1
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
2
|
Roussin-Léveillée C, Rossi CAM, Castroverde CDM, Moffett P. The plant disease triangle facing climate change: a molecular perspective. TRENDS IN PLANT SCIENCE 2024; 29:895-914. [PMID: 38580544 DOI: 10.1016/j.tplants.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Variations in climate conditions can dramatically affect plant health and the generation of climate-resilient crops is imperative to food security. In addition to directly affecting plants, it is predicted that more severe climate conditions will also result in greater biotic stresses. Recent studies have identified climate-sensitive molecular pathways that can result in plants being more susceptible to infection under unfavorable conditions. Here, we review how expected changes in climate will impact plant-pathogen interactions, with a focus on mechanisms regulating plant immunity and microbial virulence strategies. We highlight the complex interactions between abiotic and biotic stresses with the goal of identifying components and/or pathways that are promising targets for genetic engineering to enhance adaptation and strengthen resilience in dynamically changing environments.
Collapse
Affiliation(s)
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
4
|
Nimsi KA, Manjusha K, Farzana MN. Diversity, distribution, and bioprospecting potentials of carotenogenic yeast from mangrove ecosystem. Arch Microbiol 2024; 206:189. [PMID: 38519760 DOI: 10.1007/s00203-024-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024]
Abstract
Microbial production of carotenoids has gained significant interest for its cost-effectiveness and sustainable nature. This study focuses on 47 red-pigmented yeasts isolated from sediments and plant parts of 13 species of mangrove trees. The relative abundance and distribution of these yeasts varied with plant species and plant parts. The highest number of red yeasts was associated with the mangrove plant Avicennia officinalis (32%). Notably, the leaves harbored the highest percentage (45%) of carotenogenic yeasts, and definite compartmentalization of these yeast species was noticed in mangrove plant parts. All the isolates were molecularly identified and they belonged to the genera of Rhodotorula, Rhodosporidiobolus, and Cryptococcus. The diversity of the pigmented yeasts isolated from A. officinalis was found to be the greatest. Among these strains, Rhodotorula mucilaginosa PV 8 was identified as the most potent producer of carotenoid pigment. Under optimized conditions of physical parameters - 28 °C, pH 5, and 15% salinity led to biomass production of 9.2 ± 0.12 g/L DCW and a pigment yield of 194.78 µg/g. The pigment produced by PV 8 was identified as β-carotene by thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR). This β-carotene demonstrated strong antioxidant activity. Moreover, the carotenoid displayed promising antibacterial activity against multidrug-resistant organisms, including Aeromonas sp. and Vibrio sp. In vitro studies revealed the probiotic traits of PV 8. The cytotoxicity of R. mucilaginosa PV 8 was assessed in the invertebrate model Artemia salina and the survival rate showed that it was non-toxic. Furthermore, the β-carotene from PV 8 demonstrated the ability to transfer its vibrant color to various food products, maintaining color stability even under varied conditions. This research underscores the potential of R. mucilaginosa PV 8, as a versatile and valuable resource for the production of carotenoids.
Collapse
Affiliation(s)
- K A Nimsi
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682506, India
| | - K Manjusha
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682506, India.
| | - M N Farzana
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682506, India
| |
Collapse
|
5
|
Pandey S, Meshram V, Yehia HM, Alzahrani A, Akhtar N, Sur A. Efficient production and characterization of melanin from Thermothelomyces hinnuleus SP1, isolated from the coal mines of Chhattisgarh, India. Front Microbiol 2024; 14:1320116. [PMID: 38293558 PMCID: PMC10826702 DOI: 10.3389/fmicb.2023.1320116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
In the present study, fungi were isolated and screened from barren land in south-eastern Coalfields limited (SECL) in Chhattisgarh, India. Out of 14 isolated fungi, only three fungal isolates exhibited pigmentation in screening studies. The isolated fungal strain SP1 exhibited the highest pigmentation, which was further utilized for in vivo production, purification, and characterization of melanin pigment. The physical and chemical properties of the fungal pigment showed insolubility in organic solvents and water, solubility in alkali, precipitation in acid, and decolorization with oxidizing agents. The physiochemical characterization and analytical studies of the extracted pigment using ultraviolet-visible spectroscopy and Fourier transform infrared (FTIR) confirmed it as a melanin pigment. The melanin-producing fungus SP1 was identified as Thermothelomyces hinnuleus based on 18S-rRNA sequence analysis. Furthermore, to enhance melanin production, a response surface methodology (RSM) was employed, specifically utilizing the central composite design (CCD). This approach focused on selecting efficient growth as well as progressive yield parameters such as optimal temperature (34.4°C), pH (5.0), and trace element concentration (56.24 mg). By implementing the suggested optimal conditions, the production rate of melanin increased by 62%, resulting in a yield of 28.3 mg/100 mL, which is comparatively higher than the actual yield (17.48 ± 2.19 mg/100 mL). Thus, T. hinnuleus SP1 holds great promise as a newly isolated fungal strain that could be used for the industrial production of melanin.
Collapse
Affiliation(s)
- Shalini Pandey
- Amity Institute of Biotechnology, Amity University, Raipur, Chhattisgarh, India
| | - Vineet Meshram
- Department of Biotechnology and Microbiology, Anjaneya University, Raipur, Chhattisgarh, India
| | - Hany M. Yehia
- Department of Food Science and Nutrition, Faculty of Home Economics, Helwan University, Cairo, Egypt
| | - Abdulhakeem Alzahrani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Arunima Sur
- Amity Institute of Biotechnology, Amity University, Raipur, Chhattisgarh, India
| |
Collapse
|
6
|
Laumeier R, Brändle M, Rödel MO, Brunzel S, Brandl R, Pinkert S. The global importance and interplay of colour-based protective and thermoregulatory functions in frogs. Nat Commun 2023; 14:8117. [PMID: 38114472 PMCID: PMC10730650 DOI: 10.1038/s41467-023-43729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Small-scale studies have shown that colour lightness variation can have important physiological implications in ectotherms, with darker species having greater heating rates, as well as protection against pathogens and photooxidative damage. Using data for 41% (3059) of all known frog and toad species (Anura) from across the world, we reveal ubiquitous and strong clines of decreasing colour lightness towards colder regions and regions with higher pathogen pressure and UVB radiation. The relative importance of pathogen resistance is higher in the tropics and that of thermoregulation is higher in temperate regions. The results suggest that these functions influence colour lightness evolution in anurans and filtered for more similarly coloured species under climatic extremes, while their concurrent importance resulted in high within-assemblage variation in productive regions. Our findings indicate three important functions of colour lightness in anurans - thermoregulation, pathogen and UVB protection - and broaden support for colour lightness-environment relationships in ectotherms.
Collapse
Affiliation(s)
- Ricarda Laumeier
- Department of Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany.
- Department of Biodiversity and Species Conservation, Faculty of Landscape Architecture, Horticulture and Forestry, University of Applied Science Erfurt, Leipziger Straße 77, 99085, Erfurt, Germany.
| | - Martin Brändle
- Department of Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany
| | - Mark-Oliver Rödel
- Department of Evolutionary Diversity Dynamics, Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
| | - Stefan Brunzel
- Department of Biodiversity and Species Conservation, Faculty of Landscape Architecture, Horticulture and Forestry, University of Applied Science Erfurt, Leipziger Straße 77, 99085, Erfurt, Germany
| | - Roland Brandl
- Department of Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany
| | - Stefan Pinkert
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, 06511, New Haven, CT, USA
- Department of Conservation Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany
| |
Collapse
|
7
|
Britton S, Davidowitz G. The adaptive role of melanin plasticity in thermally variable environments. J Evol Biol 2023; 36:1811-1821. [PMID: 37916691 DOI: 10.1111/jeb.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Understanding the evolution of adaptive plasticity is fundamental to our knowledge of how organisms interact with their environments and cope with environmental change. Plasticity in melanin pigmentation is common in response to variable environments, especially thermal environments. Yet, the adaptive significance of melanin plasticity in thermally variable environments is often assumed, but rarely explicitly tested. Furthermore, understanding the role of plasticity when a trait is responsive to multiple environmental stimuli and plays many functional roles remains poorly understood. We test the hypothesis that melanin plasticity is an adaptation for thermally variable environments using Hyles lineata, the white-lined sphinx moth, which shows plasticity in melanin pigmentation during the larval stage. Melanin pigmentation influences thermal traits in H. lineata, as melanic individuals had higher heating rates and reached higher body temperatures than non-melanic individuals. Importantly, melanin pigmentation has temperature specific fitness consequences. While melanic individuals had an advantage in cold temperatures, neither phenotype had a clear fitness advantage at warm temperatures. Thus, the costs associated with melanin production may be unrelated to thermal context. Our results highlight the importance of explicitly testing the adaptive role of plasticity and considering all the factors that influence costs and benefits of plastic phenotypes across environments.
Collapse
Affiliation(s)
- Sarah Britton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Smith DFQ, Bencomo A, Faiez TS, Casadevall A. Thermal and pigment characterization of environmental fungi in the urban heat island of Baltimore City. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566554. [PMID: 37986923 PMCID: PMC10659420 DOI: 10.1101/2023.11.10.566554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
One of the major barriers of fungal infections of mammals is the inability to grow and/or survive at mammalian body temperature, typically around 37°C. This has provided mammals an advantage over fungi. However, environmental fungi may soon adapt to persist at higher temperatures, consistent with mammalian body temperature, due to thermal selection pressures imposed by climate change, global warming, and increased frequency of extreme heat events. Consequently, there is a need for more updated information about the thermal tolerance range of fungi near humans, such as in urban areas. The heat island effect suggests that cities are up to 8°C warmer than their suburban counterparts because of increased heat production, asphalt coatings and reduced greenspace among other factors, and it is more common in lower income and marginalized urban communities. Thus, urban centers are at increased risk for the emergence of heat tolerant fungi. In this study, we developed a methodology to collect and archive fungal isolates from sidewalk and soil samples in both warmer and cooler neighborhoods in Baltimore, Maryland. We demonstrate a novel methodology for fungal sample collection from sidewalks, employing the use of standardized and commercially available taffy. Analysis of fungal isolates collected from warmer neighborhoods revealed greater thermal tolerance and lower pigmentation, suggesting local adaptation to heat. Lower pigmentation in hotter areas is consistent with the notion that fungi use pigmentation to help regulate their temperature. Further, we identified the robust presence of the polyextremotolerant fungus Aureobasidium pullalans from the warmest neighborhood in Baltimore, further showing that the extreme conditions of cities can drive proliferation of extremotolerant fungi. This study develops new techniques for environmental fungal collection and provides insight on the fungal census in an urban setting that can inform future work to study how urban environments may drive stress/thermotolerance in fungi, which could alter fungal interactions with humans and impact human health.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Alexa Bencomo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tasnim Syakirah Faiez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| |
Collapse
|
9
|
Smith AD, Tschirhart T, Compton J, Hennessa TM, VanArsdale E, Wang Z. Rapid, high-titer biosynthesis of melanin using the marine bacterium Vibrio natriegens. Front Bioeng Biotechnol 2023; 11:1239756. [PMID: 37781538 PMCID: PMC10534004 DOI: 10.3389/fbioe.2023.1239756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Melanin is one of the most abundant natural biomolecules on Earth. These macromolecular biopolymers display several unique physical and chemical properties and have garnered interest as biomaterials for various commercial and industrial applications. To this end, extensive research has gone into refining methods for the synthesis and extraction of melanin from natural and recombinant sources. In this study, we developed and refined a procedure using a recombinant microbial system for the biosynthesis of melanin using the tyrosinase enzyme Tyr1 and tyrosine as a substrate. Using the emergent microbial chassis organisms Vibrio natriegens, we achieved maximal yields of 7.57 g/L, and one of the highest reported volumetric productivities of 473 mg L-1 h-1 with 100% conversion rates in an optimized, minimally defined medium. Additionally, we identified and investigated the use of a native copper responsive promoter in V. natriegens for stringent regulation of heterologous protein expression as a cost effective alternative to traditional IPTG-based induction. This research represents a promising advancement towards a green, rapid, and economical alternative for the biomanufacture of melanin.
Collapse
Affiliation(s)
- Aaron D. Smith
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States
- College of Science, George Mason University, Fairfax, VA, United States
| | - Tanya Tschirhart
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States
| | - Jaimee Compton
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States
| | - Tiffany M. Hennessa
- American Society for Engineering Education Postdoctoral Research Associate, United States Naval Research Laboratory, Washington, DC, United States
| | - Eric VanArsdale
- National Research Council Postdoctoral Research Associate, United States Naval Research Laboratory, Washington, DC, United States
| | - Zheng Wang
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States
| |
Collapse
|
10
|
Anand S, Hallsworth JE, Timmis J, Verstraete W, Casadevall A, Ramos JL, Sood U, Kumar R, Hira P, Dogra Rawat C, Kumar A, Lal S, Lal R, Timmis K. Weaponising microbes for peace. Microb Biotechnol 2023; 16:1091-1111. [PMID: 36880421 PMCID: PMC10221547 DOI: 10.1111/1751-7915.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
There is much human disadvantage and unmet need in the world, including deficits in basic resources and services considered to be human rights, such as drinking water, sanitation and hygiene, healthy nutrition, access to basic healthcare, and a clean environment. Furthermore, there are substantive asymmetries in the distribution of key resources among peoples. These deficits and asymmetries can lead to local and regional crises among peoples competing for limited resources, which, in turn, can become sources of discontent and conflict. Such conflicts have the potential to escalate into regional wars and even lead to global instability. Ergo: in addition to moral and ethical imperatives to level up, to ensure that all peoples have basic resources and services essential for healthy living and to reduce inequalities, all nations have a self-interest to pursue with determination all available avenues to promote peace through reducing sources of conflicts in the world. Microorganisms and pertinent microbial technologies have unique and exceptional abilities to provide, or contribute to the provision of, basic resources and services that are lacking in many parts of the world, and thereby address key deficits that might constitute sources of conflict. However, the deployment of such technologies to this end is seriously underexploited. Here, we highlight some of the key available and emerging technologies that demand greater consideration and exploitation in endeavours to eliminate unnecessary deprivations, enable healthy lives of all and remove preventable grounds for competition over limited resources that can escalate into conflicts in the world. We exhort central actors: microbiologists, funding agencies and philanthropic organisations, politicians worldwide and international governmental and non-governmental organisations, to engage - in full partnership - with all relevant stakeholders, to 'weaponise' microbes and microbial technologies to fight resource deficits and asymmetries, in particular among the most vulnerable populations, and thereby create humanitarian conditions more conducive to harmony and peace.
Collapse
Affiliation(s)
- Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya College, University of DelhiDelhiIndia
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - James Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Arturo Casadevall
- Department of MedicineJohns Hopkins School of Public Health and School of MedicineBaltimoreMarylandUSA
| | | | - Utkarsh Sood
- Department of ZoologyKirori Mal College, University of DelhiDelhiIndia
| | - Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBiharIndia
| | - Princy Hira
- Department of ZoologyMaitreyi College, University of DelhiNew DelhiIndia
| | | | - Abhilash Kumar
- Department of ZoologyRamjas College, University of DelhiDelhiIndia
| | - Sukanya Lal
- PhiXgen Pvt. LtdGurugram, GurgaonHaryanaIndia
| | - Rup Lal
- Acharya Narendra Dev College, University of DelhiGovindpuri, Kalkaji, New DelhiIndia
| | - Kenneth Timmis
- Institute of Microbiology, Technical University BraunschweigBraunschweigGermany
| |
Collapse
|
11
|
Cordero RJB, Mattoon ER, Ramos Z, Casadevall A. The hypothermic nature of fungi. Proc Natl Acad Sci U S A 2023; 120:e2221996120. [PMID: 37130151 PMCID: PMC10175714 DOI: 10.1073/pnas.2221996120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Fungi play essential roles in global health, ecology, and economy, but their thermal biology is relatively unexplored. Mushrooms, the fruiting body of mycelium, were previously noticed to be colder than surrounding air through evaporative cooling. Here, we confirm those observations using infrared thermography and report that this hypothermic state is also observed in mold and yeast colonies. The relatively colder temperature of yeasts and molds is also mediated via evaporative cooling and associated with the accumulation of condensed water droplets on plate lids above colonies. The colonies appear coldest at their center and the surrounding agar appears warmest near the colony edges. The analysis of cultivated Pleurotus ostreatus mushrooms revealed that the hypothermic feature of mushrooms can be observed throughout the whole fruiting process and at the level of mycelium. The mushroom's hymenium was coldest, and different areas of the mushroom appear to dissipate heat differently. We also constructed a mushroom-based air-cooling prototype system capable of passively reducing the temperature of a semiclosed compartment by approximately 10 °C in 25 min. These findings suggest that the fungal kingdom is characteristically cold. Since fungi make up approximately 2% of Earth's biomass, their evapotranspiration may contribute to cooler temperatures in local environments.
Collapse
Affiliation(s)
- Radames J. B. Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Ellie Rose Mattoon
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD21218
| | - Zulymar Ramos
- Department of Biology, University of Puerto Rico, Arecibo, PR00612
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
12
|
Freoa L, Chevin LM, Christol P, Méléard S, Rera M, Véber A, Gibert JM. Drosophilids with darker cuticle have higher body temperature under light. Sci Rep 2023; 13:3513. [PMID: 36864153 PMCID: PMC9981618 DOI: 10.1038/s41598-023-30652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Cuticle pigmentation was shown to be associated with body temperature for several relatively large species of insects, but it was questioned for small insects. Here we used a thermal camera to assess the association between drosophilid cuticle pigmentation and body temperature increase when individuals are exposed to light. We compared mutants of large effects within species (Drosophila melanogaster ebony and yellow mutants). Then we analyzed the impact of naturally occurring pigmentation variation within species complexes (Drosophila americana/Drosophila novamexicana and Drosophila yakuba/Drosophila santomea). Finally we analyzed lines of D. melanogaster with moderate differences in pigmentation. We found significant differences in temperatures for each of the four pairs we analyzed. The temperature differences appeared to be proportional to the differently pigmented area: between Drosophila melanogaster ebony and yellow mutants or between Drosophila americana and Drosophila novamexicana, for which the whole body is differently pigmented, the temperature difference was around 0.6 °C ± 0.2 °C. By contrast, between D. yakuba and D. santomea or between Drosophila melanogaster Dark and Pale lines, for which only the posterior abdomen is differentially pigmented, we detected a temperature difference of about 0.14 °C ± 0.10 °C. This strongly suggests that cuticle pigmentation has ecological implications in drosophilids regarding adaptation to environmental temperature.
Collapse
Affiliation(s)
- Laurent Freoa
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Luis-Miguel Chevin
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, 34000, Montpellier, France
| | - Philippe Christol
- UMR5214, CNRS, Institut d'électronique et des systèmes, Université de Montpellier, 34000, Montpellier, France
| | - Sylvie Méléard
- CMAP, CNRS, Ecole Polytechnique, France et Institut Universitaire de France, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michael Rera
- Inserm UMR U1284, Centre de Recherche Interdisciplinaire (CRI Paris), 8 bis Rue Charles V, 75004, Paris, France
| | - Amandine Véber
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
13
|
Melaninization Reduces Cryptococcus neoformans Susceptibility to Mechanical Stress. mSphere 2023; 8:e0059122. [PMID: 36602315 PMCID: PMC9942553 DOI: 10.1128/msphere.00591-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Melanin is a complex pigment that is found in various fungal species and is associated with a multitude of protective functions against environmental stresses. In Cryptococcus neoformans, melanin is synthesized from exogenous substrate and deposited in the cell wall. Although melanin is often cited as a protector against mechanical stress, there is a paucity of direct experimental data supporting this claim. To probe whether melanin enhances cellular strength, we used ultrasonic cavitation and French cell press pressure to stress cryptococcal cells and then measured changes in cellular morphology and fragmentation for melanized and nonmelanized C. neoformans cells. Melanized yeast cells exhibited lower rates of fragmentation and greater cell areas than did nonmelanized yeast cells after sonication or French press passage. When subjected to French press passage, both melanized and nonmelanized cells exhibited responses that were dependent on their culture age. Our results indicate that melanization protects against some of the morphological changes, such as fragmentation and cellular shrinkage, that are initiated by mechanical energy derived from either sonic cavitation or French press passage, thus supporting the notion that this pigment provides mechanical strength for fungal cell walls. IMPORTANCE Melanin was shown in prior microbiological experiments to be associated with protection against environmental stressors, and it has often been cited as being associated with mechanical stress protection. However, there is a lack of direct experimentation to confirm this claim. We examined the responses of melanized and nonmelanized C. neoformans cells to sonication and French press passage, and we report differences in outcomes depending not only on melanization status but also on culture age. Such findings have important implications for the design and interpretation of laboratory experiments involving C. neoformans. In addition, the elucidation of some of the mechanical properties of melanin promotes further research into fungal melanin applications in health care and industry.
Collapse
|
14
|
Korfanty G, Heifetz E, Xu J. Assessing thermal adaptation of a global sample of Aspergillus fumigatus: Implications for climate change effects. Front Public Health 2023; 11:1059238. [PMID: 36875405 PMCID: PMC9978374 DOI: 10.3389/fpubh.2023.1059238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Aspergillus fumigatus is a common environmental mold and a major cause of opportunistic infections in humans. It's distributed among many ecological niches across the globe. A major virulence factor of A. fumigatus is its ability to grow at high temperature. However, at present, little is known about variations among strains in their growth at different temperatures and how their geographic origins may impact such variations. In this study, we analyzed 89 strains from 12 countries (Cameroon, Canada, China, Costa Rica, France, India, Iceland, Ireland, New Zealand, Peru, Saudi Arabia, and USA) representing diverse geographic locations and temperature environments. Each strain was grown at four temperatures and genotyped at nine microsatellite loci. Our analyses revealed a range of growth profiles, with significant variations among strains within individual geographic populations in their growths across the temperatures. No statistically significant association was observed between strain genotypes and their thermal growth profiles. Similarly geographic separation contributed little to differences in thermal adaptations among strains and populations. The combined analyses among genotypes and growth rates at different temperatures in the global sample suggest that most natural populations of A. fumigatus are capable of rapid adaptation to temperature changes. We discuss the implications of our results to the evolution and epidemiology of A. fumigatus under increasing climate change.
Collapse
Affiliation(s)
| | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Gouka L, Raaijmakers JM, Cordovez V. Ecology and functional potential of phyllosphere yeasts. TRENDS IN PLANT SCIENCE 2022; 27:1109-1123. [PMID: 35842340 DOI: 10.1016/j.tplants.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/20/2023]
Abstract
The phyllosphere (i.e., the aerial parts of plants) harbors a rich microbial life, including bacteria, fungi, viruses, and yeasts. Current knowledge of yeasts stems primarily from industrial and medical research on Saccharomyces cerevisiae and Candida albicans, both of which can be found on plant tissues. For most other yeasts found in the phyllosphere, little is known about their ecology and functions. Here, we explore the diversity, dynamics, interactions, and genomics of yeasts associated with plant leaves and how tools and approaches developed for model yeasts can be adopted to disentangle the ecology and natural functions of phyllosphere yeasts. A first genomic survey exemplifies that we have only scratched the surface of the largely unexplored functional potential of phyllosphere yeasts.
Collapse
Affiliation(s)
- Linda Gouka
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
17
|
Vélez N, Vega-Vela N, Muñoz M, Gómez P, Escandón P, Ramírez JD, Zaragoza O, Monteoliva Diaz L, Parra-Giraldo CM. Deciphering the Association among Pathogenicity, Production and Polymorphisms of Capsule/Melanin in Clinical Isolates of Cryptococcus neoformans var. grubii VNI. J Fungi (Basel) 2022; 8:245. [PMID: 35330247 PMCID: PMC8950468 DOI: 10.3390/jof8030245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cryptococcus neoformans is an opportunistic fungal pathogen that can cause meningitis in immunocompromised individuals. The objective of this work was to study the relationship between the phenotypes and genotypes of isolates of clinical origin from different cities in Colombia. METHODS Genome classification of 29 clinical isolates of C. neoformans var. grubii was performed using multilocus sequence typing (MLST), and genomic sequencing was used to genotype protein-coding genes. Pathogenicity was assessed in a larval model, and melanin production and capsule size were evaluated in vitro and in vivo. RESULTS Eleven MLST sequence types (STs) were found, the most frequent being ST69 (n = 9), ST2, ST93, and ST377 (each with n = 4). In the 29 isolates, different levels of pigmentation, capsule size and pathogenicity were observed. Isolates classified as highly pathogenic showed a tendency to exhibit larger increases in capsule size. In the analysis of polymorphisms, 48 non-synonymous variants located in the predicted functional domains of 39 genes were found to be associated with capsule size change, melanin, or pathogenicity. CONCLUSIONS No clear patterns were found in the analysis of the phenotype and genotype of Cryptococcus. However, the data suggest that the increase in capsule size is a key variable for the differentiation of pathogenic isolates, regardless of the method used for its induction.
Collapse
Affiliation(s)
- Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Nelson Vega-Vela
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
| | - Paola Gómez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oscar Zaragoza
- Mycology Reference Laboratory National Centre for Microbiology, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Lucía Monteoliva Diaz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
18
|
Oechler H, Krah FS. Response of Fruit Body Assemblage Color Lightness to Macroclimate and Vegetation Cover. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.829981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how species relate mechanistically to their environment via traits is a central goal in ecology. Many macroecological rules were found for macroorganisms, however, whether they can explain microorganismal macroecological patterns still requires investigation. Further, whether macroecological rules are also applicable in microclimates is largely unexplored. Here we use fruit body-forming fungi to understand both aspects better. A recent study showed first evidence for the thermal-melanism hypothesis (Bogert’s rule) in fruit body-forming fungi and relied on a continental spatial scale with large grid size. At large spatial extent and grid sizes, other factors like dispersal limitation or local microclimatic variability might influence observed patterns besides the rule of interest. Therefore, we test fungal assemblage fruit body color lightness along a local elevational gradient (mean annual temperature gradient of 7°C) while considering the vegetation cover as a proxy for local variability in microclimate. Using multivariate linear modeling, we found that fungal fruiting assemblages are significantly darker at lower mean annual temperatures supporting the thermal-melanism hypothesis. Further, we found a non-significant trend of assemblage color lightness with vegetation cover. Our results support Bogert’s rule for microorganisms with macroclimate, which was also found for macroorganisms.
Collapse
|
19
|
Krah FS, Hagge J, Schreiber J, Brandl R, Müller J, Bässler C. Fungal fruit body assemblages are tougher in harsh microclimates. Sci Rep 2022; 12:1633. [PMID: 35102234 PMCID: PMC8803873 DOI: 10.1038/s41598-022-05715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Forest species are affected by macroclimate, however, the microclimatic variability can be more extreme and change through climate change. Fungal fruiting community composition was affected by microclimatic differences. Here we ask whether differences in the fruiting community can be explained by morphological traits of the fruit body, which may help endure harsh conditions. We used a dead wood experiment and macrofungal fruit body size, color, and toughness. We exposed logs of two host tree species under closed and experimentally opened forest canopies in a random-block design for four years and identified all visible fruit bodies of two fungal lineages (Basidio- and Ascomycota). We found a consistently higher proportion of tough-fleshed species in harsher microclimates under open canopies. Although significant, responses of community fruit body size and color lightness were inconsistent across lineages. We suggest the toughness-protection hypothesis, stating that tough-fleshed fruit bodies protect from microclimatic extremes by reducing dehydration. Our study suggests that the predicted increase of microclimatic harshness with climate change will likely decrease the presence of soft-fleshed fruit bodies. Whether harsh microclimates also affect the mycelium of macrofungi with different fruit body morphology would complement our findings and increase predictability under climate change.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Jonas Hagge
- Forest Nature Conservation, Northwest German Forest Research Institute, Hann. Münden, Germany
- Forest Nature Conservation, Georg-August-University Göttingen, Göttingen, Germany
| | - Jasper Schreiber
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roland Brandl
- Department of Ecology, Philips University of Marburg, Marburg, Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
- Bavarian Forest National Park, Grafenau, Germany
| | - Claus Bässler
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
20
|
Romsdahl J, Schultzhaus Z, Cuomo CA, Dong H, Abeyratne-Perera H, Hervey WJ, Wang Z. Phenotypic Characterization and Comparative Genomics of the Melanin-Producing Yeast Exophiala lecanii-corni Reveals a Distinct Stress Tolerance Profile and Reduced Ribosomal Genetic Content. J Fungi (Basel) 2021; 7:1078. [PMID: 34947060 PMCID: PMC8709033 DOI: 10.3390/jof7121078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
The black yeast Exophiala lecanii-corni of the order Chaetothyriales is notable for its ability to produce abundant quantities of DHN-melanin. While many other Exophiala species are frequent causal agents of human infection, E. lecanii-corni CBS 102400 lacks the thermotolerance requirements that enable pathogenicity, making it appealing for use in targeted functional studies and biotechnological applications. Here, we report the stress tolerance characteristics of E. lecanii-corni, with an emphasis on the influence of melanin on its resistance to various forms of stress. We find that E. lecanii-corni has a distinct stress tolerance profile that includes variation in resistance to temperature, osmotic, and oxidative stress relative to the extremophilic and pathogenic black yeast Exophiala dermatitidis. Notably, the presence of melanin substantially impacts stress resistance in E. lecanii-corni, while this was not found to be the case in E. dermatitidis. The cellular context, therefore, influences the role of melanin in stress protection. In addition, we present a detailed analysis of the E. lecanii-corni genome, revealing key differences in functional genetic content relative to other ascomycetous species, including a significant decrease in abundance of genes encoding ribosomal proteins. In all, this study provides insight into how genetics and physiology may underlie stress tolerance and enhances understanding of the genetic diversity of black yeasts.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
| | - Hong Dong
- Biotechnology Branch, CCDC Army Research Laboratory, Adelphi, MD 20783, USA;
| | - Hashanthi Abeyratne-Perera
- American Society for Engineering Education Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - W. Judson Hervey
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| |
Collapse
|
21
|
Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways. J Fungi (Basel) 2021; 7:jof7100841. [PMID: 34682262 PMCID: PMC8540899 DOI: 10.3390/jof7100841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins.
Collapse
|
22
|
Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J Fungi (Basel) 2021; 7:jof7060488. [PMID: 34207260 PMCID: PMC8235761 DOI: 10.3390/jof7060488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
Collapse
|
23
|
Mattoon ER, Casadevall A, Cordero RJB. Beat the heat: correlates, compounds, and mechanisms involved in fungal thermotolerance. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Dickey JR, Swenie RA, Turner SC, Winfrey CC, Yaffar D, Padukone A, Beals KK, Sheldon KS, Kivlin SN. The Utility of Macroecological Rules for Microbial Biogeography. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.633155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology.
Collapse
|
25
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Abstract
How species will adapt to future climate change is a key question in modern biology. One way to predict such adaptation is to draw from our knowledge of current spatial patterns of phenotypic variation. These are often summarised by different ecogeographical rules that describe how environmental gradients predict geographic variation in form and function. A recent review in Current Biology [1] synthesises how ecogeographical rules can lead to predictions about future responses to climate change in terms of appendage size, physiology, life-history traits, distribution and colour. Based on Gloger's rule, which predicts darker coloured animals in warm and wet environments, Tian and Benton [1] suggest that animals will become darker with global warming. Although the authors mention that uncertainties in the way this ecogeographical rule is interpreted make predictions difficult [1], here we argue that the opposite scenario is more likely - that selection will favour animals with lighter colours.
Collapse
|
27
|
Khayrova A, Lopatin S, Varlamov V. Obtaining chitin, chitosan and their melanin complexes from insects. Int J Biol Macromol 2020; 167:1319-1328. [PMID: 33202268 DOI: 10.1016/j.ijbiomac.2020.11.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
Interest in insects as a source of valuable biologically active substances has significantly increased over the past few years. Insects serve as an alternative source of chitin, which forms up to 40% of their exoskeleton. Chitosan, a deacetylated derivative of chitin, attracts the attention of scientists due to its unique properties (sorption, antimicrobial, film-forming, wound healing). Furthermore, some insect species are unique and can be used to obtain chitin- and chitosan-melanin complexes in the later stages of ontogenesis. Due to the synergistic effect, chitosan and melanin can enhance each other's biological activity, providing a wide range of potential applications.
Collapse
Affiliation(s)
- Adelya Khayrova
- Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia.
| | - Sergey Lopatin
- Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia
| | - Valery Varlamov
- Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia
| |
Collapse
|
28
|
Zhu S, Yan Y, Qu Y, Wang J, Feng X, Liu X, Lin F, Lu J. Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains. Microbiol Res 2020; 242:126620. [PMID: 33189072 DOI: 10.1016/j.micres.2020.126620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
Pyricularia oryzae is a plant pathogenic fungus that severely affects rice production. Past studies, primarily using mutants generated by spontaneous mutations or artificial physical and chemical mutagenesis, have determined that melanin is required for appressorium turgor, penetration, and virulence of P. oryzae. However, these roles need to be verified by gene knockout and/or overexpression in different strains considering the potential differences in the level of virulence. Here, we confirmed the indispensable roles of melanin in the development and virulence of P. oryzae by knocking out and over-expressing three melanin synthesis genes (ALB1, RSY1, and BUF1) in two wild-type strains (Guy11 and 70-15). Deletion of ALB1, RSY1, or BUF1 led to loss of melanin and virulence in both strains. ALB1, RSY1 and BUF1 in Guy11, and BUF1 in 70-15 were required for conidiation, respectively. ALB1, RSY1, and BUF1 were required for conidial resistance to environmental stresses (UV exposure, oxidization, and freezing damage) in both strains. Guy11 cells had greater amounts of melanin and more transcripts of melanin synthesis genes than 70-15 cells. Paired culture experiments between the deletion or over-expression mutants of melanin synthesis genes suggested that the reaction catalyzed by Buf1, but not Alb1 and Rsy1, was likely a rate-limiting step in melanin biosynthesis in 70-15. These results expand our understanding on melanin and its synthesis genes in P. oryzae as well as its responses to biotic and abiotic environments.
Collapse
Affiliation(s)
- Siyi Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yuxin Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yingmin Qu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fucheng Lin
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
29
|
|
30
|
Nitiu DS, Mallo AC, Saparrat MCN. Fungal melanins that deteriorate paper cultural heritage: An overview. Mycologia 2020; 112:859-870. [PMID: 32821020 DOI: 10.1080/00275514.2020.1788846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Paper-based works of art and documents of cultural importance kept in museums and libraries can show notorious signs of deterioration, including foxing stains, caused by fungal colonization. Some of the main chromophore agents of fungal origin that deteriorate paper and therefore affect paper cultural heritage both aesthetically and structurally are the group of pigments called melanins. Thus, knowledge of the diversity and features of fungal melanins and of the melanization pathways of fungi growing on paper is key to removing these pigments from paper-based works of cultural importance. This review provides an approach about the current knowledge of melanins synthesized by paper-colonizing fungi, their localization in the fungal structures, and their role in the deterioration of paper. This knowledge might contribute to developing new, effective, and sustainable strategies of restoration and conservation of historical documents and works of art based on paper.
Collapse
Affiliation(s)
- Daniela S Nitiu
- Cátedra de Palinología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, CP 1900 , La Plata, Buenos Aires, Argentina.,Consejo Nacional de Ciencia y Tecnología (CONICET) , Argentina
| | - Andrea C Mallo
- Cátedra de Palinología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, CP 1900 , La Plata, Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC, PBA) , Argentina
| | - Mario C N Saparrat
- Consejo Nacional de Ciencia y Tecnología (CONICET) , Argentina.,Instituto de Fisiología Vegetal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diag. 113 esq. 61, CP 1900 , La Plata, Buenos Aires, Argentina.,Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 51 N° 477, CP 1900 , La Plata, Buenos Aires, Argentina.,Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata , Av. 60, CP 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
31
|
Deveautour C, Chieppa J, Nielsen UN, Boer MM, Mitchell C, Horn S, Power SA, Guillen A, Bennett AE, Powell JR. Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
The contest of microbial pigeon neighbors: Interspecies competition between Serratia marcescens and the human pathogen Cryptococcus neoformans. Fungal Biol 2020; 124:629-638. [PMID: 32540186 DOI: 10.1016/j.funbio.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
Abstract
In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.
Collapse
|
33
|
Coleine C, Gevi F, Fanelli G, Onofri S, Timperio AM, Selbmann L. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS One 2020; 15:e0233805. [PMID: 32460306 PMCID: PMC7253227 DOI: 10.1371/journal.pone.0233805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antarctic cryptoendolithic communities are self-supporting borderline ecosystems spreading across the extreme conditions of the Antarctic desert and represent the predominant life-form in the ice-free areas of McMurdo Dry Valleys, accounted as the closest terrestrial Martian analogue. Components of these communities are highly adapted extremophiles and extreme-tolerant microorganisms, among the most resistant known to date. Recently, studies investigated biodiversity and community composition in these ecosystems but the metabolic activity of the metacommunity has never been investigated. Using an untargeted metabolomics, we explored stress-response of communities spreading in two sites of the same location, subjected to increasing environmental pressure due to opposite sun exposure, accounted as main factor influencing the diversity and composition of these ecosystems. Overall, 331 altered metabolites (206 and 125 unique for north and south, respectively), distinguished the two differently exposed communities. We also selected 10 metabolites and performed two-stage Receiver Operating Characteristic (ROC) analysis to test them as potential biomarkers. We further focused on melanin and allantoin as protective substances; their concentration was highly different in the community in the shadow or in the sun. These results clearly indicate that opposite insolation selected organisms in the communities with different adaptation strategies in terms of key metabolites produced.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
- * E-mail: (AMT); (LS)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
- * E-mail: (AMT); (LS)
| |
Collapse
|
34
|
Garcia MO, Templer PH, Sorensen PO, Sanders-DeMott R, Groffman PM, Bhatnagar JM. Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance Traits in Response to Year-Round Climate Change. Front Microbiol 2020; 11:616. [PMID: 32477275 PMCID: PMC7238748 DOI: 10.3389/fmicb.2020.00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Winter air temperatures are rising faster than summer air temperatures in high-latitude forests, increasing the frequency of soil freeze/thaw events in winter. To determine how climate warming and soil freeze/thaw cycles affect soil microbial communities and the ecosystem processes they drive, we leveraged the Climate Change across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the northeastern United States, where replicate field plots receive one of three climate treatments: warming (+5°C above ambient in the growing season), warming in the growing season + winter freeze/thaw cycles (+5°C above ambient +4 freeze/thaw cycles during winter), and no treatment. Soil samples were taken from plots at six time points throughout the growing season and subjected to amplicon (rDNA) and metagenome sequencing. We found that soil fungal and bacterial community composition were affected by changes in soil temperature, where the taxonomic composition of microbial communities shifted more with the combination of growing-season warming and increased frequency of soil freeze/thaw cycles in winter than with warming alone. Warming increased the relative abundance of brown rot fungi and plant pathogens but decreased that of arbuscular mycorrhizal fungi, all of which recovered under combined growing-season warming and soil freeze/thaw cycles in winter. The abundance of animal parasites increased significantly under combined warming and freeze/thaw cycles. We also found that warming and soil freeze/thaw cycles suppressed bacterial taxa with the genetic potential for carbon (i.e., cellulose) decomposition and soil nitrogen cycling, such as N fixation and the final steps of denitrification. These new soil communities had higher genetic capacity for stress tolerance and lower genetic capacity to grow or reproduce, relative to the communities exposed to warming in the growing season alone. Our observations suggest that initial suppression of biogeochemical cycling with year-round climate change may be linked to the emergence of taxa that trade-off growth for stress tolerance traits.
Collapse
Affiliation(s)
- Maria O. Garcia
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Patrick O. Sorensen
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rebecca Sanders-DeMott
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter M. Groffman
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, United States
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | | |
Collapse
|
35
|
The role of melanins in melanotic fungi for pathogenesis and environmental survival. Appl Microbiol Biotechnol 2020; 104:4247-4257. [PMID: 32206837 DOI: 10.1007/s00253-020-10532-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Melanins provide fungi protection from environmental stressors, support their ecological roles, and can confer virulence in pathogens. While the function, structure, and synthesis of melanins in fungi are not fully understood, they have been shown to have varied roles. Recent research has revealed a wide range of functions, from radiation resistance to increasing virulence, shedding light on fungal diversity. Understanding fungal melanins can provide useful information, from harnessing the properties of these various melanins to targeting fungal infections.Key Points• Melanotic fungi are widespread in nature. • Melanin functions to protect fungi in the environment from a range of stresses. • Melanin contributes to pathogenesis and drug resistance of pathogenic fungi.
Collapse
|
36
|
Abstract
Among fungal pathogens, Cryptococcus neoformans has gained great importance among the scientific community of several reasons. This fungus is the causative agent of cryptococcosis, a disease mainly associated to HIV immunosuppression and characterized by the appearance of meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused on three main different areas: Adaptation to the host environment (nutrients, pH, and free radicals), mechanism of immune evasion (which include phenotypic variations and the ability to behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have a profound effect in the virulence of the yeast because they both have protective effects and induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and brain invasion are also of key importance to understand cryptococcal disease. In this review, I will provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in susceptible patients. Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxylomannan; GXMGal: glucuronoxylomannogalactan
Collapse
Affiliation(s)
- Oscar Zaragoza
- a Mycology Reference Laboratory National Centre for Microbiology , Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo , Madrid , Spain
| |
Collapse
|
37
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
38
|
Abstract
The fungal human pathogen Cryptococcus neoformans undergoes melanization in response to nutrient starvation and exposure to exogenous melanin precursors. Melanization protects the fungus against host defense mechanisms such as oxidative damage and other environmental stressors (e.g., heat/cold stress, antimicrobial compounds, ionizing radiation). Conversely, the melanization process generates cytotoxic intermediates, and melanized cells are potentially susceptible to overheating and to certain melanin-binding drugs. Despite the importance of melanin in C. neoformans biology, the signaling mechanisms regulating its synthesis are poorly understood. The recent report by D. Lee, E.-H. Jang, M. Lee, S.-W. Kim, et al. [mBio 10(5):e02267-19, 2019, https://doi.org/10.1128/mBio.02267-19] provides new insights into how C. neoformans regulates melanization. The authors identified a core melanin regulatory network consisting of transcription factors and kinases required for melanization under low-nutrient conditions. The redundant and epistatic connections of this melanin-regulating network demonstrate that C. neoformans melanization is complex and carefully regulated at multiple levels. Such complex regulation reflects the multiple functions of melanin in C. neoformans biology.
Collapse
|
39
|
Delhey K. Darker eggs feel the heat. Nat Ecol Evol 2019; 4:22-23. [PMID: 31792357 DOI: 10.1038/s41559-019-1061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kaspar Delhey
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev Camb Philos Soc 2019; 95:409-433. [PMID: 31763752 DOI: 10.1111/brv.12570] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Collapse
Affiliation(s)
- Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, U.S.A
| | - Carlos A Aguilar-Trigueros
- Freie Universität-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Scott Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, U.S.A
| | | | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97330, U.S.A
| | - Natalie Christian
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Habacuc Flores-Moreno
- Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Dimitrios Floudas
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research & Education Center, University of Florida, Homestead, FL, 33031, U.S.A
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, U.S.A
| | - Peter Kennedy
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, WI, 53726, U.S.A
| | - Daniel S Maynard
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Amy M Milo
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Rolf Henrik Nilsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Box 461, 405 30, Göteborg, Sweden
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Mark Schildhauer
- National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA, 93101, U.S.A
| | - Jonathan Schilling
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, U.S.A
| |
Collapse
|
41
|
Pinkert S, Zeuss D. Thermal Biology: Melanin-Based Energy Harvesting across the Tree of Life. Curr Biol 2019; 28:R887-R889. [PMID: 30130512 DOI: 10.1016/j.cub.2018.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent results on the thermal biology of unicellular fungi provide evidence that pigmentation is an ancient adaptation for harvesting solar radiation. A new model system promises novel opportunities for quantifying radiative heat transfer and improving biophysical models.
Collapse
Affiliation(s)
- Stefan Pinkert
- Department of Ecology - Animal Ecology, Philipps-Universität Marburg, 35043 Marburg, Germany; Department of Biodiversity and Species Conservation, University of Applied Sciences Erfurt, 99085 Erfurt, Germany.
| | - Dirk Zeuss
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
42
|
Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O'Meally RN, Cordero RJB, Cole RN, McCaffery JM, Stark RE, Casadevall A. The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem 2019; 294:10471-10489. [PMID: 31118223 PMCID: PMC6615676 DOI: 10.1074/jbc.ra119.008684] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.
Collapse
Affiliation(s)
- Emma Camacho
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Raghav Vij
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Christine Chrissian
- the Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, the City University of New York
- Ph.D. Programs in Biochemistry and
| | - Rafael Prados-Rosales
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
- the CIC bioGUNE, 48160 Derio, Vizcaya, Spain
- the Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28049 Madrid, Spain
| | - David Gil
- the CIC bioGUNE, 48160 Derio, Vizcaya, Spain
| | - Robert N O'Meally
- the Johns Hopkins Mass Spectrometry and Proteomic Facility, The Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Radames J B Cordero
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Robert N Cole
- the Johns Hopkins Mass Spectrometry and Proteomic Facility, The Johns Hopkins University, Baltimore, Maryland 21205, and
| | - J Michael McCaffery
- the Integrated Imaging Center, Department of Biology, Engineering in Oncology Center, and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Ruth E Stark
- the Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, the City University of New York
- Ph.D. Programs in Biochemistry and
- Chemistry, New York, New York 10016
| | - Arturo Casadevall
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205,
| |
Collapse
|
43
|
Krah FS, Büntgen U, Schaefer H, Müller J, Andrew C, Boddy L, Diez J, Egli S, Freckleton R, Gange AC, Halvorsen R, Heegaard E, Heideroth A, Heibl C, Heilmann-Clausen J, Høiland K, Kar R, Kauserud H, Kirk PM, Kuyper TW, Krisai-Greilhuber I, Norden J, Papastefanou P, Senn-Irlet B, Bässler C. European mushroom assemblages are darker in cold climates. Nat Commun 2019; 10:2890. [PMID: 31253790 PMCID: PMC6599080 DOI: 10.1038/s41467-019-10767-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany.
- Bavarian Forest National Park, 94481, Grafenau, Germany.
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Global Change Research Centre and Masaryk University, 61300, Brno, Czech Republic
| | - Hanno Schaefer
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany
| | - Jörg Müller
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, 96181, Rauhenebrach, Germany
| | - Carrie Andrew
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Simon Egli
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Robert Freckleton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Blindern, 0318, Oslo, Norway
| | - Einar Heegaard
- Norwegian Institute of Bioeconomy Research, 5244, Fana, Norway
| | - Antje Heideroth
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Ecology Research Group, Department of Biology, Philipps Uuniversity Marburg, 35043, Marburg, Germany
| | | | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Klaus Høiland
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076, Tuebingen, Germany
| | - Håvard Kauserud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Paul M Kirk
- Mycology Section, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Thomas W Kuyper
- Department of Soil Quality, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Irmgard Krisai-Greilhuber
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Jenni Norden
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Phillip Papastefanou
- TUM School of Life Sciences Weihenstephan, Land Surface-Atmosphere Interactions, Technical University of Munich, 85354, Freising, Germany
| | - Beatrice Senn-Irlet
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Claus Bässler
- Bavarian Forest National Park, 94481, Grafenau, Germany.
- Technical University of Munich, Chair for Terrestrial Ecology, 85354, Freising, Germany.
| |
Collapse
|
44
|
Bishop TR, Parr CL, Gibb H, van Rensburg BJ, Braschler B, Chown SL, Foord SH, Lamy K, Munyai TC, Okey I, Tshivhandekano PG, Werenkraut V, Robertson MP. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. GLOBAL CHANGE BIOLOGY 2019; 25:2162-2173. [PMID: 30887614 DOI: 10.1111/gcb.14622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Predicting and understanding the biological response to future climate change is a pressing challenge for humanity. In the 21st century, many species will move into higher latitudes and higher elevations as the climate warms. In addition, the relative abundances of species within local assemblages are likely to change. Both effects have implications for how ecosystems function. Few biodiversity forecasts, however, take account of both shifting ranges and changing abundances. We provide a novel analysis predicting the potential changes to assemblage-level relative abundances in the 21st century. We use an established relationship linking ant abundance and their colour and size traits to temperature and UV-B to predict future abundance changes. We also predict future temperature driven range shifts and use these to alter the available species pool for our trait-mediated abundance predictions. We do this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a business-as-usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages by 2100 are moderate. On average, species richness will increase by 26%, while species composition and relative abundance structure will be 26% and 30% different, respectively, compared with modern assemblages. Under RCP8.5, however, highland assemblages face almost a tripling of species richness and compositional and relative abundance changes of 66% and 77%. Critically, we predict that future assemblages could be reorganized in terms of which species are common and which are rare: future highland assemblages will not simply comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential for radical change to montane ant assemblages by the end of the 21st century if temperature increases continue. Our results highlight the importance of incorporating trait-environment relationships into future biodiversity predictions. Looking forward, the major challenge is to understand how ecosystem processes will respond to compositional and relative abundance changes.
Collapse
Affiliation(s)
- Tom R Bishop
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Heloise Gibb
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- The Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Berndt J van Rensburg
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
- Centre for Invasion Biology, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Brigitte Braschler
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Stefan H Foord
- Centre for Invasion Biology, Department of Zoology, University of Venda, Thohoyandou, South Africa
| | - Kévin Lamy
- LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France
| | - Thinandavha C Munyai
- Centre for Invasion Biology, Department of Zoology, University of Venda, Thohoyandou, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Iona Okey
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Pfarelo G Tshivhandekano
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Victoria Werenkraut
- Laboratorio Ecotono, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, INIBIOMA-CONICET, Bariloche, Rio Negro, Argentina
| | - Mark P Robertson
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
45
|
Delhey K. A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol Rev Camb Philos Soc 2019; 94:1294-1316. [DOI: 10.1111/brv.12503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Kaspar Delhey
- School of Biological SciencesMonash University 25 Rainforest Walk, 3800 Clayton Victoria Australia
| |
Collapse
|
46
|
Delhey K, Dale J, Valcu M, Kempenaers B. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol Lett 2019; 22:726-736. [DOI: 10.1111/ele.13233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Kaspar Delhey
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| | - James Dale
- Institute of Natural and Mathematical Sciences; Massey University; Auckland New Zealand
| | - Mihai Valcu
- Max Planck Institute for Ornithology; Seewiesen Germany
| | | |
Collapse
|
47
|
Stelbrink P, Pinkert S, Brunzel S, Kerr J, Wheat CW, Brandl R, Zeuss D. Colour lightness of butterfly assemblages across North America and Europe. Sci Rep 2019; 9:1760. [PMID: 30741964 PMCID: PMC6370790 DOI: 10.1038/s41598-018-36761-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/24/2018] [Indexed: 11/12/2022] Open
Abstract
Melanin-based dark colouration is beneficial for insects as it increases the absorption of solar energy and protects against pathogens. Thus, it is expected that insect colouration is darker in colder regions and in regions with high humidity, where it is assumed that pathogen pressure is highest. These relationships between colour lightness, insect distribution, and climate between taxa and subtaxa across continents have never been tested and compared. Here we analysed the colour lightness of nearly all butterfly species of North America and Europe using the average colour lightness of species occurring within 50 km × 50 km grid cells across both continents as the dependent variable and average insolation, temperature and humidity within grid cells as explanatory variables. We compared the direction, strength and shape of these relationships between butterfly families and continents. On both continents, butterfly assemblages in colder and more humid regions were generally darker coloured than assemblages in warmer and less humid regions. Although these relationships differed in detail between families, overall trends within families on both continents were similar. Our results add further support for the importance of insect colour lightness as a mechanistic adaptation to climate that influences biogeographical patterns of species distributions.
Collapse
Affiliation(s)
- Pablo Stelbrink
- Faculty of Biology, Department of Ecology - Animal Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Stefan Pinkert
- Faculty of Biology, Department of Ecology - Animal Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany.,Faculty of Landscape Architecture, Horticulture and Forestry, Department of Biodiversity and Species Conservation, University of Applied Science Erfurt, Leipziger Strasse 77, 99085, Erfurt, Germany
| | - Stefan Brunzel
- Faculty of Landscape Architecture, Horticulture and Forestry, Department of Biodiversity and Species Conservation, University of Applied Science Erfurt, Leipziger Strasse 77, 99085, Erfurt, Germany
| | - Jeremy Kerr
- Department of Biology, University of Ottawa, Ottawa, Canada
| | | | - Roland Brandl
- Faculty of Biology, Department of Ecology - Animal Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Dirk Zeuss
- Faculty of Biology, Department of Ecology - Animal Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany. .,Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|