse
|
45
|
Wang J, Xue X, Ren H. New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. PROTOPLASMA 2012; 249 Suppl 2:S101-7. [PMID: 22215231 DOI: 10.1007/s00709-011-0368-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/13/2011] [Indexed: 05/03/2023]
Abstract
Formins are well-known as important regulators participating in the organization of the actin cytoskeleton in organisms. For many years in the past, research on plant formins is more difficult than that in other eukaryotic formins and is limited to class I formins. Nevertheless, positive progress has been made in plant formin research recently, especially the investigations on class II formins. New functions of plant formins are identified gradually, such as regulating cell division and affecting diffuse cell expansion. More significantly, plant formins are also verified to interact with microtubules in vivo and in vitro. They may probably function as linking proteins between microtubules and microfilaments to participate in various cellular processes.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|
46
|
Skillman KM, Daher W, Ma CI, Soldati-Favre D, Sibley LD. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro. Biochemistry 2012; 51:2486-95. [PMID: 22397711 DOI: 10.1021/bi201704y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apicomplexan parasites employ gliding motility that depends on the polymerization of parasite actin filaments for host cell entry. Despite this requirement, parasite actin remains almost entirely unpolymerized at steady state; formation of filaments required for motility relies on a small repertoire of actin-binding proteins. Previous studies have shown that apicomplexan formins and profilin exhibit canonical functions on heterologous actins from higher eukaryotes; however, their biochemical properties on parasite actins are unknown. We therefore analyzed the impact of T. gondii profilin (TgPRF) and FH1-FH2 domains of two formin isoforms in T. gondii (TgFRM1 and TgFRM2) on the polymerization of T. gondii actin (TgACTI). Our findings based on in vitro assays demonstrate that TgFRM1-FH1-FH2 and TgFRM2-FH1-FH2 dramatically enhanced TgACTI polymerization in the absence of profilin, making them the sole protein factors known to initiate polymerization of this normally unstable actin. In addition, T. gondii formin domains were shown to both initiate polymerization and induce bundling of TgACTI filaments; however, they did not rely on TgPRF for these activities. In contrast, TgPRF sequestered TgACTI monomers, thus inhibiting polymerization even in the presence of formins. Collectively, these findings provide insight into the unusual control mechanisms of actin dynamics within the parasite.
Collapse
Affiliation(s)
- Kristen M Skillman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | | | | | | | | |
Collapse
|
47
|
Zhang W, Zhao Y, Guo Y, Ye K. Plant actin-binding protein SCAB1 is dimeric actin cross-linker with atypical pleckstrin homology domain. J Biol Chem 2012; 287:11981-90. [PMID: 22356912 DOI: 10.1074/jbc.m111.338525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCAB1 is a novel plant-specific actin-binding protein that binds, bundles, and stabilizes actin filaments and regulates stomatal movement. Here, we dissected the structure and function of SCAB1 by structural and biochemical approaches. We show that SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin and pleckstrin homology (Ig-PH) domain. We determined crystal structures for the CC1 and Ig-PH domains at 1.9 and 1.7 Å resolution, respectively. The CC1 domain adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. The CC2 domain also mediates dimerization. At least one of the coiled coils is required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. The key residues required for actin binding were identified. The PH domain lacks a canonical basic phosphoinositide-binding pocket but can bind weakly to inositol phosphates via a basic surface patch, implying the involvement of inositol signaling in SCAB1 regulation. Our results provide novel insights into the functional organization of SCAB1.
Collapse
Affiliation(s)
- Wei Zhang
- College of Biological Sciences, China Agricultural University, Beijing 10019, China
| | | | | | | |
Collapse
|
48
|
Heimsath EG, Higgs HN. The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends. J Biol Chem 2011; 287:3087-98. [PMID: 22094460 DOI: 10.1074/jbc.m111.312207] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
49
|
Vizcay-Barrena G, Webb SED, Martin-Fernandez ML, Wilson ZA. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5419-28. [PMID: 21865179 PMCID: PMC3223039 DOI: 10.1093/jxb/err212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging.
Collapse
Affiliation(s)
- Gema Vizcay-Barrena
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Stephen E. D. Webb
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
| | - Marisa L. Martin-Fernandez
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Poulter NS, Bosch M, Franklin-Tong VE. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen. ANNALS OF BOTANY 2011; 108:659-75. [PMID: 21320881 PMCID: PMC3170148 DOI: 10.1093/aob/mcr022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca(2+)-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in 'self' pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases. SCOPE Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation. KEY RESULTS Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI. CONCLUSIONS This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.
Collapse
|