1
|
Guo F, Du N, Wen X, Li Z, Guo Y, Zhou L, Hoffman AR, Li L, Hu JF, Cui J. CircARAP2 controls sMICA-induced NK cell desensitization by erasing CTCF/PRC2-induced suppression in early endosome marker RAB5A. Cell Mol Life Sci 2024; 81:307. [PMID: 39048814 PMCID: PMC11335232 DOI: 10.1007/s00018-024-05285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024]
Abstract
Natural killer cells (NK) are the "professional killer" of tumors and play a crucial role in anti-tumor immunotherapy. NK cell desensitization is a key mechanism of tumor immune escape. Dysregulated NKG2D-NKG2DL signaling is a primary driver of this desensitization process. However, the factors that regulate NK cell desensitization remain largely uncharacterized. Here, we present the first report that circular RNA circARAP2 (hsa_circ_0069396) is involved in the soluble MICA (sMICA)-induced NKG2D endocytosis in the NK cell desensitization model. CircARAP2 was upregulated during NK cell desensitization and the loss of circARAP2 alleviated NKG2D endocytosis and NK cell desensitization. Using Chromatin isolation by RNA purification (ChIRP) and RNA pull-down approaches, we identified that RAB5A, a molecular marker of early endosomes, was its downstream target. Notably, transcription factor CTCF was an intermediate functional partner of circARAP2. Mechanistically, we discovered that circARAP2 interacted with CTCF and inhibited the recruitment of CTCF-Polycomb Repressive Complex 2 (PRC2) to the promoter region of RAB5A, thereby erasing histone H3K27 and H3K9 methylation suppression to enhance RAB5A transcription. These data demonstrate that inhibition of circARAP2 effectively alleviates sMICA-induced NKG2D endocytosis and NK cell desensitization, providing a novel target for therapeutic intervention in tumor immune evasion.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Nawen Du
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhaozhi Li
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yantong Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Andrew R Hoffman
- Stanford University School of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lingyu Li
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Ji-Fan Hu
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Stanford University School of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
2
|
Saadh MJ, Rasulova I, Khalil M, Farahim F, Sârbu I, Ciongradi CI, Omar TM, Alhili A, Jawad MJ, Hani T, Ali T, Lakshmaiya N. Natural killer cell-mediated immune surveillance in cancer: Role of tumor microenvironment. Pathol Res Pract 2024; 254:155120. [PMID: 38280274 DOI: 10.1016/j.prp.2024.155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
In the immunological surveillance against cancer, natural killer (NK) cells are essential effectors that help eradicate altered cells. The complex interactions that occur between NK cells and the tumor microenvironment (TME) are thoroughly examined in this review. The review examines how cytokine stimulation affects NK cell activation, focusing on the dynamic modulation of NK cell function within the TME. It looks at NK cell-related biomarkers such as PD-1/PD-L1, methylation HOXA9 (Homeobox A9), Stroma AReactive Invasion Front Areas (SARIFA), and NKG2A/HLA-E, providing critical information about prognosis and treatment outcomes. The changing landscape of immunotherapies-including checkpoint inhibitors, CAR-NK cells, and cytokine-based interventions-is examined in the context of enhancing NK cell activity. The review highlights the potential pathways for precision medicine going forward, focusing on customized immunotherapies based on unique biomarker profiles and investigating combination medicines to produce more robust anti-tumor responses.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Irodakhon Rasulova
- MD, PhD, Senior Researcher, School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | | | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Talat Ali
- Department of Basic Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Coordinated Loss and Acquisition of NK Cell Surface Markers Accompanied by Generalized Cytokine Dysregulation in COVID-19. Int J Mol Sci 2023; 24:ijms24031996. [PMID: 36768315 PMCID: PMC9917026 DOI: 10.3390/ijms24031996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome.
Collapse
|
4
|
Liu J, Tao H, Yuan T, Li J, Li J, Liang H, Huang Z, Zhang E. Immunomodulatory effects of regorafenib: Enhancing the efficacy of anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:992611. [PMID: 36119072 PMCID: PMC9479218 DOI: 10.3389/fimmu.2022.992611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
Anti-PD-1/PD-L1 therapy has shown significant benefits in the treatment of a variety of malignancies. However, not all cancer patients can benefit from this strategy due to drug resistance. Therefore, there is an urgent need for methods that can effectively improve the efficacy of anti-PD-1/PD-L1 therapy. Combining anti-PD-1/PD-L1 therapy with regorafenib has been demonstrated as an effective method to enhance its therapeutic effect in several clinical studies. In this review, we describe common mechanisms of resistance to anti-PD-1/PD-L1 therapy, including lack of tumor immunogenicity, T cell dysfunction, and abnormal expression of PD-L1. Then, we illustrate the role of regorafenib in modifying the tumor microenvironment (TME) from multiple aspects, which is different from other tyrosine kinase inhibitors. Regorafenib not only has immunomodulatory effects on various immune cells, but can also regulate PD-L1 and MHC-I on tumor cells and promote normalization of abnormal blood vessels. Therefore, studies on the synergetic mechanism of the combination therapy may usher in a new era for cancer treatment and help us identify the most appropriate individuals for more precise treatment.
Collapse
Affiliation(s)
- Junjie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| |
Collapse
|
5
|
Mtashar B, Ashoor Z, Shabeeb Z, Matti B. Assessment of soluble natural killer group 2d ligand (MHC Class I A and UL16 Binding Protein 1) in Iraqi patients with acute myeloid leukemia. MUSTANSIRIYA MEDICAL JOURNAL 2022. [DOI: 10.4103/mj.mj_29_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X, Lu X, Song Z, Wei L, Xiang Z, Zou Y. A Soluble NK-CAR Mediates the Specific Cytotoxicity of NK Cells toward the Target CD20 + Lymphoma Cells. Aging Dis 2022; 13:1576-1588. [PMID: 36186137 PMCID: PMC9466963 DOI: 10.14336/ad.2022.0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Rongjiao Liu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Qizhi Luo
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Weiguang Luo
- Department of Laboratory Medicine, Henan Provincial People's Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ling Wan
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Quan Zhu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiangli Yin
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zixuan Song
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Leiyan Wei
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Yizhou Zou, Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China. .
| |
Collapse
|
7
|
Szudy-Szczyrek A, Ahern S, Kozioł M, Majowicz D, Szczyrek M, Krawczyk J, Hus M. Therapeutic Potential of Innate Lymphoid Cells for Multiple Myeloma Therapy. Cancers (Basel) 2021; 13:4806. [PMID: 34638291 PMCID: PMC8507621 DOI: 10.3390/cancers13194806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a recently identified family of lymphocyte-like cells lacking a specific antigen receptor. They are part of the innate immune system. They play a key role in tissue homeostasis and also control inflammatory and neoplastic processes. In response to environmental stimuli, ILCs change their phenotype and functions, and influence the activity of other cells in the microenvironment. ILC dysfunction can lead to a wide variety of diseases, including cancer. ILC can be divided into three subgroups: ILC Group 1, comprising NK cells and ILC1; Group 2, including ILC2 alone; and Group 3, containing Lymphoid Tissue inducers (LTi) and ILC3 cells. While Group 1 ILCs mainly exert antitumour activity, Group 2 and Group 3 ILCs are protumorigenic in nature. A growing body of preclinical and clinical data support the role of ILCs in the pathogenesis of multiple myeloma (MM). Therefore, targeting ILCs may be of clinical benefit. In this manuscript, we review the available data on the role of ILCs in MM immunology and therapy.
Collapse
Affiliation(s)
- Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| | - Sean Ahern
- Department of Haematology, University Hospital Galway, H91 TK33 Galway, Ireland; (S.A.); (J.K.)
- National University of Ireland, H91 TK33 Galway, Ireland
| | - Magdalena Kozioł
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| | - Daria Majowicz
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| | - Michał Szczyrek
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Janusz Krawczyk
- Department of Haematology, University Hospital Galway, H91 TK33 Galway, Ireland; (S.A.); (J.K.)
- National University of Ireland, H91 TK33 Galway, Ireland
| | - Marek Hus
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| |
Collapse
|
8
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
9
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
10
|
Heinze A, Grebe B, Bremm M, Huenecke S, Munir TA, Graafen L, Frueh JT, Merker M, Rettinger E, Soerensen J, Klingebiel T, Bader P, Ullrich E, Cappel C. The Synergistic Use of IL-15 and IL-21 for the Generation of NK Cells From CD3/CD19-Depleted Grafts Improves Their ex vivo Expansion and Cytotoxic Potential Against Neuroblastoma: Perspective for Optimized Immunotherapy Post Haploidentical Stem Cell Transplantation. Front Immunol 2019; 10:2816. [PMID: 31849984 PMCID: PMC6901699 DOI: 10.3389/fimmu.2019.02816] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite therapeutic progress, prognosis in high-risk NB is poor and innovative therapies are urgently needed. Therefore, we addressed the potential cytotoxic capacity of interleukin (IL)-activated natural killer (NK) cells compared to cytokine-induced killer (CIK) cells for the treatment of NB. NK cells were isolated from peripheral blood mononuclear cells (PBMCs) by indirect CD56-enrichment or CD3/CD19-depletion and expanded with different cytokine combinations, such as IL-2, IL-15, and/or IL-21 under feeder-cell free conditions. CIK cells were generated from PBMCs by ex vivo stimulation with interferon-γ, IL-2, OKT-3, and IL-15. Comparative analysis of expansion rate, purity, phenotype and cytotoxicity was performed. CD56-enriched NK cells showed a median expansion rate of 4.3-fold with up to 99% NK cell content. The cell product after CD3/CD19-depletion consisted of a median 43.5% NK cells that expanded significantly faster reaching also 99% of NK cell purity. After 10–12 days of expansion, both NK cell preparations showed a significantly higher median cytotoxic capacity against NB cells relative to CIK cells. Remarkably, these NK cells were also capable of efficiently killing NB spheroidal 3D culture in long-term cytotoxicity assays. Further optimization using a novel NK cell culture medium and a prolonged culturing procedure after CD3/CD19-depletion for up to 15 days enhanced the expansion rate up to 24.4-fold by maintaining the cytotoxic potential. Addition of an IL-21 boost prior to harvesting significantly increased the cytotoxicity. The final cell product consisted for the major part of CD16−, NCR-expressing, poly-functional NK cells with regard to cytokine production, CD107a degranulation and antitumor capacity. In summary, our study revealed that NK cells have a significantly higher cytotoxic potential to combat NB than CIK cell products, especially following the synergistic use of IL-15 and IL-21 for NK cell activation. Therefore, the use of IL-15+IL-21 expanded NK cells generated from CD3/CD19-depleted apheresis products seems to be highly promising as an immunotherapy in combination with haploidentical stem cell transplantation (SCT) for high-risk NB patients.
Collapse
Affiliation(s)
- Annekathrin Heinze
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Beatrice Grebe
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Melanie Bremm
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tasleem Ah Munir
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Lea Graafen
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jochen T Frueh
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Merker
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jan Soerensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Cappel
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Inhibiting exosomal MIC-A and MIC-B shedding of cancer cells to overcome immune escape: new insight of approved drugs. ACTA ACUST UNITED AC 2019; 27:879-884. [PMID: 31435903 DOI: 10.1007/s40199-019-00295-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Our knowledge of the role of innate immunity in protecting against cancers has expanded greatly in recent years. An early focus was on the adoptive transfer of natural killer (NK) cells and, although this approach has demonstrated promising results in many patients, a few limitations including immune escape of tumors from cytotoxic killing by NK cells have caused treatment failures. Downregulation of the expression of activating ligands on the surface of cancer cells and prevention of the activity of soluble factors are among the mechanisms employed by cancer cells to overcome NK-mediated immunity. It has become evident that a class of small membranous structures of endosomal origin known as exosomes play a key role in regulating the local tumor microenvironment. Here we hypothesize that exosome secretion by cancer cells, which is greater than that of normal cells, is an important escape mechanism employed by cancer cells. Interruption of exosome release by various inhibitory agents in combination with the adoptive transfer of NK cells may overcome, at least in part, the treatment failures that occur with adoptive NK cell transfer. In this regard, repositioning of approved drugs with previously shown effects on exosome release may be a good strategy to bypass the safety issues of newly identified agents and will also dramatically reduce the huge costs of drug approval process.
Collapse
|
12
|
Shahrabi S, Zayeri ZD, Ansari N, Hadad EH, Rajaei E. Flip-flops of natural killer cells in autoimmune diseases versus cancers: Immunologic axis. J Cell Physiol 2019; 234:16998-17010. [PMID: 30864163 DOI: 10.1002/jcp.28421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells play an essential role in the immune response to infections, inflammations, and malignancies. Recent studies suggest that NK cell surface receptors and cytokines are the key points of the disease development and protection. We hypothesized that the interactions between NK cell receptors and targeted cells construct an eventual niche, and this niche has an eventual profile in various autoimmune diseases and cancers. The NK cells preactivated with cytokines, such as interleukin-2 (IL-2), IL-12, IL-15, and IL-18 can have higher cytotoxicity; however, the toxic side effect of IL-2 should be considered. The vicissitudes of NK cell profile and its receptors obey the environmental communications and cell interactions. Our vision around the NK cells as an immune axis remained dual, and we still cannot judge the immune responses based on the NK cell flip-flop. A design of eventual niche to monitor the NK cell and targeted cell interaction is needed to strengthen our ability in diagnosis and treatment approaches based on the NK cells. Here, we have reviewed the shifts in the NK cells and their surface receptors in autoimmune diseases, solid tumors, and leukemia, and also discussed the effective chemokines that affect NK cell activation and proliferation. The main aim of this review is to present a broader vision of the NK cell changes in autoimmune disease and cancers.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham H Hadad
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy. J Cancer Res Clin Oncol 2019; 145:1179-1190. [PMID: 30778749 DOI: 10.1007/s00432-019-02865-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Bi-specific antibody (BsAb) is an emerging novel format of antibody. We aimed to develop the natural killer (NK) cell receptor NK group 2, member D (NKG2D)-mediated, immune surveillance system. In this system, the NKG2D ligand MHC class I-related chain A (MICA) was fused with BsAb, which targeted a cluster of differentiation 24 (CD24), a tumor-initiating cell marker that is over-expressed on hepatocellular carcinoma (HCC). METHODS The Homo MICA extracellular domains (hMICA) were fused to the end of the heavy chain of cG7 with the flexible pentapeptide (Gly-Gly-Gly-Gly-Ser; G4S), which formed the cG7-MICA that was further identified using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting (WB). The targeting specificity was characterized using the Surface Plasmon Resonance (SPR) technology and a flow cytometry assay. Furthermore, the design of BsAb cG7-MICA that targeted CD24 and NKG2D was proven to enhance antibody-dependent, cell-mediated cytotoxicity (ADCC) in vitro by the CytoTox 96 Nonradioactive Cytotoxicity assay. Degranulation and a cytokine production assay of NK cells demonstrated that NK cells were activated effectively by cG7-MICA. Further, in HCC-bearing nude mice, the anti-tumor effects of cG7-MICA combined with sorafenib were verified again. RESULTS We purified cG7-MICA successfully, and it has a high affinity. In vivo, cG7-MICA recruited NK cells to the tumor site and improved the anti-tumor efficacy of sorafenib. cG7-MICA also activated NK cells to release interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), and it increased the CD107a expression on the surface of the NK cells in vitro. CONCLUSION NK cells play a major role in the natural, innate immune system, and they have the function of identifying and killing target cells. cG7-MICA remodels the function of MICA molecules to activate NK cells, which provides a possible strategy for HCC-targeting immunotherapy.
Collapse
|
14
|
Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B, Bai X. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: A brief update. Bosn J Basic Med Sci 2018; 18:297-304. [PMID: 30179586 DOI: 10.17305/bjbms.2018.3539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive tumor, often difficult to diagnose and treat. Aspartate β-hydroxylase (ASPH) is a type II transmembrane protein and the member of α-ketoglutarate-dependent dioxygenase family, found to be overexpressed in different cancer types, including PC. ASPH appears to be involved in the regulation of proliferation, invasion and metastasis of PC cells through multiple signaling pathways, suggesting its role as a tumor biomarker and therapeutic target. In this review, we briefly summarize the possible mechanisms of action of ASPH in PC and recent progress in the therapeutic approaches targeting ASPH.
Collapse
Affiliation(s)
- Guofang Hou
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pang X, Tang YL, Liang XH. Transforming growth factor-β signaling in head and neck squamous cell carcinoma: Insights into cellular responses. Oncol Lett 2018; 16:4799-4806. [PMID: 30250544 DOI: 10.3892/ol.2018.9319] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises in the oral cavity, salivary glands, larynx, pharynx, nasal cavity and paranasal sinuses, and is characterized by high morbidity and metastasis rates. Transforming growth factor-β (TGF-β) is a homodimeric protein known to be a multifunctional regulator in target cells and to serve a pivotal role in numerous types of cancer, including HNSCC. The role of TGF-β signaling in carcinogenesis can change from tumor-suppressing to tumor-promoting. In addition, TGF-β induces epithelial-mesenchymal transition and restrains immune surveillance on malignant cells. In the present review, the effects of TGF-β signaling at a cellular level were discussed, which includes the regulation of tumor cells, immune cells and other stromal cells, as well as the possible mechanisms underlying the conversion from a tumor suppressor to a tumor promoter in HNSCC. Further research is required to improve the understanding on how this network is involved in carcinogenesis, progression and metastases in HNSCC.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Wan LL, Zhang DQ, Zhang JN, Ren LQ. Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA. J Zhejiang Univ Sci B 2018; 18:522-531. [PMID: 28585428 DOI: 10.1631/jzus.b1600369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hepatocarcinoma is one of the malignant cancers with significant morbidity and mortality. Immunotherapy has emerged in clinical treatment, owing to the limitation and severe side effects of chemotherapy. In the immune system, natural killer (NK) cells are important effectors required to eliminate malignant tumor cells without the limitation of major histocompatibility complex (MHC) molecule issues. Hence, treatment which could stimulate NK cells is of great interest. Here, we investigated the efficacy of the combined therapy of TT-1 (a mutant of melittin) and interferon-α (IFN-α) on NK cells and human liver cancer HepG-2/Huh7 cells in vitro and in vivo, as well as the mechanism involved. The combination therapy significantly inhibited the growth of HepG-2/Huh7 cells in vivo, but this effect was impaired after depleting NK cells. TT-1 not only up-regulated MHC class I-related chain molecules A (MICA) expression, but also prevented the secretion of soluble MICA (sMICA). Both the mRNA and protein of a disintegrin and metallopeptidase 10 (ADAM 10) in HepG-2/Huh7 cells were decreased after TT-1 treatment. The combined therapy of TT-1 and IFN-α could suppress the growth of HepG-2/Huh7 xenografted tumor effectively via promoting the interaction of NK group 2, member D (NKG2D) and MICA, indicating that TT-1+IFN-α would be a potential approach in treating liver cancer.
Collapse
Affiliation(s)
- Lan-Lan Wan
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun 130041, China
| | - Da-Qi Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun 130033, China
| | - Jin-Nan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Tchang VSY, Stiess M, Siegmund K, Karrer U, Pieters J. Role for coronin 1 in mouse NK cell function. Immunobiology 2017; 222:291-300. [PMID: 27717523 DOI: 10.1016/j.imbio.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
Abstract
Coronin 1, a member of the evolutionary conserved WD repeat protein family of coronin proteins is expressed in all leukocytes, but a role for coronin 1 in natural killer (NK) cell homeostasis and function remains unclear. Here, we have analyzed the number and functionality of NK cells in the presence and absence of coronin 1. In coronin 1-deficient mice, absolute NK cell numbers and phenotype were comparable to wild type mice in blood, spleen and liver. Following in vitro stimulation of the activating NK cell receptors NK1.1, NKp46, Ly49D and NKG2D, coronin 1-deficient NK cells were functional with respect to interferon-γ production, degranulation and intracellular Ca2+ mobilization. Also, both wild type as well as coronin 1-deficient NK cells showed comparable cytotoxic activity. Furthermore, activation and functionality of NK cells following Vesicular Stomatitis Virus (VSV) infection was similar between wild type and coronin 1-deficient mice. Taken together these data suggest that coronin 1 is dispensable for mouse NK cell homeostasis and function.
Collapse
Affiliation(s)
- Vincent Sam Yong Tchang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Stiess
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Kerstin Siegmund
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland; Department of Medicine, Cantonal Hospital of Winterthur, Brauerstrasse 15, CH-8401 Winterthur, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
18
|
Cappel C, Huenecke S, Suemmerer A, Erben S, Rettinger E, Pfirrmann V, Heinze A, Zimmermann O, Klingebiel T, Ullrich E, Bader P, Bremm M. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr Blood Cancer 2016; 63:2230-2239. [PMID: 27433920 DOI: 10.1002/pbc.26147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite advances in therapy, the prognosis is poor and optimized therapies are urgently needed. Therefore, we investigated the antitumor potential of interleukin-15 (IL-15)-activated cytokine-induced killer (CIK) cells against different NB cell lines. PROCEDURE CIK cells were generated from peripheral blood mononuclear cells by the stimulation with interferon-γ (IFN-γ), IL-2, OKT-3 and IL-15 over a period of 10-12 days. The cytotoxic activity against NB cells was analyzed by nonradioactive Europium release assay before and after blocking of different receptor-ligand interactions relevant in CIK cell-mediated cytotoxicity. RESULTS The final CIK cell products consisted in median of 83% (range: 75.9-91.9%) CD3+ CD56- T cells, 14% (range: 5.2-20.7%) CD3+ CD56+ NK-like T cells and 2% (range: 0.9-4.8%) CD3- CD56+ NK cells. CIK cells expanded significantly upon ex vivo stimulation with median rates of 22.3-fold for T cells, 58.3-fold for NK-like T cells and 2.5-fold for NK cells. Interestingly, CD25 surface expression increased from less than equal to 1% up to median 79.7%. Cytotoxic activity of CIK cells against NB cells was in median 34.7, 25.9 and 34.8% against the cell lines UKF-NB-3, UKF-NB-4 and SK-N-SH, respectively. In comparison with IL-2-stimulated NK cells, CIK cells showed a significantly higher cytotoxicity. Antibody-mediated blocking of the receptors NKG2D, TRAIL, FasL, DNAM-1, NKp30 and lymphocyte function-associated antigen-1 (LFA-1) significantly reduced lytic activity, indicating that diverse cytotoxic mechanisms might be involved in CIK cell-mediated NB killing. CONCLUSIONS Unlike the mechanism reported in other malignancies, NKG2D-mediated cytotoxicity does not constitute the major killing mechanism of CIK cells against NB.
Collapse
Affiliation(s)
- Claudia Cappel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Anica Suemmerer
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Stephanie Erben
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Verena Pfirrmann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Annekathrin Heinze
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Evelyn Ullrich
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
19
|
Burga RA, Nguyen T, Zulovich J, Madonna S, Ylisastigui L, Fernandes R, Yvon E. Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells. Cytotherapy 2016; 18:1410-1421. [PMID: 27421740 DOI: 10.1016/j.jcyt.2016.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells are members of the innate immune system that recognize target cells via activating and inhibitory signals received through cell receptors. Derived from the lymphoid lineage, NK cells are able to produce cytokines and exert a cytotoxic effect on viral infected and malignant cells. It is their unique ability to lyse target cells rapidly and without prior education that renders NK cells a promising effector cell for adoptive cell therapy. However, both viruses and tumors employ evasion strategies to avoid attack by NK cells, which represent biological challenges that need to be harnessed to fully exploit the cytolytic potential of NK cells. Using genetic modification, the function of NK cells can be enhanced to improve their homing, cytolytic activity, in vivo persistence and safety. Examples include gene modification to express chemokine, high-affinity Fc receptor and chimeric antigen receptors, suicide genes and the forced expression of cytokines such as interleukin (IL)-2 and IL-15. Preclinical studies have clearly demonstrated that such approaches are effective in improving NK-cell function, homing and safety. In this review, we summarize the recent advances in the genetic manipulations of NK cells and their application for cellular immunotherapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burga
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Tuongvan Nguyen
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane Zulovich
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Madonna
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Loyda Ylisastigui
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Rohan Fernandes
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Eric Yvon
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
20
|
Wang T, Sun F, Xie W, Tang M, He H, Jia X, Tian X, Wang M, Zhang J. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett 2016; 372:166-78. [PMID: 26791237 DOI: 10.1016/j.canlet.2016.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
MHC class I-related chain A (MICA) is a principal immunoligand of the natural killer (NK) cell receptor NK group 2, member D (NKG2D) and plays a key role in NK cell-mediated immune recognition. Shedding of MICA from tumor cells leads to immunosuppression. To reconstitute the immunosurveilance function of NK cells, we constructed a fusion protein rG7S-MICA and explored its potential anti-tumor activity against hepatocellular carcinoma (HCC). rG7S-MICA consists of human MICA and a single-chain antibody fragment (scFv) targeting the tumor-associated antigen cluster of differentiation 24 (CD24). In vitro, rG7S-MICA engaged both NK cells and CD24(+) human HCC cells, and triggered NK cell-mediated cytolysis. Furthermore, in CD24(+) HCC-bearing nude mice, rG7S-MICA specifically targeted to the tumor tissue, where it effectively recruited NK cells and induced the release of cytokines, and showed superior anti-tumor activity. In conclusion, rG7S-MICA provides a new approach for HCC-targeting immunotherapy and has attracting potentials for clinical applications.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Fumou Sun
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Wei Xie
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingying Tang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Hua He
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xuelian Jia
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xuemei Tian
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| | - Juan Zhang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Klöss S, Chambron N, Gardlowski T, Weil S, Koch J, Esser R, Pogge von Strandmann E, Morgan MA, Arseniev L, Seitz O, Köhl U. Cetuximab Reconstitutes Pro-Inflammatory Cytokine Secretions and Tumor-Infiltrating Capabilities of sMICA-Inhibited NK Cells in HNSCC Tumor Spheroids. Front Immunol 2015; 6:543. [PMID: 26579120 PMCID: PMC4629470 DOI: 10.3389/fimmu.2015.00543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 01/04/2023] Open
Abstract
Immunosuppressive factors, such as soluble major histocompatibility complex class I chain-related peptide A (sMICA) and transforming growth factor beta 1 (TGF-β1), are involved in tumor immune escape mechanisms (TIEMs) exhibited by head and neck squamous cell carcinomas (HNSCCs) and may represent opportunities for therapeutic intervention. In order to overcome TIEMs, we investigated the antibody-dependent cellular cytotoxicity (ADCC), cytokine release and retargeted tumor infiltration of sMICA-inhibited patient NK cells expressing Fcγ receptor IIIa (FcγRIIIa, CD16a) in the presence of cetuximab, an anti-epidermal growth factor receptor (HER1) monoclonal antibody (mAb). Compared to healthy controls, relapsed HNSCC patients (n = 5), not currently in treatment revealed decreased levels of circulating regulatory NK cell subsets in relation to increased cytotoxic NK cell subpopulations. Elevated sMICA and TGF-β1 plasma levels correlated with diminished TNFα and IFN-γ release and decreased NKG2D (natural killer group 2 member D)-dependent killing of HNSCC cells by NK cells. Incubation of IL-2-activated patient NK cells with patient plasma containing elevated sMICA or sMICA analogs (shed MICA and recombinant MICA) significantly impaired NKG2D-mediated killing by down-regulation of NKG2D surface expression. Of note, CD16 surface expression levels, pro-apoptotic and activation markers, and viability of patient and healthy donor NK cell subpopulations were not affected by this treatment. Accordingly, cetuximab restored killing activity of sMICA-inhibited patient NK cells against cetuximab-coated primary HNSCC cells via ADCC in a dose-dependent manner. Rapid reconstitution of anti-tumor recognition and enhanced tumor infiltration of treated NK cells was monitored by 24 h co-incubation of HNSCC tumor spheroids with cetuximab (1 μg/ml) and was characterized by increased IFN-γ and TNFα secretion. This data show that the impaired NK cell-dependent tumor surveillance in relapsed HNSCC patients could be reversed by the re-establishment of ADCC-mediated effector cell activity, thus supporting NK cell-based immunotherapy in combination with antineoplastic monoclonal mAbs.
Collapse
Affiliation(s)
- Stephan Klöss
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | - Nicole Chambron
- Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Klinikum Hanau GmbH , Hanau , Germany
| | - Tanja Gardlowski
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | - Sandra Weil
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy , Frankfurt , Germany
| | - Joachim Koch
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy , Frankfurt , Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | | | - Michael A Morgan
- Institute of Experimental Haematology, Hannover Medical School , Hannover , Germany
| | - Lubomir Arseniev
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| | - Oliver Seitz
- Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Klinikum Hanau GmbH , Hanau , Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School , Hannover , Germany
| |
Collapse
|
22
|
Klöß S, Chambron N, Gardlowski T, Arseniev L, Koch J, Esser R, Glienke W, Seitz O, Köhl U. Increased sMICA and TGFβ 1 levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells. Oncoimmunology 2015; 4:e1055993. [PMID: 26451327 PMCID: PMC4589991 DOI: 10.1080/2162402x.2015.1055993] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022] Open
Abstract
Disseminated head-and-neck squamous cell carcinoma (HNSCC) escapes immune surveillance and thus frequently manifests as fatal disease. Here, we report on the distribution of distinct immune cell subpopulations, natural killer (NK) cell cytotoxicity and tumor immune escape mechanisms (TIEMs) in 55 HNSCC patients, either at initial diagnosis or present with tumor relapse. Compared to healthy controls, the regulatory NK cells and the ratio of pro/anti-inflammatory cytokines were decreased in HNSCC patients, while soluble major histocompatibility complex Class I chain-related peptide A (sMICA) and transforming growth factor β1 (TGFβ1) plasma levels were markedly elevated. Increased sMICA and TGFβ1 concentrations correlated with tumor progression and staging characteristics in 7 follow-up HNSCC patients, with significantly elevated levels of both soluble factors from the time of initial diagnosis to that of relapse. Patient plasma containing elevated sMICA and TGFβ1 markedly impaired NKG2D-dependent cytotoxicity against HNSCC cells upon incubation with patient-derived and IL-2 activated NK cells vs. those derived from healthy donors. Decreased antitumor recognition was accompanied by reduced NKG2D expression on the NK cell surface and an enhanced caspase-3 activity. In-vitro blocking and neutralization experiments demonstrated a synergistic negative impact of sMICA and TGFβ1 on NK cell functionality. Although we previously showed the feasibility and safety of transfer of allogeneic donor NK cells in a prior clinical study encompassing various leukemia and tumor patients, our present results suggest the need for caution regarding the sole use of adoptive NK cell transfer. The presence of soluble NKG2D ligands in the plasma of HNSCC patients and the decreased NK cell cytotoxicity due to several factors, especially TGFβ1, indicates timely depletion of these immunosuppressing molecules may promote NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Stephan Klöß
- Institute for Cellular therapeutics; IFB-Tx; Hannover Medical School; Hannover, Germany
| | - Nicole Chambron
- Department of Oral; Cranio-Maxillofacial and Facial Plastic Surgery; Klinikum Hanau GmbH; Hanau, Germany
| | - Tanja Gardlowski
- Institute for Cellular therapeutics; IFB-Tx; Hannover Medical School; Hannover, Germany
| | - Lubomir Arseniev
- Institute for Cellular therapeutics; IFB-Tx; Hannover Medical School; Hannover, Germany
| | - Joachim Koch
- Georg-Speyer-Haus; Institute for Tumor Biology and Experimental Therapy; Frankfurt, Germany
| | - Ruth Esser
- Institute for Cellular therapeutics; IFB-Tx; Hannover Medical School; Hannover, Germany
| | - Wolfgang Glienke
- Institute for Cellular therapeutics; IFB-Tx; Hannover Medical School; Hannover, Germany
| | - Oliver Seitz
- Department of Oral; Cranio-Maxillofacial and Facial Plastic Surgery; Klinikum Hanau GmbH; Hanau, Germany
| | - Ulrike Köhl
- Institute for Cellular therapeutics; IFB-Tx; Hannover Medical School; Hannover, Germany
| |
Collapse
|
23
|
Ramutton T, Buccheri S, Dieli F, Todaro M, Stassi G, Meraviglia S. γδ T cells as a potential tool in colon cancer immunotherapy. Immunotherapy 2015; 6:989-99. [PMID: 25341120 DOI: 10.2217/imt.14.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.
Collapse
Affiliation(s)
- Thiranut Ramutton
- Department of Biopathology & Biomedical Methodologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Liu X, Zhao M, Yang X, Han M, Xu X, Jiang Y, Hu X. Toxoplasma gondii infection of decidual CD1c(+) dendritic cells enhances cytotoxicity of decidual natural killer cells. Inflammation 2015; 37:1261-70. [PMID: 24573986 DOI: 10.1007/s10753-014-9853-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is crosstalk between decidual natural killer (dNK) cells and decidual dendritic cells (dDCs) that promotes tolerance of trophoblast cells carrying paternally derived antigens. In the present study, we report that infection of CD1c(+) dDCs with Toxoplasma gondii enhanced gamma interferon (IFN-γ) production by dNK cells in co-culture. The enhancement of IFN-γ production was induced by cytokine IL-12 which increased obviously in co-culture of dDCs with dNK cells following T. gondii infection, and this enhancement largely abrogated when cells were cultured in the presence of an anti-IL-12 antibody. The expression of KIR2DL4 and NKG2D on dNK cells was increased after T. gondii infection, and higher expression of NKG2D was induced by co-cultured dDCs. Neutralization of IL-12 decreased NKG2D expression on dNK cells. Furthermore, dDCs with T. gondii infection increased the cytotoxicity of co-cultured dNK cells against K562 target cells, which was mediated by activating receptor of NKG2D. Thus, T. gondii infection of dDCs enhanced dNK cell IFN-γ production and NKG2D expression, and then led to increased cytotoxicity of dNK cells. The up-regulated dNK cell cytotoxicity at the maternal-fetal interface may contribute to abnormal pregnancy outcomes caused by T. gondii infection in early pregnancy.
Collapse
Affiliation(s)
- Xianbing Liu
- Department of Immunology, Binzhou Medical University, No.346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related death globally. Above well-known risk factors for HCC development ranging from various toxins to diseases such as diabetes mellitus, chronic infection with hepatitis B virus and hepatitis C virus (HCV) poses the most serious threat, constituting the cause in more than 80 % of cases. In addition to the viral genes intensively investigated, the pathophysiological importance of host genetic factors has also been greatly and increasingly appreciated. Genome-wide association studies (GWAS) comprehensively search the host genome at the single-nucleotide level, and have successfully identified the genomic region associated with a whole variety of diseases. With respect to HCC, there have been reports from several groups on single nucleotide polymorphisms (SNPs) associated with hepatocarcinogenesis, among which was our GWAS discovering MHC class I polypeptide-related sequence A (MICA) as a susceptibility gene for HCV-induced HCC. MICA is a natural killer (NK) group 2D (NKG2D) ligand, whose interaction with NKG2D triggers NK cell-mediated cytotoxicity toward the target cells, and is a key molecule in tumor immune surveillance as its expression is induced on stressed cells such as transformed tumor cells for the detection by NK cells. In this review, the latest understanding of the MICA-NKG2D system in viral HCC, particularly focused on its antitumor properties and the involvement of MICA SNPs, is summarized, followed by a discussion of targets for state-of-the-art cancer immunotherapy with personalized medicine in view.
Collapse
|
26
|
Amin PJ, Shankar BS. Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sci 2015; 126:19-27. [PMID: 25721293 DOI: 10.1016/j.lfs.2015.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/06/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
AIMS The goal of this study is to investigate the tumor cytotoxic effects of sulforaphane (SFN) and ionizing radiation (IR) as well as their ability to up-regulate natural killer group 2, member D (NKG2D) ligands and modulate the susceptibility of tumor cells to natural killer (NK) cell-mediated killing. MAIN METHODS Expression of MHC class I-related chain molecules A and B (MICA/MICB) and total reactive oxygen species (ROS) were assessed by flow cytometry following labeling with appropriate dyes or antibodies. NK cell cytotoxicity was determined by calcein release of target cells. KEY FINDINGS The expression of NKG2D ligands MICA/MICB was found to vary in all the four tumor cell lines tested (MCF7 < A549 < MDA-MB-231 < U937). Exposure of these cells to IR and SFN resulted in a differential induction of these ligands. IR induced an increase in expression of MICA/MICB in MCF7 cells and SFN induced MICA/MICB expression in A549 and MDA-MB-231 cells. This SFN induced increase in receptor expression resulted in increased susceptibility to NK cell mediated killing of tumor cells which was abrogated by blocking with anti-MICA/MICB antibody. SFN induced increase in MICA/MICB expression as well as increased susceptibility to NK cell mediated killing was abrogated by N-acetyl cysteine in A549 and MDA-MB-231 cells suggesting a ROS mediated mechanism. SIGNIFICANCE Our results indicate that SFN has an immunotherapeutic potential to be used in cancer therapy.
Collapse
Affiliation(s)
- Prayag J Amin
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
27
|
Huyan T, Li Q, Ye LJ, Yang H, Xue XP, Zhang MJ, Huang QS, Yin DC, Shang P. Inhibition of human natural killer cell functional activity by human aspartyl β-hydroxylase. Int Immunopharmacol 2014; 23:452-9. [PMID: 25281391 DOI: 10.1016/j.intimp.2014.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells are a key component of the innate immune system and play pivotal roles as inflammatory regulators and in tumor surveillance. Human aspartyl β-hydroxylase (HAAH) is a plasma membrane and endoplasmic reticulum protein with hydroxylation activity, which is over-expressed in many malignant neoplasms and can be detected from the sera of tumor patients. HAAH is involved in regulating tumor cell infiltration and metastasis. Escaping from immune surveillance may help tumor cell infiltration and metastasis. However, the effects of HAAH on tumor immune surveillance have not yet been investigated carefully. The present study investigated the potential use of HAAH as an immune regulator of human NK cells. We assessed the effects of recombinant HAAH (r-HAAH) on primary human NK cell morphology, viability, cytotoxicity, apoptosis, receptors expression and cytokine/cytolytic proteins production. Our results demonstrated that r-HAAH negatively affects NK cell activity in a time and dose-dependent manner. It noticeably reduces the viability of the NK cells by increasing apoptosis and necrosis via caspase signaling pathways. Moreover, r-HAAH reduces the NK cell cytotoxicity by inhibiting surface expression of NKG2D, NKp44 and IFN-γ secretion. These findings suggest that one of the ways by which HAAH actively promotes tumor formation and proliferation is by inhibiting NK cell-surveillance activity.
Collapse
Affiliation(s)
- Ting Huyan
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Lin-Jie Ye
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Ping Xue
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Ming-Jie Zhang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China; Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 1401 Rockville Pike, Rockville, MD, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
28
|
Mellergaard M, Skovbakke SL, Schneider CL, Lauridsen F, Andresen L, Jensen H, Skov S. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24. J Biol Chem 2014; 289:20078-91. [PMID: 24872415 DOI: 10.1074/jbc.m114.573238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NKG2D is an activating receptor expressed on several types of human lymphocytes. NKG2D ligands can be induced upon cell stress and are frequently targeted post-translationally in infected or transformed cells to avoid immune recognition. Virus infection and inflammation alter protein N-glycosylation, and we have previously shown that changes in cellular N-glycosylation are involved in regulation of NKG2D ligand surface expression. The specific mode of regulation through N-glycosylation is, however, unknown. Here we investigated whether direct N-glycosylation of the NKG2D ligand MICA itself is critical for cell surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (Asn(8)) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N-glycosylation site. Mutational analysis revealed that a single amino acid (Thr(24)) in the extracellular domain of MICA018 was essential for the N-glycosylation dependence, whereas the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N-glycosylation, and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018, and we pinpoint the residues essential for this N-glycosylation dependence. In addition, we show that this regulatory mechanism of MICA surface expression is likely targeted during different pathological conditions.
Collapse
Affiliation(s)
- Maiken Mellergaard
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Sarah Line Skovbakke
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | | | - Felicia Lauridsen
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Lars Andresen
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Helle Jensen
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Søren Skov
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| |
Collapse
|
29
|
Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer 2014; 14:370. [PMID: 24885711 PMCID: PMC4076062 DOI: 10.1186/1471-2407-14-370] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Background Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is reported to exert anti-tumor effects by upregulating the expression of the natural killer group 2D (NKG2D) ligands on tumor cells; however, the mechanisms vary in different tumor types, and the effect and mechanism of action of VPA in pancreatic cancer cells are unknown. Methods The present study evaluated the effect of VPA to susceptibility of pancreatic cancer cells to the NK cell-mediated lysis in vitro and in vivo. Then we investigated the mechanism which the effect of VPA depend on. Results The lactate dehydrogenase assay (LDH) and xenograft experiment demonstrated that VPA significantly sensitized pancreatic cancer cells to NK cell-mediated lysis in vitro and in vivo. Quantitative real time- polymerase chain reaction (qRT-PCR) and flow cytometry demonstrated that VPA upregulated the mRNA and cell surface expression of the NKG2D ligands major histocompatibility complex class I-related chain A and B (MICA and MICB) in pancreatic cancer cells. Effects of VPA both in vitro and in vivo were significantly attenuated by the PI3K/Akt pathway inhibitor LY294002 or a siRNA targeting PI3K catalytic subunit alpha isoform (PI3KCA). Conclusion VPA enhances the susceptibility of pancreatic cancer cells to NK cell-mediated cytotoxicity both in vitro and in vivo by upregulating the expression of MICA and MICB via a PI3K/Akt signaling pathway-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Shanmiao Gou
- Pancreatic Disease Institute, Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, P, R, China.
| | | |
Collapse
|
30
|
Chen D, Hammer J, Lindquist D, Idahl A, Gyllensten U. A variant upstream of HLA-DRB1 and multiple variants in MICA influence susceptibility to cervical cancer in a Swedish population. Cancer Med 2014; 3:190-8. [PMID: 24403192 PMCID: PMC3930404 DOI: 10.1002/cam4.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 01/01/2023] Open
Abstract
In a genome-wide association study, we have previously identified and performed the initial replication of three novel susceptibility loci for cervical cancer: rs9272143 upstream of HLA-DRB1, rs2516448 adjacent to MHC class I polypeptide-related sequence A gene (MICA), and rs3117027 at HLA-DPB2. The risk allele T of rs2516448 is in perfect linkage disequilibrium with a frameshift mutation (A5.1) in MICA exon 5, which results in a truncated protein. To validate these associations in an independent study and extend our prior work to MICA exon 5, we genotyped the single-nucleotide polymorphisms at rs9272143, rs2516448, rs3117027 and the MICA exon 5 microsatellite in a nested case-control study of 961 cervical cancer patients (827 carcinoma in situ and 134 invasive carcinoma) and 1725 controls from northern Sweden. The C allele of rs9272143 conferred protection against cervical cancer (odds ratio [OR] = 0.73, 95% confidence interval [CI] = 0.65-0.82; P = 1.6 × 10(-7)), which is associated with higher expression level of HLA-DRB1, whereas the T allele of rs2516448 increased the susceptibility to cervical cancer (OR = 1.33, 95% CI = 1.19-1.49; P = 5.8 × 10(-7)), with the same association shown with MICA-A5.1. The direction and the magnitude of these associations were consistent with our previous findings. We also identified protective effects of the MICA-A4 (OR = 0.80, 95% CI = 0.68-0.94; P = 6.7 × 10(-3)) and MICA-A5 (OR = 0.60, 95% CI = 0.50-0.72; P = 3.0 × 10(-8)) alleles. The associations with these variants are unlikely to be driven by the nearby human leukocyte antigen (HLA) alleles. No association was observed between rs3117027 and risk of cervical cancer. Our results support the role of HLA-DRB1 and MICA in the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Dan Chen
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala, Uppsala UniversitySE-751 85, Uppsala, Sweden
| | - Joanna Hammer
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala, Uppsala UniversitySE-751 85, Uppsala, Sweden
| | - David Lindquist
- Department of Radiation Sciences, Umeå UniversitySE-901 87, Umeå, Sweden
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå UniversitySE-901 87, Umeå, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala, Uppsala UniversitySE-751 85, Uppsala, Sweden
| |
Collapse
|
31
|
Spallanzani RG, Dalotto-Moreno T, Raffo Iraolagoitia XL, Ziblat A, Domaica CI, Avila DE, Rossi LE, Fuertes MB, Battistone MA, Rabinovich GA, Salatino M, Zwirner NW. Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions. Cancer Immunol Immunother 2013; 62:1781-95. [PMID: 24114144 PMCID: PMC11028897 DOI: 10.1007/s00262-013-1483-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/01/2013] [Indexed: 12/13/2022]
Abstract
The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b(+)Gr-1(+), mostly CD11b(+)Ly6G(+)Ly6C(int) and CD11b(+)Ly6G(-)Ly6C(high) cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b(+)Ly6G(+)Ly6C(int) cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b(+)Ly6G(+)Ly6C(int) cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b(+)Gr-1(+) cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b(+)Gr-1(+) cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b(+)Ly6G(+)Ly6C(int) cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.
Collapse
MESH Headings
- Animals
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- Cell Differentiation
- Cell Proliferation
- Cytotoxicity, Immunologic
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Medroxyprogesterone Acetate/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Receptors, Glucocorticoid/metabolism
- STAT3 Transcription Factor/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Raúl Germán Spallanzani
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | | | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Damián Ezequiel Avila
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucas Ezequiel Rossi
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Gabriel Adrián Rabinovich
- Laboratorio de Inmunopatología, IBYME, CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariana Salatino
- Laboratorio de Inmunopatología, IBYME, CONICET, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| |
Collapse
|
32
|
Sakakura K, Chikamatsu K. Immune suppression and evasion in patients with head and neck cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.3402/acmo.v1i0.21809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Effects of micro environmental factors on natural killer activity (NK) of beta thalassemia major patients. Cell Immunol 2013; 282:93-9. [PMID: 23770717 DOI: 10.1016/j.cellimm.2013.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/07/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022]
Abstract
The physiological mechanisms of decreased NK activity of β-Thalassemia major (BTM) patients are unknown. To assess in vitro effects of mononuclear cells and their cytokine secretion on NK activity, we compared activator receptor levels and cytotoxic activity of purified NK cells and NK cells in mononuclear cells (MNC) pools. We collected cell supernatant from unincubated and incubated MNC with K562 cells and measured their secreted cytokines levels. CD16 was lower on the surface of NK cells in MNC pools from BTM patients compared to healthy volunteers. This inhibition does not appear when NK cells were purified. NKp30 levels in NK cells decreased both as purified cells and as part of a pool of MNC in BTM patients. After incubation of MNC pools with K562 target cells, we found that supernatant levels of IL10, TGFβ1 and IL15 cytokines were also significantly higher in BTM patients compared to healthy volunteers.
Collapse
|
34
|
Zdrenghea MT. Could interleukin-15 potentiate histone deacetylase inhibitor effects in haematological malignancy? Med Hypotheses 2013; 81:311-5. [PMID: 23669372 DOI: 10.1016/j.mehy.2013.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/29/2013] [Accepted: 04/14/2013] [Indexed: 01/10/2023]
Abstract
Despite significant progress in cancer therapy, prognosis in acute leukaemia remains dismal, and the development of new therapies is urgently warranted: in acute myeloid leukaemia, the current cure rate is of 30-40% in younger and much less in older patients. Chromatin remodeling through histone acetylation is one of the major mechanisms of transcriptional control of genes, and is involved in 'gene silencing' of antioncogenes in various tumour cells. Chromatin remodeling is also involved in transcriptional control of other genes, such as NKG2D ligand genes. Histone deacetylases and acetyltransferases are involved in the epigenetic regulation of gene expression, and increased/decreased activity of histone deacetylases has been reported in several cancer types. Histone deacetylase inhibitors were reportedly active in many cancers including hematological malignancies, and have been shown in numerous experiments to reduce cancer cell growth and enhance cell differentiation, growth arrest and apoptosis. In acute myeloid leukaemia, histone deacetylase inhibitors alone had limited efficacy, but their combination with other anticancer agents yielded promising results. Interleukin (IL)-15 is regarded with great hope in the immunotherapy of cancer, and IL-15-activated cytokine-induced killer cells showed potent antileukemic activity both in vitro and in vivo. IL-15 increases expression of NKG2D and its ligands and can increase natural killer cell mediated cytotoxicity against tumour cells. The administration of IL-15 was recently shown to be safe in preclinical models, and there are ongoing clinical trials of IL-15 in patients with cancer and HIV infection. We hypothesise that IL-15 will synergise with histone deacetylase inhibitors in increasing the levels of activatory NKG2D receptors on natural killer and CD8(+) T cells and of their ligands, the MHC class I related molecule A and B, on tumor cells, and will enhance innate immune antitumour responses in acute myeloid leukaemia and other haematological malignancies. Up-regulation of NKG2D-NKG2D-ligand antitumour immune response by combining histone deacetylase inhibitors with IL-15 has the potential to improve the efficacy of acute myeloid leukaemia treatment.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Oncology Institute, University of Medicine and Pharmacy Cluj-Napoca 73, 21 December Blvd, 400124 Cluj-Napoca, Romania.
| |
Collapse
|
35
|
Seo YC, Song CH, Lim HW, Lee HY. The effect of ultrasonication on the immunomodulatory activity of low-quality ginseng. Biotechnol Prog 2013; 29:255-64. [DOI: 10.1002/btpr.1645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 09/21/2012] [Indexed: 12/21/2022]
|
36
|
Zdrenghea MT, Mallia P, Johnston SL. Immunological pathways in virus-induced COPD exacerbations: a role for IL-15. Eur J Clin Invest 2012; 42:1010-5. [PMID: 22486624 DOI: 10.1111/j.1365-2362.2012.02672.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by high levels of antiviral type 1 cytokine interferon-γ and activated CD8(+) T cells. COPD exacerbations are the major cause of morbidity and mortality, have a prolonged and intense effect on quality of life and may result in accelerated loss of lung function. Respiratory virus infections, frequently within a state of colonization by bacteria, are the major cause of COPD exacerbations, and there is also evidence of virus latency in 'stable' disease, suggesting that latent infection might be a cause of chronic inflammation in COPD. DESIGN This is an update of current literature concerning the role of interleukin-15 and major histocompatibility complex class I-related chain A and B molecules in type 1 immune responses, particularly to respiratory virus infections, which are the main cause of COPD exacerbations. We also present data from our own group suggesting a role for interleukin-15 in virus-induced COPD exacerbations. RESULTS Type 1 cytokine interleukin-15 is produced by resident airway cells (epithelial cells and macrophages) in response to virus infection and bacteria. Virus infections modulate major histocompatibility complex class I-related chain A and B molecules in respiratory epithelial cells. CONCLUSIONS Interleukin-15 could play a major role in the airway inflammation in COPD directly, via its own receptors, by amplifying the type 1 immune responses and decreasing apoptosis or indirectly, via modulating molecules associated with cytotoxic activity of natural killer and CD8(+) T cells, such as major histocompatibility complex class I-related chain A and B.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Oncology Institute Prof. Dr. Ion Chiricuta, Department of Hematology and University of Medicine and Pharmacy Cluj-Napoca, Romania.
| | | | | |
Collapse
|
37
|
Lion E, Smits ELJM, Berneman ZN, Van Tendeloo VFI. NK cells: key to success of DC-based cancer vaccines? Oncologist 2012; 17:1256-70. [PMID: 22907975 DOI: 10.1634/theoncologist.2011-0122] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, TIGR, University of Antwerp (UA), Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|
38
|
Chung HW, Jang S, Lim JB. Clinical implications and diagnostic usefulness of correlation between soluble major histocompatibility complex class I chain-related molecule a and protumorigenic cytokines in pancreatic ductal adenocarcinoma. Cancer 2012; 119:233-44. [DOI: 10.1002/cncr.27669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/06/2012] [Accepted: 04/26/2012] [Indexed: 12/11/2022]
|
39
|
Zhou Z, Zhang C, Zhang J, Tian Z. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1. PLoS One 2012; 7:e36928. [PMID: 22629344 PMCID: PMC3356357 DOI: 10.1371/journal.pone.0036928] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- * E-mail: (CZ); (ZT)
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Zhigang Tian
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (CZ); (ZT)
| |
Collapse
|
40
|
Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z, Wei H. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012; 8:e1002594. [PMID: 22438812 PMCID: PMC3305436 DOI: 10.1371/journal.ppat.1002594] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/01/2012] [Indexed: 02/06/2023] Open
Abstract
The mechanism underlying persistent hepatitis B virus (HBV) infection remains unclear. We investigated the role of innate immune responses to persistent HBV infection in 154 HBV-infected patients and 95 healthy controls. The expression of NKG2D- and 2B4-activating receptors on NK cells was significantly decreased, and moreover, the expression of DAP10 and SAP, the intracellular adaptor proteins of NKG2D and 2B4 (respectively), were lower, which then impaired NK cell-mediated cytotoxic capacity and interferon-γ production. Higher concentrations of transforming growth factor-beta 1 (TGF-β1) were found in sera from persistently infected HBV patients. TGF-β1 down-regulated the expression of NKG2D and 2B4 on NK cells in our in vitro study, leading to an impairment of their effector functions. Anti-TGF-β1 antibodies could restore the expression of NKG2D and 2B4 on NK cells in vitro. Furthermore, TGF-β1 induced cell-cycle arrest in NK cells by up-regulating the expression of p15 and p21 in NK cells from immunotolerant (IT) patients. We conclude that TGF-β1 may reduce the expression of NKG2D/DAP10 and 2B4/SAP, and those IT patients who are deficient in these double-activating signals have impaired NK cell function, which is correlated with persistent HBV infection. NK cells have been viewed as the most important effectors of the initial antiviral innate immune response. Their activation depends on the integration of signals from “co-activation” receptors, and the cytotoxic effects of NK cells on target cells are tempered by a need for combined signals from multiple activating receptors, such as NKG2D and 2B4. In this study, we showed that NKG2D and 2B4 expression levels were decreased on NK cells from patients in the IT phase of HBV infection. We further demonstrated that lower levels of intracellular adaptor proteins (DAP10 and SAP) were associated with lower surface expression of NKG2D and 2B4. As a result, the synergistically co-activated signalling pathway initiated by NKG2D and 2B4 did not operate properly in IT-phase patients. We demonstrated that high levels of soluble TGF-β1 were associated with the reduction of NKG2D and 2B4 in patients. In addition, we showed that TGF-β1 causes the cell-cycle arrest of NK cells by up-regulating the levels of p15 and p21 in NK cells from IT patients. Collectively, these findings may contribute to our understanding of the immune tolerance mechanism and aid in the development of novel therapeutic methods to clear HBV infection during the initial phase.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yufeng Gao
- Department of Liver Diseases of the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofeng Liao
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- * E-mail: (ZT); (HW)
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- * E-mail: (ZT); (HW)
| |
Collapse
|
41
|
Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int 2012; 32:370-82. [PMID: 22097967 DOI: 10.1111/j.1478-3231.2011.02608.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Cell death by apoptosis is a prominent feature in a variety of liver diseases. It is likely that apoptosis is the initial cellular response to hepatocyte and biliary injury, which then leads to the initiation of cellular and cytokine cascades culminating in hepatocyte death with subsequent fibrosis and cirrhosis. This sequence of events is of paramount clinical importance. Recently, soluble forms of the major histocompatibility complex class I-related chains A and closely related B (MIC A and B) were reported to be increased in patients with a variety of liver diseases. MIC A and B are cell surface glycoproteins that function as indicators for cellular stress and thus activate circulating cytotoxic natural killer (NK) cells. The interaction between MIC A and B with their cognate receptor natural killer group 2 member D (NKG2D) culminates in enhanced liver cell death, which is mediated in part by apoptotic mechanisms. The present overview focuses on the role of the stress-induced NKG2D ligands MIC A and B in diverse liver diseases. Critical insights into these complex relations may help to promote rationally based therapies in liver diseases. Importantly, we hope that this overview will help to stimulate further studies into mechanisms by which stress ligands mediate cell death and its sequale.
Collapse
Affiliation(s)
- Alisan Kahraman
- University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
42
|
Advanced flowcytometric analysis of regulatory T cells: CD127 downregulation early post stem cell transplantation and altered Treg/CD3+CD4+-ratio in severe GvHD or relapse. J Immunol Methods 2011; 373:36-44. [DOI: 10.1016/j.jim.2011.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/20/2022]
|
43
|
Song H, Park H, Kim J, Park G, Kim YS, Kim SM, Kim D, Seo SK, Lee HK, Cho D, Hur D. IDO metabolite produced by EBV-transformed B cells inhibits surface expression of NKG2D in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Immunol Lett 2011; 136:187-93. [PMID: 21277902 DOI: 10.1016/j.imlet.2011.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/04/2011] [Accepted: 01/14/2011] [Indexed: 01/15/2023]
Abstract
Natural Killer cells are known to play a major role in the innate immune response against viral infections and tumor cells. Several viruses, such as CMV, EBV and HIV-1, have acquired strategies to escape elimination by NK cells. In this study, we observed that EBV infection increased expression of IDO on B cells. To evaluate the function of IDO associated with EBV infection, we investigated whether EBV-induced IDO could modulate expression of NK cell-activation receptor, NKG2D. When NK cells were co-incubated with EBV transformed B cells, surface expression of NKG2D was significantly reduced in NK cells. Incubation with L-kynurenine, an IDO metabolite, down-modulated NKG2D expression in NK cells in a dose- and time-dependent manner. Incubation with the JNK inhibitor SP600125 also inhibited NKG2D expression in NK cells. In addition, we observed that the effect of L-kynurenine was blocked by JNK agonist, anisomycin, suggesting the involvement of the JNK pathway in the signal transduction of L-kynurenine-reduced NKG2D expression. Furthermore, IL-18 significantly reduced L-kynurenine-induced down-regulation of NKG2D expression in NK cells. Taken together, these data indicate that down-regulation of NKG2D by EBV-induced IDO metabolite provides a potential mechanism by which EBV escapes NKG2D-mediated attack by immune cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Anatomy, Inje University College of Medicine, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kloess S, Huenecke S, Piechulek D, Esser R, Koch J, Brehm C, Soerensen J, Gardlowski T, Brinkmann A, Bader P, Passweg J, Klingebiel T, Schwabe D, Koehl U. IL-2-activated haploidentical NK cells restore NKG2D-mediated NK-cell cytotoxicity in neuroblastoma patients by scavenging of plasma MICA. Eur J Immunol 2010; 40:3255-67. [PMID: 21061445 DOI: 10.1002/eji.201040568] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/23/2010] [Accepted: 08/30/2010] [Indexed: 01/08/2023]
Abstract
NK group 2D (NKG2D)-expressing NK cells exhibit cytolytic activity against various tumors after recognition of the cellular ligand MHC class I chain-related gene A (MICA). However, release of soluble MICA (sMICA) compromises NKG2D-dependent NK-cell cytotoxicity leading to tumor escape from immunosurveillance. Although some molecular details of the NKG2D-MICA interaction have been elucidated, its impact for donor NK (dNK) cell-based therapy of solid tumors has not been studied. Within an ongoing phase I/II trial, we used allogeneic IL-2 activated dNK cells after haploidentical stem cell transplantation for immunotherapy of patients with high-risk stage IV neuroblastoma. NKG2D levels on activated dNK cells increased strongly when compared with freshly isolated dNK cells and correlated with enhanced NK-cell cytotoxicity. Most importantly, elevated sMICA levels in patients plasma correlated significantly with impaired dNK-cell-mediated cytotoxicity. This effect could be reversed by high-dose infusion of activated dNK cells, which display high levels of surface NKG2D. Our data suggest that the provided excess of NKG2D leads to clearance of sMICA and preserves cytotoxicity of dNK cells via non-occupied NKG2D. In conclusion, our results identify this tumor immune escape mechanism as a target to improve immunotherapy of neuroblastoma and presumably other tumors.
Collapse
Affiliation(s)
- Stephan Kloess
- Pediatric Hematology and Oncology Laboratory for Stem Cell Transplantation and Immunotherapy, Hospital of Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Initially described as effectors of natural cytotoxicity and critical players for the control of viral infections and tumor growth, recent investigations unraveled more widespread functions for the natural killer (NK) cells. Through the establishment of a crosstalk with dendritic cells, NK cells promote T helper-1- and cytotoxic T lymphocyte-mediated immunity, whereas through the establishment of a crosstalk with macrophages, NK cells contribute to the activation of their microbicidal functions. Recent evidence has shown that NK cells also display memory, a characteristic thought to be privative of T and B cells, and that NK cells acquire their mature phenotype during a complex ontogeny program which tunes their activation threshold. Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance, and memory. Cytokines such as interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and type I interferons constitute pivotal factors involved in the maturation, activation, and survival of NK cells. In addition, the discovery of novel cytokines is increasing the spectrum of soluble mediators that regulate NK cell immunobiology. In this review, we summarize and integrate novel concepts about the role of different cytokines in the regulation of NK cell function. We believe that a full understanding of how NK cells become activated and develop their effector functions in response to cytokines and other stimuli may lead to the development of novel immunotherapeutic strategies for the treatment of different types of cancer, viral infections, and chronic autoimmune diseases.
Collapse
|
46
|
Single nucleotide polymorphism analysis of the NKG2D ligand cluster on the long arm of chromosome 6: Extensive polymorphisms and evidence of diversity between human populations. Hum Immunol 2010; 71:610-20. [DOI: 10.1016/j.humimm.2010.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/03/2010] [Accepted: 02/18/2010] [Indexed: 11/17/2022]
|
47
|
Inhibition of NKG2D expression in NK cells by cytokines secreted in response to human cytomegalovirus infection. Blood 2010; 115:5170-9. [PMID: 20393128 DOI: 10.1182/blood-2009-11-256479] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The NKG2D receptor activates natural killer (NK) cell cytotoxicity and cytokine production on recognition of self-molecules induced by cellular stress under different conditions such as viral infections. The importance of NKG2D in the immune response to human cytomegalovirus (HCMV) is supported by the identification of several viral molecules that prevent the expression of NKG2D ligands by infected cells. In this study we report that, paradoxically, a significant, selective, and transient reduction of NKG2D expression on NK cells is detected during HCMV infection of peripheral blood mononuclear cells if needed. Antagonizing type I interferon (IFN), interleukin-12 (IL-12), and IFNgamma prevented HCMV-induced down-regulation of surface NKG2D. Moreover, treatment of purified NK cells with recombinant IFNbeta1 and IL-12 mimicked the effect, supporting a direct role of these cytokines in regulating NKG2D surface expression in NK cells. The loss of NKG2D expression selectively impaired NK-cell cytotoxicity against cells expressing NKG2D ligands but preserved the response triggered through other activating receptors. These results support that down-regulation of NKG2D expression on NK cells by cytokines with a key role in antiviral immune response may constitute a physiologic mechanism to control NK-cell reactivity against normal cells expressing NKG2D ligands in the context of inflammatory responses to viral infections.
Collapse
|
48
|
Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 2009; 58:1517-26. [PMID: 19259667 PMCID: PMC11030684 DOI: 10.1007/s00262-009-0682-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Knowledge of the interactions between MHC-unrestricted cytotoxic effector cells and solid tumour cells is essential for introducing more effective NK cell-based immunotherapy protocols into clinical practise. Here, to begin to obtain an overview of the possible universe of molecules that could be involved in the interactions between immune effector cells and melanoma, we analyse the surface expression of adhesion and costimulatory molecules and of ligands for NK-activating receptors on a large panel of cell lines from the "European Searchable Tumour Cell Line and Data Bank" (ESTDAB, http://www.ebi.ac.uk/ipd/estdab/ ) and discuss their potential role in the immune response against this tumour. We show that most melanoma cell lines express not only adhesion molecules that are likely to favour their interaction with cells of the immune system, but also their interaction with endothelial cells potentially increasing their invasiveness and metastatic capacity. A high percentage of melanoma cell lines also express ligands for the NK-activating receptor NKG2D; whereas, the majority express MICA/B molecules, ULBP expression, however, was rarely found. In addition to these molecules, we also found that CD155 (poliovirus receptor, PVR) is expressed by the majority of melanoma cell lines, whereas CD112 (Nectin-2) expression was rare. These molecules are DNAM-1 ligands, a costimulatory molecule involved in NK cell-mediated cytotoxicity and cytokine production that also mediates costimulatory signals for triggering naïve T cell differentiation. The phenotypical characterisation of adhesion molecules and ligands for receptors involved in cell cytotoxicity on a large series of melanoma cell lines will contribute to the identification of markers useful for the development of new immunotherapy strategies.
Collapse
Affiliation(s)
- Javier G. Casado
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Sara Morgado
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Elena Delgado
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Inmaculada Gayoso
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avenida de Menendez Pidal s/n, 14004 Cordoba, Spain
| | - Esther Duran
- Department of Comparative Pathology, University of Extremadura, Cáceres, Spain
| | - Rafael Solana
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avenida de Menendez Pidal s/n, 14004 Cordoba, Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
49
|
Park HY, Wakefield LM, Mamura M. Regulation of tumor immune surveillance and tumor immune subversion by tgf-Beta. Immune Netw 2009; 9:122-6. [PMID: 20157598 PMCID: PMC2816944 DOI: 10.4110/in.2009.9.4.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-beta facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-beta antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-beta antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic CD8(+) T cells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-beta on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.
Collapse
Affiliation(s)
- Hae-Young Park
- Laboratory of Immunology, Lee Gil-Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | | | | |
Collapse
|
50
|
Lavado-Valenzuela R, Benavides M, Carabantes F, Alonso A, Caballero A. MHC class I chain-related gene A transmembrane polymorphism in Spanish women with breast cancer. ACTA ACUST UNITED AC 2009; 74:46-9. [DOI: 10.1111/j.1399-0039.2009.01254.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|