1
|
Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM. Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619448. [PMID: 39484527 PMCID: PMC11526984 DOI: 10.1101/2024.10.21.619448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.
Collapse
Affiliation(s)
- Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Mark Eddison
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Preeti Sundaramurthi
- Department of Psychology, College of Science, California State University, Hayward, California 94542
| | - Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| |
Collapse
|
2
|
Chong B, Kumar V, Nguyen DL, Hopkins MA, Spera LK, Paul EM, Hutson AN, Tabuchi M. Neuropeptide-dependent spike time precision and plasticity in circadian output neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616871. [PMID: 39411164 PMCID: PMC11476009 DOI: 10.1101/2024.10.06.616871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. Circadian output neurons are a group of neurons that receive input from the central circadian clock located in the suprachiasmatic nucleus of the mammalian brain and transmit timing information to different regions of the brain and body, coordinating the circadian rhythms of various physiological processes. In Drosophila, an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vipin Kumar
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Makenzie A. Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K. Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M. Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Anelise N. Hutson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Saurabh S, Meier RJ, Pireva LM, Mirza RA, Cavanaugh DJ. Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila. J Biol Rhythms 2024; 39:440-462. [PMID: 39066485 DOI: 10.1177/07487304241263734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The circadian system coordinates multiple behavioral outputs to ensure proper temporal organization. Timing information underlying circadian regulation of behavior depends on a molecular circadian clock that operates within clock neurons in the brain. In Drosophila and other organisms, clock neurons can be divided into several molecularly and functionally discrete subpopulations that form an interconnected central clock network. It is unknown how circadian signals are coherently generated by the clock network and transmitted across output circuits that connect clock cells to downstream neurons that regulate behavior. Here, we have exhaustively investigated the contribution of clock neuron subsets to the control of two prominent behavioral outputs in Drosophila: locomotor activity and feeding. We have used cell-specific manipulations to eliminate molecular clock function or induce electrical silencing either broadly throughout the clock network or in specific subpopulations. We find that clock cell manipulations produce similar changes in locomotor activity and feeding, suggesting that overlapping central clock circuitry regulates these distinct behavioral outputs. Interestingly, the magnitude and nature of the effects depend on the clock subset targeted. Lateral clock neuron manipulations profoundly degrade the rhythmicity of feeding and activity. In contrast, dorsal clock neuron manipulations only subtly affect rhythmicity but produce pronounced changes in the distribution of activity and feeding across the day. These experiments expand our knowledge of clock regulation of activity rhythms and offer the first extensive characterization of central clock control of feeding rhythms. Despite similar effects of central clock cell disruptions on activity and feeding, we find that manipulations that prevent functional signaling in an identified output circuit preferentially degrade locomotor activity rhythms, leaving feeding rhythms relatively intact. This demonstrates that activity and feeding are indeed dissociable behaviors, and furthermore suggests that differential circadian control of these behaviors diverges in output circuits downstream of the clock network.
Collapse
Affiliation(s)
- Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Ruth J Meier
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Liliya M Pireva
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Rabab A Mirza
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
4
|
McKim TH, Gera J, Gayban AJ, Reinhard N, Manoli G, Hilpert S, Helfrich-Förster C, Zandawala M. Synaptic connectome of a neurosecretory network in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609616. [PMID: 39257829 PMCID: PMC11384003 DOI: 10.1101/2024.08.28.609616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult Drosophila brain. Identification of neurons providing inputs to multiple NSC subtypes implicates diuretic hormone 44-expressing NSC as a major coordinator of physiology and behavior. Surprisingly, despite most NSC having dendrites in the subesophageal zone (primary taste processing center), gustatory inputs to NSC are largely indirect. We also deciphered pathways via which diverse olfactory inputs are relayed to NSC. Further, our analyses revealed substantial inputs from descending neurons to NSC, suggesting that descending neurons regulate both endocrine and motor output to synchronize physiological changes with appropriate behaviors. In contrast to NSC inputs, synaptic output from NSC is sparse and mostly mediated by corazonin NSC. Therefore, we additionally determine putative paracrine interconnectivity between NSC subtypes and hormonal pathways from NSC to peripheral tissues by analyzing single-cell transcriptomic datasets. Our comprehensive characterization of the Drosophila neurosecretory network connectome provides a platform to understand complex hormonal networks and how they orchestrate animal behaviors and physiology.
Collapse
Affiliation(s)
- Theresa H. McKim
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ariana J. Gayban
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hilpert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Meet Zandawala
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| |
Collapse
|
5
|
O’Hara MK, Saul C, Handa A, Cho B, Zheng X, Sehgal A, Williams JA. The NFκB Dif is required for behavioral and molecular correlates of sleep homeostasis in Drosophila. Sleep 2024; 47:zsae096. [PMID: 38629438 PMCID: PMC11321855 DOI: 10.1093/sleep/zsae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the unique expression pattern of a Dif- GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was reduced in Dif mutants and pan-neuronal overexpression of nur also suppressed the Dif mutant phenotype by significantly increasing sleep and reducing nighttime arousability. Together, these findings indicate that Dif functions from brain to target nemuri and to promote deep sleep.
Collapse
Affiliation(s)
- Michael K O’Hara
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Bumsik Cho
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Amita Sehgal
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie A Williams
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Sukumar SK, Antonydhason V, Molander L, Sandakly J, Kleit M, Umapathy G, Mendoza-Garcia P, Masudi T, Schlosser A, Nässel DR, Wegener C, Shirinian M, Palmer RH. The Alk receptor tyrosine kinase regulates Sparkly, a novel activity regulating neuropeptide precursor in the Drosophila central nervous system. eLife 2024; 12:RP88985. [PMID: 38904987 PMCID: PMC11196111 DOI: 10.7554/elife.88985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.
Collapse
Affiliation(s)
- Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Vimala Antonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Jawdat Sandakly
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Malak Kleit
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Andreas Schlosser
- Julius-Maximilians-Universität Würzburg, Rudolf-Virchow-Center, Center for Integrative and Translational BioimagingWürzburgGermany
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholmSweden
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and GeneticsWürzburgGermany
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| |
Collapse
|
7
|
Salpietro V, Maroofian R, Zaki MS, Wangen J, Ciolfi A, Barresi S, Efthymiou S, Lamaze A, Aughey GN, Al Mutairi F, Rad A, Rocca C, Calì E, Accogli A, Zara F, Striano P, Mojarrad M, Tariq H, Giacopuzzi E, Taylor JC, Oprea G, Skrahina V, Rehman KU, Abd Elmaksoud M, Bassiony M, El Said HG, Abdel-Hamid MS, Al Shalan M, Seo G, Kim S, Lee H, Khang R, Issa MY, Elbendary HM, Rafat K, Marinakis NM, Traeger-Synodinos J, Ververi A, Sourmpi M, Eslahi A, Khadivi Zand F, Beiraghi Toosi M, Babaei M, Jackson A, Bertoli-Avella A, Pagnamenta AT, Niceta M, Battini R, Corsello A, Leoni C, Chiarelli F, Dallapiccola B, Faqeih EA, Tallur KK, Alfadhel M, Alobeid E, Maddirevula S, Mankad K, Banka S, Ghayoor-Karimiani E, Tartaglia M, Chung WK, Green R, Alkuraya FS, Jepson JEC, Houlden H. Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome. Am J Hum Genet 2024; 111:200-210. [PMID: 38118446 PMCID: PMC10806450 DOI: 10.1016/j.ajhg.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Jamie Wangen
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sabina Barresi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Angelique Lamaze
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Accogli
- Division of Medical Genetics, Department of Pediatrics, McGill University, Montreal, Canada
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Pediatric Neurology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Huma Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Edoardo Giacopuzzi
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Genomics Research Centre, Human Technopole, Milan, Italy; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Bassiony
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Department of Family Health, High Institute of Public Health, University of Alexandria, Alexandria, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Al Shalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | | | - Hane Lee
- 3billion, Inc, Seoul, South Korea
| | | | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Karima Rafat
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Ververi
- Genetics Unit, Department of Obstetrics & Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Masshad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Masshad, Iran
| | | | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | | | | | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Eissa Ali Faqeih
- Unit of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Majid Alfadhel
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital, London, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Ehsan Ghayoor-Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, University of London, St George's, Cranmer Terrace, London SW17 0RE, UK
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
8
|
Lee J, Chen S, Monfared RV, Derdeyn P, Leong K, Chang T, Beier K, Baldi P, Alachkar A. Reanalysis of primate brain circadian transcriptomics reveals connectivity-related oscillations. iScience 2023; 26:107810. [PMID: 37752952 PMCID: PMC10518731 DOI: 10.1016/j.isci.2023.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Research shows that brain circuits controlling vital physiological processes are closely linked with endogenous time-keeping systems. In this study, we aimed to examine oscillatory gene expression patterns of well-characterized neuronal circuits by reanalyzing publicly available transcriptomic data from a spatiotemporal gene expression atlas of a non-human primate. Unexpectedly, brain structures known for regulating circadian processes (e.g., hypothalamic nuclei) did not exhibit robust cycling expression. In contrast, basal ganglia nuclei, not typically associated with circadian physiology, displayed the most dynamic cycling behavior of its genes marked by sharp temporally defined expression peaks. Intriguingly, the mammillary bodies, considered hypothalamic nuclei, exhibited gene expression patterns resembling the basal ganglia, prompting reevaluation of their classification. Our results emphasize the potential for high throughput circadian gene expression analysis to deepen our understanding of the functional synchronization across brain structures that influence physiological processes and resulting complex behaviors.
Collapse
Affiliation(s)
- Justine Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Pieter Derdeyn
- Mathematical, Computational, and Systems Biology Program, University of California, Irvine, Irvine, CA, USA
| | - Kenneth Leong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Tiffany Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kevin Beier
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, School of medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4560, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-4560, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
10
|
Poe AR, Zhu L, Szuperak M, McClanahan PD, Anafi RC, Scholl B, Thum AS, Cavanaugh DJ, Kayser MS. Developmental emergence of sleep rhythms enables long-term memory in Drosophila. SCIENCE ADVANCES 2023; 9:eadh2301. [PMID: 37683005 PMCID: PMC10491288 DOI: 10.1126/sciadv.adh2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
In adulthood, sleep-wake rhythms are one of the most prominent behaviors under circadian control. However, during early life, sleep is spread across the 24-hour day. The mechanism through which sleep rhythms emerge, and consequent advantage conferred to a juvenile animal, is unknown. In the second-instar Drosophila larvae (L2), like in human infants, sleep is not under circadian control. We identify the precise developmental time point when the clock begins to regulate sleep in Drosophila, leading to emergence of sleep rhythms in early third-instars (L3). At this stage, a cellular connection forms between DN1a clock neurons and arousal-promoting Dh44 neurons, bringing arousal under clock control to drive emergence of circadian sleep. Last, we demonstrate that L3 but not L2 larvae exhibit long-term memory (LTM) of aversive cues and that this LTM depends upon deep sleep generated once sleep rhythms begin. We propose that the developmental emergence of circadian sleep enables more complex cognitive processes, including the onset of enduring memories.
Collapse
Affiliation(s)
- Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Zhu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Milan Szuperak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas S. Thum
- Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Oh Y, Suh GSB. Starvation-induced sleep suppression requires the Drosophila brain nutrient sensor. J Neurogenet 2023:1-8. [PMID: 37267057 DOI: 10.1080/01677063.2023.2203489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/12/2023] [Indexed: 06/04/2023]
Abstract
Animals increase their locomotion activity and reduce sleep duration under starved conditions. This suggests that sleep and metabolic status are closely interconnected. The nutrient and hunger sensors in the Drosophila brain, including diuretic hormone 44 (DH44)-, CN-, and cupcake-expressing neurons, detect circulating glucose levels in the internal milieu, regulate the insulin and glucagon secretion and promote food consumption. Food deprivation is known to reduce sleep duration, but a potential role mediated by the nutrient and hunger sensors in regulating sleep and locomotion activity remains unclear. Here, we show that DH44 neurons are involved in regulating starvation-induced sleep suppression, but CN neurons or cupcake neurons may not be involved in regulating starvation-induced sleep suppression or baseline sleep patterns. Inactivation of DH44 neurons resulted in normal daily sleep durations and patterns under fed conditions, whereas it ablated sleep reduction under starved conditions. Inactivation of CN neurons or cupcake neurons, which were proposed to be nutrient and hunger sensors in the fly brain, did not affect sleep patterns under both fed and starved conditions. We propose that the glucose-sensing DH44 neurons play an important role in mediating starvation-induced sleep reduction.
Collapse
Affiliation(s)
- Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul, South Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
13
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
14
|
Lee G, Jang H, Oh Y. The role of diuretic hormones (DHs) and their receptors in Drosophila. BMB Rep 2023; 56:209-215. [PMID: 36977606 PMCID: PMC10140481 DOI: 10.5483/bmbrep.2023-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 10/11/2023] Open
Abstract
Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrientsensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems. [BMB Reports 2023; 56(4): 209-215].
Collapse
Affiliation(s)
- Gahbien Lee
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejin Jang
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Liang X, Holy TE, Taghert PH. Polyphasic circadian neural circuits drive differential activities in multiple downstream rhythmic centers. Curr Biol 2023; 33:351-363.e3. [PMID: 36610393 PMCID: PMC9877191 DOI: 10.1016/j.cub.2022.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023]
Abstract
Circadian clocks align various behaviors such as locomotor activity, sleep/wake, feeding, and mating to times of day that are most adaptive. How rhythmic information in pacemaker circuits is translated to neuronal outputs is not well understood. Here, we used brain-wide, 24-h in vivo calcium imaging in the Drosophila brain and searched for circadian rhythmic activity among identified clusters of dopaminergic (DA) and peptidergic neurosecretory (NS) neurons. Such rhythms were widespread and imposed by the PERIOD-dependent clock activity within the ∼150-cell circadian pacemaker network. The rhythms displayed either a morning (M), evening (E), or mid-day (MD) phase. Different subgroups of circadian pacemakers imposed neural activity rhythms onto different downstream non-clock neurons. Outputs from the canonical M and E pacemakers converged to regulate DA-PPM3 and DA-PAL neurons. E pacemakers regulate the evening-active DA-PPL1 neurons. In addition to these canonical M and E oscillators, we present evidence for a third dedicated phase occurring at mid-day: the l-LNv pacemakers present the MD activity peak, and they regulate the MD-active DA-PPM1/2 neurons and three distinct NS cell types. Thus, the Drosophila circadian pacemaker network is a polyphasic rhythm generator. It presents dedicated M, E, and MD phases that are functionally transduced as neuronal outputs to organize diverse daily activity patterns in downstream circuits.
Collapse
Affiliation(s)
- Xitong Liang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Cai W, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology 2023; 113:231-250. [PMID: 33965952 DOI: 10.1159/000517087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Farris SM. Insect PRXamides: Evolutionary Divergence, Novelty, and Loss in a Conserved Neuropeptide System. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 36661324 PMCID: PMC9853942 DOI: 10.1093/jisesa/ieac079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Indexed: 06/17/2023]
Abstract
The PRXamide neuropeptides have been described in both protostome and deuterostome species, including all major groups of the Panarthropoda. Best studied are the insect PRXamides consisting of three genes: pk/pban, capa, and eth, each encoding multiple short peptides that are cleaved post-translationally. Comparisons of genome and transcriptome sequences reveal that while retaining its fundamental ancestral organization, the products of the pk/pban gene have undergone significant change in the insect Order Diptera. Basal dipteran pk/pban genes are much like those of other holometabolous insects, while more crown species have lost two peptide coding sequences including the otherwise ubiquitous pheromone biosynthesis activating neuropeptide (PBAN). In the genomic model species Drosophila melanogaster, one of the remaining peptides (hugin) plays a potentially novel role in feeding and locomotor regulation tied to circadian rhythms. Comparison of peptide coding sequences of pk/pban across the Diptera pinpoints the acquisition or loss of the hugin and PBAN peptide sequences respectively, and provides clues to associated changes in life history, physiology, and/or behavior. Interestingly, the neural circuitry underlying pk/pban function is highly conserved across the insects regardless of the composition of the pk/pban gene. The rapid evolution and diversification of the Diptera provide many instances of adaptive novelties from genes to behavior that can be placed in the context of emerging selective pressures at key points in their phylogeny; further study of changing functional roles of pk/pban may then be facilitated by the high-resolution genetic tools available in Drosophila melanogaster.
Collapse
|
18
|
Crespo-Flores SL, Barber AF. The Drosophila circadian clock circuit is a nonhierarchical network of peptidergic oscillators. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100944. [PMID: 35709899 DOI: 10.1016/j.cois.2022.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The relatively simple Drosophila circadian clock circuit consists of 150 clock neurons that coordinate rhythmic behavior and physiology, which are generally classified based on neuroanatomical location. Transcriptional and connectomic studies have identified novel subdivisions of these clock neuron populations, and identified neuropeptides not previously known to be expressed in the fly clock circuit. An additional feature of fly clock neurons is daily axonal remodeling, first noted in small ventrolateral neurons, but more recently also found in additional clock neuron groups. These findings raise new questions about the functional roles of clock neuron subpopulations and daily remodeling of network architecture in regulating circadian behavior and physiology.
Collapse
Affiliation(s)
- Sergio L Crespo-Flores
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, USA
| | - Annika F Barber
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, USA.
| |
Collapse
|
19
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
20
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Chiang MH, Ho SM, Wu HY, Lin YC, Tsai WH, Wu T, Lai CH, Wu CL. Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines 2022; 10:596. [PMID: 35327401 PMCID: PMC8945323 DOI: 10.3390/biomedicines10030596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
Mounting evidence indicates that the gut microbiota is linked to several physiological processes and disease development in mammals; however, the underlying mechanisms remained unexplored mostly due to the complexity of the mammalian gut microbiome. The fruit fly, Drosophila melanogaster, is a valuable animal model for studying host-gut microbiota interactions in translational aspects. The availability of powerful genetic tools and resources in Drosophila allowed the scientists to unravel the mechanisms by which the gut microbes affect fitness, health, and behavior of their hosts. Drosophila models have been extensively used not only to study animal behaviors (i.e., courtship, aggression, sleep, and learning & memory), but also some human related neurodegenerative diseases (i.e., Alzheimer's disease and Parkinson's disease) in the past. This review comprehensively summarizes the current understanding of the gut microbiota of Drosophila and its impact on fly behavior, physiology, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Shuk-Man Ho
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 74144, Taiwan;
| | - Tony Wu
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Neurology, New Taipei Municipal Tucheng Hospital, Tucheng 23652, Taiwan
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Research, Graduate Institute of Biomedical Sciences, China Medical University and Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
22
|
Perception of Daily Time: Insights from the Fruit Flies. INSECTS 2021; 13:insects13010003. [PMID: 35055846 PMCID: PMC8780729 DOI: 10.3390/insects13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
We create mental maps of the space that surrounds us; our brains also compute time—in particular, the time of day. Visual, thermal, social, and other cues tune the clock-like timekeeper. Consequently, the internal clock synchronizes with the external day-night cycles. In fact, daylength itself varies, causing the change of seasons and forcing our brain clock to accommodate layers of plasticity. However, the core of the clock, i.e., its molecular underpinnings, are highly resistant to perturbations, while the way animals adapt to the daily and annual time shows tremendous biological diversity. How can this be achieved? In this review, we will focus on 75 pairs of clock neurons in the Drosophila brain to understand how a small neural network perceives and responds to the time of the day, and the time of the year.
Collapse
|
23
|
Hugin + neurons provide a link between sleep homeostat and circadian clock neurons. Proc Natl Acad Sci U S A 2021; 118:2111183118. [PMID: 34782479 DOI: 10.1073/pnas.2111183118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin + neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin + neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin + neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin + locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin + neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that hugin + neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.
Collapse
|
24
|
Huang H, Possidente DR, Vecsey CG. Optogenetic activation of SIFamide (SIFa) neurons induces a complex sleep-promoting effect in the fruit fly Drosophila melanogaster. Physiol Behav 2021; 239:113507. [PMID: 34175361 DOI: 10.1016/j.physbeh.2021.113507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Sleep is a universal and extremely complicated function. Sleep is regulated by two systems-sleep homeostasis and circadian rhythms. In a wide range of species, neuropeptides have been found to play a crucial role in the communication and synchronization between different components of both systems. In the fruit fly Drosophila melanogaster, SIFamide (SIFa) is a neuropeptide that has been reported to be expressed in 4 neurons in the pars intercerebralis (PI) area of the brain. Previous work has shown that transgenic ablation of SIFa neurons, mutation of SIFa itself, or knockdown of SIFa receptors reduces sleep, suggesting that SIFa is sleep-promoting. However, those were all constitutive manipulations that could have affected development or resulted in compensation, so the role of SIFa signaling in sleep regulation during adulthood remains unclear. In the current study, we examined the sleep-promoting effect of SIFa through an optogenetic approach, which allowed for neuronal activation with high temporal resolution, while leaving development unaffected. We found that activation of the red-light sensor Chrimson in SIFa neurons promoted sleep in flies in a sexually dimorphic manner, where the magnitude of the sleep effect was greater in females than in males. Because neuropeptidergic neurons often also release other transmitters, we used RNA interference to knock down SIFa while also optogenetically activating SIFa neurons. SIFa knockdown only partially reduced the magnitude of the sleep effect, suggesting that release of other transmitters may contribute to the sleep induction when SIFa neurons are activated. Video-based analysis showed that activation of SIFa neurons for as brief a period as 1 second was able to decrease walking behavior for minutes after the stimulus. Future studies should aim to identify the transmitters that are utilized by SIFa neurons and characterize their upstream activators and downstream targets. It would also be of interest to determine how acute optogenetic activation of SIFa neurons alters other behaviors that have been linked to SIFa, such as mating and feeding.
Collapse
Affiliation(s)
- Haoyang Huang
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866
| | - Debra R Possidente
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866
| | - Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866.
| |
Collapse
|
25
|
Fulgham CV, Dreyer AP, Nasseri A, Miller AN, Love J, Martin MM, Jabr DA, Saurabh S, Cavanaugh DJ. Central and Peripheral Clock Control of Circadian Feeding Rhythms. J Biol Rhythms 2021; 36:548-566. [PMID: 34547954 DOI: 10.1177/07487304211045835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many behaviors exhibit ~24-h oscillations under control of an endogenous circadian timing system that tracks time of day via a molecular circadian clock. In the fruit fly, Drosophila melanogaster, most circadian research has focused on the generation of locomotor activity rhythms, but a fundamental question is how the circadian clock orchestrates multiple distinct behavioral outputs. Here, we have investigated the cells and circuits mediating circadian control of feeding behavior. Using an array of genetic tools, we show that, as is the case for locomotor activity rhythms, the presence of feeding rhythms requires molecular clock function in the ventrolateral clock neurons of the central brain. We further demonstrate that the speed of molecular clock oscillations in these neurons dictates the free-running period length of feeding rhythms. In contrast to the effects observed with central clock cell manipulations, we show that genetic abrogation of the molecular clock in the fat body, a peripheral metabolic tissue, is without effect on feeding behavior. Interestingly, we find that molecular clocks in the brain and fat body of control flies gradually grow out of phase with one another under free-running conditions, likely due to a long endogenous period of the fat body clock. Under these conditions, the period of feeding rhythms tracks with molecular oscillations in central brain clock cells, consistent with a primary role of the brain clock in dictating the timing of feeding behavior. Finally, despite a lack of effect of fat body selective manipulations, we find that flies with simultaneous disruption of molecular clocks in multiple peripheral tissues (but with intact central clocks) exhibit decreased feeding rhythm strength and reduced overall food intake. We conclude that both central and peripheral clocks contribute to the regulation of feeding rhythms, with a particularly dominant, pacemaker role for specific populations of central brain clock cells.
Collapse
Affiliation(s)
- Carson V Fulgham
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Austin P Dreyer
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Anita Nasseri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Asia N Miller
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jacob Love
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Madison M Martin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Daniel A Jabr
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Daniel J Cavanaugh
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Abstract
Sleep is critical for diverse aspects of brain function in animals ranging from invertebrates to humans. Powerful genetic tools in the fruit fly Drosophila melanogaster have identified - at an unprecedented level of detail - genes and neural circuits that regulate sleep. This research has revealed that the functions and neural principles of sleep regulation are largely conserved from flies to mammals. Further, genetic approaches to studying sleep have uncovered mechanisms underlying the integration of sleep and many different biological processes, including circadian timekeeping, metabolism, social interactions, and aging. These findings show that in flies, as in mammals, sleep is not a single state, but instead consists of multiple physiological and behavioral states that change in response to the environment, and is shaped by life history. Here, we review advances in the study of sleep in Drosophila, discuss their implications for understanding the fundamental functions of sleep that are likely to be conserved among animal species, and identify important unanswered questions in the field.
Collapse
Affiliation(s)
- Orie T Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA.
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
27
|
A nutrient-responsive hormonal circuit mediates an inter-tissue program regulating metabolic homeostasis in adult Drosophila. Nat Commun 2021; 12:5178. [PMID: 34462441 PMCID: PMC8405823 DOI: 10.1038/s41467-021-25445-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.
Collapse
|
28
|
Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proc Natl Acad Sci U S A 2021; 118:2019826118. [PMID: 33658368 DOI: 10.1073/pnas.2019826118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulation of circadian behavior and physiology by the Drosophila brain clock requires communication from central clock neurons to downstream output regions, but the mechanism by which clock cells regulate downstream targets is not known. We show here that the pars intercerebralis (PI), previously identified as a target of the morning cells in the clock network, also receives input from evening cells. We determined that morning and evening clock neurons have time-of-day-dependent connectivity to the PI, which is regulated by specific peptides as well as by fast neurotransmitters. Interestingly, PI cells that secrete the peptide DH44, and control rest:activity rhythms, are inhibited by clock inputs while insulin-producing cells (IPCs) are activated, indicating that the same clock cells can use different mechanisms to drive cycling in output neurons. Inputs of morning cells to IPCs are relevant for the circadian rhythm of feeding, reinforcing the role of the PI as a circadian relay that controls multiple behavioral outputs. Our findings provide mechanisms by which clock neurons signal to nonclock cells to drive rhythms of behavior.
Collapse
|
29
|
Poe AR, Mace KD, Kayser MS. Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS J 2021; 289:6576-6588. [PMID: 34375504 DOI: 10.1111/febs.16157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Circadian clocks keep time to coordinate diverse behaviors and physiological functions. While molecular circadian rhythms are evident during early development, most behavioral rhythms, such as sleep-wake, do not emerge until far later. Here, we examine the development of circadian clocks, outputs, and behaviors across phylogeny, with a particular focus on Drosophila. We explore potential mechanisms for how central clocks and circadian output loci establish communication, and discuss why from an evolutionary perspective sleep-wake and other behavioral rhythms emerge long after central clocks begin keeping time.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyla D Mace
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
31
|
Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain. Sci Rep 2021; 11:11336. [PMID: 34059765 PMCID: PMC8166886 DOI: 10.1038/s41598-021-90857-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Wolbachia are maternally inherited endosymbionts that infect nearly half of all arthropod species. Wolbachia manipulate their hosts to maximize their transmission, but they can also provide benefits such as nutrients and resistance against viruses to their hosts. The Wolbachia strain wMel was recently found to increase locomotor activities and possibly trigger cytoplasmic incompatibility in the transinfected fly Drosophila nigrosparsa. Here, we investigated, in females of both D. melanogaster and D. nigrosparsa, the gene expression between animals uninfected and infected with wMel, using RNA sequencing to see if the two Drosophila species respond to the infection in the same or different ways. A total of 2164 orthologous genes were used. The two fly species responded to the infection in different ways. Significant changes shared by the fly species belong to the expression of genes involved in processes such as oxidation-reduction process, iron-ion binding, and voltage-gated potassium-channel activity. We discuss our findings also in the light of how Wolbachia survive within both the native and the novel host.
Collapse
|
32
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
33
|
Mizuno Y, Imura E, Kurogi Y, Shimada-Niwa Y, Kondo S, Tanimoto H, Hückesfeld S, Pankratz MJ, Niwa R. A population of neurons that produce hugin and express the diuretic hormone 44 receptor gene projects to the corpora allata in Drosophila melanogaster. Dev Growth Differ 2021; 63:249-261. [PMID: 34021588 DOI: 10.1111/dgd.12733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
The corpora allata (CA) are essential endocrine organs that biosynthesize and secrete the sesquiterpenoid hormone, namely juvenile hormone (JH), to regulate a wide variety of developmental and physiological events in insects. CA are directly innervated with neurons in many insect species, implying the innervations to be important for regulating JH biosynthesis. Although this is also true for the model organism Drosophila melanogaster, neurotransmitters produced in the CA-projecting neurons are yet to be identified. In this study on D. melanogaster, we aimed to demonstrate that a subset of neurons producing the neuropeptide hugin, the invertebrate counterpart of the vertebrate neuromedin U, directly projects to the adult CA. A synaptic vesicle marker in the hugin neurons was observed at their axon termini located on the CA, which were immunolabeled with a newly-generated antibody to the JH biosynthesis enzyme JH acid O-methyltransferase. We also found the CA-projecting hugin neurons to likely express a gene encoding the specific receptor for diuretic hormone 44 (Dh44). Moreover, our data suggest that the CA-projecting hugin neurons have synaptic connections with the upstream neurons producing Dh44. Unexpectedly, the inhibition of CA-projecting hugin neurons did not significantly alter the expression levels of the JH-inducible gene Krüppel-homolog 1, which implies that the CA-projecting neurons are not involved in JH biosynthesis but rather in other known biological processes. This is the first study to identify a specific neurotransmitter of the CA-projecting neurons in D. melanogaster, and to anatomically characterize a neuronal pathway of the CA-projecting neurons and their upstream neurons.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Eisuke Imura
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yoshitomo Kurogi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Oh Y, Lai JSY, Min S, Huang HW, Liberles SD, Ryoo HD, Suh GSB. Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron 2021; 109:1979-1995.e6. [PMID: 34015253 DOI: 10.1016/j.neuron.2021.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Nutrient sensors allow animals to identify foods rich in specific nutrients. The Drosophila nutrient sensor, diuretic hormone 44 (DH44) neurons, helps the fly to detect nutritive sugar. This sensor becomes operational during starvation; however, the mechanisms by which DH44 neurons or other nutrient sensors are regulated remain unclear. Here, we identified two satiety signals that inhibit DH44 neurons: (1) Piezo-mediated stomach/crop stretch after food ingestion and (2) Neuromedin/Hugin neurosecretory neurons in the ventral nerve cord (VNC) activated by an increase in the internal glucose level. A subset of Piezo+ neurons that express DH44 neuropeptide project to the crop. We found that DH44 neuronal activity and food intake were stimulated following a knockdown of piezo in DH44 neurons or silencing of Hugin neurons in the VNC, even in fed flies. Together, we propose that these two qualitatively distinct peripheral signals work in concert to regulate the DH44 nutrient sensor during the fed state.
Collapse
Affiliation(s)
- Yangkyun Oh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jason Sih-Yu Lai
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Soohong Min
- Harvard Medical School, Howard Hughes Medical Institute, Department of Cell Biology, Boston, MA 02115, USA
| | - Huai-Wei Huang
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA
| | - Stephen D Liberles
- Harvard Medical School, Howard Hughes Medical Institute, Department of Cell Biology, Boston, MA 02115, USA
| | - Hyung Don Ryoo
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA
| | - Greg S B Suh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
35
|
Ruiz D, Bajwa ST, Vanani N, Bajwa TA, Cavanaugh DJ. Slowpoke functions in circadian output cells to regulate rest:activity rhythms. PLoS One 2021; 16:e0249215. [PMID: 33765072 PMCID: PMC7993846 DOI: 10.1371/journal.pone.0249215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/14/2021] [Indexed: 01/31/2023] Open
Abstract
The circadian system produces ~24-hr oscillations in behavioral and physiological processes to ensure that they occur at optimal times of day and in the correct temporal order. At its core, the circadian system is composed of dedicated central clock neurons that keep time through a cell-autonomous molecular clock. To produce rhythmic behaviors, time-of-day information generated by clock neurons must be transmitted across output pathways to regulate the downstream neuronal populations that control the relevant behaviors. An understanding of the manner through which the circadian system enacts behavioral rhythms therefore requires the identification of the cells and molecules that make up the output pathways. To that end, we recently characterized the Drosophila pars intercerebralis (PI) as a major circadian output center that lies downstream of central clock neurons in a circuit controlling rest:activity rhythms. We have conducted single-cell RNA sequencing (scRNAseq) to identify potential circadian output genes expressed by PI cells, and used cell-specific RNA interference (RNAi) to knock down expression of ~40 of these candidate genes selectively within subsets of PI cells. We demonstrate that knockdown of the slowpoke (slo) potassium channel in PI cells reliably decreases circadian rest:activity rhythm strength. Interestingly, slo mutants have previously been shown to have aberrant rest:activity rhythms, in part due to a necessary function of slo within central clock cells. However, rescue of slo in all clock cells does not fully reestablish behavioral rhythms, indicating that expression in non-clock neurons is also necessary. Our results demonstrate that slo exerts its effects in multiple components of the circadian circuit, including PI output cells in addition to clock neurons, and we hypothesize that it does so by contributing to the generation of daily neuronal activity rhythms that allow for the propagation of circadian information throughout output circuits.
Collapse
Affiliation(s)
- Daniela Ruiz
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Saffia T. Bajwa
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Naisarg Vanani
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Tanvir A. Bajwa
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Daniel J. Cavanaugh
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021; 22:1940. [PMID: 33669286 PMCID: PMC7920058 DOI: 10.3390/ijms22041940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly's behavior and physiology, including feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
37
|
Sehgal A. The 2020 Pittendrigh/Aschoff Lecture: My Circadian Journey. J Biol Rhythms 2021; 36:84-96. [PMID: 33428509 PMCID: PMC8815313 DOI: 10.1177/0748730420982398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian field has come a long way since I started as a postdoctoral fellow ~30 years ago. At the time, the only known animal clock gene was period, so I had the privilege of witnessing, and participating in, the molecular revolution that took us from the discovery of the circadian clock mechanism to the identification of pathways that link clocks to behavior and physiology. This lecture highlights my role and perspective in these developments, and also demonstrates how the successful use of Drosophila for studies of circadian rhythms inspired us to develop a fly model for sleep. I also touch upon my experiences as a non-white immigrant woman navigating my way through the US science and education system, and hope my story will be of interest to some.
Collapse
Affiliation(s)
- Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Effects of aversive conditioning on expression of physiological stress in honey bees (Apis mellifera). Neurobiol Learn Mem 2020; 178:107363. [PMID: 33333317 DOI: 10.1016/j.nlm.2020.107363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
Stress is defined as any deviation from an organism's baseline physiological levels. Therefore, introduction of new stimuli and information, such as in learning, can be defined as a stressor. A large body of research exists examining the role that stress plays in learning, but virtually none addresses whether or not learning itself is a measurable cause of stress. The current study used a wide variety of learning centric stress responses. Researchers examined changes in expression of ten stress and learning related genes in various physiological systems in domesticated honey bees (Apis mellifera) as a result of exposure to an aversive conditioning task. Gene expression was examined using quantitative real-time polymerase chain reaction following the learning task. Results indicate that learning affects expression of some stress related genes.
Collapse
|
39
|
Matsumura K, Abe MS, Sharma MD, Hosken DJ, Yoshii T, Miyatake T. Genetic variation and phenotypic plasticity in circadian rhythms in an armed beetle, Gnatocerus cornutus (Tenebrionidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Circadian rhythms, their free-running periods and the power of the rhythms are often used as indicators of biological clocks, and there is evidence that the free-running periods of circadian rhythms are not affected by environmental factors, such as temperature. However, there are few studies of environmental effects on the power of the rhythms, and it is not clear whether temperature compensation is universal. Additionally, genetic variation and phenotypic plasticity in biological clocks are important for understanding the evolution of biological rhythms, but genetic and plastic effects are rarely investigated. Here, we used 18 isofemale lines (genotypes) of Gnatocerus cornutus to assess rhythms of locomotor activity, while also testing for temperature effects. We found that total activity and the power of the circadian rhythm were affected by interactions between sex and genotype or between sex, genotype and temperature. The males tended to be more active and showed greater increases in activity, but this effect varied across both genotypes and temperatures. The period of activity varied only by genotype and was thus independent of temperature. The complicated genotype–sex–environment interactions we recorded stress the importance of investigating circadian activity in more integrated ways.
Collapse
Affiliation(s)
- Kentarou Matsumura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Masato S Abe
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Tremough, Penryn, UK
| | - David J Hosken
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Tremough, Penryn, UK
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
40
|
Lamaze A, Stanewsky R. DN1p or the "Fluffy" Cerberus of Clock Outputs. Front Physiol 2020; 10:1540. [PMID: 31969832 PMCID: PMC6960142 DOI: 10.3389/fphys.2019.01540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster is a powerful genetic model to study the circadian clock. Recently, three drosophilists received the Nobel Prize for their intensive past and current work on the molecular clockwork (Nobel Prize 2017). The Drosophila brain clock is composed of about 150 clock neurons distributed along the lateral and dorsal regions of the protocerebrum. These clock neurons control the timing of locomotor behaviors. In standard light-dark (LD) conditions (12-12 h and constant 25°C), flies present a bi-modal locomotor activity pattern controlled by the clock. Flies increase their movement just before the light-transitions, and these behaviors are therefore defined as anticipatory. Two neuronal oscillators control the morning and evening anticipation. Knowing that the molecular clock cycles in phase in all clock neurons in the brain in LD, how can we explain the presence of two behavioral activity peaks separated by 12 h? According to one model, the molecular clock cycles in phase in all clock neurons, but the neuronal activity cycles with a distinct phase in the morning and evening oscillators. An alternative model takes the environmental condition into consideration. One group of clock neurons, the dorso-posterior clock neurons DN1p, drive two peaks of locomotor activity in LD even though their neuronal activity cycles with the same phase (late night/early morning). Interestingly, the locomotor outputs they control differ in their sensitivity to light and temperature. Hence, they must drive outputs to different neuropil regions in the brain, which also receive different inputs. Since 2010 and the presentation of the first specific DN1p manipulations, many studies have been performed to understand the role of this group of neurons in controlling locomotor behaviors. Hence, we review what we know about this heterogeneous group of clock neurons and discuss the second model to explain how clock neurons that oscillate with the same phase can drive behaviors at different times of the day.
Collapse
Affiliation(s)
- Angélique Lamaze
- Institut für Neuro und Verhaltensbiologie, Westfälische Wilhelms University, Münster, Germany
| | | |
Collapse
|
41
|
King AN, Sehgal A. Molecular and circuit mechanisms mediating circadian clock output in the Drosophila brain. Eur J Neurosci 2020; 51:268-281. [PMID: 30059181 PMCID: PMC6353709 DOI: 10.1111/ejn.14092] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
A central question in the circadian biology field concerns the mechanisms that translate ~24-hr oscillations of the molecular clock into overt rhythms. Drosophila melanogaster is a powerful system that provided the first understanding of how molecular clocks are generated and is now illuminating the neural basis of circadian behavior. The identity of ~150 clock neurons in the Drosophila brain and their roles in shaping circadian rhythms of locomotor activity have been described before. This review summarizes mechanisms that transmit time-of-day signals from the clock, within the clock network as well as downstream of it. We also discuss the identification of functional multisynaptic circuits between clock neurons and output neurons that regulate locomotor activity.
Collapse
Affiliation(s)
- Anna N. King
- Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
42
|
A circadian output center controlling feeding:fasting rhythms in Drosophila. PLoS Genet 2019; 15:e1008478. [PMID: 31693685 PMCID: PMC6860455 DOI: 10.1371/journal.pgen.1008478] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/18/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms allow animals to coordinate behavioral and physiological processes with respect to one another and to synchronize these processes to external environmental cycles. In most animals, circadian rhythms are produced by core clock neurons in the brain that generate and transmit time-of-day signals to downstream tissues, driving overt rhythms. The neuronal pathways controlling clock outputs, however, are not well understood. Furthermore, it is unclear how the central clock modulates multiple distinct circadian outputs. Identifying the cellular components and neuronal circuitry underlying circadian regulation is increasingly recognized as a critical step in the effort to address health pathologies linked to circadian disruption, including heart disease and metabolic disorders. Here, building on the conserved components of circadian and metabolic systems in mammals and Drosophila melanogaster, we used a recently developed feeding monitor to characterize the contribution to circadian feeding rhythms of two key neuronal populations in the Drosophila pars intercerebralis (PI), which is functionally homologous to the mammalian hypothalamus. We demonstrate that thermogenetic manipulations of PI neurons expressing the neuropeptide SIFamide (SIFa) as well as mutations of the SIFa gene degrade feeding:fasting rhythms. In contrast, manipulations of a nearby population of PI neurons that express the Drosophila insulin-like peptides (DILPs) affect total food consumption but leave feeding rhythms intact. The distinct contribution of these two PI cell populations to feeding is accompanied by vastly different neuronal connectivity as determined by trans-Tango synaptic mapping. These results for the first time identify a non-clock cell neuronal population in Drosophila that regulates feeding rhythms and furthermore demonstrate dissociable control of circadian and homeostatic aspects of feeding regulation by molecularly-defined neurons in a putative circadian output hub.
Collapse
|
43
|
Bai L, Lee Y, Hsu CT, Williams JA, Cavanaugh D, Zheng X, Stein C, Haynes P, Wang H, Gutmann DH, Sehgal A. A Conserved Circadian Function for the Neurofibromatosis 1 Gene. Cell Rep 2019; 22:3416-3426. [PMID: 29590612 PMCID: PMC5898822 DOI: 10.1016/j.celrep.2018.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/21/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Loss of the Neurofibromatosis 1 (Nf1) protein, neurofibromin, in Drosophila disrupts circadian rhythms of locomotor activity without impairing central clock function, suggesting effects downstream of the clock. However, the relevant cellular mechanisms are not known. Leveraging the discovery of output circuits for locomotor rhythms, we dissected cellular actions of neurofibromin in recently identified substrates. Herein, we show that neurofibromin affects the levels and cycling of calcium in multiple circadian peptidergic neurons. A prominent site of action is the pars intercerebralis (PI), the fly equivalent of the hypothalamus, with cell-autonomous effects of Nf1 in PI cells that secrete DH44. Nf1 interacts genetically with peptide signaling to affect circadian behavior. We extended these studies to mammals to demonstrate that mouse astrocytes exhibit a 24-hr rhythm of calcium levels, which is also attenuated by lack of neurofibromin. These findings establish a conserved role for neurofibromin in intracellular signaling rhythms within the nervous system.
Collapse
Affiliation(s)
- Lei Bai
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yool Lee
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cynthia T Hsu
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Williams
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Cavanaugh
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, Loyola University, Chicago, IL, USA
| | - Xiangzhong Zheng
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Bloomington Stock Center, Indiana University, Bloomington, IN, USA
| | - Carly Stein
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula Haynes
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Han Wang
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Law, University of California, Los Angeles, Los Angeles, CA, USA
| | - David H Gutmann
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Washington University, St. Louis, MO, USA
| | - Amita Sehgal
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Abstract
Prolonged wakefulness stimulates the homeostatic need to sleep, but transition to sleep also depends on the circadian time of day. However, links between circadian and homeostatic influences are not well understood. Guo et al. (2018) identify a Drosophila circuit connecting circadian clock neurons to sleep-promoting ring neurons in the ellipsoid body.
Collapse
Affiliation(s)
- Cynthia T Hsu
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. Int J Mol Sci 2019; 20:ijms20092363. [PMID: 31086044 PMCID: PMC6540063 DOI: 10.3390/ijms20092363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery.
Collapse
|
46
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
47
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
48
|
Buijs RM, Guzmán Ruiz MA, Méndez Hernández R, Rodríguez Cortés B. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci 2019; 218:43-50. [PMID: 30890347 DOI: 10.1016/j.autneu.2019.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nucleus (SCN) is responsible for determining circadian variations in physiological setpoints. The SCN achieves such control through projections to different target structures within and outside the hypothalamus. Thus the SCN prepares the physiology of the body every 24 h via hormones and autonomic nervous system (ANS), to coming changes in behavior. Resulting rhythms in hormones and ANS activity transmit a precise message to selective organs, adapting their sensitivity to coming hormones, metabolites or other essentials. Thus the SCN as autonomous clock gives rhythm to physiological processes. However when the body is challenged by infections, low or high temperature, food shortage or excess: physiological setpoints need to be changed. For example, under fasting conditions, setpoints for body temperature and glucose levels are lowered at the beginning of the sleep (inactive) phase. However, starting the active phase, a normal increase in glucose and temperature levels take place to support activities associated with the acquisition of food. Thus, the SCN adjusts physiological setpoints in agreement with time of the day and according to challenges faced by the body. The SCN is enabled to do this by receiving extensive input from brain areas involved in sensing the condition of the body. Therefore, when the body receives stimuli contradicting normal physiology, such as eating or activity during the inactive period, this information reaches the SCN, adapting its output to correct this disbalance. As consequence frequent violations of the SCN message, such as by shift work or night eating, will result in development of disease.
Collapse
Affiliation(s)
- Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico.
| | - Mara A Guzmán Ruiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Rebeca Méndez Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Betty Rodríguez Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| |
Collapse
|
49
|
Isaac RE. The Effect of Mating and the Male Sex Peptide on Group Behaviour of Post-mated Female Drosophila melanogaster. Neurochem Res 2019; 44:1508-1516. [PMID: 30661229 DOI: 10.1007/s11064-019-02722-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- R Elwyn Isaac
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
50
|
Pírez N, Bernabei-Cornejo SG, Fernandez-Acosta M, Duhart JM, Ceriani MF. Contribution of non-circadian neurons to the temporal organization of locomotor activity. Biol Open 2019; 8:bio.039628. [PMID: 30530810 PMCID: PMC6361196 DOI: 10.1242/bio.039628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the fruit fly, Drosophila melanogaster, the daily cycle of rest and activity is a rhythmic behavior that relies on the activity of a small number of neurons. The small ventral lateral neurons (sLNvs) are considered key in the control of locomotor rhythmicity. Previous work from our laboratory has showed that these neurons undergo structural remodeling on their axonal projections on a daily basis. Such remodeling endows sLNvs with the possibility to make synaptic contacts with different partners at different times throughout the day, as has been previously described. By using different genetic tools to alter membrane excitability of the sLNv putative postsynaptic partners, we tested their functional role in the control of locomotor activity. We also used optical imaging to test the functionality of these contacts. We found that these different neuronal groups affect the consolidation of rhythmic activity, suggesting that non-circadian cells are part of the circuit that controls locomotor activity. Our results suggest that new neuronal groups, in addition to the well-characterized clock neurons, contribute to the operations of the circadian network that controls locomotor activity in D. melanogaster. Summary: Here we characterized the impact of different putative postsynaptic partners of the sLNvs on the control of rhythmic locomotor behavior. We found that some of these novel neuronal clusters are relevant for the control of locomotor activity.
Collapse
Affiliation(s)
- Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Sofia G Bernabei-Cornejo
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Magdalena Fernandez-Acosta
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - José M Duhart
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| |
Collapse
|