1
|
Georgiou N, Chontzopoulou E, Routsi EA, Stavrakaki IG, Petsas E, Zoupanou N, Kakava MG, Tzeli D, Mavromoustakos T, Kiriakidi S. Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers. ACS OMEGA 2024; 9:44876-44890. [PMID: 39554401 PMCID: PMC11561769 DOI: 10.1021/acsomega.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
The rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications. We highlight the integration of crystallography, computational simulations, and NMR spectroscopy to elucidate sartan-AT1 receptor interactions, providing a foundation for the next-generation antagonist design. The review also delves into the challenges posed by the high lipophilicity and suboptimal bioavailability of sartans, emphasizing advancements in nanotechnology and novel drug delivery systems. Additionally, we discuss the impact of lipid bilayers on the AT1 receptor conformation and drug binding, underscoring the importance of the lipidic environment in receptor-drug interactions. We suggest that optimizing drug design to account for these factors could enhance the therapeutic potential of AT1 receptor antagonists, paving the way for improved cardiovascular health outcomes.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleni Chontzopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efthymios Alexandros Routsi
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Irene Georgia Stavrakaki
- Industrial
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Errikos Petsas
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikoletta Zoupanou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Margarita Georgia Kakava
- Laboratory
of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Sofia Kiriakidi
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Departamento
de Quimica Orgánica, Facultade de
Quimica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
2
|
Kang S, Kim J, Yang JS, Jeon YJ, Lee HH, Suglia SF, Tsai AC, Kang JI, Jung SJ. Use of renin-angiotensin system blockers and posttraumatic stress disorder risk in the UK Biobank: a retrospective cohort study. BMC Med 2024; 22:489. [PMID: 39443947 PMCID: PMC11515478 DOI: 10.1186/s12916-024-03704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Previous research has shown that the use of renin-angiotensin system (RAS) blockers is linked to a lower prevalence of posttraumatic stress disorder (PTSD), but longitudinal studies are scarce. We aimed to estimate the association between the use of RAS blockers and the risk of PTSD among individuals taking antihypertensive medications. METHODS This longitudinal study included participants aged 40-69 from the UK Biobank. Exposure data were obtained from the initial assessment (2006-10), while outcome data were obtained from the online mental health questionnaire administered 6-11 years later (2016-17). We included participants who were under antihypertensive treatment and did not have a prior diagnosis of PTSD before the initial assessment. Use of RAS blockers was defined as self-reported regular use, at the initial assessment, of angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB). Among participants who experienced adverse life experiences, cases of probable PTSD were defined with the six-item PTSD Checklist-Civilian version score ≥ 14. Logistic regression with inverse probability of treatment weighting was used to estimate the odds ratios (ORs) and 95% confidence interval (CI) for the association between RAS blocker use and the risk of probable PTSD. RESULTS Of the 15,954 participants (mean age = 59.9 years; 42.6% women) under antihypertensive treatment with no prior history of PTSD at the initial assessment, 64.5% were taking RAS blockers. After a mean follow-up of 7.5 years, 1,249 (7.8%) were newly identified with probable PTSD. RAS blocker users had a lower risk of probable PTSD than RAS blocker non-users (OR = 0.84 [95% CI: 0.75-0.94]), whereas the use of other antihypertensive medications showed no such association (users vs. non-users; calcium channel blockers, OR = 0.99 [95% CI: 0.88-1.11]; beta-blockers, 1.20 [1.08-1.34]; and thiazide-related diuretics, 1.15 [1.03-1.29]). The association between probable PTSD risk and the use of ACEi vs. ARB showed no significant difference (p = 0.96). CONCLUSIONS Among individuals under antihypertensive treatment, the use of RAS blockers was associated with a decreased risk of probable PTSD. This added benefit of RAS blockers should be considered in the selection of antihypertensive medications.
Collapse
Affiliation(s)
- Sunghyuk Kang
- Department of Preventive Medicine, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, South Korea
- Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jimin Kim
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
| | - Ji Su Yang
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
| | - Ye Jin Jeon
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
| | - Hyeok-Hee Lee
- Department of Preventive Medicine, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alexander C Tsai
- Center for Global Health and Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jee In Kang
- Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Jae Jung
- Department of Preventive Medicine, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, South Korea.
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea.
- Center for Global Health and Mongan Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Hosseini M, Bardaghi Z, Askarpour H, Rajabian A, Mahmoudabady M, Shabab S, Samadi‐Noshahr Z, Salmani H. Minocycline mitigates sepsis-induced neuroinflammation and promotes recovery in male mice: Insights into neuroprotection and inflammatory modulation. Physiol Rep 2024; 12:e70032. [PMID: 39370294 PMCID: PMC11456363 DOI: 10.14814/phy2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Sepsis is associated with brain injury and acute brain inflammation, which can potentially transition into chronic inflammation, triggering a cascade of inflammatory responses that may lead to neurological disorders. Minocycline, recognized for its potent anti-inflammatory properties, was investigated in this study for its protective effects against sepsis-induced brain injury. Adult male C57 mice pretreated with minocycline (12.5, 25, and 50 mg/kg) 3 days before sepsis induction. An intraperitoneal injection of 5 mg/kg LPS was used to induce sepsis. Spontaneous locomotor activity (SLA) and weight changes were assessed over several days post-sepsis to monitor the recovery of the mice. The expression of inflammatory mediators and oxidative stress markers was assessed 24 h post sepsis. Septic mice exhibited significant weight loss and impaired SLA. Initially, minocycline did not attenuate the severity of weight loss (1 day) or SLA (4 h post-sepsis), but it significantly accelerated the recovery of the mice in later days. Minocycline dose-dependently mitigated sepsis-induced brain inflammation and oxidative stress. Our findings demonstrate that pretreatment with minocycline has the potential to prevent brain tissue damage and accelerate recovery from sepsis in mice, suggesting that minocycline may serve as a promising therapeutic intervention to protect against sepsis-induced neurological complications.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zahra Bardaghi
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Hedyeh Askarpour
- Bioenvironmental Health Hazards Research CenterJiroft University of Medical SciencesJiroftIran
| | - Arezoo Rajabian
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Mahmoudabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Sadegh Shabab
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zahra Samadi‐Noshahr
- Chabahar Faculty of Medical Sciences, School of MedicineIranshahr University of Medical SciencesChabaharIran
| | - Hossein Salmani
- Bioenvironmental Health Hazards Research CenterJiroft University of Medical SciencesJiroftIran
- Department of Physiology and Pharmacology, Faculty of MedicineSabzevar University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Baghcheghi Y, Razazpour F, Seyedi F, Arefinia N, Hedayati-Moghadam M. Exploring the molecular mechanisms of PPARγ agonists in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep 2024; 51:945. [PMID: 39215798 DOI: 10.1007/s11033-024-09850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are characterized by progressive memory impairment and cognitive decline. This review aims to unravel the molecular mechanisms involved in the enhancement of memory function and mitigation of memory impairment through the activation of PPARγ agonists in neurodegenerative diseases. The findings suggest that PPARγ agonists modulate various molecular pathways involved in memory formation and maintenance. Activation of PPARγ enhances synaptic plasticity, promotes neuroprotection, suppresses neuroinflammation, attenuates oxidative stress, and regulates amyloid-beta metabolism. The comprehensive understanding of these molecular mechanisms would facilitate the development of novel therapeutic approaches targeting PPARγ to improve memory function and ultimately to alleviate the burden of neurodegenerative diseases. Further research, including clinical trials, is warranted to explore the efficacy, safety, and optimal use of specific PPARγ agonists as potential therapeutic agents in the treatment of memory impairments associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Seyedi
- Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
5
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
Öz M, Erdal H. A TNF-α inhibitor abolishes sepsis-induced cognitive impairment in mice by modulating acetylcholine and nitric oxide homeostasis, BDNF release, and neuroinflammation. Behav Brain Res 2024; 466:114995. [PMID: 38599251 DOI: 10.1016/j.bbr.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.
Collapse
Affiliation(s)
- Mehmet Öz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkiye.
| | - Hüseyin Erdal
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkiye
| |
Collapse
|
7
|
Dabouri Farimani F, Hosseini M, Amirahmadi S, Akbarian M, Shirazinia M, Barabady M, Rajabian A. Cedrol supplementation ameliorates memory deficits by regulating neuro-inflammation and cholinergic function in lipopolysaccharide-induced cognitive impairment in rats. Heliyon 2024; 10:e30356. [PMID: 38707398 PMCID: PMC11068808 DOI: 10.1016/j.heliyon.2024.e30356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Cedrol, a sesquiterpene alcohol, is found in a high amount in several conifers. It possess several beneficial health effects, including antioxidant and anti-inflammatory properties. Objective: This study evaluates the neuroprotective role of cedrol against lipopolysaccharide (LPS)-induced neuroinflammation and memory loss in rats. Methods Wistar rats were treated with cedrol (7.5, 15, and 30 mg/kg, oral, two weeks). During the last week, the rats (except for the control group) were treated with LPS (intraperitoneal injection, 1 mg/kg) to induce memory impairment. After that, the animals were subjected to behavioral studies (Morris water maze and passive avoidance) and biochemical assessments. Results Our results showed a significant decrease in learning and memory function-in LPS-induced rats which were reversed by cedrol. Also, there was a significant increase in the cerebral levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and malondialdehyde (MDA) as well as acetylcholinesterase (AChE) activity in LPS-treated rats. Besides, a significant reduction in total thiol and superoxide dismutase levels was observed in LPS-treated rats. However, cedrol significantly decreased the brain level of AChE, TNF-α, and IL-1β. Administration of cedrol also restored the oxidative stress markers. Conclusion the beneficial effects of cedrol against LPS-induced memory impairment could be due to antioxidant activities and modulation of neuro-inflammatory mediators.
Collapse
Affiliation(s)
- Faezeh Dabouri Farimani
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moselm Barabady
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Pourfridoni M, Hedayati-Moghadam M, Fathi S, Fathi S, Mirrashidi FS, Askarpour H, Shafieemojaz H, Baghcheghi Y. Beneficial effects of metformin treatment on memory impairment. Mol Biol Rep 2024; 51:640. [PMID: 38727848 DOI: 10.1007/s11033-024-09445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.
Collapse
Affiliation(s)
- Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shirin Fathi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shiva Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Sadat Mirrashidi
- Departrment of Pediatrics, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hedyeh Askarpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hadi Shafieemojaz
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
9
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther 2024; 30:e14525. [PMID: 37953501 PMCID: PMC11017442 DOI: 10.1111/cns.14525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Depression is a mood disorder characterized by abnormal thoughts. The pathophysiology of depression is related to the deficiency of serotonin (5HT), which is derived from tryptophan (Trp). Mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of depression. Notably, the renin-angiotensin system (RAS) is involved in the pathogenesis of depression, and different findings revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may be effective in depression. However, the underlying mechanism for the role of dysregulated brain RAS-induced depression remains speculative. Therefore, this review aimed to revise the conceivable role of ACEIs and ARBs and how these agents ameliorate the pathophysiology of depression. Dysregulation of brain RAS triggers the development and progression of depression through the reduction of brain 5HT and expression of brain-derived neurotrophic factor (BDNF) and the induction of mitochondrial dysfunction, oxidative stress, and neuroinflammation. Therefore, inhibition of central classical RAS by ARBS and ACEIs and activation of non-classical RAS prevent the development of depression by regulating 5HT, BDNF, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal MedicineMedical CollegeNajran UniversityNajranKSA
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Rabab S. Hamad
- Biological Sciences DepartmentCollege of Science, King Faisal UniversityAl AhsaSaudi Arabia
- Central LaboratoryTheodor Bilharz Research InstituteGizaEgypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
10
|
Shkreli L, Thoroddsen T, Kobelt M, Martens MA, Browning M, Harmer CJ, Cowen P, Reinecke A. Acute Angiotensin II Receptor Blockade Facilitates Parahippocampal Processing During Memory Encoding in High-Trait-Anxious Individuals. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100286. [PMID: 38323154 PMCID: PMC10844816 DOI: 10.1016/j.bpsgos.2023.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
Background Angiotensin II receptor blockers (ARBs) have been associated with preventing posttraumatic stress disorder symptom development and improving memory. However, the underlying neural mechanisms are poorly understood. This study investigated ARB effects on memory encoding and hippocampal functioning that have previously been implicated in posttraumatic stress disorder development. Methods In a double-blind randomized design, 40 high-trait-anxious participants (33 women) received the ARB losartan (50 mg) or placebo. At drug peak level, participants encoded images of animals and landscapes before undergoing functional magnetic resonance imaging, where they viewed the encoded familiar images and unseen novel images to be memorized and classified as animals/landscapes. Memory recognition was assessed 1 hour after functional magnetic resonance imaging. To analyze neural effects, whole-brain analysis, hippocampus region-of-interest analysis, and exploratory multivariate pattern similarity analysis were employed. Results ARBs facilitated parahippocampal processing. In the whole-brain analysis, losartan enhanced brain activity for familiar images in the parahippocampal gyrus (PHC), anterior cingulate cortex, and caudate. For novel images, losartan enhanced brain activity in the PHC only. Pattern similarity analysis showed that losartan increased neural stability in the PHC when processing novel and familiar images. However, there were no drug effects on memory recognition or hippocampal activation. Conclusions Given that the hippocampus receives major input from the PHC, our findings suggest that ARBs may modulate higher-order visual processing through parahippocampal involvement, potentially preserving intact memory input. Future research needs to directly investigate whether this effect may underlie the preventive effects of ARBs in the development of posttraumatic stress disorder.
Collapse
Affiliation(s)
- Lorika Shkreli
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | | - Malte Kobelt
- Institute of Cognitive Neuroscience, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Phil Cowen
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Andrea Reinecke
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
11
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Packer A, Corbett A, Arathimos R, Ballard C, Aarsland D, Hampshire A, Dima D, Creese B, Malanchini M, Powell TR. Limited evidence of a shared genetic relationship between C-reactive protein levels and cognitive function in older UK adults of European ancestry. FRONTIERS IN DEMENTIA 2023; 2:1093223. [PMID: 39081969 PMCID: PMC11285585 DOI: 10.3389/frdem.2023.1093223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2024]
Abstract
Introduction Previous studies have shown associations between cognitive function and C-reactive protein (CRP) levels in older adults. Few studies have considered the extent to which a genetic predisposition for higher CRP levels contributes to this association. Methods Data was analyzed from 7,817 UK participants aged >50 years as part of the PROTECT study, within which adults without dementia completed a comprehensive neuropsychological battery. We constructed a polygenic risk score (PRS-CRP) that explained 9.61% of the variance in serum CRP levels (p = 2.362 × 10-7) in an independent cohort. Regressions were used to explore the relationship between PRS-CRP and cognitive outcomes. Results We found no significant associations between PRS-CRP and any cognitive measures in the sample overall. In older participants (>62 years), we observed a significant positive association between PRS-CRP and self-ordered search score (i.e., spatial working memory). Conclusion Whilst our results indicate a weak positive relationship between PRS-CRP and spatial working memory that is specific to older adults, overall, there appears to be no strong effects of PRS-CRP on cognitive function.
Collapse
Affiliation(s)
- Amy Packer
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Anne Corbett
- College of Medicine & Health, St Luke's, University of Exeter, Exeter, United Kingdom
| | - Ryan Arathimos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Clive Ballard
- College of Medicine & Health, St Luke's, University of Exeter, Exeter, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, School of Health and Psychological Sciences, City, University of London, London, United Kingdom
| | - Byron Creese
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Margherita Malanchini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Timothy R. Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Althammer F, Roy RK, Kirchner MK, Campos-Lira E, Whitley KE, Davis S, Montanez J, Ferreira-Neto HC, Danh J, Feresin R, Biancardi VC, Zafar U, Parent MB, Stern JE. Angiotensin II-Mediated Neuroinflammation in the Hippocampus Contributes to Neuronal Deficits and Cognitive Impairment in Heart Failure Rats. Hypertension 2023; 80:1258-1273. [PMID: 37035922 PMCID: PMC10192104 DOI: 10.1161/hypertensionaha.123.21070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Heart failure (HF) is a debilitating disease affecting >64 million people worldwide. In addition to impaired cardiovascular performance and associated systemic complications, most patients with HF suffer from depression and substantial cognitive decline. Although neuroinflammation and brain hypoperfusion occur in humans and rodents with HF, the underlying neuronal substrates, mechanisms, and their relative contribution to cognitive deficits in HF remains unknown. METHODS To address this critical gap in our knowledge, we used a well-established HF rat model that mimics clinical outcomes observed in the human population, along with a multidisciplinary approach combining behavioral, electrophysiological, neuroanatomical, molecular and systemic physiological approaches. RESULTS Our studies support neuroinflammation, hypoperfusion/hypoxia, and neuronal deficits in the hippocampus of HF rats, which correlated with the progression and severity of the disease. An increased expression of AT1aRs (Ang II [angiotensin II] receptor type 1a) in hippocampal microglia preceded the onset of neuroinflammation. Importantly, blockade of AT1Rs with a clinically used therapeutic drug (Losartan), and delivered in a clinically relevant manner, efficiently reversed neuroinflammatory end points (but not hypoxia ones), resulting in turn in improved cognitive performance in HF rats. Finally, we show than circulating Ang II can leak and access the hippocampal parenchyma in HF rats, constituting a possible source of Ang II initiating the neuroinflammatory signaling cascade in HF. CONCLUSIONS In this study, we identified a neuronal substrate (hippocampus), a mechanism (Ang II-driven neuroinflammation) and a potential neuroprotective therapeutic target (AT1aRs) for the treatment of cognitive deficits in HF.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
| | - Ranjan K. Roy
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
| | - Matthew K. Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
| | - Elba Campos-Lira
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
- Neuroscience Institute, Georgia State University, GA,
USA
| | | | - Steven Davis
- Neuroscience Institute, Georgia State University, GA,
USA
| | - Juliana Montanez
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
| | | | - Jessica Danh
- Department of Nutrition, Georgia State University, Atlanta,
GA 30302, USA
| | - Rafaela Feresin
- Department of Nutrition, Georgia State University, Atlanta,
GA 30302, USA
| | - Vinicia Campana Biancardi
- Anatomy, Physiology, & Pharmacology, College of
Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Usama Zafar
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
- Neuroscience Institute, Georgia State University, GA,
USA
| | - Marise B. Parent
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
- Neuroscience Institute, Georgia State University, GA,
USA
- Department of Psychology, Georgia State University,
Atlanta, GA 30302, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases,
Georgia State University, GA, USA
- Neuroscience Institute, Georgia State University, GA,
USA
| |
Collapse
|
14
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
15
|
Kumar A, Verma A, Chaurasia RN. Vitamin D and inflammatory cytokines association in mild cognitive impaired subjects. Neurosci Lett 2023; 795:137044. [PMID: 36592816 DOI: 10.1016/j.neulet.2022.137044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD). The association of low Vitamin D and chronic inflammation in the onset of cognitive decline in the elderly population has been established but the variable population-based study is still lacking. METHODOLOGY The present study aims to investigate the level of plasma Vitamin D, pro-inflammatory cytokines IL-1β, IL-6, TNF-α, cognitive performance, and white matter changes in the elderly population in the North-Eastern part of Uttar Pradesh, India. RESULTS 70 participants with (Mean age- 75.14 ± 1.24, Male/Female- 50/20) with an Mini Mental State Examination (MMSE) score of (24.82 ± 1.82) and Montreal Cognitive Assessment Test (MOCA) score (21.83 ± 1.75), were cognitive decline, against the 70 healthy controls (Mean Age-73.18 ± 1.43; Male/Female- 50/20) with MMSE score (28.1 ± 1.5) and MOCA (28.5 ± 1.65), White matter variable Fractional Anisotropy (FA) and Apparent Diffusion Coefficient (ADC) values in MCI subject was found significantly altered in Right temporal lobe, Corpus Callosum (Right) and Hippocampus body (Right), Hippocampus body (left), Hippocampus head (Right) and Hippocampus head (Left)as compared with healthy controls. The level of cytokines IL-1β, IL-6, TNF-α, was significantly high in MCI subjects as compared with controls. Further lower Vitamin D level in plasma was detected in MCI as compared with healthy controls. CONCLUSION The result from the present study depicts that chronic inflammation and lower Vitamin D level influences neurodegeneration and decline in cognitive performance in the elderly population. These variables can be used as biomarkers for early identification of AD and interventional strategies can be designed for prevention at the prodromal stage of AD.
Collapse
Affiliation(s)
- Abhai Kumar
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University Varanasi, 221005, India; Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India; Centre of Genomics and Bioinformatics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Ashish Verma
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University Varanasi, 221005, India.
| |
Collapse
|
16
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|
18
|
Serna-Rodríguez MF, Bernal-Vega S, de la Barquera JAOS, Camacho-Morales A, Pérez-Maya AA. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation. J Neuroimmunol 2022; 371:577951. [PMID: 35994946 DOI: 10.1016/j.jneuroim.2022.577951] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Depression is a heterogeneous mental disorder characterized by feelings of sadness and loss of interest that render the subject unable to handle basic daily activities such as sleeping, eating, or working. Neurobiological traits leading to depression include genetic background, early life abuse, life stressors, and systemic and central inflammatory profiles. Several clinical and preclinical reports documented that depression shows an increase in pro-inflammatory markers such as interleukin (IL-)1β, IL-6, IL-12, tumor necrosis factor (TNF), and interferon (IFN)-γ; and a decrease in anti-inflammatory IL-4, IL-10, and transforming growth factor (TGF)-β species. Inflammatory activation may trigger and maintain depression. Dynamic crosstalk between the peripheral immune system and the central nervous system (CNS) such as activated endothelial cells, monocytes, monocyte-derived dendritic cells, macrophages, T cells, and microglia has been proposed as a leading cause of neuroinflammation. Notably, pro-inflammatory cytokines disrupt the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic, noradrenergic, dopaminergic, and glutamatergic neurotransmission. While still under investigation, peripheral cytokines can engage brain pathways and affect the central synthesis of HPA hormones and neurotransmitters through several mechanisms such as activation of the vagus nerve, increasing the permeability of the blood-brain barrier (BBB), altered cytokines transport systems, and engaging toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). However, physiological mechanisms that favor time-dependent central inflammation before or during illness are not totally understood. This review will provide preclinical and clinical evidence of DAMPs and the BBB permeability as contributors to depression and neuroinflammation. We will also discuss pharmacologic approaches that could potentially modulate DAMPs and BBB permeability for future interventions against major depression.
Collapse
Affiliation(s)
- María Fernanda Serna-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | - Sofía Bernal-Vega
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | | | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| | - Antonio Alí Pérez-Maya
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| |
Collapse
|
19
|
Şen S, Hacıosmanoğlu E. Comparing the Neuroprotective Effects of Telmisartan, Perindopril, and Nebivolol Against Lipopolysaccharide-Induced Injury in Neuron-Like Cells. Cureus 2022; 14:e27429. [PMID: 36051740 PMCID: PMC9420193 DOI: 10.7759/cureus.27429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
The effect of antihypertensive drugs, especially drugs modulating the renin-angiotensin-aldosterone-system (RAAS), on neurodegenerative diseases still needs to be investigated. This study aimed to compare the effects of three different antihypertensive drugs (telmisartan, perindopril, and nebivolol) on neuroprotection and acetylcholine (ACh) levels against lipopolysaccharide (LPS)-induced injury in a differentiated SH-SY5Y cell line. Cells were treated with retinoic acid for differentiation to a neuronal phenotype. LPS 20 (μg/mL) was applied to the cells for one hour. Then, the cells were treated with 1, 5, and 10 µg/mL concentrations of telmisartan, perindopril, and nebivolol separately for 24 hours, except for the control and LPS alone groups. Cell viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ACh levels were analyzed using an enzyme immunosorbent assay in the culture medium. Tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) expressions were evaluated using western blot analysis. Telmisartan demonstrated the highest cell viability against LPS-induced injury, whereas the protective effect of perindopril was moderate. Nebivolol showed no neuroprotective effect. The protective effect of 10-µg/mL telmisartan was superior to 10 µg/mL perindopril (p=0.006), 5 µg/mL perindopril (p=0.001), 1 µg/mL perindopril (p=0.001), and 1, 5, and 10 µg/mL nebivolol (p<0.001). Among all the study drugs, only telmisartan provided a statistically significant increase in ACh levels after LPS-induced injury. Additionally, the administration of telmisartan provided a concentration-dependent reduction in TNF-α, IL-1β, and NFκB expression against LPS-induced neuroinflammation. These findings suggest that telmisartan has a superior neuroprotective effect against LPS-induced injury in neuron-like cells compared with both perindopril and nebivolol.
Collapse
|
20
|
How to Restore Oxidative Balance That Was Disrupted by SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23126377. [PMID: 35742820 PMCID: PMC9223498 DOI: 10.3390/ijms23126377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus 2019 disease (COVID-19) is caused by different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in December of 2019. COVID-19 pathogenesis is complex and involves a dysregulated renin angiotensin system. Severe courses of the disease are associated with a dysregulated immunological response known as cytokine storm. Many scientists have demonstrated that SARS-CoV-2 impacts oxidative homeostasis and stimulates the production of reactive oxygen species (ROS). In addition, the virus inhibits glutathione (GSH) and nuclear factor erythroid 2-related factor 2 (NRF2)-a major antioxidant which induces expression of protective proteins and prevents ROS damage. Furthermore, the virus stimulates NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes which play a significant role in inducing a cytokine storm. A variety of agents with antioxidant properties have shown beneficial effects in experimental and clinical studies of COVID-19. This review aims to present mechanisms of oxidative stress induced by SARS-CoV-2 and to discuss whether antioxidative drugs can counteract detrimental outcomes of a cytokine storm.
Collapse
|
21
|
Salmani H, Hosseini M, Nabi MM, Samadi-Noshahr Z, Baghcheghi Y, Sadeghi M. Exacerbated immune response of the brain to peripheral immune challenge in post-septic mice. Brain Res Bull 2022; 185:74-85. [PMID: 35523357 DOI: 10.1016/j.brainresbull.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Mounting evidence indicates that sepsis can induce long-lasting brain dysfunction. Recently, it has been proposed that the brain may become more sensitive to systemic inflammation if microglial cells are already primed. Microglial priming has been demonstrated in aging, traumatic brain injury, and neurodegenerative diseases. There is evidence suggesting that systemic inflammation may also prime microglia. This study aimed to investigate the brain's response to a second immune challenge in sepsis survivors and the possible role of microglial priming. METHODS Adult BALB/c mice were intraperitoneally (ip) injected with 5 mg/kg lipopolysaccharide (LPS) for sepsis induction. One month later, mice received a second immune challenge (LPS, 0.33 mg/kg). A cohort of mice was sacrificed 2 h post-LPS injection to measure inflammatory mediators mRNA expression. The second cohort of mice was tested on a battery of behavioral tests and then sacrificed, and brain tissues were removed for biochemical analyses. RESULTS Results showed that in septic mice, secondary LPS challenge induced heightened neuroinflammation compared to the control mice, as evident by a significant increase of IL-1β, TNF-α, and iNOS mRNA expression. In the immunochallenged septic mice, the anti-inflammatory cytokine IL-10 expression was also significantly increased compared to the control mice. Sepsis induction significantly disrupted the recognition ability in the novel object recognition, but the second immune challenge had no significant effect. However, immunochallenged septic mice exhibited more anxiety-like behavior in the marble burying task and intensive depressive-like behavior in the forced swim test. Additionally, the second immune challenge reduced arginase-1 levels in septic but not control mice. On the other hand, CIITA levels were increased more significantly in the LPS injected control mice compared to septic mice. Neither sepsis nor the second immune challenge significantly affected inhibitory avoidance behavior and Aβ1-42 levels in brain tissue. CONCLUSION Our finding suggests that low-grade immune challenge can induce exacerbated behavioral change and exaggerated inflammatory response in the brain of post-septic mice.
Collapse
Affiliation(s)
- Hossein Salmani
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Mahdi Nabi
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran; Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
22
|
Wang B, Chen D, Jiang R, Ntim M, Lu J, Xia M, Yang X, Wang Y, Kundu S, Guan R, Li S. TIP60 buffers acute stress response and depressive behaviour by controlling PPARγ-mediated transcription. Brain Behav Immun 2022; 101:410-422. [PMID: 35114329 DOI: 10.1016/j.bbi.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Tat-interacting protein 60 (TIP60) as nuclear receptors (NRs) coregulator, acts as a tumor suppressor and also has promising therapeutic potential to target Alzheimer's disease. Stress has been implicated in many psychiatric disorders, and these disorders are characterized by impairments in cognitive function. Until now, there are no experimental data available on the regulatory effect of TIP60 in acute stress and depression. There is also no definitive explanation on which specific modulation of target gene expression is achieved by TIP60. Here, we identify TIP60 as a novel positive regulator in response to acute restraint stress (ARS) and a potentially effective target of antidepressants. Firstly, we discovered increased hippocampal TIP60 expressions in the ARS model. Furthermore, using the TIP60 inhibitor, MG149, we proved that TIP60 function correlates with behavioral and synaptic activation in the two-hour ARS. Secondly, the lentivirus vector (LV)-TIP60overexpression (OE) was injected into the hippocampus prior to the chronic restraint stress (CRS) experiments and it was found that over-expressed TIP60 compensates for TIP60 decrease and improves depression index in CRS. Thirdly, through the intervention of TIP60 expression in vitro, we established the genetic regulation of TIP60 on synaptic proteins, confirmed the TIP60 function as a specific coactivator for PPARγ and found that the PPARγ-mediated TIP60 function modulates transcriptional activation of synaptic proteins. Finally, the LV-TIP60OE and PPARγ antagonist, GW9662, were both administered in the CRS model and the data indicated that blocking PPARγ significantly weakened the protective effect of TIP60 against the CRS-induced depression. Conclusively, these findings together support TIP60 as a novel positive factor in response to acute stress and interacts with PPARγ to modulate the pathological mechanism of CRS-induced depression.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Defang Chen
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Michael Ntim
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - XueWei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Supratik Kundu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rongxiao Guan
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
23
|
Repova K, Aziriova S, Krajcirovicova K, Simko F. Cardiovascular therapeutics: A new potential for anxiety treatment? Med Res Rev 2022; 42:1202-1245. [PMID: 34993995 PMCID: PMC9304130 DOI: 10.1002/med.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Besides the well‐recognized risk factors, novel conditions increasing cardiovascular morbidity and mortality are emerging. Undesirable emotions and behavior such as anxiety and depression, appear to participate in worsening cardiovascular pathologies. On the other hand, deteriorating conditions of the heart and vasculature result in disturbed mental and emotional health. The pathophysiological background of this bidirectional interplay could reside in an inappropriate activation of vegetative neurohormonal and other humoral systems in both cardiovascular and psychological disturbances. This results in circulus vitiosus potentiating mental and circulatory disorders. Thus, it appears to be of utmost importance to examine the alteration of emotions, cognition, and behavior in cardiovascular patients. In terms of this consideration, recognizing the potential of principal cardiovascular drugs to interact with the mental state in patients with heart or vasculature disturbances is unavoidable, to optimize their therapeutic benefit. In general, beta‐blockers, central sympatholytics, ACE inhibitors, ARBs, aldosterone receptor blockers, sacubitril/valsartan, and fibrates are considered to exert anxiolytic effect in animal experiments and clinical settings. Statins and some beta‐blockers appear to have an equivocal impact on mood and anxiety and ivabradine expressed neutral psychological impact. It seems reasonable to suppose that the knowledge of a patient's mood, cognition, and behavior, along with applying careful consideration of the choice of the particular cardiovascular drug and respecting its potential psychological benefit or harm might improve the individualized approach to the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Javed F, Awan A, Majeed W, Aslam B, Iftikhar A, Kanwal H, Fiaz S. Glinus lotoides ethanolic extract alleviates LPS-induced anxiety and depression-like behavior by modulating antioxidant and inflammatory biomarkers in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It. J Renin Angiotensin Aldosterone Syst 2021; 2021:9293553. [PMID: 34925551 PMCID: PMC8651430 DOI: 10.1155/2021/9293553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT), converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I, II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer's disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in pathophysiology and treatment of the central nervous system-related disorders.
Collapse
|
26
|
Basmadjian OM, Occhieppo VB, Marchese NA, Silvero C MJ, Becerra MC, Baiardi G, Bregonzio C. Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT 1-R. Front Pharmacol 2021; 12:647747. [PMID: 34012397 PMCID: PMC8126693 DOI: 10.3389/fphar.2021.647747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Amphetamine (AMPH) alters neurons, glia and microvessels, which affects neurovascular unit coupling, leading to disruption in brain functions such as attention and working memory. Oxidative stress plays a crucial role in these alterations. The angiotensin type I receptors (AT1-R) mediate deleterious effects, such as oxidative/inflammatory responses, endothelial dysfunction, neuronal oxidative damage, alterations that overlap with those observed from AMPH exposure. Aims: The aim of this study was to evaluate the AT1-R role in AMPH-induced oxidative stress and glial and vascular alterations in the prefrontal cortex (PFC). Furthermore, we aimed to evaluate the involvement of AT1-R in the AMPH-induced short-term memory and working memory deficit. Methods: Male Wistar rats were repeatedly administered with the AT1-R blocker candesartan (CAND) and AMPH. Acute oxidative stress in the PFC was evaluated immediately after the last AMPH administration by determining lipid and protein peroxidation. After 21 off-drug days, long-lasting alterations in the glia, microvessel architecture and to cognitive tasks were evaluated by GFAP, CD11b and von Willebrand immunostaining and by short-term and working memory assessment. Results: AMPH induced acute oxidative stress, long-lasting glial reactivity in the PFC and a working memory deficit that were prevented by AT1-R blockade pretreatment. Moreover, AMPH induces transient angiogenesis in PFC via AT1-R. AMPH did not affect short-term memory. Conclusion: Our results support the protective role of AT1-R blockade in AMPH-induced oxidative stress, transient angiogenesis and long-lasting glial activation, preserving working memory performance.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Jazmin Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
27
|
Hosseini M, Salmani H, Baghcheghi Y. Losartan improved hippocampal long-term potentiation impairment induced by repeated LPS injection in rats. Physiol Rep 2021; 9:e14874. [PMID: 34042283 PMCID: PMC8157761 DOI: 10.14814/phy2.14874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment has been known as a common consequence of brain inflammation. Long-term potentiation (LTP), the generally accepted cellular mechanism for memory formation in the mammalian brain, has been shown to be suppressed by inflammation. Studies have shown that angiotensin II (Ang II) through the Ang II type 1 receptor (AT1R) has a role in brain and peripheral immune system communication and brain inflammation. Here, the effect of AT1R blockade on hippocampal LTP in rats undergoing repeated lipopolysaccharide (LPS) injection was investigated. Rats received intraperitoneal (ip) injections of LPS (250 μg kg-1 day-1 ) for seven days. Treatment with losartan (ip; 3 mg kg-1 day-1 ) was started 3 days before LPS injection and continued during the LPS injections. Rats were anesthetized, and field excitatory postsynaptic potential (fEPSP) was recorded from the stratum radiatum of the CA1 area of the hippocampus in response to stimulation of the Schaffer collateral pathway. Results showed that LTP was suppressed in the LPS-injected rats as no significant differences were found in the fEPSP slope and amplitude before and after the LTP induction. AT1R blockade by losartan restored fEPSP to the control levels. These findings indicate that Ang II, through AT1R, has a role in LTP suppression induced by systemic inflammation.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hossein Salmani
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yousef Baghcheghi
- Student Research CommitteeJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
28
|
Ebeid MA, Habib MZ, Mohamed AM, Faramawy YE, Saad SST, El-Kharashi OA, El Magdoub HM, Abd-Alkhalek HA, Aboul-Fotouh S, Abdel-Tawab AM. Cognitive effects of the GSK-3 inhibitor "lithium" in LPS/chronic mild stress rat model of depression: Hippocampal and cortical neuroinflammation and tauopathy. Neurotoxicology 2021; 83:77-88. [PMID: 33417987 DOI: 10.1016/j.neuro.2020.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
Abstract
Low-dose repeated lipopolysaccharide pre-challenge followed by chronic mild stress (LPS/CMS) protocol has been introduced as a rodent model of depression combining the roles of immune activation and chronic psychological stress. However, the impact of this paradigm on cognitive functioning has not been investigated hitherto. METHODS This study evaluated LPS/CMS-induced cognitive effects and the role of glycogen synthase kinase-3β (GSK-3β) activation with subsequent neuroinflammation and pathological tau deposition in the pathogenesis of these effects using lithium (Li) as a tool for GSK-3 inhibition. RESULTS LPS pre-challenge reduced CMS-induced neuroinflammation, depressive-like behavior and cognitive inflexibility. It also improved spatial learning but increased GSK-3β expression and exaggerated hyperphosphorylated tau accumulation in hippocampus and prefrontal cortex. Li ameliorated CMS and LPS/CMS-induced depressive and cognitive deficits, reduced GSK-3β over-expression and tau hyperphosphorylation, impeded neuroinflammation and enhanced neuronal survival. CONCLUSION This study draws attention to LPS/CMS-triggered cognitive changes and highlights how prior low-dose immune challenge could develop an adaptive capacity to buffer inflammatory damage and maintain the cognitive abilities necessary to withstand threats. This work also underscores the favorable effect of Li (as a GSK-3β inhibitor) in impeding exaggerated tauopathy and neuroinflammation, rescuing neuronal survival and preserving cognitive functions. Yet, further in-depth studies utilizing different low-dose LPS challenge schedules are needed to elucidate the complex interactions between immune activation and chronic stress exposure.
Collapse
Affiliation(s)
- Mai A Ebeid
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ahmed M Mohamed
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasser El Faramawy
- Department of Geriatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherin S T Saad
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Omnyah A El-Kharashi
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Hadwa A Abd-Alkhalek
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Chrissobolis S, Luu AN, Waldschmidt RA, Yoakum ME, D'Souza MS. Targeting the renin angiotensin system for the treatment of anxiety and depression. Pharmacol Biochem Behav 2020; 199:173063. [PMID: 33115635 DOI: 10.1016/j.pbb.2020.173063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
Emotional disorders like anxiety and depression are responsible for considerable morbidity and mortality all over the world. Several antidepressant and anxiolytic medications are available for the treatment of anxiety and depression. However, a significant number of patients either do not respond to these medications or respond inadequately. Hence, there is a need to identify novel targets for the treatment of anxiety and depression. In this review we focus on the renin angiotensin system (RAS) as a potential target for the treatment of these disorders. We review work that has evaluated the effects of various compounds targeting the RAS on anxiety- and depression-like behaviors. Further, we suggest future work that must be carried out to fully exploit the RAS for the treatment of anxiety and depression. The RAS provides an attractive target for both the identification of novel anxiolytic and antidepressant medications and/or for enhancing the efficacy of currently available medications used for the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Sophocles Chrissobolis
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Anh N Luu
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Ryan A Waldschmidt
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Madison E Yoakum
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America.
| |
Collapse
|
30
|
Mokhtari-Zaer A, Hosseini M, Roshan NM, Boskabady MH. Treadmill exercise ameliorates memory deficits and hippocampal inflammation in ovalbumin-sensitized juvenile rats. Brain Res Bull 2020; 165:40-47. [PMID: 32998022 DOI: 10.1016/j.brainresbull.2020.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
The behavioral changes, including spatial learning and memory impairment as well as depressive- and anxiety-like behaviors in an animal model of asthma were demonstrated previously. On the other hand, there is increasing evidence that the anti-inflammatory actions of exercise are related to their neuroprotective properties against different insults in the brain. This study was aimed to explore the effects of moderate treadmill exercise on cognitive deficits and possible anti-inflammatory mechanisms in ovalbumin (OVA)-sensitized rats. The exercise groups were trained to run on the treadmill 30 min/day with an intensity of 12 m/min, 5 days/week for 4 weeks. Animals in the OVA groups were sensitized by two intraperitoneal (i.p.) injections of OVA (10 μg/injection) and challenged with OVA by inhalation during the treadmill running exercise period. Passive avoidance (PA) memory, levels of interleukin (IL)-10 and tumor necrosis factor (TNF)-α in the hippocampus, total and differential white blood cell (WBC) count in the blood as well as pathological changes of the lung were then evaluated. OVA-sensitization was resulted in cognitive deficits in the PA task, along with increased total and differential WBC in blood and TNF-α in the hippocampus. However, exercise ameliorated these changes and increased the IL-10 level in the hippocampus, suggesting that moderate treadmill exercise can improve memory impairment in OVA-sensitized rats due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Amin Mokhtari-Zaer
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
32
|
The brain consequences of systemic inflammation were not fully alleviated by ibuprofen treatment in mice. Pharmacol Rep 2020; 73:130-142. [PMID: 32696348 DOI: 10.1007/s43440-020-00141-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Extensive data point to the immune system as an important factor underlying the pathogenesis of brain diseases. Epidemiological studies have shown that long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) significantly reduces the onset and progression of Alzheimer's disease. The present study aimed to investigate whether ibuprofen (IBU) is able to prevent the long-lasting alterations of brain function induced by systemic inflammation. METHODS Mice received intraperitoneal injections of lipopolysaccharide (LPS; 250 µg/kg/day) for seven consecutive days. Ibuprofen administration (40 mg/kg/day) was started three days before the LPS injections and continued until the last day of LPS injection. Within the next 2 weeks, mice performances on the behavioral tests were evaluated, and then brain tissue samples for biochemical analyses were collected. RESULTS The findings showed that ibuprofen significantly improved mice's performance in the passive avoidance test and reduced anxiety- and depressive-like behaviors. However, ibuprofen could not significantly improve spatial memory in the Morris water maze test and recognition ability in the novel object recognition test. TNF-α and IL-1β cytokines levels and malondialdehyde (MDA) concentration in the hippocampal tissues of LPS-treated mice were significantly lowered by ibuprofen treatment, whereas no significant effects on IL-10 production and hippocampal BDNF levels were observed. In addition, ibuprofen did not significantly reduce amyloid-β1-40 levels in the hippocampus of LPS-treated animals. CONCLUSION Overall, the findings of the present study suggest that some, but not all, of the adverse effects of systemic inflammation are alleviated by ibuprofen treatment.
Collapse
|
33
|
Vitamin D 3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sci 2020; 253:117703. [PMID: 32334010 DOI: 10.1016/j.lfs.2020.117703] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 11/20/2022]
Abstract
AIMS Vitamin D is a well-known endocrine regulator of calcium/phosphate homeostasis and has been reported as having a wide range of activities that are potentially beneficial for human health. This study aimed to investigate the effects of pretreatment of vitamin D3 (100, 1000, and 10,000 IU/kg) against lipopolysaccharide (LPS)-induced cognitive impairment in rats. MAIN METHODS Male Wistar rats were divided into five groups. The passive avoidance test and Morris water maze (MWM) test were conducted to evaluate the learning and memory function. Oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), total thiol content as well as interleukin (IL)-6 were evaluated in the hippocampus tissue. KEY FINDINGS The intraperitoneal (i.p.) injection of LPS (1 mg/kg) correlates with deficits in passive avoidance and spatial learning in the systemic inflammation model. However, pretreatment with vitamin D3 improved LPS-induced cognitive impairment. In addition, vitamin D3 decreased IL-6 and MDA levels, whereas the activities of CAT, SOD, and total thiol content in the hippocampus tissue were significantly increased. SIGNIFICANCE In conclusion, our results suggest that vitamin D3 plays a protective role against memory dysfunction caused by LPS-induced inflammation through inhibition of oxidative stress and inflammation in the hippocampus. Vitamin D may be a promising potential therapeutic supplement for the treatment or prevention of learning and memory disorders.
Collapse
|