1
|
Ottensmeyer J, Esch A, Baeta H, Sieger S, Gupta Y, Rathmann MF, Jeschke A, Jacko D, Schaaf K, Schiffer T, Rahimi B, Lövenich L, Sisto A, van der Ven PFM, Fürst DO, Haas A, Bloch W, Gehlert S, Hoffmann B, Timmerman V, Huesgen PF, Höhfeld J. Force-induced dephosphorylation activates the cochaperone BAG3 to coordinate protein homeostasis and membrane traffic. Curr Biol 2024; 34:4170-4183.e9. [PMID: 39181128 DOI: 10.1016/j.cub.2024.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Proteome maintenance in contracting skeletal and cardiac muscles depends on the chaperone-regulating protein BAG3. Reduced BAG3 activity leads to muscle weakness and heart failure in animal models and patients. BAG3 and its chaperone partners recognize mechanically damaged muscle proteins and initiate their disposal through chaperone-assisted selective autophagy (CASA). However, molecular details of the force-dependent regulation of BAG3 have remained elusive so far. Here, we demonstrate that mechanical stress triggers the dephosphorylation of BAG3 in human muscle and in isolated cells. We identify force-regulated phospho-switches in BAG3 that control CASA complex assembly and CASA activity. Differential proteomics reveal RAB GTPases, which organize membrane traffic and fusion, as dephosphorylation-dependent interactors of BAG3. In fact, RAB7A and RAB11B are shown here to be essential for CASA in skeletal muscle cells. Moreover, BAG3 dephosphorylation is also observed upon induction of mitophagy, suggesting an involvement of the cochaperone in the RAB7A-dependent autophagic engulfment of damaged mitochondria in exercised muscle. Cooperation of BAG3 with RAB7A relies on a direct interaction of both proteins, which is regulated by the nucleotide state of the GTPase and by association with the autophagosome membrane protein LC3B. Finally, we provide evidence that BAG3 and RAB7A also cooperate in non-muscle cells and propose that overactivation of CASA in RAB7A-L129F patients contributes to the loss of peripheral neurons in Charcot-Marie-Tooth neuropathy.
Collapse
Affiliation(s)
- Judith Ottensmeyer
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Alessandra Esch
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Henrique Baeta
- Institute for Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Sandro Sieger
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Yamini Gupta
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Maximilian F Rathmann
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Andreas Jeschke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Bahareh Rahimi
- Institute of Biological Information Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Lukas Lövenich
- Institute of Biological Information Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; Institute of Sport Science, University of Hildesheim, Universitätsplatz 1, 31139 Hildesheim, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Pitter F Huesgen
- Institute for Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
2
|
Toshima JY, Toshima J. Transport mechanisms between the endocytic, recycling, and biosynthetic pathways via endosomes and the trans-Golgi network. Front Cell Dev Biol 2024; 12:1464337. [PMID: 39291266 PMCID: PMC11405242 DOI: 10.3389/fcell.2024.1464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
After the endocytic and biosynthetic pathway converge, they partially share the route to the lysosome/vacuole. Similarly, the endocytic recycling and secretory pathways also partially share the route to the plasma membrane. The interaction of these transport pathways is mediated by endosomes and the trans-Golgi network (TGN), which act as sorting stations in endocytic and biosynthesis pathway, and endosomes has a bidirectional transport to and from the TGN. In mammalian cells endosomes can be largely classified as early/sorting, late, and recycling endosomes, based on their morphological features and localization of Rab family proteins, which are key factors in vesicular trafficking. However, these endosomes do not necessarily represent specific compartments that are comparable among different species. For instance, Rab5 localizes to early endosomes in mammalian cells but is widely localized to early-to-late endosomes in yeast, and to pre-vacuolar endosomes and the TGN in plant cells. The SNARE complexes are also key factors widely conserved among species and localized specifically to the endosomal membrane, but the localization of respective homologs is not necessarily consistent among species. These facts suggest that endosomes should be classified more inclusively across species. Here we reconsider the mammalian endosome system based on findings in budding yeast and other species and discuss the differences and similarities between them.
Collapse
Affiliation(s)
- Junko Y Toshima
- School of Health Science, Tokyo University of Technology, Tokyo, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
4
|
Xing Y, Huang L, Jian Y, Zhang Z, Zhao X, Zhang X, Fu T, Zhang Y, Wang Y, Zhang X. GORASP2 promotes phagophore closure and autophagosome maturation into autolysosomes. Autophagy 2024:1-17. [PMID: 39056394 DOI: 10.1080/15548627.2024.2375785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
As the central hub of the secretory pathway, the Golgi apparatus plays a crucial role in maintaining cellular homeostasis in response to stresses. Recent studies have revealed the involvement of the Golgi tether, GORASP2, in facilitating autophagosome-lysosome fusion by connecting LC3-II and LAMP2 during nutrient starvation. However, the precise mechanism remains elusive. In this study, utilizing super-resolution microscopy, we observed GORASP2 localization on the surface of autophagosomes during glucose starvation. Depletion of GORASP2 hindered phagophore closure by regulating the association between VPS4A and the ESCRT-III component, CHMP2A. Furthermore, we found that GORASP2 controls RAB7A activity by modulating its GEF complex, MON1A-CCZ1, thereby impacting RAB7A's interaction with the HOPS complex. The assembly of both STX17-SNAP29-VAMP8 and YKT6-SNAP29-STX7 SNARE complexes was also attenuated without GORASP2. These findings suggest that GORASP2 helps seal autophagosomes and activate the RAB7A-HOPS-SNAREs membrane fusion machinery for autophagosome maturation, highlighting its membrane tethering function in response to stresses.Abbreviations: BafA1: bafilomycin A1; ESCRT: endosomal sorting complex required for transport; FPP: fluorescence protease protection; GEF: guanine nucleotide exchange factor; GFP: green fluorescent protein; GORASP2: golgi reassembly stacking protein 2; GSB: glucose starvation along with bafilomycin A1; HOPS: homotypic fusion and protein sorting; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; PBS: phosphate-buffered saline; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PK: proteinase K; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SIM: structured illumination microscopy; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Yusheng Xing
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Huang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yannan Jian
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenqian Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaodan Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xing Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingting Fu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yijie Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyan Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
5
|
Füllbrunn N, Nicastro R, Mari M, Griffith J, Herrmann E, Rasche R, Borchers AC, Auffarth K, Kümmel D, Reggiori F, De Virgilio C, Langemeyer L, Ungermann C. The GTPase activating protein Gyp7 regulates Rab7/Ypt7 activity on late endosomes. J Cell Biol 2024; 223:e202305038. [PMID: 38536036 PMCID: PMC10978497 DOI: 10.1083/jcb.202305038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.
Collapse
Affiliation(s)
- Nadia Füllbrunn
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Janice Griffith
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - René Rasche
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
6
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2024. [PMID: 38801098 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kyle M Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Ebbing P De Jong
- Proteomics Core Facility, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
7
|
Feathers JR, Vignogna RC, Fromme JC. Structural basis for Rab6 activation by the Ric1-Rgp1 complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592747. [PMID: 38766083 PMCID: PMC11100747 DOI: 10.1101/2024.05.06.592747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rab GTPases act as molecular switches to regulate organelle homeostasis and membrane trafficking. Rab6 plays a central role in regulating cargo flux through the Golgi and is activated via nucleotide exchange by the Ric1-Rgp1 protein complex. Ric1-Rgp1 is conserved throughout eukaryotes but the structural and mechanistic basis for its function has not been established. Here we report the cryoEM structure of a Ric1-Rgp1-Rab6 complex representing a key intermediate of the nucleotide exchange reaction. This structure reveals the overall architecture of the complex and enabled us to identify interactions critical for proper recognition and activation of Rab6 on the Golgi membrane surface. Ric1-Rgp1 interacts with the nucleotide-binding domain of Rab6 using an uncharacterized helical domain, which we establish as a novel RabGEF domain by identifying residues required for Rab6 nucleotide exchange. Unexpectedly, the complex uses an arrestin fold to interact with the Rab6 hypervariable domain, indicating that interactions with the unstructured C-terminal regions of Rab GTPases may be a common specificity mechanism used by their activators. Collectively, our findings provide a detailed mechanistic understanding of regulated Rab6 activation at the Golgi.
Collapse
Affiliation(s)
- J. Ryan Feathers
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: 201 Schultz Laboratory, Princeton University, Princeton, NJ 08544 USA
| | - Ryan C. Vignogna
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
8
|
Watanabe H, Urano S, Kikuchi N, Kubo Y, Kikuchi A, Gomi K, Shintani T. Ykt6 functionally overlaps with vacuolar and exocytic R-SNAREs in the yeast Saccharomyces cerevisiae. J Biol Chem 2024; 300:107274. [PMID: 38588809 PMCID: PMC11091695 DOI: 10.1016/j.jbc.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.
Collapse
Affiliation(s)
- Hayate Watanabe
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shingo Urano
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nozomi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yurika Kubo
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayumi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuya Gomi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takahiro Shintani
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
9
|
Sabitzki R, Roßmann AL, Schmitt M, Flemming S, Guillén-Samander A, Behrens HM, Jonscher E, Höhn K, Fröhlke U, Spielmann T. Role of Rabenosyn-5 and Rab5b in host cell cytosol uptake reveals conservation of endosomal transport in malaria parasites. PLoS Biol 2024; 22:e3002639. [PMID: 38820535 PMCID: PMC11168701 DOI: 10.1371/journal.pbio.3002639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
Vesicular trafficking, including secretion and endocytosis, plays fundamental roles in the unique biology of Plasmodium falciparum blood-stage parasites. Endocytosis of host cell cytosol (HCC) provides nutrients and room for parasite growth and is critical for the action of antimalarial drugs and parasite drug resistance. Previous work showed that PfVPS45 functions in endosomal transport of HCC to the parasite's food vacuole, raising the possibility that malaria parasites possess a canonical endolysosomal system. However, the seeming absence of VPS45-typical functional interactors such as rabenosyn 5 (Rbsn5) and the repurposing of Rab5 isoforms and other endolysosomal proteins for secretion in apicomplexans question this idea. Here, we identified a parasite Rbsn5-like protein and show that it functions with VPS45 in the endosomal transport of HCC. We also show that PfRab5b but not PfRab5a is involved in the same process. Inactivation of PfRbsn5L resulted in PI3P and PfRab5b decorated HCC-filled vesicles, typical for endosomal compartments. Overall, this indicates that despite the low sequence conservation of PfRbsn5L and the unusual N-terminal modification of PfRab5b, principles of endosomal transport in malaria parasite are similar to that of model organisms. Using a conditional double protein inactivation system, we further provide evidence that the PfKelch13 compartment, an unusual apicomplexa-specific endocytosis structure at the parasite plasma membrane, is connected upstream of the Rbsn5L/VPS45/Rab5b-dependent endosomal route. Altogether, this work indicates that HCC uptake consists of a highly parasite-specific part that feeds endocytosed material into an endosomal system containing more canonical elements, leading to the delivery of HCC to the food vacuole.
Collapse
Affiliation(s)
- Ricarda Sabitzki
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anna-Lena Roßmann
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marius Schmitt
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Flemming
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Ernst Jonscher
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Electron Microscopy Unit, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulrike Fröhlke
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
10
|
Ying R, Li C, Li H, Zou J, Hu M, Hong Q, Shen Y, Hou L, Cheng H, Zhou R. RPGR is a guanine nucleotide exchange factor for the small GTPase RAB37 required for retinal function via autophagy regulation. Cell Rep 2024; 43:114010. [PMID: 38536817 DOI: 10.1016/j.celrep.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Although the small GTPase RAB37 acts as an organizer of autophagosome biogenesis, the upstream regulatory mechanism of autophagy via guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange in maintaining retinal function has not been determined. We found that retinitis pigmentosa GTPase regulator (RPGR) is a guanine nucleotide exchange factor that activates RAB37 by accelerating GDP-to-GTP exchange. RPGR directly interacts with RAB37 via the RPGR-RCC1-like domain to promote autophagy through stimulating exchange. Rpgr knockout (KO) in mice leads to photoreceptor degeneration owing to autophagy impairment in the retina. Notably, the retinopathy phenotypes of Rpgr KO retinas are rescued by the adeno-associated virus-mediated transfer of pre-trans-splicing molecules, which produce normal Rpgr mRNAs via trans-splicing in the Rpgr KO retinas. This rescue upregulates autophagy through the re-expression of RPGR in KO retinas to accelerate GDP-to-GTP exchange; thus, retinal homeostasis reverts to normal. Taken together, these findings provide an important missing link for coordinating RAB37 GDP-GTP exchange via the RPGR and retinal homeostasis by autophagy regulation.
Collapse
Affiliation(s)
- Ruhong Ying
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Cong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Huirong Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325003, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Qiang Hong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yin Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ling Hou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325003, China.
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Koike S, Jahn R. Rab GTPases and phosphoinositides fine-tune SNAREs dependent targeting specificity of intracellular vesicle traffic. Nat Commun 2024; 15:2508. [PMID: 38509070 PMCID: PMC10954720 DOI: 10.1038/s41467-024-46678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
In the secretory pathway the destination of trafficking vesicles is determined by specific proteins that, with the notable exception of SNAREs, are recruited from soluble pools. Previously we have shown that microinjected proteoliposomes containing early or late endosomal SNAREs, respectively, are targeted to the corresponding endogenous compartments, with targeting specificity being dependent on the recruitment of tethering factors by some of the SNAREs. Here, we show that targeting of SNARE-containing liposomes is refined upon inclusion of polyphosphoinositides and Rab5. Intriguingly, targeting specificity is dependent on the concentration of PtdIns(3)P, and on the recruitment of PtdIns(3)P binding proteins such as rabenosyn-5 and PIKfyve, with conversion of PtdIns(3)P into PtdIns(3,5)P2 re-routing the liposomes towards late endosomes despite the presence of GTP-Rab5 and early endosomal SNAREs. Our data reveal a complex interplay between permissive and inhibitory targeting signals that sharpen a basic targeting and fusion machinery for conveying selectivity in intracellular membrane traffic.
Collapse
Affiliation(s)
- Seiichi Koike
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- University of Toyama, Laboratory of Molecular and Cellular Biology, Department of Life Sciences and Bioengineering, 3190 Gofuku, Toyama City, 930-8555, Japan
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
12
|
Yu Y, Chen D, Farmer SM, Xu S, Rios B, Solbach A, Ye X, Ye L, Zhang S. Endolysosomal trafficking controls yolk granule biogenesis in vitellogenic Drosophila oocytes. PLoS Genet 2024; 20:e1011152. [PMID: 38315726 PMCID: PMC10898735 DOI: 10.1371/journal.pgen.1011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/27/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.
Collapse
Affiliation(s)
- Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, People’s Republic of China
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Beatriz Rios
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
13
|
O'Meara MJ, Rapala JR, Nichols CB, Alexandre AC, Billmyre RB, Steenwyk JL, Alspaugh JA, O'Meara TR. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair. PLoS Genet 2024; 20:e1011158. [PMID: 38359090 PMCID: PMC10901339 DOI: 10.1371/journal.pgen.1011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.
Collapse
Affiliation(s)
- Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jackson R Rapala
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - A Christina Alexandre
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - R Blake Billmyre
- Departments of Pharmaceutical and Biomedical Sciences/Infectious Disease, College of Pharmacy/College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jacob L Steenwyk
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Wang X, Hu M, Chen J, Lou X, Zhang H, Li M, Cheng J, Ma T, Xiong J, Gao R, Chen X, Wang J. Key roles of autophagosome/endosome maturation mediated by Syntaxin17 in methamphetamine-induced neuronal damage in mice. Mol Med 2024; 30:4. [PMID: 38172666 PMCID: PMC10765725 DOI: 10.1186/s10020-023-00765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Autophagic defects are involved in Methamphetamine (Meth)-induced neurotoxicity. Syntaxin 17 (Stx17), a member of the SNARE protein family, participating in several stages of autophagy, including autophagosome-late endosome/lysosome fusion. However, the role of Stx17 and potential mechanisms in autophagic defects induced by Meth remain poorly understood. METHODS To address the mechanism of Meth-induced cognitive impairment, the adenovirus (AV) and adeno-associated virus (AAV) were injected into the hippocampus for stereotaxis to overexpress Stx17 in vivo to examine the cognitive ability via morris water maze and novel object recognition. In molecular level, the synaptic injury and autophagic defects were evaluated. To address the Meth induced neuronal damage, the epidermal growth factor receptor (EGFR) degradation assay was performed to evaluate the degradability of the "cargos" mediated by Meth, and mechanistically, the maturation of the vesicles, including autophagosomes and endosomes, were validated by the Co-IP and the GTP-agarose affinity isolation assays. RESULTS Overexpression of Stx17 in the hippocampus markedly rescued the Meth-induced cognitive impairment and synaptic loss. For endosomes, Meth exposure upregulated Rab5 expression and its guanine-nucleotide exchange factor (GEF) (immature endosome), with a commensurate decreased active form of Rab7 (Rab7-GTP) and impeded the binding of Rab7 to CCZ1 (mature endosome); for autophagosomes, Meth treatment elicited a dramatic reduction in the overlap between Stx17 and autophagosomes but increased the colocalization of ATG5 and autophagosomes (immature autophagosomes). After Stx17 overexpression, the Rab7-GTP levels in purified late endosomes were substantially increased in parallel with the elevated mature autophagosomes, facilitating cargo (Aβ42, p-tau, and EGFR) degradation in the vesicles, which finally ameliorated Meth-induced synaptic loss and memory deficits in mice. CONCLUSION Stx17 decrease mediated by Meth contributes to vesicle fusion defects which may ascribe to the immature autophagosomes and endosomes, leading to autophagic dysfunction and finalizes neuronal damage and cognitive impairments. Therefore, targeting Stx17 may be a novel therapeutic strategy for Meth-induced neuronal injury.
Collapse
Affiliation(s)
- Xi Wang
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Miaoyang Hu
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Jingrong Chen
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Xinyu Lou
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Hongchao Zhang
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Muhan Li
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Jie Cheng
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Jianping Xiong
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Xufeng Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China.
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
15
|
Coppola V, Marino I, Warnken U, Falchi M, Pasquini L, Biffoni M, De Maria R, Haas TL. The autophagic protein FYCO1 controls TNFRSF10/TRAIL receptor induced apoptosis and is inactivated by CASP8 (caspase 8). Autophagy 2023; 19:2733-2751. [PMID: 37418591 PMCID: PMC10472876 DOI: 10.1080/15548627.2023.2229656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Apoptosis is a tightly controlled cell death program executed by proteases, the so-called caspases. It plays an important role in tissue homeostasis and is often dysregulated in cancer. Here, we identified FYCO1, a protein that promotes microtubule plus end-directed transport of autophagic and endosomal vesicles as a molecular interaction partner of activated CASP8 (caspase 8). The absence of FYCO1 sensitized cells to basal and TNFSF10/TRAIL-induced apoptosis by receptor accumulation and stabilization of the Death Inducing Signaling Complex (DISC). Loss of FYCO1 resulted in impaired transport of TNFRSF10B/TRAIL-R2/DR5 (TNF receptor superfamily member 10b) to the lysosomes in TNFSF10/TRAIL-stimulated cells. More in detail, we show that FYCO1 interacted via its C-terminal GOLD domain with the CCZ1-MON1A complex, which is necessary for RAB7A activation and for the fusion of autophagosomal/endosomal vesicles with lysosomes. We demonstrated that FYCO1 is a novel and specific CASP8 substrate. The cleavage at aspartate 1306 resulted in the release of the C-terminal GOLD domain, inactivating FYCO1 function, and allowing for the progression of apoptosis. Furthermore, the lack of FYCO1 resulted in a stronger and prolonged formation of the TNFRSF1A/TNF-R1 signaling complex. Thus, FYCO1 limits the ligand-induced and steady-state signaling of TNFR-superfamily members, providing a control mechanism that fine-tunes both apoptotic and inflammatory answers.Abbreviations: AP: affinity purification; CHX: cycloheximide; co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; DISC: death-inducing signaling complex; DR: death receptors; doxy: doxycycline; GEF: guanine nucleotide exchange factor; ind: inducible; KD: knockdown; KO: knockout; MS: mass spectrometry; shRNA: short hairpin RNA; siRNA: small interfering RNA; TIP: two-step co-immunoprecipitation; WB: western blot.
Collapse
Affiliation(s)
- Valeria Coppola
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, RM, Italy
| | - Ilaria Marino
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, RM, Italy
| | - Uwe Warnken
- Functional Proteomic Analysis, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany
| | | | - Luca Pasquini
- Servizio Tecnico Scientifico Grandi Strumentazioni E Core Facilities – FAST, Rome, RM, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, RM, Italy
| | - Ruggero De Maria
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, RM, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, RM, Italy
| | - Tobias Longin Haas
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, RM, Italy
- Section of Immunotherapy, IIGM-Italian Institute for Genomic Medicine, Candiolo, TO, Italy
| |
Collapse
|
16
|
Mulligan RJ, Winckler B. Regulation of Endosomal Trafficking by Rab7 and Its Effectors in Neurons: Clues from Charcot-Marie-Tooth 2B Disease. Biomolecules 2023; 13:1399. [PMID: 37759799 PMCID: PMC10527268 DOI: 10.3390/biom13091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Intracellular endosomal trafficking controls the balance between protein degradation and synthesis, i.e., proteostasis, but also many of the cellular signaling pathways that emanate from activated growth factor receptors after endocytosis. Endosomal trafficking, sorting, and motility are coordinated by the activity of small GTPases, including Rab proteins, whose function as molecular switches direct activity at endosomal membranes through effector proteins. Rab7 is particularly important in the coordination of the degradative functions of the pathway. Rab7 effectors control endosomal maturation and the properties of late endosomal and lysosomal compartments, such as coordination of recycling, motility, and fusion with downstream compartments. The spatiotemporal regulation of endosomal receptor trafficking is particularly challenging in neurons because of their enormous size, their distinct intracellular domains with unique requirements (dendrites vs. axons), and their long lifespans as postmitotic, differentiated cells. In Charcot-Marie-Tooth 2B disease (CMT2B), familial missense mutations in Rab7 cause alterations in GTPase cycling and trafficking, leading to an ulcero-mutilating peripheral neuropathy. The prevailing hypothesis to account for CMT2B pathologies is that CMT2B-associated Rab7 alleles alter endocytic trafficking of the neurotrophin NGF and its receptor TrkA and, thereby, disrupt normal trophic signaling in the peripheral nervous system, but other Rab7-dependent pathways are also impacted. Here, using TrkA as a prototypical endocytic cargo, we review physiologic Rab7 effector interactions and control in neurons. Since neurons are among the largest cells in the body, we place particular emphasis on the temporal and spatial regulation of endosomal sorting and trafficking in neuronal processes. We further discuss the current findings in CMT2B mutant Rab7 models, the impact of mutations on effector interactions or balance, and how this dysregulation may confer disease.
Collapse
Affiliation(s)
- Ryan J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
17
|
Cottarelli A, Shahriar S, Arac A, Glendinning M, Tuohy MC, Prochilo G, Neal JB, Edinger AL, Agalliu D. Rab7a activation promotes degradation of select tight junction proteins at the blood-brain barrier after ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555373. [PMID: 37693406 PMCID: PMC10491261 DOI: 10.1101/2023.08.29.555373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The stability of tight junctions (TJs) between endothelial cells (ECs) is essential to maintain blood-brain barrier (BBB) function in the healthy brain. Following ischemic stroke, TJ strand dismantlement due to protein degradation leads to BBB dysfunction, yet the mechanisms driving this process are poorly understood. Here, we show that endothelial-specific ablation of Rab7a, a small GTPase that regulates endolysosomal protein degradation, reduces stroke-induced TJ strand disassembly resulting in decreased paracellular BBB permeability and improved neuronal outcomes. Two pro-inflammatory cytokines, TNFα and IL1β, but not glucose and oxygen deprivation, induce Rab7a activation via Ccz1 in brain ECs in vitro, leading to increased TJ protein degradation and impaired paracellular barrier function. Silencing Rab7a in brain ECs in vitro reduces cytokine-driven endothelial barrier dysfunction by suppressing degradation of a key BBB TJ protein, Claudin-5. Thus, Rab7a activation by inflammatory cytokines promotes degradation of select TJ proteins leading to BBB dysfunction after ischemic stroke.
Collapse
Affiliation(s)
- Azzurra Cottarelli
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sanjid Shahriar
- Departments of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, University of California in Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael Glendinning
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mary Claire Tuohy
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Grace Prochilo
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jason B. Neal
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Baylor Scott and White Health, Dallas, TX, 75226, USA
| | - Aimee L. Edinger
- Departments of Developmental and Cell Biology and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
18
|
O’Meara MJ, Rapala JR, Nichols CB, Alexandre C, Billmyre RB, Steenwyk JL, Alspaugh JA, O’Meara TR. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553567. [PMID: 37645941 PMCID: PMC10462067 DOI: 10.1101/2023.08.17.553567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.
Collapse
Affiliation(s)
- Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jackson R. Rapala
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Connie B. Nichols
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina Alexandre
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - R. Blake Billmyre
- Departments of Pharmaceutical and Biomedical Sciences/Infectious Disease, College of Pharmacy/College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Wilmes S, Kümmel D. Insights into the role of the membranes in Rab GTPase regulation. Curr Opin Cell Biol 2023; 83:102177. [PMID: 37327649 DOI: 10.1016/j.ceb.2023.102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Rab GTPases are molecular switches with essential roles in mediating vesicular trafficking and establishing organelle identity. The conversion from the inactive, cytosolic to the membrane-bound, active species and back is tightly controlled by regulatory proteins. Recently, the roles of membrane properties and lipid composition of different target organelles in determining the activity state of Rabs have come to light. The investigation of several Rab guanine nucleotide exchange factors (GEFs) has revealed principles of how the recruitment via lipid interactions and the spatial confinement on the membrane surface contribute to spatiotemporal specificity in the Rab GTPase network. This paints an intricate picture of the control mechanisms in Rab activation and highlights the importance of the membrane lipid code in the organization of the endomembrane system.
Collapse
Affiliation(s)
- Stephan Wilmes
- University of Münster, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany
| | - Daniel Kümmel
- University of Münster, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
20
|
Yong X, Jia G, Liu Z, Zhou C, Yi J, Tang Y, Chen L, Chen L, Wang Y, Sun Q, Billadeau D, Su Z, Jia D. Cryo-EM structure of the Mon1-Ccz1-RMC1 complex reveals molecular basis of metazoan RAB7A activation. Proc Natl Acad Sci U S A 2023; 120:e2301725120. [PMID: 37216550 PMCID: PMC10235969 DOI: 10.1073/pnas.2301725120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1-Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1-Ccz1-RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1-Ccz1-RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1-Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Guowen Jia
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University610044Chengdu, China
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Chunzhuang Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Jiamin Yi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Li Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Yuan Wang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University610044Chengdu, China
| | - Qingxiang Sun
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University610044Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN55905
| | - Zhaoming Su
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University610044Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| |
Collapse
|
21
|
Herrmann E, Schäfer JH, Wilmes S, Ungermann C, Moeller A, Kümmel D. Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Proc Natl Acad Sci U S A 2023; 120:e2301908120. [PMID: 37155863 PMCID: PMC10193976 DOI: 10.1073/pnas.2301908120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
The endosomal system of eukaryotic cells represents a central sorting and recycling compartment linked to metabolic signaling and the regulation of cell growth. Tightly controlled activation of Rab GTPases is required to establish the different domains of endosomes and lysosomes. In metazoans, Rab7 controls endosomal maturation, autophagy, and lysosomal function. It is activated by the guanine nucleotide exchange factor (GEF) complex Mon1-Ccz1-Bulli (MCBulli) of the tri-longin domain (TLD) family. While the Mon1 and Ccz1 subunits have been shown to constitute the active site of the complex, the role of Bulli remains elusive. We here present the cryo-electron microscopy (cryo-EM) structure of MCBulli at 3.2 Å resolution. Bulli associates as a leg-like extension at the periphery of the Mon1 and Ccz1 heterodimers, consistent with earlier reports that Bulli does not impact the activity of the complex or the interactions with recruiter and substrate GTPases. While MCBulli shows structural homology to the related ciliogenesis and planar cell polarity effector (Fuzzy-Inturned-Wdpcp) complex, the interaction of the TLD core subunits Mon1-Ccz1 and Fuzzy-Inturned with Bulli and Wdpcp, respectively, is remarkably different. The variations in the overall architecture suggest divergent functions of the Bulli and Wdpcp subunits. Based on our structural analysis, Bulli likely serves as a recruitment platform for additional regulators of endolysosomal trafficking to sites of Rab7 activation.
Collapse
Affiliation(s)
- Eric Herrmann
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| | - Jan-Hannes Schäfer
- Department of Biology/Chemistry, Structural Biology section, Osnabrück University, 49076Osnabrück, Germany
| | - Stephan Wilmes
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section, Osnabrück University, 49076Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück, Osnabrück University, 49076Osnabrück, Germany
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology section, Osnabrück University, 49076Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück, Osnabrück University, 49076Osnabrück, Germany
| | - Daniel Kümmel
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| |
Collapse
|
22
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
23
|
Satoh AO, Fujioka Y, Kashiwagi S, Yoshida A, Fujioka M, Sasajima H, Nanbo A, Amano M, Ohba Y. Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation. Cell Rep 2023; 42:112229. [PMID: 36906852 DOI: 10.1016/j.celrep.2023.112229] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.
Collapse
Affiliation(s)
- Aya O Satoh
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Sayaka Kashiwagi
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Aiko Yoshida
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Mari Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Hitoshi Sasajima
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Maho Amano
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
24
|
Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife 2023; 12:e82227. [PMID: 36861960 PMCID: PMC10023159 DOI: 10.7554/elife.82227] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Anna Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Rebecca J Androwski
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Andres Morera
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Peter J Schweinsberg
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
- Rutgers Center for Lipid ResearchNew BrunswickUnited States
| |
Collapse
|
25
|
Listeria InlB Expedites Vacuole Escape and Intracellular Proliferation by Promoting Rab7 Recruitment via Vps34. mBio 2023; 14:e0322122. [PMID: 36656016 PMCID: PMC9973280 DOI: 10.1128/mbio.03221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.
Collapse
|
26
|
Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts. Nat Commun 2023; 14:906. [PMID: 36810735 PMCID: PMC9945426 DOI: 10.1038/s41467-023-36484-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.
Collapse
|
27
|
Schleinitz A, Pöttgen LA, Keren-Kaplan T, Pu J, Saftig P, Bonifacino JS, Haas A, Jeschke A. Consecutive functions of small GTPases guide HOPS-mediated tethering of late endosomes and lysosomes. Cell Rep 2023; 42:111969. [PMID: 36640308 PMCID: PMC10018218 DOI: 10.1016/j.celrep.2022.111969] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The transfer of endocytosed cargoes to lysosomes (LYSs) requires HOPS, a multiprotein complex that tethers late endosomes (LEs) to LYSs before fusion. Many proteins interact with HOPS on LEs/LYSs. However, it is not clear whether these HOPS interactors localize to LEs or LYSs or how they participate in tethering. Here, we biochemically characterized endosomes purified from untreated or experimentally manipulated cells to put HOPS and interacting proteins in order and to establish their functional interdependence. Our results assign Rab2a and Rab7 to LEs and Arl8 and BORC to LYSs and show that HOPS drives LE-LYS fusion by bridging late endosomal Rab2a with lysosomal BORC-anchored Arl8. We further show that Rab7 is absent from sites of HOPS-dependent tethering but promotes fusion by moving LEs toward LYSs via dynein. Thus, our study identifies the topology of the machinery for LE-LYS tethering and elucidates the role of different small GTPases in the process.
Collapse
Affiliation(s)
| | | | - Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, and Autophagy, Inflammation, and Metabolism, Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paul Saftig
- Biochemical Institute, University of Kiel, 24118 Kiel, Germany
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Albert Haas
- Cell Biology Institute, University of Bonn, 53121 Bonn, Germany.
| | - Andreas Jeschke
- Cell Biology Institute, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
28
|
Kashikuma R, Nagano M, Shimamura H, Nukaga K, Katsumata I, Y. Toshima J, Toshima J. Role of phosphatidylserine in the localization of cell surface membrane proteins in yeast. Cell Struct Funct 2023; 48:19-30. [PMID: 36517018 PMCID: PMC10725852 DOI: 10.1247/csf.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylserine (PS) is a constituent of the cell membrane, being especially abundant in the cytoplasmic leaflet, and plays important roles in a number of cellular functions, including the formation of cell polarity and intracellular vesicle transport. Several studies in mammalian cells have suggested the role of PS in retrograde membrane traffic through endosomes, but in yeast, where PS is localized primarily at the plasma membrane (PM), the role in intracellular organelles remains unclear. Additionally, it is reported that polarized endocytic site formation is defective in PS-depleted yeast cells, but the role in the endocytic machinery has not been well understood. In this study, to clarify the role of PS in the endocytic pathway, we analyzed the effect of PS depletion on endocytic internalization and post-endocytic transport. We demonstrated that in cell lacking the PS synthase Cho1p (cho1Δ cell), binding and internalization of mating pheromone α-factor into the cell was severely impaired. Interestingly, the processes of endocytosis were mostly unaffected, but protein transport from the trans-Golgi network (TGN) to the PM was defective and localization of cell surface proteins was severely impaired in cho1Δ cells. We also showed that PS accumulated in intracellular compartments in cells lacking Rcy1p and Vps52p, both of which are implicated in endosome-to-PM transport via the TGN, and that the number of Snx4p-residing endosomes was increased in cho1Δ cells. These results suggest that PS plays a crucial role in the transport and localization of cell surface membrane proteins.Key words: phosphatidylserine, endocytosis, recycling, vesicle transport.
Collapse
Affiliation(s)
- Ryutaro Kashikuma
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroki Shimamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kouya Nukaga
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ikumi Katsumata
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Junko Y. Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
29
|
Herrmann E, Langemeyer L, Auffarth K, Ungermann C, Kümmel D. Targeting of the Mon1-Ccz1 Rab guanine nucleotide exchange factor to distinct organelles by a synergistic protein and lipid code. J Biol Chem 2023; 299:102915. [PMID: 36649906 PMCID: PMC10124900 DOI: 10.1016/j.jbc.2023.102915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/16/2023] Open
Abstract
Activation of the small GTPase Rab7 by its cognate guanine nucleotide exchange factor Mon1-Ccz1 (MC1) is a key step in the maturation of endosomes and autophagosomes. This process is tightly regulated and subject to precise spatiotemporal control of MC1 localization, but the mechanisms that underly MC1 localization have not been fully elucidated. We here identify and characterize an amphipathic helix in Ccz1, which is required for the function of Mon-Ccz1 in autophagy, but not endosomal maturation. Furthermore, our data show that the interaction of the Ccz1 amphipathic helix with lipid packing defects, binding of Mon1 basic patches to positively charged lipids, and association of MC1 with recruiter proteins collectively govern membrane recruitment of the complex in a synergistic and redundant manner. Membrane binding enhances MC1 activity predominantly by increasing enzyme and substrate concentration on the membrane, but interaction with recruiter proteins can further stimulate the guanine nucleotide exchange factor. Our data demonstrate that specific protein and lipid cues convey the differential targeting of MC1 to endosomes and autophagosomes. In conclusion, we reveal the molecular basis for how MC1 is adapted to recognize distinct target compartments by exploiting the unique biophysical properties of organelle membranes and thus provide a model for how the complex is regulated and activated independently in different functional contexts.
Collapse
Affiliation(s)
- Eric Herrmann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
30
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
31
|
Jongsma MLM, Bakker N, Neefjes J. Choreographing the motor-driven endosomal dance. J Cell Sci 2022; 136:282885. [PMID: 36382597 PMCID: PMC9845747 DOI: 10.1242/jcs.259689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.
Collapse
Affiliation(s)
- Marlieke L. M. Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands,Author for correspondence ()
| |
Collapse
|
32
|
Orr A, Wickner W. Sec18 supports membrane fusion by promoting Sec17 membrane association. Mol Biol Cell 2022; 33:ar127. [PMID: 36103252 PMCID: PMC9634978 DOI: 10.1091/mbc.e22-07-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane fusion is driven by Sec17, Sec18, and SNARE zippering. Sec17 bound to SNAREs promotes fusion through its membrane-proximal N-terminal apolar loop domain. At its membrane-distal end, Sec17 serves as a high-affinity receptor for Sec18. At that distance from the fusion site, it has been unclear how Sec18 can aid Sec17 to promote fusion. We now report that Sec18, with ATPγS, lowers the Km of Sec17 for fusion. A C-terminal and membrane-distal Sec17 mutation, L291A,L292A, diminishes Sec17 affinity for Sec18. High levels of wild-type Sec17 or Sec17-L291AL292A show equivalent fusion without Sec18, but Sec18 causes far less fusion enhancement with low levels of Sec17-L291AL292A than with wild-type Sec17. Another mutant, Sec17-F21SM22S, has reduced N-loop apolarity. Only very high levels of this mutant protein support fusion, but Sec18 still lowers the apparent fusion Km for Sec17-F21SM22S. Thus Sec18 stimulates fusion through Sec17 and acts at the well-described interface between Sec18 and Sec17. ATP acts as a ligand to activate Sec18 for Sec17-dependent fusion, but ATP hydrolysis is not required. Even without SNAREs, Sec18 and Sec17 exhibit interdependent stable association with lipids, with several Sec17 bound for each Sec18 hexamer, explaining how Sec18 stabilization of surface-concentrated clusters of Sec17 lowers the Sec17 Km for assembly with SNAREs. Each of the associations, between SNARE complex, Sec18, Sec17, and lipid, helps assemble the fusion machinery.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755,*Address correspondence to: William Wickner ()
| |
Collapse
|
33
|
Hiragi S, Matsui T, Sakamaki Y, Fukuda M. TBC1D18 is a Rab5-GAP that coordinates endosome maturation together with Mon1. J Cell Biol 2022; 221:213520. [PMID: 36197338 PMCID: PMC9539456 DOI: 10.1083/jcb.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
Rab5 and Rab7 are known to regulate endosome maturation, and a Rab5-to-Rab7 conversion mediated by a Rab7 activator, Mon1-Ccz1, is essential for progression of the maturation process. However, the importance and mechanism of Rab5 inactivation during endosome maturation are poorly understood. Here, we report a novel Rab5-GAP, TBC1D18, which is associated with Mon1 and mediates endosome maturation. We found that increased active Rab5 (Rab5 hyperactivation) in addition to reduced active Rab7 (Rab7 inactivation) occurs in the absence of Mon1. We present evidence showing that the severe defects in endosome maturation in Mon1-KO cells are attributable to Rab5 hyperactivation rather than to Rab7 inactivation. We then identified TBC1D18 as a Rab5-GAP by comprehensive screening of TBC-domain-containing Rab-GAPs. Expression of TBC1D18 in Mon1-KO cells rescued the defects in endosome maturation, whereas its depletion attenuated endosome formation and degradation of endocytosed cargos. Moreover, TBC1D18 was found to be associated with Mon1, and it localized in close proximity to lysosomes in a Mon1-dependent manner.
Collapse
Affiliation(s)
- Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan,Correspondence to Takahide Matsui:
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan,Mitsunori Fukuda:
| |
Collapse
|
34
|
Xu L, Zhang X, Zheng D, Chang Y, Zhang F, Wang Y, Huang L. VmMon1-Ccz1 Complex Is Required for Conidiation, Autophagy, and Virulence in Valsa mali. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:906-916. [PMID: 35793146 DOI: 10.1094/mpmi-03-22-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Apple Valsa canker caused by Valsa mali is a serious disease in eastern Asia, especially in China. In our previous proteomics study, monensin sensitivity 1 protein in Valsa mali (VmMon1) was identified to be significantly upregulated during V. mali infection. It was reported Mon1 protein formed a heterodimer called MC (Mon1-Ccz1) complex with caffeine, calcium, and zinc sensitivity 1 protein (Ccz1) in yeast. However, Ccz1 had not been identified in plant-pathogenic fungi such as Fusarium graminearum and Magnaporthe oryzae. Here, we identified a Ccz1 ortholog VmCcz1 in V. mali, by using DELTA-BLAST. The interaction of VmMon1 and VmCcz1 were verified using yeast two-hybrid assay, bimolecular fluorescence complementation, and co-immunoprecipitation assays. Further yeast three-hybrid screenings determined that VmRab7 (Ras-related protein in V. mali) interacted with the MC complex. Targeted gene deletion showed that the ∆VmMon1 and ∆VmCcz1 mutants were defective in vegetative growth, conidiation, and pathogenicity. In addition, both mutants were more sensitive to osmotic and oxidative stresses and intracellular protein transport inhibitors. Cytological examination revealed that the ∆VmMon1 and ∆VmCcz1 mutants were impaired in vacuole fusion and autophagy. More importantly, expression of pectinase genes decreased in both mutants compared with those of the wild type during infection. Overall, our study identified Mon1 and Ccz1 genes in V. mali and provided evidence that VmMon1 and VmCcz1 are critical components that modulate vacuole fusion and autophagy, thereby affecting the development, conidiation, and pathogenicity of V. mali. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yali Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
35
|
Szadkowski D, Carreira LAM, Søgaard-Andersen L. A bipartite, low-affinity roadblock domain-containing GAP complex regulates bacterial front-rear polarity. PLoS Genet 2022; 18:e1010384. [PMID: 36067225 PMCID: PMC9481161 DOI: 10.1371/journal.pgen.1010384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The Ras-like GTPase MglA is a key regulator of front-rear polarity in the rod-shaped Myxococcus xanthus cells. MglA-GTP localizes to the leading cell pole and stimulates assembly of the two machineries for type IV pili-dependent motility and gliding motility. MglA-GTP localization is spatially constrained by its cognate GEF, the RomR/RomX complex, and GAP, the MglB Roadblock-domain protein. Paradoxically, RomR/RomX and MglB localize similarly with low and high concentrations at the leading and lagging poles, respectively. Yet, GEF activity dominates at the leading and GAP activity at the lagging pole by unknown mechanisms. Here, we identify RomY and show that it stimulates MglB GAP activity. The MglB/RomY interaction is low affinity, restricting formation of the bipartite MglB/RomY GAP complex almost exclusively to the lagging pole with the high MglB concentration. Our data support a model wherein RomY, by forming a low-affinity complex with MglB, ensures that the high MglB/RomY GAP activity is confined to the lagging pole where it dominates and outcompetes the GEF activity of the RomR/RomX complex. Thereby, MglA-GTP localization is constrained to the leading pole establishing front-rear polarity. Bacterial cells are spatially highly organized with proteins localizing to distinct subcellular locations. This spatial organization, or cell polarity, is important for many cellular processes including motility. The rod-shaped M. xanthus cells move with defined leading and lagging cell poles. This front-rear polarity is brought about by the polarity module, which consists of the small Ras-like GTPase MglA, its GEF (the RomR/RomX complex) and its GAP (MglB). Specifically, MglA-GTP localizes to the leading pole and stimulates assembly of the motility machineries. MglA-GTP localization, in turn, is spatially constrained by its GEF and GAP. Paradoxically, the RomR/RomX GEF and MglB GAP localize similarly with low and high concentrations at the leading and lagging poles, respectively. Yet, GEF activity dominates at the leading and GAP activity at the lagging pole. Here, we identify RomY and show that it stimulates MglB GAP activity. Interestingly, the MglB/RomY interaction is low affinity. Consequently, MglB/RomY complex formation almost exclusively occurs at the lagging cell pole with the high MglB concentration. Thus, the key to precisely stimulating MglB GAP activity only at the lagging pole is that the MglB/RomY interaction is low-affinity, ultimately restricting MglA-GTP to the leading pole.
Collapse
Affiliation(s)
- Dobromir Szadkowski
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 2022; 110:2386-2408. [PMID: 35561676 PMCID: PMC9357093 DOI: 10.1016/j.neuron.2022.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Jiang D, He Y, Zhou X, Cao Z, Pang L, Zhong S, Jiang L, Li R. Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. PLANT PHYSIOLOGY 2022; 189:1416-1434. [PMID: 35417008 PMCID: PMC9237685 DOI: 10.1093/plphys/kiac167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The homotypic fusion and protein sorting (HOPS) complex is a conserved, multi-subunit tethering complex in eukaryotic cells. In yeast and mammalian cells, the HOPS subunit vacuolar protein sorting-associated protein 41 (VPS41) is recruited to late endosomes after Ras-related protein 7 (Rab7) activation and is essential for vacuole fusion. However, whether VPS41 plays conserved roles in plants is not clear. Here, we demonstrate that in the model plant Arabidopsis (Arabidopsis thaliana), VPS41 localizes to distinct condensates in root cells in addition to its reported localization at the tonoplast. The formation of condensates does not rely on the known upstream regulators but depends on VPS41 self-interaction and is essential for vegetative growth regulation. Genetic evidence indicates that VPS41 is required for both homotypic vacuole fusion and cargo sorting from the adaptor protein complex 3, Rab5, and Golgi-independent pathways but is dispensable for the Rab7 cargo inositol transporter 1. We also show that VPS41 has HOPS-independent functions in vacuolar transport. Taken together, our findings indicate that Arabidopsis VPS41 is a unique subunit of the HOPS complex that carries out plant-specific roles in both vacuolar transport and developmental regulation.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin He
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangui Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiran Cao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Langousis G, Cavadini S, Boegholm N, Lorentzen E, Kempf G, Matthias P. Structure of the ciliogenesis-associated CPLANE complex. SCIENCE ADVANCES 2022; 8:eabn0832. [PMID: 35427153 PMCID: PMC9012472 DOI: 10.1126/sciadv.abn0832] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
39
|
Gao J, Nicastro R, Péli-Gulli MP, Grziwa S, Chen Z, Kurre R, Piehler J, De Virgilio C, Fröhlich F, Ungermann C. The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. J Biophys Biochem Cytol 2022; 221:213121. [PMID: 35404387 PMCID: PMC9011323 DOI: 10.1083/jcb.202109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth and proliferation. Previous work showed that a central regulator of growth, namely the target of rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SEs) that are distinct from multivesicular bodies (MVBs). Interestingly, the endosomal TORC1, which binds membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate that SEs form at a branch point of the biosynthetic and endocytic pathways toward the vacuole and depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, suggesting a tight link between trafficking and signaling along the endolysosomal pathway.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | | | - Sophie Grziwa
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Zilei Chen
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Rainer Kurre
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | - Florian Fröhlich
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
- Department of Biology/Chemistry, Molecular Membrane Biology Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
40
|
Tu H, Wang Z, Yuan Y, Miao X, Li D, Guo H, Yang Y, Cai H. The PripA-TbcrA complex-centered Rab GAP cascade facilitates macropinosome maturation in Dictyostelium. Nat Commun 2022; 13:1787. [PMID: 35379834 PMCID: PMC8980073 DOI: 10.1038/s41467-022-29503-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractMacropinocytosis, an evolutionarily conserved mechanism mediating nonspecific bulk uptake of extracellular fluid, has been ascribed diverse functions. How nascent macropinosomes mature after internalization remains largely unknown. By searching for proteins that localize on macropinosomes during the Rab5-to-Rab7 transition stage in Dictyostelium, we uncover a complex composed of two proteins, which we name PripA and TbcrA. We show that the Rab5-to-Rab7 conversion involves fusion of Rab5-marked early macropinosomes with Rab7-marked late macropinosomes. PripA links the two membrane compartments by interacting with PI(3,4)P2 and Rab7. In addition, PripA recruits TbcrA, which acts as a GAP, to turn off Rab5. Thus, the conversion to Rab7 is linked to inactivation of the upstream Rab5. Consistently, disruption of either pripA or tbcrA impairs Rab5 inactivation and macropinocytic cargo processing. Therefore, the PripA-TbcrA complex is the central component of a Rab GAP cascade that facilitates programmed Rab switch and efficient cargo trafficking during macropinosome maturation.
Collapse
|
41
|
A CRISPR-Cas9 screen reveals a role for WD repeat-containing protein 81 (WDR81) in the entry of late penetrating viruses. PLoS Pathog 2022; 18:e1010398. [PMID: 35320319 PMCID: PMC8942271 DOI: 10.1371/journal.ppat.1010398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Successful initiation of infection by many different viruses requires their uptake into the endosomal compartment. While some viruses exit this compartment early, others must reach the degradative, acidic environment of the late endosome. Mammalian orthoreovirus (reovirus) is one such late penetrating virus. To identify host factors that are important for reovirus infection, we performed a CRISPR-Cas9 knockout (KO) screen that targets over 20,000 genes in fibroblasts derived from the embryos of C57/BL6 mice. We identified seven genes (WDR81, WDR91, RAB7, CCZ1, CTSL, GNPTAB, and SLC35A1) that were required for the induction of cell death by reovirus. Notably, CRISPR-mediated KO of WD repeat-containing protein 81 (WDR81) rendered cells resistant to reovirus infection. Susceptibility to reovirus infection was restored by complementing KO cells with human WDR81. Although the absence of WDR81 did not affect viral attachment efficiency or uptake into the endosomal compartments for initial disassembly, it reduced viral gene expression and diminished infectious virus production. Consistent with the role of WDR81 in impacting the maturation of endosomes, WDR81-deficiency led to the accumulation of reovirus particles in dead-end compartments. Though WDR81 was dispensable for infection by VSV (vesicular stomatitis virus), which exits the endosomal system at an early stage, it was required for VSV-EBO GP (VSV that expresses the Ebolavirus glycoprotein), which must reach the late endosome to initiate infection. These results reveal a previously unappreciated role for WDR81 in promoting the replication of viruses that transit through late endosomes. Viruses are obligate intracellular parasites that require the contributions of numerous host factors to complete the viral life cycle. Thus, the host-pathogen interaction can regulate cell death signaling and virus entry, replication, assembly, and egress. Functional genetic screens are useful tools to identify host factors that are important for establishing infection. Such information can also be used to understand cell biology. Notably, genome-scale CRISPR-Cas9 knockout screens are robust due to their specificity and the loss of host gene expression. Mammalian orthoreovirus (reovirus) is a tractable model system to investigate the pathogenesis of neurotropic and cardiotropic viruses. Using a CRISPR-Cas9 screen, we identified WD repeat-containing protein 81 (WDR81) as a host factor required for efficient reovirus infection of murine cells. Ablation of WDR81 blocked a late step in the viral entry pathway. Further, our work indicates that WDR81 is required for the entry of vesicular stomatitis virus that expresses the Ebolavirus glycoprotein.
Collapse
|
42
|
Jetto CT, Nambiar A, Manjithaya R. Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Front Cell Dev Biol 2022; 10:837337. [PMID: 35392168 PMCID: PMC8981085 DOI: 10.3389/fcell.2022.837337] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- *Correspondence: Ravi Manjithaya,
| |
Collapse
|
43
|
Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proc Natl Acad Sci U S A 2022; 119:2121494119. [PMID: 35105815 PMCID: PMC8833172 DOI: 10.1073/pnas.2121494119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Activation of the GTPase Rab7/Ypt7 by its cognate guanine nucleotide exchange factor (GEF) Mon1-Ccz1 marks organelles such as endosomes and autophagosomes for fusion with lysosomes/vacuoles and degradation of their content. Here, we present a high-resolution cryogenic electron microscopy structure of the Mon1-Ccz1 complex that reveals its architecture in atomic detail. Mon1 and Ccz1 are arranged side by side in a pseudo-twofold symmetrical heterodimer. The three Longin domains of each Mon1 and Ccz1 are triangularly arranged, providing a strong scaffold for the catalytic center of the GEF. At the opposite side of the Ypt7-binding site, a positively charged and relatively flat patch stretches the Longin domains 2/3 of Mon1 and functions as a phosphatidylinositol phosphate-binding site, explaining how the GEF is targeted to membranes. Our work provides molecular insight into the mechanisms of endosomal Rab activation and serves as a blueprint for understanding the function of members of the Tri Longin domain Rab-GEF family.
Collapse
|
44
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
45
|
Pan T, Wang Y, Jing R, Wang Y, Wei Z, Zhang B, Lei C, Qi Y, Wang F, Bao X, Yan M, Zhang Y, Zhang P, Yu M, Wan G, Chen Y, Yang W, Zhu J, Zhu Y, Zhu S, Cheng Z, Zhang X, Jiang L, Ren Y, Wan J. Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1-CCZ1. PLANT PHYSIOLOGY 2021; 187:2174-2191. [PMID: 33871646 PMCID: PMC8644195 DOI: 10.1093/plphys/kiab175] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/26/2021] [Indexed: 05/16/2023]
Abstract
Protein storage vacuoles (PSVs) are unique organelles that accumulate storage proteins in plant seeds. Although morphological evidence points to the existence of multiple PSV-trafficking pathways for storage protein targeting, the molecular mechanisms that regulate these processes remain mostly unknown. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation7 (gpa7) mutant, which over-accumulates 57-kDa glutelin precursors in dry seeds. Cytological and immunocytochemistry studies revealed that the gpa7 mutant exhibits abnormal accumulation of storage prevacuolar compartment-like structures, accompanied by the partial mistargeting of glutelins to the extracellular space. The gpa7 mutant was altered in the CCZ1 locus, which encodes the rice homolog of Arabidopsis (Arabidopsis thaliana) CALCIUM CAFFEINE ZINC SENSITIVITY1a (CCZ1a) and CCZ1b. Biochemical evidence showed that rice CCZ1 interacts with MONENSIN SENSITIVITY1 (MON1) and that these proteins function together as the Rat brain 5 (Rab5) effector and the Rab7 guanine nucleotide exchange factor (GEF). Notably, loss of CCZ1 function promoted the endosomal localization of vacuolar protein sorting-associated protein 9 (VPS9), which is the GEF for Rab5 in plants. Together, our results indicate that the MON1-CCZ1 complex is involved in post-Golgi trafficking of rice storage protein through a Rab5- and Rab7-dependent pathway.
Collapse
Affiliation(s)
- Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyan Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Binglei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanzhou Qi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzhou Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Gexing Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenkun Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication: ,
| |
Collapse
|
46
|
Podinovskaia M, Prescianotto-Baschong C, Buser DP, Spang A. A novel live-cell imaging assay reveals regulation of endosome maturation. eLife 2021; 10:e70982. [PMID: 34846303 PMCID: PMC8635980 DOI: 10.7554/elife.70982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential process in life, with endosomes acting as key organelles for regulating uptake and secretion of signaling molecules. Endocytosed material is accepted by the sorting endosome where it either is sorted for recycling or remains in the endosome as it matures to be degraded in the lysosome. Investigation of the endosome maturation process has been hampered by the small size and rapid movement of endosomes in most cellular systems. Here, we report an easy versatile live-cell imaging assay to monitor endosome maturation kinetics, which can be applied to a variety of mammalian cell types. Acute ionophore treatment led to enlarged early endosomal compartments that matured into late endosomes and fused with lysosomes to form endolysosomes. Rab5-to-Rab7 conversion and PI(3)P formation and turn over were recapitulated with this assay and could be observed with a standard widefield microscope. We used this approach to show that Snx1 and Rab11-positive recycling endosome recruitment occurred throughout endosome maturation and was uncoupled from Rab conversion. In contrast, efficient endosomal acidification was dependent on Rab conversion. The assay provides a powerful tool to further unravel various aspects of endosome maturation.
Collapse
Affiliation(s)
| | | | | | - Anne Spang
- Biozentrum, University of BaselBaselSwitzerland
| |
Collapse
|
47
|
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, Fu Z, Xu P, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet 2021; 17:e1009924. [PMID: 34788288 PMCID: PMC8635391 DOI: 10.1371/journal.pgen.1009924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/01/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Zhifei Fu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (QS); (ISD)
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S. Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- * E-mail: (QS); (ISD)
| |
Collapse
|
48
|
Parkinson G, Roboti P, Zhang L, Taylor S, Woodman P. His domain protein tyrosine phosphatase and Rabaptin-5 couple endo-lysosomal sorting of EGFR with endosomal maturation. J Cell Sci 2021; 134:272512. [PMID: 34657963 PMCID: PMC8627557 DOI: 10.1242/jcs.259192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) collaborates with endosomal sorting complexes required for transport (ESCRTs) to sort endosomal cargo into intralumenal vesicles, forming the multivesicular body (MVB). Completion of MVB sorting is accompanied by maturation of the endosome into a late endosome, an event that requires inactivation of the early endosomal GTPase Rab5 (herein referring to generically to all isoforms). Here, we show that HD-PTP links ESCRT function with endosomal maturation. HD-PTP depletion prevents MVB sorting, while also blocking cargo from exiting Rab5-rich endosomes. HD-PTP-depleted cells contain hyperphosphorylated Rabaptin-5 (also known as RABEP1), a cofactor for the Rab5 guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1), although HD-PTP is unlikely to directly dephosphorylate Rabaptin-5. In addition, HD-PTP-depleted cells exhibit Rabaptin-5-dependent hyperactivation of Rab5. HD-PTP binds directly to Rabaptin-5, between its Rabex-5- and Rab5-binding domains. This binding reaction involves the ESCRT-0/ESCRT-III binding site in HD-PTP, which is competed for by an ESCRT-III peptide. Jointly, these findings indicate that HD-PTP may alternatively scaffold ESCRTs and modulate Rabex-5–Rabaptin-5 activity, thereby helping to coordinate the completion of MVB sorting with endosomal maturation. Summary: Sorting of endocytic cargo to the multivesicular body is accompanied by endosomal maturation. Here, we provide a potential mechanism by which these two processes are linked.
Collapse
Affiliation(s)
- Gabrielle Parkinson
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Peristera Roboti
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Ling Zhang
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Sandra Taylor
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
49
|
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ. Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Adv Biol Regul 2021; 82:100832. [PMID: 34717137 DOI: 10.1016/j.jbior.2021.100832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Phagocytosis is a dynamic process that requires an intricate interplay between phagocytic receptors, membrane lipids, and numerous signalling proteins and their effectors, to coordinate the engulfment of a bound particle. These particles are diverse in their physico-chemical properties such as size and shape and include bacteria, fungi, apoptotic cells, living tumour cells, and abiotic particles. Once engulfed, these particles are enclosed within a phagosome, which undergoes a striking transformation referred to as phagosome maturation, which will ultimately lead to the processing and degradation of the enclosed particulate. In this review, we focus on recent advancements in phagosome maturation in macrophages, highlighting new discoveries and emerging themes. Such advancements include identification of new GTPases and their effectors and the intricate spatio-temporal dynamics of phosphoinositides in governing phagosome maturation. We then explore phagosome fission and recycling, the emerging role of membrane contact sites, and delve into mechanisms of phagosome resolution to recycle and reform lysosomes. We further illustrate how phagosome maturation is context-dependent, subject to the type of particle, phagocytic receptors, the phagocytes and their state of activation during phagocytosis. Lastly, we discuss how phagosomes serve as signalling platforms to help phagocytes adapt to their environmental conditions. Overall, this review aims to cover recent findings, identify emerging themes, and highlight current challenges and directions to improve our understanding of phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Aaron Fountain
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Patris Alves
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Munira B Verdawala
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada.
| |
Collapse
|
50
|
Fei X, Li Z, Yang D, Kong X, Lu X, Shen Y, Li X, Xie S, Wang J, Zhao Y, Sun Y, Zhang J, Ye Z, Wang J, Cai Z. Neddylation of Coro1a determines the fate of multivesicular bodies and biogenesis of extracellular vesicles. J Extracell Vesicles 2021; 10:e12153. [PMID: 34623756 PMCID: PMC8500273 DOI: 10.1002/jev2.12153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/01/2022] Open
Abstract
Multivesicular bodies (MVBs) fuse with not only the plasma membranes to release extracellular vesicles (EVs) but also lysosomes for degradation. Rab7 participates in the lysosomal targeting of MVBs. However, the proteins on MVB that directly bind Rab7, causing MVB recruitment of Rab7 remain unidentified. Here, we show that Coro1a undergoes neddylation modification at K233 by TRIM4. Neddylated Coro1a is associated with the MVB membrane and facilitates MVB recruitment and activation of Rab7 by directly binding Rab7. Subsequently, MVBs are targeted to lysosomes for degradation in a Rab7-dependent manner, leading to reduced EV secretion. Furthermore, a decrease in neddylated Coro1a enhances the production of tumour EVs, thereby promoting tumour progression, indicating that neddylated Coro1a is an ideal target for the regulation of EV biogenesis. Altogether, our data identify a novel substrate of neddylation and reveal an unknown mechanism for MVB recruitment of Rab7, thus providing new insight into the regulation of EV biogenesis.
Collapse
Affiliation(s)
- Xuefeng Fei
- Institute of Immunology, Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Li
- Institute of Immunology, Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diya Yang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xianghui Kong
- Institute of Immunology, Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Institute of Immunology, Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Li
- School of Life Science, Westlake University, Hangzhou, China
| | - Shaofang Xie
- School of Life Science, Westlake University, Hangzhou, China
| | - Jiaoli Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Centre, Hangzhou, China
| | - Yongchao Zhao
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopaedics, Musculoskeletal Tumour Centre of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, Bone Marrow Transplantation Centre of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Haematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|