1
|
Golomb R, Dahan O, Dahary D, Pilpel Y. Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution. Trends Genet 2024:S0168-9525(24)00260-9. [PMID: 39732540 DOI: 10.1016/j.tig.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/30/2024]
Abstract
Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level. Cell-autonomous adaptations (CAAs) are inherited traits that boost organismal fitness by enhancing individual cell function. For instance, the cell-autonomous enhancement of mitochondrial oxygen utilization in hypoxic environments differs from an optimized erythropoiesis response, which involves multiple tissues. We explore the breadth of CAAs across challenges and highlight their counterparts in unicellular organisms. Applying these insights, we mine selection signals in Andean highlanders, revealing novel candidate CAAs. The conservation of CAAs across species may reveal valuable insights into multi-cellular evolution.
Collapse
Affiliation(s)
- Ruthie Golomb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dvir Dahary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
2
|
Im SJ, Shin JY, Lee DH. Excess Deaths in Korea During the COVID-19 Pandemic: 2020-2022. J Prev Med Public Health 2024; 57:480-489. [PMID: 39384173 PMCID: PMC11471339 DOI: 10.3961/jpmph.24.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 10/11/2024] Open
Abstract
OBJECTIVES Excess deaths, an indicator that compares total mortality rates before and during a pandemic, offer a comprehensive view of the pandemic's impact. However, discrepancies may arise from variations in estimating expected deaths. This study aims to compare excess deaths in Korea during the coronavirus disease 2019 pandemic using 3 methods and to analyze patterns using the most appropriate method. METHODS Expected deaths from 2020 to 2022 were estimated using mortality data from 2015-2019 as reference years. This estimation employed 3 approaches: (1) simple average, (2) age-adjusted average, and (3) age-adjusted linear regression. Excess deaths by age, gender, and cause of death were also presented. RESULTS The number of excess deaths varied depending on the estimation method used, reaching its highest point with the simple average and its lowest with the age-adjusted average. Age-adjusted linear regression, which accounts for both the aging population and declining mortality rates, was considered most appropriate. Using this model, excess deaths were estimated at 0.3% for 2020, 4.0% for 2021, and 20.7% for 2022. Excess deaths surged among individuals in their 20s throughout the pandemic, largely attributed to a rise in self-harm and suicide. Additionally, the results indicated sharp increases in deaths associated with "endocrine, nutritional, and metabolic diseases" and "symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified." CONCLUSIONS Substantial variations in excess deaths were evident based on estimation method, with a notable increase in 2022. The heightened excess deaths among young adults and specific causes underscore key considerations for future pandemic responses.
Collapse
Affiliation(s)
- So-Jin Im
- Department of Health and Medical Policy, Daegu City Hall, Daegu, Korea
- Department of Public Health, Graduate School of Kyungpook National University, Daegu, Korea
| | - Ji-Yeon Shin
- Department of Preventive Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
3
|
Rotival M, Quintana-Murci L. Environmental variation and genetic diversity contribute to population differences in immune responses to SARS-CoV-2 and COVID-19 risk. Genes Immun 2024; 25:338-340. [PMID: 38142268 DOI: 10.1038/s41435-023-00249-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Maxime Rotival
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France.
- Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
4
|
Pandey RK, Srivastava A, Mishra RK, Singh PP, Chaubey G. Novel genetic association of the Furin gene polymorphism rs1981458 with COVID-19 severity among Indian populations. Sci Rep 2024; 14:7822. [PMID: 38570613 PMCID: PMC10991378 DOI: 10.1038/s41598-024-54607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
SARS CoV-2, the causative agent for the ongoing COVID-19 pandemic, it enters the host cell by activating the ACE2 receptor with the help of two proteasesi.e., Furin and TMPRSS2. Therefore, variations in these genes may account for differential susceptibility and severity between populations. Previous studies have shown that the role of ACE2 and TMPRSS2 gene variants in understanding COVID-19 susceptibility among Indian populations. Nevertheless, a knowledge gap exists concerning the COVID-19 susceptibility of Furin gene variants among diverse South Asian ethnic groups. Investigating the role of Furin gene variants and their global phylogeographic structure is essential to comprehensively understanding COVID-19 susceptibility in these populations. We have used 450 samples from diverse Indian states and performed linear regression to analyse the Furin gene variant's with COVID-19 Case Fatality Rate (CFR) that could be epidemiologically associated with disease severity outcomes. Associated genetic variants were further evaluated for their expression and regulatory potential through various Insilco analyses. Additionally, we examined the Furin gene using next-generation sequencing (NGS) data from 393 diverse global samples, with a particular emphasis on South Asia, to investigate its Phylogeographic structure among diverse world populations. We found a significant positive association for the SNP rs1981458 with COVID-19 CFR (p < 0.05) among diverse Indian populations at different timelines of the first and second waves. Further, QTL and other regulatory analyses showed various significant associations for positive regulatory roles of rs1981458 and Furin gene, mainly in Immune cells and virus infection process, highlighting their role in host immunity and viral assembly and processing. The Furin protein-protein interaction suggested that COVID-19 may contribute to Pulmonary arterial hypertension via a typical inflammation mechanism. The phylogeographic architecture of the Furin gene demonstrated a closer genetic affinity of South Asia with West Eurasian populations. Therefore, it is worth proposing that for the Furin gene, the COVID-19 susceptibility of South Asians will be more similar to the West Eurasian population. Our previous studies on the ACE2 and TMPRSS2 genes showed genetic affinity of South Asian with East Eurasians and West Eurasians, respectively. Therefore, with the collective information from these three important genes (ACE2, TMPRSS2 and Furin) we modelled COVID-19 susceptibilityof South Asia in between these two major ancestries with an inclination towards West Eurasia. In conclusion, this study, for the first time, concluded the role of rs1981458 in COVID-19 severity among the Indian population and outlined its regulatory potential.This study also highlights that the genetic structure for COVID-19 susceptibilityof South Asia is distinct, however, inclined to the West Eurasian population. We believe this insight may be utilised as a genetic biomarker to identify vulnerable populations, which might be directly relevant for developing policies and allocating resources more effectively during an epidemic.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Mishra
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Tang KN, Adkesson MJ, Cárdenas-Alayza S, Adamovicz L, Deming AC, Wellehan JFX, Childress A, Cortes-Hinojosa G, Colegrove K, Langan JN, Allender MC. Otariid gammaherpesvirus 1 in South American fur seals (Arctocephalus australis) and a novel related herpesvirus in free-ranging South American sea lions (Otaria byronia): Prevalence and effects of age, sex, and sample type. PLoS One 2024; 19:e0299404. [PMID: 38446776 PMCID: PMC10917305 DOI: 10.1371/journal.pone.0299404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Otariid gammaherpesvirus 1 (OtGHV1) is associated with high rates of urogenital carcinoma in free-ranging California sea lions (Zalophus californianus; CSL), and until recently was reported only in the Northern Hemisphere. The objective of this study was to survey free-ranging South American sea lions (Otaria byronia; SASL) and South American fur seals (Arctocephalus australis: SAFS) in Punta San Juan, Peru for OtGHV1 and to determine prevalence characteristics. Twenty-one percent (14/67) of urogenital swabs collected over three years (2011, 2014, 2015) from live pinnipeds of both species tested positive with a pan-herpesvirus conventional PCR. Sequencing of SAFS amplicons revealed 100% homology to OtGHV1 at the DNA polymerase, glycoprotein B, and viral bcl2-like genes. Sequencing of SASL amplicons revealed a novel related virus, herein called Otariid gammaherpesvirus 8 (OtGHV8). For comparison of sample sites, urogenital, conjunctival, and oropharyngeal swabs collected from 136 live pinnipeds of both species at Punta San Juan between 2011-2018 were then assayed using quantitative PCR for a segment of the OtGHV1/8 DNA polymerase gene using a qPCR assay now determined to cross-react between the two viruses. In total, across both species, 38.6% (51/132) of urogenital swabs, 5.6% (4/71) of conjunctival swabs, and 1.1% (1/90) of oropharyngeal swabs were positive for OtGHV1/8, with SASL only positive on urogenital swabs. Results from SASL were complicated by the finding of OtGHV8, necessitating further study to determine prevalence of OtGHV1 versus OtGHV8 using an alternate assay. Results from SAFS suggest a potential relationship between OtGHV1 in SAFS and CSL. Though necropsy surveillance in SAFS is very limited, geographic patterns of OtGHV1-associated urogenital carcinoma in CSL and the tendency of herpesviruses to cause more detrimental disease in aberrant hosts suggests that it is possible that SAFS may be the definitive host of OtGHV1, which gives further insight into the diversity and phyogeography of this clade of related gammaherpesviruses.
Collapse
Affiliation(s)
- Karisa N. Tang
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Illinois Zoological and Aquatic Animal Residency, Urbana, IL, United States of America
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL, United States of America
| | - Michael J. Adkesson
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
| | - Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| | - Alissa C. Deming
- Pacific Marine Mammal Center, Laguna Beach, CA, United States of America
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - April Childress
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Galaxia Cortes-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kathleen Colegrove
- Zoological Pathology Program, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Brookfield, IL, United States of America
| | - Jennifer N. Langan
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States of America
| | - Matthew C. Allender
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| |
Collapse
|
6
|
Alfaro-Palma J, Johnston WA, Behrendorff J, Cui Z, Moradi SV, Alexandrov K. Development of Lyophilized Eukaryotic Cell-Free Protein Expression System Based on Leishmania tarentolae. ACS Synth Biol 2024; 13:449-456. [PMID: 38268082 DOI: 10.1021/acssynbio.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Eukaryotic cell-free protein expression systems enable rapid production of recombinant multidomain proteins in their functional form. A cell-free system based on the rapidly growing protozoan Leishmania tarentolae (LTE) has been extensively used for protein engineering and analysis of protein interaction networks. However, like other eukaryotic cell-free systems, LTE deteriorates at ambient temperatures and requires deep freezing for transport and storage. In this study, we report the development of a lyophilized version of LTE. Use of lyoprotectants such as poly(ethylene glycol) and trehalose during the drying process allows retention of 76% of protein expression activity versus nonlyophilized controls. Lyophilized LTE is capable of withstanding storage at room temperature for over 2 weeks. We demonstrated that upon reconstitution the lyophilized LTE could be used for in vitro expression of active enzymes, analysis of protein-protein interactions by AlphaLISA assay, and functional analysis of protein biosensors. Development of lyophilized LTE lowers the barriers to its distribution and opens the door to its application in remote areas.
Collapse
Affiliation(s)
- Juan Alfaro-Palma
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A Johnston
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - James Behrendorff
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Zhenling Cui
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Shayli Varasteh Moradi
- Protein Expression Facility, AIBN Building, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
7
|
Callaway E. Did the Black Death shape the human genome? Study challenges bold claim. Nature 2024:10.1038/d41586-024-00137-1. [PMID: 38233555 DOI: 10.1038/d41586-024-00137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
|
8
|
Houldcroft CJ, Underdown S. Infectious disease in the Pleistocene: Old friends or old foes? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:513-531. [PMID: 38006200 DOI: 10.1002/ajpa.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 11/26/2023]
Abstract
The impact of endemic and epidemic disease on humans has traditionally been seen as a comparatively recent historical phenomenon associated with the Neolithisation of human groups, an increase in population size led by sedentarism, and increasing contact with domesticated animals as well as species occupying opportunistic symbiotic and ectosymbiotic relationships with humans. The orthodox approach is that Neolithisation created the conditions for increasing population size able to support a reservoir of infectious disease sufficient to act as selective pressure. This orthodoxy is the result of an overly simplistic reliance on skeletal data assuming that no skeletal lesions equated to a healthy individual, underpinned by the assumption that hunter-gatherer groups were inherently healthy while agricultural groups acted as infectious disease reservoirs. The work of van Blerkom, Am. J. Phys. Anthropol., vol. suppl 37 (2003), Wolfe et al., Nature, vol. 447 (2007) and Houldcroft and Underdown, Am. J. Phys. Anthropol., vol. 160, (2016) has changed this landscape by arguing that humans and pathogens have long been fellow travelers. The package of infectious diseases experienced by our ancient ancestors may not be as dissimilar to modern infectious diseases as was once believed. The importance of DNA, from ancient and modern sources, to the study of the antiquity of infectious disease, and its role as a selective pressure cannot be overstated. Here we consider evidence of ancient epidemic and endemic infectious diseases with inferences from modern and ancient human and hominin DNA, and from circulating and extinct pathogen genomes. We argue that the pandemics of the past are a vital tool to unlock the weapons needed to fight pandemics of the future.
Collapse
Affiliation(s)
| | - Simon Underdown
- Human Origins and Palaeoenvironmental Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Salazar-Tortosa DF, Huang YF, Enard D. Assessing the Presence of Recent Adaptation in the Human Genome With Mixture Density Regression. Genome Biol Evol 2023; 15:evad170. [PMID: 37713622 PMCID: PMC10563788 DOI: 10.1093/gbe/evad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
How much genome differences between species reflect neutral or adaptive evolution is a central question in evolutionary genomics. In humans and other mammals, the presence of adaptive versus neutral genomic evolution has proven particularly difficult to quantify. The difficulty notably stems from the highly heterogeneous organization of mammalian genomes at multiple levels (functional sequence density, recombination, etc.) which complicates the interpretation and distinction of adaptive versus neutral evolution signals. In this study, we introduce mixture density regressions (MDRs) for the study of the determinants of recent adaptation in the human genome. MDRs provide a flexible regression model based on multiple Gaussian distributions. We use MDRs to model the association between recent selection signals and multiple genomic factors likely to affect the occurrence/detection of positive selection, if the latter was present in the first place to generate these associations. We find that an MDR model with two Gaussian distributions provides an excellent fit to the genome-wide distribution of a common sweep summary statistic (integrated haplotype score), with one of the two distributions likely enriched in positive selection. We further find several factors associated with signals of recent adaptation, including the recombination rate, the density of regulatory elements in immune cells, GC content, gene expression in immune cells, the density of mammal-wide conserved elements, and the distance to the nearest virus-interacting gene. These results support the presence of strong positive selection in recent human evolution and highlight MDRs as a powerful tool to make sense of signals of recent genomic adaptation.
Collapse
Affiliation(s)
- Diego F Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology, University of Granada, Granada, Spain
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Aquino Y, Bisiaux A, Li Z, O'Neill M, Mendoza-Revilla J, Merkling SH, Kerner G, Hasan M, Libri V, Bondet V, Smith N, de Cevins C, Ménager M, Luca F, Pique-Regi R, Barba-Spaeth G, Pietropaoli S, Schwartz O, Leroux-Roels G, Lee CK, Leung K, Wu JT, Peiris M, Bruzzone R, Abel L, Casanova JL, Valkenburg SA, Duffy D, Patin E, Rotival M, Quintana-Murci L. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature 2023; 621:120-128. [PMID: 37558883 PMCID: PMC10482701 DOI: 10.1038/s41586-023-06422-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.
Collapse
Affiliation(s)
- Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Aurélie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Zhi Li
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Mary O'Neill
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Javier Mendoza-Revilla
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Sarah Hélène Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Camille de Cevins
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
| | - Mickaël Ménager
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR1163, Paris, France
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Giovanna Barba-Spaeth
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Stefano Pietropaoli
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong SAR, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Malik Peiris
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
- Chair Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
11
|
Aoki K, Takahata N, Oota H, Wakano JY, Feldman MW. Infectious diseases may have arrested the southward advance of microblades in Upper Palaeolithic East Asia. Proc Biol Sci 2023; 290:20231262. [PMID: 37644833 PMCID: PMC10465978 DOI: 10.1098/rspb.2023.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
An unsolved archaeological puzzle of the East Asian Upper Palaeolithic is why the southward expansion of an innovative lithic technology represented by microblades stalled at the Qinling-Huaihe Line. It has been suggested that the southward migration of foragers with microblades stopped there, which is consistent with ancient DNA studies showing that populations to the north and south of this line had differentiated genetically by 19 000 years ago. Many infectious pathogens are believed to have been associated with hominins since the Palaeolithic, and zoonotic pathogens in particular are prevalent at lower latitudes, which may have produced a disease barrier. We propose a mathematical model to argue that mortality due to infectious diseases may have arrested the wave-of-advance of the technologically advantaged foragers from the north.
Collapse
Affiliation(s)
- Kenichi Aoki
- Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Naoyuki Takahata
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0116, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan
| | | |
Collapse
|
12
|
Pekar JE, Lytras S, Ghafari M, Magee AF, Parker E, Havens JL, Katzourakis A, Vasylyeva TI, Suchard MA, Hughes AC, Hughes J, Robertson DL, Dellicour S, Worobey M, Wertheim JO, Lemey P. The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548617. [PMID: 37502985 PMCID: PMC10369958 DOI: 10.1101/2023.07.12.548617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors contributed equally
| | - Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, UK
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong
- China Biodiversity Green Development Foundation, Beijing, China
| | - Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors jointly supervised the work
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- These authors jointly supervised the work
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- These authors jointly supervised the work
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| |
Collapse
|
13
|
Penhaskashi J, Sekimoto O, Chiappelli F. Permafrost viremia and immune tweening. Bioinformation 2023; 19:685-691. [PMID: 37885785 PMCID: PMC10598357 DOI: 10.6026/97320630019685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 10/28/2023] Open
Abstract
The immune system, an exquisitely regulated physiological system, utilizes a wide spectrum of soluble factors and multiple cell populations and subpopulations at diverse states of maturation to monitor and protect the organism against foreign organisms. Immune surveillance is ensured by distinguishing self-antigens from self-associated with non-self (e.g., viral) peptides presented by major histocompatibility complexes (MHC). Pathology is often identified as unregulated inflammatory responses (e.g., cytokine storm), or recognizing self as a non-self entity (i.e., auto-immunity). Artificial intelligence (AI), and in particular specific machine learning (ML) paradigms (e.g., Deep Learning [DL]) proffer powerful algorithms to better understand and more accurately predict immune responses, immune regulation and homeostasis, and immune reactivity to challenges (i.e., immune allostasis) by their intrinsic ability to interpret immune parameters, pathways and events by analyzing large amounts of complex data and drawing predictive inferences (i.e., immune tweening). We propose here that DL models play an increasingly significant role in better defining and characterizing immunological surveillance to ancient and novel virus species released by thawing permafrost.
Collapse
Affiliation(s)
- Jaden Penhaskashi
- />Division of West Valley Dental Implant Center, Encino, CA 91316, USA
| | | | - Francesco Chiappelli
- />Dental Group of Sherman Oaks, CA 91403 , USA
- />Center for the Health Sciences, UCLA, Los Angeles, CA, USA
| |
Collapse
|
14
|
Pandey D, Harris M, Garud NR, Narasimhan VM. Understanding natural selection in Holocene Europe using multi-locus genotype identity scans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538113. [PMID: 37163039 PMCID: PMC10168228 DOI: 10.1101/2023.04.24.538113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ancient DNA (aDNA) has been a revolutionary technology in understanding human history but has not been used extensively to study natural selection as large sample sizes to study allele frequency changes over time have thus far not been available. Here, we examined a time transect of 708 published samples over the past 7,000 years of European history using multi-locus genotype-based selection scans. As aDNA data is affected by high missingness, ascertainment bias, DNA damage, random allele calling, and is unphased, we first validated our selection scan, G 12 a n c i e n t , on simulated data resembling aDNA under a demographic model that captures broad features of the allele frequency spectrum of European genomes as well as positive controls that have been previously identified and functionally validated in modern European datasets on data from ancient individuals from time periods very close to the present time. We then applied our statistic to the aDNA time transect to detect and resolve the timing of natural selection occurring genome wide and found several candidates of selection across the different time periods that had not been picked up by selection scans using single SNP allele frequency approaches. In addition, enrichment analysis discovered multiple categories of complex traits that might be under adaptation across these periods. Our results demonstrate the utility of applying different types of selection scans to aDNA to uncover putative selection signals at loci in the ancient past that might have been masked in modern samples.
Collapse
Affiliation(s)
- Devansh Pandey
- Department of Integrative Biology, The University of Texas at Austin
| | - Mariana Harris
- Department of Computational Medicine, University of California, Los Angeles
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin
- Department of Statistics and Data Science, The University of Texas at Austin
| |
Collapse
|
15
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
16
|
Demeure CE, Poinar H, Barreiro L, Pizarro-Cerdá J. [The Black Death, natural selection and susceptibility to auto-immune disorders]. Med Sci (Paris) 2023; 39:331-333. [PMID: 37094265 DOI: 10.1051/medsci/2023050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Christian E Demeure
- Unité de recherche Yersinia, Institut Pasteur, université Paris Cité, CNRS UMR6047, Paris, France
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of anthropology, biology and biochemistry, université McMaster, Hamilton, Ontario, Canada - Michael G. DeGroote Institute of infectious disease research, université McMaster, Hamilton, Ontario, Canada
| | - Luis Barreiro
- Section of genetic medicine, Department of medicine, université de Chicago, Chicago, États-Unis - Department of human genetics, université de Chicago, Chicago, États-Unis
| | - Javier Pizarro-Cerdá
- Unité de recherche Yersinia, Institut Pasteur, université Paris Cité, CNRS UMR6047, Paris, France
| |
Collapse
|
17
|
Tsiftsoglou SA, Gavriilaki E, Touloumenidou T, Koravou EE, Koutra M, Papayanni PG, Karali V, Papalexandri A, Varelas C, Chatzopoulou F, Chatzidimitriou M, Chatzidimitriou D, Veleni A, Rapti E, Kioumis I, Kaimakamis E, Bitzani M, Boumpas DT, Tsantes A, Sotiropoulos D, Papadopoulou A, Sakellari I, Kokoris S, Anagnostopoulos A. Targeted genotyping of COVID-19 patients reveals a signature of complement C3 and factor B coding SNPs associated with severe infection. Immunobiology 2023; 228:152351. [PMID: 36805858 PMCID: PMC9928680 DOI: 10.1016/j.imbio.2023.152351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors. No coding SNPs were detected for CD46 and CD55. Our demographic analysis indicated that the C3 rs1047286 or rs2230199 coding SNPs were present in 60 % of all the Deceased patients (n = 25) (the rs2230199 in 67 % of all Deceased Males) and in 31 % of all the Survivors (n = 105, p = 0.012) (the rs2230199 in 25 % of all Survivor Males). When we analysed these two major study groups using the presence of the C3 rs1047286 or rs2230199 SNPs as potential biomarkers, we noticed the complete absence of the protective CFB rs12614 and rs641153 coding SNPs from Deceased Males compared to Females (p = 0.0023). We propose that in these individuals, C3 carrying the R102G and CFB lacking the R32W or the R32Q amino acid substitutions, may contribute to enhanced association dynamics of the C3bBb AP pre-convertase complex assembly, thus enabling the exploitation of the activation of the Complement Alternative pathway (AP) by SARS-CoV-2.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece.
| | - Tasoula Touloumenidou
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | | | - Maria Koutra
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | | | - Vassiliki Karali
- Rheumatology and Clinical Immunology Unit, University General Hospital "Attikon", Αthens, Greece
| | - Apostolia Papalexandri
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Christos Varelas
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Fani Chatzopoulou
- Microbiology Department, Aristotle University of Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Biomedical Sciences Alexander Campus International Hellenic University, Thessaloniki, Greece
| | | | - Anastasia Veleni
- Infectious Disease Committee, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Evdoxia Rapti
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | - Ioannis Kioumis
- Respiratory Failure Department, G Papanicolaou Hospital-Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Milly Bitzani
- 1st Intensive Care Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Dimitrios T Boumpas
- Rheumatology and Clinical Immunology Unit, University General Hospital "Attikon", Αthens, Greece
| | - Argyris Tsantes
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | - Damianos Sotiropoulos
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Anastasia Papadopoulou
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Ioanna Sakellari
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Styliani Kokoris
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | | |
Collapse
|
18
|
Newmyer S, Ssemadaali MA, Radhakrishnan H, Javitz HS, Bhatnagar P. Electrically regulated cell-based intervention for viral infections. Bioeng Transl Med 2023; 8:e10434. [PMID: 36925710 PMCID: PMC10013824 DOI: 10.1002/btm2.10434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
This work reports on an engineered cell that-when electrically stimulated-synthesizes a desired protein, that is, ES-Biofactory. The platform has been used to express interferon (IFN)-β as a universal antiviral protein. Compelling evidence indicates the inevitability of new pandemics and drives the need for a pan-viral intervention that may be quickly deployed while more specific vaccines are in development. Toward this goal, a fast-growing mammalian cell (Chassis) has been engineered with multiple synthetic elements. These include-(1) a voltage-gated Ca2+ channel (Voltage-Sensor) that, upon sensing the electric field, activates the (2) Ca2+-mediated signaling pathway (Actuator) to upregulate (3) IFN-β, via an engineered antiviral transgene (Effector), that is, ES-Biofactory➔IFN-β. The antiviral effects of the ES-Biofactory➔IFN-β have been validated on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells. The irradiated ES-Biofactory, that does not exhibit oncogenic capacity, continues to exert antiviral effect. The resulting ES-Biofactory➔IFN-β uses a novel signaling pathway that, unlike the natural IFN synthesis pathway, is not subject to viral interference. Once clinically validated, the ES-Biofactory will be a universal antiviral cell therapy that can be immediately deployed in the event of an outbreak. The platform may also be useful in treating other diseases including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Sherri Newmyer
- Biosciences DivisionSRI InternationalMenlo ParkCaliforniaUSA
| | | | | | | | | |
Collapse
|
19
|
Takahata N, Sugawara H. Role of error catastrophe in transmission ability of virus. Genes Genet Syst 2023; 97:237-246. [PMID: 36709980 DOI: 10.1266/ggs.22-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The role played by error catastrophe is explicitly taken into account in a mathematical formulation to analyze COVID-19 data. The idea is to combine the mathematical genetics formalism of the error catastrophe of mutations in virus gene loci with the standard model of epidemics, which lacks the explicit incorporation of the effect of mutation on the spreading of viruses. We apply this formalism to the case of SARS-CoV-2 virus. We assume the universality of the error catastrophe in the process of analyzing the data. This means that some basic parameter to describe the error catastrophe is independent of which group (country or city) we deal with. Concretely, we analyze Omicron variant data from South Africa and then analyze cases from Japan using the same value of the basic parameter derived in the South Africa analysis. The excellent fit between the two sets of data, one from South Africa and the other from Japan, using the common values of genetic parameters, justifies our assumption of the universality of these parameters.
Collapse
|
20
|
Parvinen L, Alamäki A, Hallikainen H, Mäki M. Exploring the challenges of and solutions to sharing personal genomic data for use in healthcare. Health Informatics J 2023; 29:14604582231152185. [PMID: 36651319 DOI: 10.1177/14604582231152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Boosted by the COVID-19 pandemic, as well as the tightened General Data Protection Regulation (GDPR) legislation within the European Union (EU), individuals have become increasingly concerned about privacy. This is also reflected in how willing individuals are to consent to sharing personal data, including their health data. To understand this behaviour better, this study focuses on willingness to consent in relation to genomic data. The study explores how the provision of educational information relates to willingness to consent, as well as differences in privacy concerns, information sensitivity and the perceived trade-off value between individuals willing versus unwilling to consent to sharing their genomic data. Of the respondents, 65% were initially willing to consent, but after educational information 89% were willing to consent and only 11% remained unwilling to consent. Educating individuals about potential health benefits can thus help to correct the beliefs that originally led to the unwillingness to share genomic data.
Collapse
Affiliation(s)
- Lasse Parvinen
- Faculty of Science and Engineering, Laboratory of Industrial Management Finland, 278232Åbo Akademi University, Turku, Finland
| | - Ari Alamäki
- 52909Haaga-Helia University of Applied Sciences, Helsinki, Finland
| | | | - Marko Mäki
- 52909Haaga-Helia University of Applied Sciences, Helsinki, Finland
| |
Collapse
|
21
|
Souilmi Y, Tobler R, Johar A, Williams M, Grey ST, Schmidt J, Teixeira JC, Rohrlach A, Tuke J, Johnson O, Gower G, Turney C, Cox M, Cooper A, Huber CD. Admixture has obscured signals of historical hard sweeps in humans. Nat Ecol Evol 2022; 6:2003-2015. [PMID: 36316412 PMCID: PMC9715430 DOI: 10.1038/s41559-022-01914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species. Through analyses of ancient and modern human genomes, we show that previously reported Holocene-era admixture has masked more than 50 historic hard sweeps in modern European genomes. Our results imply that this canonical mode of selection has probably been underappreciated in the evolutionary history of humans and suggest that our current understanding of the tempo and mode of selection in natural populations may be inaccurate.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Angad Johar
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Matthew Williams
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia
| | - Joshua Schmidt
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - João C Teixeira
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Rohrlach
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jonathan Tuke
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivia Johnson
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia.
- BlueSky Genetics, Ashton, South Australia, Australia.
| | - Christian D Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Biology, Penn State University, University Park, PA, USA.
| |
Collapse
|
22
|
Forni D, Cagliani R, Clerici M, Sironi M. Disease-causing human viruses: novelty and legacy. Trends Microbiol 2022; 30:1232-1242. [PMID: 35902319 DOI: 10.1016/j.tim.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023]
Abstract
About 270 viruses are known to infect humans. Some of these viruses have been known for centuries, whereas others have recently emerged. During their evolutionary history, humans have moved out of Africa to populate the world. In historical times, human migrations resulted in the displacement of large numbers of people. All these events determined the movement and dispersal of human-infecting viruses. Technological advances have resulted in the characterization of the genetic variability of human viruses, both in extant and in archaeological samples. Field studies investigated the diversity of viruses hosted by other animals. In turn, these advances provided insight into the evolutionary history of human viruses back in time and defined the key events through which they originated and spread.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| |
Collapse
|
23
|
Enard D. Ancient DNA reveals rapid natural selection during the Black Death. Nature 2022; 611:237-238. [PMID: 36261712 DOI: 10.1038/d41586-022-03160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Havens JL, Calvignac-Spencer S, Merkel K, Burrel S, Boutolleau D, Wertheim JO. Phylogeographic analysis reveals an ancient East African origin of human herpes simplex virus 2 dispersal out-of-Africa. Nat Commun 2022; 13:5477. [PMID: 36115862 PMCID: PMC9482657 DOI: 10.1038/s41467-022-33214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Human herpes simplex virus 2 (HSV-2) is a ubiquitous, slowly evolving DNA virus. HSV-2 has two primary lineages, one found in West and Central Africa and the other found worldwide. Competing hypotheses have been proposed to explain how HSV-2 migrated out-of-Africa (i)HSV-2 followed human migration out-of-Africa 50-100 thousand years ago, or (ii)HSV-2 migrated via the trans-Atlantic slave trade 150-500 years ago. Limited geographic sampling and lack of molecular clock signal has precluded robust comparison. Here, we analyze newly sequenced HSV-2 genomes from Africa to resolve geography and timing of divergence events within HSV-2. Phylogeographic analysis consistently places the ancestor of worldwide dispersal in East Africa, though molecular clock is too slow to be detected using available data. Rates 4.2 × 10-8-5.6 × 10-8 substitutions/site/year, consistent with previous age estimates, suggest a worldwide dispersal 22-29 thousand years ago. Thus, HSV-2 likely migrated with humans from East Africa and dispersed after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA.
| | | | - Kevin Merkel
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Sonia Burrel
- Virology Department, National Reference Center for Herperviruses (Associated Laboratory), AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - David Boutolleau
- Virology Department, National Reference Center for Herperviruses (Associated Laboratory), AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Distinct evolutionary trajectories of SARS-CoV-2-interacting proteins in bats and primates identify important host determinants of COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2206610119. [PMID: 35947637 PMCID: PMC9436378 DOI: 10.1073/pnas.2206610119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. However, the host genetic determinants that drive SARS-CoV-2 susceptibility and COVID-19 severity are largely unknown. Understanding how cellular proteins interacting with SARS-CoV-2 have evolved in primates and bats is of primary importance to decipher differences in the infection outcome between humans and the viral reservoir in bats. Here, we performed comparative functional genetic analyses of hundreds of SARS-CoV-2-interacting proteins to study virus–host interface adaptation over millions of years, pointing to genes similarly—or differentially—engaged in evolutionary arms races and that may be at the basis of in vivo pathogenic differences. The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus–host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus–host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus–host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.
Collapse
|
28
|
Kerner G, Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur J Hum Genet 2022; 30:915-921. [PMID: 35760904 PMCID: PMC9244541 DOI: 10.1038/s41431-022-01141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our knowledge of the genetic and evolutionary determinants of infectious disease susceptibility and severity. One of the most remarkable aspects of such outbreaks is the stunning interindividual variability observed in the course of infection. In recent decades, enormous progress has been made in the field of the human genetics of infectious diseases, and an increasing number of human genetic factors have been reported to explain, to a great extent, the observed variability for a large number of infectious agents. However, our understanding of the cellular, molecular, and immunological mechanisms underlying such disparities between individuals and ethnic groups, remains very limited. Here, we discuss recent findings relating to human genetic predisposition to infectious disease, from an immunological or population genetic perspective, and show how these and other innovative approaches have been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the severity of this disease. From an evolutionary perspective, we show how past demographic and selection events characterizing the history of our species, including admixture with archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats imposed by ancient pathogens. In the context of emerging infectious diseases, these past episodes of genetic adaptation may contribute to some of the observed population differences in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness.
Collapse
Affiliation(s)
- Gaspard Kerner
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, F-75015, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, F-75015, Paris, France.
- Collège de France, Chair of Human Genomics and Evolution, F-75005, Paris, France.
| |
Collapse
|
29
|
Brucato N, André M, Hudjashov G, Mondal M, Cox MP, Leavesley M, Ricaut FX. Chronology of natural selection in Oceanian genomes. iScience 2022; 25:104583. [PMID: 35880026 PMCID: PMC9308150 DOI: 10.1016/j.isci.2022.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
As human populations left Asia to first settle in Oceania around 50,000 years ago, they entered a territory ecologically separated from the Old World for millions of years. We analyzed genomic data of 239 modern Oceanian individuals to detect and date signals of selection specific to this region. Combining both relative and absolute dating approaches, we identified a strong selection pattern between 52,000 and 54,000 years ago in the genomes of descendants of the first settlers of Sahul. This strikingly corresponds to the dates of initial settlement as inferred from archaeological evidence. Loci under selection during this period, some showing enrichment in Denisovan ancestry, overlap genes involved in the immune response and diet, especially based on plants. Pathogens and natural resources, especially from endemic plants, therefore appear to have acted as strong selective pressures on the genomes of the first settlers of Sahul.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
| | - Mathilde André
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Georgi Hudjashov
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, National Capital District 134, Papua New Guinea
- College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
| | - François-Xavier Ricaut
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
| |
Collapse
|
30
|
Reis J, Buguet A, Román GC, Spencer PS. The COVID-19 pandemic, an environmental neurology perspective. Rev Neurol (Paris) 2022; 178:499-511. [PMID: 35568518 PMCID: PMC8938187 DOI: 10.1016/j.neurol.2022.02.455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
Neurologists have a particular interest in SARS-CoV-2 because the nervous system is a major participant in COVID-19, both in its acute phase and in its persistent post-COVID phase. The global spread of SARS-CoV-2 infection has revealed most of the challenges and risk factors that humanity will face in the future. We review from an environmental neurology perspective some characteristics that have underpinned the pandemic. We consider the agent, SARS-CoV-2, the spread of SARS-CoV-2 as influenced by environmental factors, its impact on the brain and some containment measures on brain health. Several questions remain, including the differential clinical impact of variants, the impact of SARS-CoV-2 on sleep and wakefulness, and the neurological components of Long-COVID syndrome. We touch on the role of national leaders and public health policies that have underpinned management of the COVID-19 pandemic. Increased awareness, anticipation and preparedness are needed to address comparable future challenges.
Collapse
Affiliation(s)
- J Reis
- Université de Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - A Buguet
- General (r) French Army Health Services, Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France.
| | - G C Román
- Department of Neurology, Neurological Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
31
|
Forni D, Cagliani R, Pozzoli U, Mozzi A, Arrigoni F, De Gioia L, Clerici M, Sironi M. Dating the Emergence of Human Endemic Coronaviruses. Viruses 2022; 14:v14051095. [PMID: 35632836 PMCID: PMC9148137 DOI: 10.3390/v14051095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Four endemic coronaviruses infect humans and cause mild symptoms. Because previous analyses were based on a limited number of sequences and did not control for effects that affect molecular dating, we re-assessed the timing of endemic coronavirus emergence. After controlling for recombination, selective pressure, and molecular clock model, we obtained similar tMRCA (time to the most recent common ancestor) estimates for the four coronaviruses, ranging from 72 (HCoV-229E) to 54 (HCoV-NL63) years ago. The split times of HCoV-229E and HCoV-OC43 from camel alphacoronavirus and bovine coronavirus were dated ~268 and ~99 years ago. The split times of HCoV-HKU1 and HCoV-NL63 could not be calculated, as their zoonoticic sources are unknown. To compare the timing of coronavirus emergence to that of another respiratory virus, we recorded the occurrence of influenza pandemics since 1500. Although there is no clear relationship between pandemic occurrence and human population size, the frequency of influenza pandemics seems to intensify starting around 1700, which corresponds with the initial phase of exponential increase of human population and to the emergence of HCoV-229E. The frequency of flu pandemics in the 19th century also suggests that the concurrence of HCoV-OC43 emergence and the Russian flu pandemic may be due to chance.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (U.P.); (A.M.); (M.S.)
- Correspondence:
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (U.P.); (A.M.); (M.S.)
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (U.P.); (A.M.); (M.S.)
| | - Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (U.P.); (A.M.); (M.S.)
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (F.A.); (L.D.G.)
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (F.A.); (L.D.G.)
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy;
- Don Carlo Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (U.P.); (A.M.); (M.S.)
| |
Collapse
|
32
|
|
33
|
Vo HTM, Maestri A, Auerswald H, Sorn S, Lay S, Seng H, Sann S, Ya N, Pean P, Dussart P, Schwartz O, Ly S, Bruel T, Ly S, Duong V, Karlsson EA, Cantaert T. Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Front Immunol 2022; 13:817905. [PMID: 35185909 PMCID: PMC8853741 DOI: 10.3389/fimmu.2022.817905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.
Collapse
Affiliation(s)
- Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alvino Maestri
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heng Seng
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Nisa Ya
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sovann Ly
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
34
|
Pandey RK, Srivastava A, Singh PP, Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105206. [PMID: 34995811 PMCID: PMC8730738 DOI: 10.1016/j.meegid.2022.105206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the disparity in disease susceptibility between populations. Therefore, in the present study, we have used next-generation sequencing (NGS) data of world populations from 393 individuals and analyzed the TMPRSS2 gene using a haplotype-based approach with a major focus on South Asia to study its phylogenetic structure and their haplotype sharing among various populations worldwide. Our analysis of phylogenetic relatedness showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on the ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. Considering the significance of the TMPRSS2 gene in the SARS-CoV-2 pathogenicity, COVID-19 infection and intensity trends could be directly associated with increased expression therefore, we have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate (CFR). Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the CFR among Indian populations. Further our cis eQTL analysis of rs2070788 shows that the GG genotype of the rs2070788 tends to have a significantly higher expression of TMPRSS2 gene in the lung compared to the AG and AA genotypes thus validating the previous observation and therefore it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in understanding the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
35
|
Zou Y, Cao X, Yang B, Deng L, Xu Y, Dong S, Li W, Wu C, Cao G. In Silico Infection Analysis (iSFA) Identified Coronavirus Infection and Potential Transmission Risk in Mammals. Front Mol Biosci 2022; 9:831876. [PMID: 35211513 PMCID: PMC8861533 DOI: 10.3389/fmolb.2022.831876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
Coronaviruses are a great source of threat to public health which could infect various species and cause diverse diseases. However, the epidemic’s spreading among different species remains elusive. This study proposed an in silico infection analysis (iSFA) system that includes pathogen genome or transcript mining in transcriptome data of the potential host and performed a comprehensive analysis about the infection of 38 coronaviruses in wild animals, based on 2,257 transcriptome datasets from 89 mammals’ lung and intestine, and revealed multiple potential coronavirus infections including porcine epidemic diarrhea virus (PEDV) infection in Equus burchellii. Then, through our transmission network analysis, potential intermediate hosts of five coronaviruses were identified. Notably, iSFA results suggested that the expression of coronavirus receptor genes tended to be downregulated after infection by another virus. Finally, binding affinity and interactive interface analysis of S1 protein and ACE2 from different species demonstrated the potential inter-species transmission barrier and cross-species transmission of SARS-CoV-2. Meanwhile, the iSFA system developed in this study could be further applied to conduct the source tracing and host prediction of other pathogen-induced diseases, thus contributing to the epidemic prevention and control.
Collapse
Affiliation(s)
- Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lulu Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengchao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chengchao Wu, ; Gang Cao,
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Bio-Medical Center, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chengchao Wu, ; Gang Cao,
| |
Collapse
|
36
|
Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q, O'Farrelly C, Novelli G, Rodríguez-Gallego C, Haerynck F, Prando C, Pujol A, Su HC, Casanova JL, Spaan AN. A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nat Immunol 2022; 23:159-164. [PMID: 34667308 PMCID: PMC8524403 DOI: 10.1038/s41590-021-01030-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.
Collapse
Grants
- UM1 HG006504 NHGRI NIH HHS
- UL1 TR001863 NCATS NIH HHS
- UL1 TR001866 NCATS NIH HHS
- R01 AI088364 NIAID NIH HHS
- R01 AI163029 NIAID NIH HHS
- U24 HG008956 NHGRI NIH HHS
- European Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant No. 789645)
- European Commission’s Horizon 2020 research and innovation program (IMMUNAID, grant No. 779295, CURE, grant No. 767015 and TO_AITION grant No. 848146) and the Hellenic Foundation for Research and Innovation (INTERFLU, no. 1574)
- National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project (ANR-20-COVI-0003), ANRS-COV05, the Fondation du Souffle, the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the SCOR Corporate Foundation for Science, the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and the University of Paris
- Science Foundation Ireland COVID-19 Program
- Regione Lazio (Research Group Projects 2020) No. A0375-2020-36663, GecoBiomark
- Horizon 2020 program grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342) and CERCA Program/Generalitat de Catalunya
- Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Donald C Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | | | - Beth A Drolet
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Cliona O'Farrelly
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Las Palmas, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Filomeen Haerynck
- Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases U759 (CIBERER), ISCIII, Barcelona, Spain
| | - Helen C Su
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Kim Y, Bitna-Ha, Kim SW, Chang HH, Kwon KT, Bae S, Hwang S. Post-acute COVID-19 syndrome in patients after 12 months from COVID-19 infection in Korea. BMC Infect Dis 2022; 22:93. [PMID: 35086489 PMCID: PMC8793328 DOI: 10.1186/s12879-022-07062-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the coronavirus disease 2019 (COVID-19) pandemic continues to progress, awareness about its long-term impacts has been growing. To date, studies on the long-term course of symptoms, factors associated with persistent symptoms, and quality of life after 12 months since recovery from acute COVID-19 have been limited. METHODS A prospective online survey (First: September 8, 2020-September 10, 2020; Second: May 26, 2021-June 1, 2021) was conducted on recovered patients who were previously diagnosed with COVID-19 between February 13, 2020 and March 13, 2020 at Kyungpook National University Hospital. Responders aged between 17 and 70 years were included in the study. Overall, 900 and 241 responders were followed up at 6 and 12 months after recovery from COVID-19 in the first and second surveys, respectively. Clinical characteristics, self-reported persistent symptoms, and EuroQol-5-dimension (EQ5D) index score were investigated for evaluating quality of life. RESULTS The median period from the date of the first symptom onset or COVID-19 diagnosis to the time of the survey was 454 (interquartile range [IQR] 451-458) days. The median age of the responders was 37 (IQR 26.0-51.0) years, and 164 (68.0%) responders were women. Altogether, 11 (4.6%) responders were asymptomatic, and 194 (80.5%), 30 (12.4%), and 6 (2.5%) responders had mild, moderate, and severe illness, respectively. Overall, 127 (52.7%) responders still experienced COVID-19-related persistent symptoms and 12 (5.0%) were receiving outpatient treatment for such symptoms. The main symptoms were difficulty in concentration, cognitive dysfunction, amnesia, depression, fatigue, and anxiety. Considering the EQ5D index scores, only 59.3% of the responders did not have anxiety or depression. Older age, female sex, and disease severity were identified as risk factors for persistent neuropsychiatric symptoms. CONCLUSION COVID-19-related persistent symptoms improved over time; however, neurological symptoms can last longer than other symptoms. Continuous careful observation of symptom improvement and multidisciplinary integrated research on recovered COVID-19 patients are required.
Collapse
Affiliation(s)
- Yoonjung Kim
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| | - Bitna-Ha
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| | - Shin-Woo Kim
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea.
| | - Hyun-Ha Chang
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| | - Ki Tae Kwon
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| | - Sohyun Bae
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| | - Soyoon Hwang
- Division of Infectious Disease, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| |
Collapse
|
38
|
Душенков B, Душенкова A. [Not Available]. PAEMI SINO 2022; 24:113-122. [PMID: 36225268 PMCID: PMC9553026 DOI: 10.25005/2074-0581-2022-24-1-113-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Высокая заболеваемость и смертность от COVID-19 привели к чрезвычайной ситуации в области здравоохранения во всём мире, вызвав активизацию и консолидацию усилий в соответствующих областях научных исследований и практике здравоохранения.
Collapse
Affiliation(s)
- B Душенков
- Кафедра естественных наук Колледжа Хостос Коммьюнити, Городской университет Нью-Йорка, Бронкс, Нью-Йорк, США
| | - A Душенкова
- Институт фармации и наук о здоровье, Университет Фэрли Дикинсона, Флорхам Парк, Нью-Джерси, США
| |
Collapse
|
39
|
Singh PP, Suravajhala P, Basu Mallick C, Tamang R, Rai AK, Machha P, Singh R, Pathak A, Mishra VN, Shrivastava P, Singh KK, Thangaraj K, Chaubey G. COVID-19: Impact on linguistic and genetic isolates of India. Genes Immun 2022; 23:47-50. [PMID: 34635809 PMCID: PMC8504558 DOI: 10.1038/s41435-021-00150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
The rapid expansion of coronavirus SARS-CoV-2 has impacted various ethnic groups all over the world. The burden of infectious diseases including COVID-19 are generally reported to be higher for the Indigenous people. The historical knowledge have also suggested that the indigenous populations suffer more than the general populations in the pandemic. Recently, it has been reported that the indigenous groups of Brazil have been massively affected by COVID-19. Series of studies have shown that many of the indigenous communities reached at the verge of extinction due to this pandemic. Importantly, South Asia also has several indigenous and smaller communities, that are living in isolation. Till date, despite the two consecutive waves in India, there is no report on the impact of COVID-19 for indigenous tribes. Since smaller populations experiencing drift may have greater risk of such pandemic, we have analysed Runs of Homozygosity (ROH) among South Asian populations and identified several populations with longer homozygous segments. The longer runs of homozygosity at certain genomic regions may increases the susceptibility for COVID-19. Thus, we suggest extreme careful management of this pandemic among isolated populations of South Asia.
Collapse
Affiliation(s)
- Prajjval Pratap Singh
- grid.411507.60000 0001 2287 8816Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - Prashanth Suravajhala
- grid.469354.90000 0004 0610 6228Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research Statue Circle, Jaipur, Rajasthan India ,grid.411370.00000 0000 9081 2061Amrita School of Biotechnology, Amrita University Kerala India, Vallikavu, 690525 India
| | - Chandana Basu Mallick
- grid.411507.60000 0001 2287 8816Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Rakesh Tamang
- grid.59056.3f0000 0001 0664 9773Department of Zoology, University of Calcutta, Kolkata, 700019 India
| | - Ashutosh Kumar Rai
- grid.411975.f0000 0004 0607 035XDepartment of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Pratheusa Machha
- grid.417634.30000 0004 0496 8123CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002 India
| | - Royana Singh
- grid.411507.60000 0001 2287 8816Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Abhishek Pathak
- grid.411507.60000 0001 2287 8816Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Vijay Nath Mishra
- grid.411507.60000 0001 2287 8816Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Pankaj Shrivastava
- Department of Home (Police), DNA Fingerprinting Unit, State Forensic Science Laboratory, Government of MP, Sagar, India
| | - Keshav K. Singh
- grid.265892.20000000106344187Department of Genetics, School of Medicine, University of Alabama at Birmingham, Kaul Genetics Building, Birmingham, AL USA
| | - Kumarasamy Thangaraj
- grid.417634.30000 0004 0496 8123CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007 India ,grid.145749.a0000 0004 1767 2735Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, 500039 India
| | - Gyaneshwer Chaubey
- grid.411507.60000 0001 2287 8816Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
40
|
Urushadze L, Babuadze G, Shi M, Escobar LE, Mauldin MR, Natradeze I, Machablishvili A, Kutateladze T, Imnadze P, Nakazawa Y, Velasco-Villa A. A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses 2021; 14:v14010072. [PMID: 35062276 PMCID: PMC8778869 DOI: 10.3390/v14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022] Open
Abstract
Mammal-associated coronaviruses have a long evolutionary history across global bat populations, which makes them prone to be the most likely ancestral origins of coronavirus-associated epidemics and pandemics globally. Limited coronavirus research has occurred at the junction of Europe and Asia, thereby investigations in Georgia are critical to complete the coronavirus diversity map in the region. We conducted a cross-sectional coronavirus survey in bat populations at eight locations of Georgia, from July to October of 2014. We tested 188 anal swab samples, remains of previous pathogen discovery studies, for the presence of coronaviruses using end-point pan-coronavirus RT-PCR assays. Samples positive for a 440 bp amplicon were Sanger sequenced to infer coronavirus subgenus or species through phylogenetic reconstructions. Overall, we found a 24.5% positive rate, with 10.1% for Alphacoronavirus and 14.4% for Betacoronavirus. Albeit R. euryale, R. ferrumequinum, M. blythii and M. emarginatus were found infected with both CoV genera, we could not rule out CoV co-infection due to limitation of the sequencing method used and sample availability. Based on phylogenetic inferences and genetic distances at nucleotide and amino acid levels, we found one putative new subgenus and three new species of Alphacoronavirus, and two new species of Betacoronavirus.
Collapse
Affiliation(s)
- Lela Urushadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - George Babuadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Main Campus, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Mang Shi
- Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA;
| | - Matthew R. Mauldin
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
| | - Ioseb Natradeze
- Institute of Zoology, Campus S, Ilia State University, Tbilisi 0162, Georgia;
| | - Ann Machablishvili
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - Tamar Kutateladze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
- Department of Public Health and Epidemiology, Faculty of Medicine, Main Campus, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Yoshinori Nakazawa
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
| | - Andres Velasco-Villa
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
- Correspondence:
| |
Collapse
|
41
|
Rodríguez-Frías F, Quer J, Tabernero D, Cortese MF, Garcia-Garcia S, Rando-Segura A, Pumarola T. Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms 2021; 9:2518. [PMID: 34946123 PMCID: PMC8708650 DOI: 10.3390/microorganisms9122518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Universal history is characterized by continuous evolution, in which civilizations are born and die. This evolution is associated with multiple factors, among which the role of microorganisms is often overlooked. Viruses and bacteria have written or decisively contributed to terrible episodes of history, such as the Black Death in 14th century Europe, the annihilation of pre-Columbian American civilizations, and pandemics such as the 1918 Spanish flu or the current COVID-19 pandemic caused by the coronavirus SARS-CoV-2. Nevertheless, it is clear that we could not live in a world without these tiny beings. Endogenous retroviruses have been key to our evolution and for the regulation of gene expression, and the gut microbiota helps us digest compounds that we could not otherwise process. In addition, we have used microorganisms to preserve or prepare food for millennia and more recently to obtain drugs such as antibiotics or to develop recombinant DNA technologies. Due to the enormous importance of microorganisms for our survival, they have significantly influenced the population genetics of different human groups. This paper will review the role of microorganisms as "villains" who have been responsible for tremendous mortality throughout history but also as "friends" who help us survive and evolve.
Collapse
Affiliation(s)
- Francisco Rodríguez-Frías
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Francesca Cortese
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Selene Garcia-Garcia
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Tomas Pumarola
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| |
Collapse
|
42
|
Ghafari M, Simmonds P, Pybus OG, Katzourakis A. A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses. Curr Biol 2021; 31:4689-4696.e5. [PMID: 34478645 PMCID: PMC8585505 DOI: 10.1016/j.cub.2021.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 01/16/2023]
Abstract
Estimating viral timescales is fundamental in understanding the evolutionary biology of viruses. Molecular clocks are widely used to reveal the recent evolutionary histories of viruses but may severely underestimate their longer-term origins because of the inverse correlation between inferred rates of evolution and the timescale of their measurement. Here, we provide a predictive mechanistic model that readily explains the rate decay phenomenon over a wide range of timescales and recapitulates the ubiquitous power-law rate decay with a slope of -0.65. We show that standard substitution models fail to correctly estimate divergence times once the most rapidly evolving sites saturate, typically after hundreds of years in RNA viruses and thousands of years in DNA viruses. Our model successfully recreates the observed pattern of decay and explains the evolutionary processes behind the time-dependent rate phenomenon. We then apply our model to re-estimate the date of diversification of genotypes of hepatitis C virus to 423,000 (95% highest posterior density [HPD]: 394,000-454,000) years before present, a time preceding the dispersal of modern humans out of Africa, and show that the most recent common ancestor of sarbecoviruses dates back to 21,000 (95% HPD: 19,000-22,000) years ago, nearly thirty times older than previous estimates. This creates a new perspective for our understanding of the origins of these viruses and also suggests that a substantial revision of evolutionary timescales of other viruses can be similarly achieved.
Collapse
Affiliation(s)
- Mahan Ghafari
- Department of Zoology, University of Oxford, Oxford, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
43
|
Vianello A, Guarnieri G, Braccioni F, Molena B, Lococo S, Achille A, Lionello F, Salviati L, Caminati M, Senna G. Correlation between α1-Antitrypsin Deficiency and SARS-CoV-2 Infection: Epidemiological Data and Pathogenetic Hypotheses. J Clin Med 2021; 10:4493. [PMID: 34640510 PMCID: PMC8509830 DOI: 10.3390/jcm10194493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
The most common hereditary disorder in adults, α1-antitrypsin deficiency (AATD), is characterized by reduced plasma levels or the abnormal functioning of α1-antitrypsin (AAT), a major human blood serine protease inhibitor, which is encoded by the SERine Protein INhibitor-A1 (SERPINA1) gene and produced in the liver. Recently, it has been hypothesized that the geographic differences in COVID-19 infection and fatality rates may be partially explained by ethnic differences in SERPINA1 allele frequencies. In our review, we examined epidemiological data on the correlation between the distribution of AATD, SARS-CoV-2 infection, and COVID-19 mortality rates. Moreover, we described shared pathogenetic pathways that may provide a theoretical basis for our epidemiological findings. We also considered the potential use of AAT augmentation therapy in patients with COVID-19.
Collapse
Affiliation(s)
- Andrea Vianello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Fausto Braccioni
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Beatrice Molena
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Sara Lococo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Federico Lionello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Leonardo Salviati
- Department of Pediatrics, University of Padova, 35122 Padova, Italy;
| | - Marco Caminati
- Asthma Center and Allergy Unit, University of Verona, 37129 Verona, Italy; (M.C.); (G.S.)
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona, 37129 Verona, Italy; (M.C.); (G.S.)
| |
Collapse
|
44
|
Rice BL, Douek DC, McDermott AB, Grenfell BT, Metcalf CJE. Why are there so few (or so many) circulating coronaviruses? Trends Immunol 2021; 42:751-763. [PMID: 34366247 PMCID: PMC8272969 DOI: 10.1016/j.it.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Despite vast diversity in non-human hosts and conspicuous recent spillover events, only a small number of coronaviruses have been observed to persist in human populations. This puzzling mismatch suggests substantial barriers to establishment. We detail hypotheses that might contribute to explain the low numbers of endemic coronaviruses, despite their considerable evolutionary and emergence potential. We assess possible explanations ranging from issues of ascertainment, historically lower opportunities for spillover, aspects of human demographic changes, and features of pathogen biology and pre-existing adaptive immunity to related viruses. We describe how successful emergent viral species must triangulate transmission, virulence, and host immunity to maintain circulation. Characterizing the factors that might shape the limits of viral persistence can delineate promising research directions to better understand the combinations of pathogens and contexts that are most likely to lead to spillover.
Collapse
Affiliation(s)
- Benjamin L Rice
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
45
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|