1
|
Chen Y, Ouyang W, Lv H, Chen W. Exploring the mechanisms by which common inhalational anesthetics influence malignant tumor metastasis: A data mining study based on comparative toxicogenomic databases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117660. [PMID: 39765114 DOI: 10.1016/j.ecoenv.2024.117660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Surgery remains the primary treatment for solid malignant tumors, but controlling postoperative tumor recurrence and metastasis continues to be a major challenge. Understanding the factors that influence tumor recurrence and metastasis after surgery, as well as the underlying biological mechanisms, is critical. Previous studies suggest that anesthetic agents may increase the risk of tumor recurrence and metastasis in patients with cancer, but the mechanisms underlying these findings remain unclear. In this study, we utilized toxicogenomics and comparative toxicogenomic databases to analyze data and explore the potential mechanisms by which three commonly used inhalational anesthetics-sevoflurane, isoflurane, and halothane-might promote malignant tumor metastasis. The results identified 18 genes that may be associated with tumor metastasis. Functional enrichment analysis revealed that these anesthetics could influence tumor cell migration by activating signaling pathways such as the IL-17 and tumor necrosis factor signaling pathways, thereby potentially inducing tumor metastasis. Moreover, by constructing a TF-mRNA network, we predicted several transcription factors that might play key roles in anesthetic-induced tumor metastasis. The analysis revealed a total of 87 regulatory relationships between transcription factors and mRNA. These findings offer new insights for future in vivo or in vitro studies and contribute to a better understanding of the relationship between inhalational anesthetics and tumor metastasis, providing valuable reference points for clinical decision-making. The results of this study also provide a reference for the determination of subsequent clinical treatment targets. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.
Collapse
Affiliation(s)
- Yiyu Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wenlan Ouyang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
2
|
Habeshian TS, Cannavale KL, Slezak JM, Shu YH, Chien GW, Chen X, Shi F, Siegmund KD, Van Den Eeden SK, Huang J, Chao CR. DNA methylation markers for risk of metastasis in a cohort of men with localized prostate cancer. Epigenetics 2024; 19:2308920. [PMID: 38525786 DOI: 10.1080/15592294.2024.2308920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.
Collapse
Affiliation(s)
- Talar S Habeshian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kimberly L Cannavale
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff M Slezak
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Biostatistics and Innovations, Biostatistics and Programming, Clinical Affairs, Inari Medical, CA, USA
| | - Gary W Chien
- Department of Urology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, CA, USA
| | - XuFeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Feng Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
3
|
Saadh MJ, Pallathadka H, Abed HS, Menon SV, Sivaprasad GV, Hjazi A, Rizaev J, Suri S, Jawad MA, Husseen B. Detailed role of SR-A1 and SR-E3 in tumor biology, progression, and therapy. Cell Biochem Biophys 2024; 82:1735-1750. [PMID: 38884861 DOI: 10.1007/s12013-024-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Sahil Suri
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | | | - Beneen Husseen
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Chen W, Chen M, Hong L, Xiahenazi A, Huang M, Tang N, Yang X, She F, Chen Y. M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis. Exp Hematol Oncol 2024; 13:83. [PMID: 39138521 PMCID: PMC11320879 DOI: 10.1186/s40164-024-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known. METHODS Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo. RESULTS The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC. CONCLUSIONS The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Lingju Hong
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Abudukeremu Xiahenazi
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Xinyue Yang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350108, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
5
|
Guo H, Hu WC, Xian H, Shi YX, Liu YY, Ma SB, Pan KQ, Wu SX, Xu LY, Luo C, Xie RG. CCL2 Potentiates Inflammation Pain and Related Anxiety-Like Behavior Through NMDA Signaling in Anterior Cingulate Cortex. Mol Neurobiol 2024; 61:4976-4991. [PMID: 38157119 DOI: 10.1007/s12035-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.
Collapse
Affiliation(s)
- Huan Guo
- Department of Basic Medical Sciences, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun-Xin Shi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
| | - Sui-Bin Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun-Qing Pan
- No.19 Cadet Regiment, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Yan Xu
- Department of Basic Medical Sciences, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, China.
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
7
|
Tamuli B, Sharma S, Patkar M, Biswas S. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Cancer Rep (Hoboken) 2024; 7:e2066. [PMID: 38703051 PMCID: PMC11069128 DOI: 10.1002/cnr2.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.
Collapse
Affiliation(s)
- Baishali Tamuli
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Sakshi Sharma
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Meena Patkar
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
8
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
9
|
Sha K, Zhang R, Maolake A, Singh S, Chatta G, Eng KH, Nastiuk KL, Krolewski JJ. Androgen deprivation triggers a cytokine signaling switch to induce immune suppression and prostate cancer recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569685. [PMID: 38405929 PMCID: PMC10888871 DOI: 10.1101/2023.12.01.569685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Androgen deprivation therapy (ADT) is an effective but not curative treatment for advanced and recurrent prostate cancer (PC). We investigated the mechanisms controlling the response to androgen-deprivation by surgical castration in genetically-engineered mouse models (GEMM) of PC, using high frequency ultrasound imaging to rigorously measure tumor volume. Castration initially causes almost all tumors to shrink in volume, but many tumors subsequently recur within 5-10 weeks. Blockade of tumor necrosis factor (TNF) signaling a few days in advance of castration surgery, using a TNFR2 ligand trap, prevents regression in a PTEN-deficient GEMM. Following tumor regression, a basal stem cell-like population within the tumor increases along with TNF protein levels. Tumor cell lines in culture recapitulate these in vivo observations, suggesting that basal stem cells are the source of TNF. When TNF signaling blockade is administered immediately prior to castration, tumors regress but recurrence is prevented, implying that a late wave of TNF secretion within the tumor, which coincides with the expression of NFkB regulated genes, drives recurrence. The inhibition of signaling downstream of one NFkB-regulated protein, chemokine C-C motif ligand 2 (CCL2), prevents post-castration tumor recurrence, phenocopying post-castration (late) TNF signaling blockade. CCL2 was originally identified as a macrophage chemoattractant and indeed at late times after castration gene sets related to chemotaxis and migration are up-regulated. Importantly, enhanced CCL2 signaling during the tumor recurrence phase coincides with an increase in pro-tumorigenic macrophages and a decrease in CD8 T cells, suggesting that recurrence is driven at least in part by tumor immunosuppression. In summary, we demonstrate that a therapy-induced switch in TNF signaling, a consequence of the increased stem cell-like character of the residual tumor cells surviving ADT, induces an immunosuppressive tumor microenvironment and concomitant tumor recurrence.
Collapse
|
10
|
Hasani S, Fathabadi F, Saeidi S, Mohajernoei P, Hesari Z. The role of NFATc1 in the progression and metastasis of prostate cancer: A review on the molecular mechanisms and signaling pathways. Cell Biol Int 2023; 47:1895-1904. [PMID: 37814550 DOI: 10.1002/cbin.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A common type of cancer among men is the prostate cancer that kills many people every year. The multistage of this disease and the involvement of the vital organs of the body have reduced the life span and quality of life of the people involved and turned the treatment process into a complex one. NFATc1 biomarker contributes significantly in the diagnosis and treatment of this disease by increasing its expression in prostate cancer and helping the proliferation, differentiation, and invasion of cancer cells through different signaling pathways. NFATc1 is also able to target the metabolism of cancer cells by inserting specific oncogene molecules such as c-myc that it causes cell growth and proliferation. Bone is a common tissue where prostate cancer cells metastasize. In this regard, the activity of NFATc1, through the regulation of different signaling cascades, including the RANKL/RANK signaling pathway, in turn, increases the activity of osteoclasts, and as a result, bone tissue is gradually ruined. Using Silibinin as a medicinal plant extract can inhibit the activity of osteoclasts related to prostate cancer by targeting NFATc. Undoubtedly, NFATc1 is one of the effective oncogenes related to prostate cancer, which has the potential to put this cancer on the path of progression and metastasis. In this review, we will highlight the role of NFATc1 in the progression and metastasis of prostate cancer. Furthermore, we will summarize signaling pathways and molecular mechanism, through which NFATc1 regulates the process of prostate cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Nursing, Faculty of Medical Sciences, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Farshid Fathabadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saman Saeidi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Mohajernoei
- Department of Medicine and Surgery, Università degli Studi di Padova, Padua, Italy
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
11
|
Ji S, Wu W, Jiang Q. Crosstalk between Endothelial Cells and Tumor Cells: A New Era in Prostate Cancer Progression. Int J Mol Sci 2023; 24:16893. [PMID: 38069225 PMCID: PMC10707594 DOI: 10.3390/ijms242316893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostate cancer stands as one of the most prevalent malignancies afflicting men worldwide. The tumor microenvironment plays a pivotal role in tumor progression, comprising various cell types including endothelial cells, tumor-associated fibroblasts, and macrophages. Recent accumulating evidence underscores the indispensable contribution of endothelial cells to prostate cancer development. Both endothelial cells and tumor cells release a multitude of factors that instigate angiogenesis, metastasis, and even drug resistance in prostate cancer. These factors serve as regulators within the tumor microenvironment and represent potential therapeutic targets for managing prostate cancer. In this review, we provide an overview of the crucial functions of endothelial cells in angiogenesis, metastasis, and drug resistance, and their prospective therapeutic applications in combating this disease.
Collapse
Affiliation(s)
| | | | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; (S.J.); (W.W.)
| |
Collapse
|
12
|
Lascano D, Zobel MJ, Lee WG, Chen SY, Zamora A, Asuelime GE, Choi SY, Chronopoulos A, Asgharzadeh S, Marachelian A, Park J, Sheard MA, Kim ES. Anti-CCL2 antibody combined with etoposide prolongs survival in a minimal residual disease mouse model of neuroblastoma. Sci Rep 2023; 13:19915. [PMID: 37964011 PMCID: PMC10645976 DOI: 10.1038/s41598-023-46968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
C-C motif chemokine ligand 2 (CCL2) is a monocyte chemoattractant that promotes metastatic disease and portends a poor prognosis in many cancers. To determine the potential of anti-CCL2 inhibition as a therapy for recurrent metastatic disease in neuroblastoma, a mouse model of minimal residual disease was utilized in which residual disease was treated with anti-CCL2 monoclonal antibody with etoposide. The effect of anti-CCL2 antibody on neuroblastoma cells was determined in vitro with cell proliferation, transwell migration, and 2-dimensional chemotaxis migration assays. The in vivo efficacy of anti-CCL2 antibody and etoposide against neuroblastoma was assessed following resection of primary tumors formed by two cell lines or a patient-derived xenograft (PDX) in immunodeficient NOD-scid gamma mice. In vitro, anti-CCL2 antibody did not affect cell proliferation but significantly inhibited neuroblastoma cell and monocyte migration towards an increasing CCL2 concentration gradient. Treatment of mice with anti-CCL2 antibody combined with etoposide significantly increased survival of mice after resection of primary tumors, compared to untreated mice.
Collapse
Affiliation(s)
- Danny Lascano
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Michael J Zobel
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - William G Lee
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Stephanie Y Chen
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Abigail Zamora
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Grace E Asuelime
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - So Yung Choi
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Antonios Chronopoulos
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Araz Marachelian
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinseok Park
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Sheard
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Eugene S Kim
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Surgery, Cedars-Sinai Medical Center, 116 N. Robertson Blvd, Suite PACT 700, Los Angeles, CA, 90048, USA.
| |
Collapse
|
13
|
Yuan J. CCR2: A characteristic chemokine receptor in normal and pathological intestine. Cytokine 2023; 169:156292. [PMID: 37437448 DOI: 10.1016/j.cyto.2023.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Kanga KJW, Kanga LHB, Mendonca P, Soliman KFA, Ferguson DT, Reed SL, Darling-Reed S. Attenuative Effect of Diallyl Trisulfide on Caspase Activity in TNF-α-induced Triple Negative Breast Cancer Cells. Anticancer Res 2023; 43:2393-2405. [PMID: 37247921 PMCID: PMC10791149 DOI: 10.21873/anticanres.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND/AIM Diallyl trisulfide (DATS) has been shown to prevent and inhibit carcinogenesis in cancer cells. We have previously shown DATS's ability to decrease the percentage of viable cells, inhibit cell migration and modulate genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) and mitogen-activated protein kinase (MAPK) signaling. MATERIALS AND METHODS This study aimed to compare the efficacy of DATS in tumor necrosis factor alpha (TNF-α) induced MDA-MB-231 and MDA-MB-468 cells and investigate its role in cell-death signaling via cell cycle, flow cytometry, and caspase assay. RESULTS DATS exhibit a time-dependent accumulation of G2/M phase cells in both cell lines, with higher effects in the MDA-MB-468 for all time points. DATS's ability to decrease the percentage of viable cells in both MDA-MB-231 and MDA-MB-468 cells was shown by a significant but slight increase of early and late apoptosis in the presence of DATS compared to control. Moreover, MDA-MB-468 cells showed more sensitivity to the DATS effect, evidenced by the higher percentage of apoptosis than MDA-MB-231 cells. The caspase studies showed a significant increase in caspase 3 and 8 activity in the presence of DATS, compared to control, in both cell lines. DATS showed no significant increase in caspase 9 activity in both cell lines compared to the control. CONCLUSION DATS-induced apoptosis in human breast cancer cells is mediated, at least in part, by cell cycle arrest and caspase activity. These findings provide information for future studies into the role of DATS in TNBC therapy and prevention.
Collapse
Affiliation(s)
- Konan J W Kanga
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Lambert H B Kanga
- College of Agriculture and Food Sciences, Center for Biological Control, Florida A&M University, Tallahassee, FL, U.S.A
| | - Patricia Mendonca
- Biology Department, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Dominique T Ferguson
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Sarah L Reed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Selina Darling-Reed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
15
|
Tang X, Morris AJ, Deken MA, Brindley DN. Autotaxin Inhibition with IOA-289 Decreases Breast Tumor Growth in Mice Whereas Knockout of Autotaxin in Adipocytes Does Not. Cancers (Basel) 2023; 15:2937. [PMID: 37296899 PMCID: PMC10251959 DOI: 10.3390/cancers15112937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer cells produce negligible quantities of autotaxin. Instead, previous work indicated that adipocytes in the inflamed adipose tissue adjacent to breast tumors are a major source of autotaxin secretion that drives breast tumor growth, metastasis, and the loss of efficacy for chemotherapy and radiotherapy. To test this hypothesis, we used mice with an adipocyte-specific knock out of autotaxin. The lack of autotaxin secretion from adipocytes failed to decrease the growth of orthotopic E0771 breast tumors in syngeneic C57BL/6 mice and the growth and lung metastasis of spontaneous breast tumors in MMTV-PyMT mice. However, the inhibition of autotaxin with IOA-289 decreased the growth of E0771 tumors, indicating that another source of autotaxin is responsible for tumor growth. Tumor-associated fibroblasts and leukocytes produce the majority of autotoxin transcripts in the E0771 breast tumors, and we hypothesize that they are the main sources of ATX that drive breast tumor growth. Autotaxin inhibition with IOA-289 increased the numbers of CD8α+-T-cells in the tumors. This was accompanied by decreases in the concentrations of CXCL10, CCL2, and CXCL9 in the plasma and LIF, TGFβ1, TGFβ2, and prolactin in the tumors. Bioinformatics analysis of human breast tumor databases showed that autotaxin (ENPP2) is expressed mainly in endothelial cells and fibroblasts. Autotaxin expression correlated significantly with increases in IL-6 cytokine receptor ligand interactions, signaling by LIF, TGFβ, and prolactin. This confirms the relevance of results from autotaxin inhibition in the mouse model. We propose that inhibiting autotaxin activity that is derived from cells presenting breast tumors such as fibroblasts, leukocytes, or endothelial cells changes the tumor micro-environment in such a way as to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Andrew J. Morris
- Central Arkansas Veterans Affairs Healthcare System and University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA;
| | - Marcel A. Deken
- iOnctura BV, Gustav Mahlerplein 102, 1082 MA Amsterdam, The Netherlands;
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
16
|
Boughriba R, Sahraoui G, Chaar I, Weslati M, Ayed K, Ounissi D, Hazgui M, Bouraoui S, Gati A. Significant association of MCP1 rs1024611 and CCR2 rs1799864 polymorphisms with colorectal cancer and liver metastases susceptibility and aggressiveness: A case-control study. Cytokine 2023; 167:156193. [PMID: 37149962 DOI: 10.1016/j.cyto.2023.156193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The MCP-1/CCR2 axis is one of the major chemokine signaling pathways that play a crucial role in the tumor microenvironment and has been involved in triggering various tumor progression mechanisms, such as increasing the immunosuppressive cells recruitment and promoting tumor cell proliferation and invasiveness. AIM The current study investigated the association of MCP1 (rs1024611) and CCR2 (rs1799864) genes variants with the risk as well as prognosis of colorectal cancer (CRC) and colorectal liver metastases (CRLM). SUBJECTS AND METHODS A retrospective cohort study involved 408 patients (284 CRC and 124 CRLM), and 284 healthy control was conducted. Genotyping of selected polymorphisms was performed by PCR-RFLP assays and confirmed by microchip and capillary electrophoresis. RESULTS The results highlighted a positive association between MCP1 rs1024611 (non-AA) and CCR2 rs1799864 (GA) genotypes with increased CRC and CRLM risk. Correlation between SNPs and clinicopathological characteristics revealed a positive association between MCP1 rs1024611 and CCR2 rs1799864 (dominant model) and CRC poor prognosis features. Kaplan-Meier survival analysis revealed a significant association between MCP1 rs1024611 non-AA carriers and decreased survival rate. Neoadjuvant treatment showed an improvement in CRC and CRLM survival rates among carriers of MCP1 and CCR2 wild-type genotype. FOLFIRI chemotherapy exhibits reduced survival rates for patients who carried mutated genotypes of MCP1 and CCR2 polymorphisms. CONCLUSION Considering our results, we suggest That both MCP1 and CCR2 polymorphisms may constitute independent factors for CRC and CRLM occurrence and can be helpful targets for an efficient therapeutic approach.
Collapse
Affiliation(s)
- Rahma Boughriba
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar (UTM), 2092 Tunis, Tunisia; Unit of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, Sidi Daoud, La Marsa, 2046 Tunis, Tunisia
| | - Ghada Sahraoui
- Department of Pathological Anatomy and Cytology of Salah Azaiez Oncology Institute, Bab Saadoun 1029 Tunis, Tunisia; Medical School of Tunis, University of Tunis El Manar, 15 rue Djebel Lakhdhar, La Rabta, 1007 Tunis, Tunisia
| | - Ines Chaar
- Unit of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, Sidi Daoud, La Marsa, 2046 Tunis, Tunisia
| | - Marwa Weslati
- Unit of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, Sidi Daoud, La Marsa, 2046 Tunis, Tunisia
| | - Khouloud Ayed
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar (UTM), 2092 Tunis, Tunisia
| | - Donia Ounissi
- Unit of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, Sidi Daoud, La Marsa, 2046 Tunis, Tunisia
| | - Mariem Hazgui
- Unit of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, Sidi Daoud, La Marsa, 2046 Tunis, Tunisia
| | - Saadia Bouraoui
- Unit of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, Sidi Daoud, La Marsa, 2046 Tunis, Tunisia; Medical School of Tunis, University of Tunis El Manar, 15 rue Djebel Lakhdhar, La Rabta, 1007 Tunis, Tunisia
| | - Asma Gati
- Laboratory of Genetic, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar (UTM), 2092 Tunis, Tunisia.
| |
Collapse
|
17
|
Chen Y, Liu S, Wu L, Liu Y, Du J, Luo Z, Xu J, Guo L, Liu Y. Epigenetic regulation of chemokine (CC-motif) ligand 2 in inflammatory diseases. Cell Prolif 2023:e13428. [PMID: 36872292 DOI: 10.1111/cpr.13428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Appropriate responses to inflammation are conducive to pathogen elimination and tissue repair, while uncontrolled inflammatory reactions are likely to result in the damage of tissues. Chemokine (CC-motif) Ligand 2 (CCL2) is the main chemokine and activator of monocytes, macrophages, and neutrophils. CCL2 played a key role in amplifying and accelerating the inflammatory cascade and is closely related to chronic non-controllable inflammation (cirrhosis, neuropathic pain, insulin resistance, atherosclerosis, deforming arthritis, ischemic injury, cancer, etc.). The crucial regulatory roles of CCL2 may provide potential targets for the treatment of inflammatory diseases. Therefore, we presented a review of the regulatory mechanisms of CCL2. Gene expression is largely affected by the state of chromatin. Different epigenetic modifications, including DNA methylation, post-translational modification of histones, histone variants, ATP-dependent chromatin remodelling, and non-coding RNA, could affect the 'open' or 'closed' state of DNA, and then significantly affect the expression of target genes. Since most epigenetic modifications are proven to be reversible, targeting the epigenetic mechanisms of CCL2 is expected to be a promising therapeutic strategy for inflammatory diseases. This review focuses on the epigenetic regulation of CCL2 in inflammatory diseases.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Le Henaff C, Finnie B, Pacheco M, He Z, Johnson J, Partridge NC. Abaloparatide Has the Same Catabolic Effects on Bones of Mice When Infused as PTH (1-34). JBMR Plus 2023; 7:e10710. [PMID: 36751417 PMCID: PMC9893269 DOI: 10.1002/jbm4.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Abaloparatide is a peptide analog of parathyroid hormone-related protein (PTHrP 1-34) and was approved in 2017 as the second osteoanabolic peptide for treating osteoporosis. We previously showed that intermittent abaloparatide is equally as effective as PTH (1-34). This study was designed to compare the catabolic effects of PTH (1-34) and abaloparatide on bone in young female wild-type mice. Two-month-old C57Bl/6J female mice were continuously infused with human PTH (1-34) or abaloparatide at 80 μg/kg BW/day or vehicle for 2 weeks. At euthanasia, DEXA-PIXImus was performed to assess bone mineral density (BMD) in the whole body, femurs, tibiae, and vertebrae. Bone turnover marker levels were measured in sera, femurs were harvested for micro-computer tomography (μCT) analyses and histomorphometry, and tibiae were separated into cortical and trabecular fractions for gene expression analyses. Our results demonstrated that the infusion of abaloparatide resulted in a similar decrease in BMD as infused PTH (1-34) at all sites. μCT and histomorphometry analyses showed similar decreases in cortical bone thickness and BMD associated with an increase in bone turnover from the increased bone formation rate found by in vivo double labeling and serum P1NP and increased bone resorption as shown by osteoclast numbers and serum cross-linked C-telopeptide. Trabecular bone did not show major changes with either treatment. Osteoblastic gene expression analyses of trabecular and cortical bone revealed that infusion of PTH (1-34) or abaloparatide led to similar and different actions in genes of osteoblast differentiation and activity. As with intermittent and in vitro treatment, both infused PTH (1-34) and abaloparatide similarly regulated downstream genes of the PTHR1/SIK/HDAC4 pathway such as Sost and Mmp13 but differed for those of the PTHR1/SIK/CRTC pathway. Taken together, at the same dose, infused abaloparatide causes the same high bone turnover as infused PTH (1-34) with a net resorption in female wild-type mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carole Le Henaff
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Brandon Finnie
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Maria Pacheco
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Zhiming He
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Joshua Johnson
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Nicola C Partridge
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| |
Collapse
|
19
|
Nakayama A, Roquid KA, Iring A, Strilic B, Günther S, Chen M, Weinstein LS, Offermanns S. Suppression of CCL2 angiocrine function by adrenomedullin promotes tumor growth. J Exp Med 2022; 220:213682. [PMID: 36374225 PMCID: PMC9665902 DOI: 10.1084/jem.20211628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within the tumor microenvironment, tumor cells and endothelial cells regulate each other. While tumor cells induce angiogenic responses in endothelial cells, endothelial cells release angiocrine factors, which act on tumor cells and other stromal cells. We report that tumor cell-derived adrenomedullin has a pro-angiogenic as well as a direct tumor-promoting effect, and that endothelium-derived CC chemokine ligand 2 (CCL2) suppresses adrenomedullin-induced tumor cell proliferation. Loss of the endothelial adrenomedullin receptor CALCRL or of the G-protein Gs reduced endothelial proliferation. Surprisingly, tumor cell proliferation was also reduced after endothelial deletion of CALCRL or Gs. We identified CCL2 as a critical angiocrine factor whose formation is inhibited by adrenomedullin. Furthermore, CCL2 inhibited adrenomedullin formation in tumor cells through its receptor CCR2. Consistently, loss of endothelial CCL2 or tumor cell CCR2 normalized the reduced tumor growth seen in mice lacking endothelial CALCRL or Gs. Our findings show tumor-promoting roles of adrenomedullin and identify CCL2 as an angiocrine factor controlling adrenomedullin formation by tumor cells.
Collapse
Affiliation(s)
- Akiko Nakayama
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Correspondence to Akiko Nakayama:
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Min Chen
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA
| | - Lee S. Weinstein
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany,Cardiopulmonary Institute, Bad Nauheim, Germany,German Center for Cardiovascular Research, Bad Nauheim, Germany,Stefan Offermanns:
| |
Collapse
|
20
|
Podojil JR, Cogswell AC, Chiang MY, Eaton V, Ifergan I, Neef T, Xu D, Meghani KA, Yu Y, Orbach SM, Murthy T, Boyne MT, Elhofy A, Shea LD, Meeks JJ, Miller SD. Biodegradable nanoparticles induce cGAS/STING-dependent reprogramming of myeloid cells to promote tumor immunotherapy. Front Immunol 2022; 13:887649. [PMID: 36059473 PMCID: PMC9433741 DOI: 10.3389/fimmu.2022.887649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.
Collapse
Affiliation(s)
- Joseph R. Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Andrew C. Cogswell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Valerie Eaton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Igal Ifergan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Khyati A. Meghani
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanni Yu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sophia M. Orbach
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Tushar Murthy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Michael T. Boyne
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Adam Elhofy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Lonnie D. Shea
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joshua J. Meeks
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
21
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
22
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
23
|
Torres GM, Yang H, Park C, Spezza PA, Khatwani N, Bhandari R, Liby KT, Pioli PA. T Cells and CDDO-Me Attenuate Immunosuppressive Activation of Human Melanoma-Conditioned Macrophages. Front Immunol 2022; 13:768753. [PMID: 35265066 PMCID: PMC8898828 DOI: 10.3389/fimmu.2022.768753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Melanoma tumors are highly immunogenic, making them an attractive target for immunotherapy. However, many patients do not mount robust clinical responses to targeted therapies, which is attributable, at least in part, to suppression of immune responses by tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Using a human in vitro tri-culture system of macrophages with activated autologous T cells and BRAFV600E mutant melanoma cells, we now show that activated T cells and the synthetic triterpenoid the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) attenuate immune suppression. Surface expression of CD206, CD16 and CD163 on melanoma-conditioned macrophages was inhibited by the addition of T cells, suggesting relief of immuno-suppressive macrophage activation. We also demonstrated that addition of CDDO-Me to tri-cultures enhanced T cell-mediated reductions in CCL2, VEGF and IL-6 production in a contact-independent manner. Because these results suggest CDDO-Me alters melanoma-conditioned macrophage activation, we interrogated CDDO-Me-mediated changes in macrophage signaling pathway activation. Our results indicated that CDDO-Me inhibited phosphorylation of STAT3, a known inducer of TAM activation. Collectively, our studies suggest that activated T cells and CDDO-Me synergistically relieve immune suppression in melanoma cultures and implicate the potential utility of CDDO-Me in the treatment of melanoma.
Collapse
Affiliation(s)
- Gretel M Torres
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Heetaek Yang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Chanhyuk Park
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Paul A Spezza
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Nikhil Khatwani
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rajan Bhandari
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
24
|
Pagnotti GM, Trivedi T, Mohammad KS. Translational Strategies to Target Metastatic Bone Disease. Cells 2022; 11:1309. [PMID: 35455987 PMCID: PMC9030480 DOI: 10.3390/cells11081309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Metastatic bone disease is a common and devastating complication to cancer, confounding treatments and recovery efforts and presenting a significant barrier to de-escalating the adverse outcomes associated with disease progression. Despite significant advances in the field, bone metastases remain presently incurable and contribute heavily to cancer-associated morbidity and mortality. Mechanisms associated with metastatic bone disease perpetuation and paralleled disruption of bone remodeling are highlighted to convey how they provide the foundation for therapeutic targets to stem disease escalation. The focus of this review aims to describe the preclinical modeling and diagnostic evaluation of metastatic bone disease as well as discuss the range of therapeutic modalities used clinically and how they may impact skeletal tissue.
Collapse
Affiliation(s)
- Gabriel M. Pagnotti
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (G.M.P.); (T.T.)
| | - Trupti Trivedi
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA; (G.M.P.); (T.T.)
| | - Khalid S. Mohammad
- Department of Anatomy and Genetics, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
25
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
26
|
Lund M, Pedersen TB, Feddersen S, Østergaard LD, Poulsen CA, Enggaard C, Poulsen MHA, Lund L. Plasma Chemokine C-C Motif Ligand 2 as a Potential Biomarker for Prostate Cancer. Res Rep Urol 2022; 14:33-38. [PMID: 35178362 PMCID: PMC8846609 DOI: 10.2147/rru.s346978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Martin Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
| | | | - Søren Feddersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Louise D Østergaard
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Christian Enggaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mads H A Poulsen
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Correspondence: Lars Lund, Department of Urology, Odense University Hospital, Sdr. Boulevard 29, Odense, 5000, Denmark, Tel +45 5140 8982, Fax +45 6541 1726, Email
| |
Collapse
|
27
|
Tapmeier TT, Howell JH, Zhao L, Papiez BW, Schnabel JA, Muschel RJ, Gal A. Evolving polarisation of infiltrating and alveolar macrophages in the lung during metastatic progression of melanoma suggests CCR1 as a therapeutic target. Oncogene 2022; 41:5032-5045. [PMID: 36241867 PMCID: PMC9652148 DOI: 10.1038/s41388-022-02488-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022]
Abstract
Metastatic tumour progression is facilitated by tumour associated macrophages (TAMs) that enforce pro-tumour mechanisms and suppress immunity. In pulmonary metastases, it is unclear whether TAMs comprise tissue resident or infiltrating, recruited macrophages; and the different expression patterns of these TAMs are not well established. Using the mouse melanoma B16F10 model of experimental pulmonary metastasis, we show that infiltrating macrophages (IM) change their gene expression from an early pro-inflammatory to a later tumour promoting profile as the lesions grow. In contrast, resident alveolar macrophages (AM) maintain expression of crucial pro-inflammatory/anti-tumour genes with time. During metastatic growth, the pool of macrophages, which initially contains mainly alveolar macrophages, increasingly consists of infiltrating macrophages potentially facilitating metastasis progression. Blocking chemokine receptor mediated macrophage infiltration in the lung revealed a prominent role for CCR2 in Ly6C+ pro-inflammatory monocyte/macrophage recruitment during metastasis progression, while inhibition of CCR2 signalling led to increased metastatic colony burden. CCR1 blockade, in contrast, suppressed late phase pro-tumour MR+Ly6C- monocyte/macrophage infiltration accompanied by expansion of the alveolar macrophage compartment and accumulation of NK cells, leading to reduced metastatic burden. These data indicate that IM has greater plasticity and higher phenotypic responsiveness to tumour challenge than AM. A considerable difference is also confirmed between CCR1 and CCR2 with regard to the recruited IM subsets, with CCR1 presenting a potential therapeutic target in pulmonary metastasis from melanoma.
Collapse
Affiliation(s)
- Thomas T. Tapmeier
- grid.4991.50000 0004 1936 8948CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168 Australia ,grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168 Australia
| | - Jake H. Howell
- grid.12477.370000000121073784School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ UK
| | - Lei Zhao
- grid.440144.10000 0004 1803 8437Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, 250117 China
| | - Bartlomiej W. Papiez
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, Oxford, OX3 7LF UK
| | - Julia A. Schnabel
- grid.13097.3c0000 0001 2322 6764School of Biomedical Imaging and Imaging Sciences, King’s College London, London, SE1 7EU UK ,grid.4567.00000 0004 0483 2525Helmholtz Center Munich – German Center for Environmental Health, 85764 Neuherberg, Germany ,grid.6936.a0000000123222966Faculty of Informatics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Ruth J. Muschel
- grid.4991.50000 0004 1936 8948CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
| | - Annamaria Gal
- grid.4991.50000 0004 1936 8948CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK ,grid.12477.370000000121073784School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ UK
| |
Collapse
|
28
|
Wang S, Tan Q, Hou Y, Dou H. Emerging Roles of Myeloid-Derived Suppressor Cells in Diabetes. Front Pharmacol 2021; 12:798320. [PMID: 34975496 PMCID: PMC8716856 DOI: 10.3389/fphar.2021.798320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a syndrome characterized by hyperglycemia with or without insulin resistance. Its etiology is attributed to the combined action of genes, environment and immune cells. Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature cells with immunosuppressive ability. In recent years, different studies have debated the quantity, activity changes and roles of MDSC in the diabetic microenvironment. However, the emerging roles of MDSC have not been fully documented with regard to their interactions with diabetes. Here, the manifestations of MDSC and their subsets are reviewed with regard to the incidence of diabetes and diabetic complications. The possible drugs targeting MDSC are discussed with regard to their potential of treating diabetes. We believe that understanding MDSC will offer opportunities to explain pathological characteristics of different diabetes. MDSC also will be used for personalized immunotherapy of diabetes.
Collapse
Affiliation(s)
- Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
EZH2 Might Affect Macrophage Chemotaxis and Anti-Inflammatory Factors by Regulating CCL2 in Dental Pulp Inflammation. Stem Cells Int 2021; 2021:3060480. [PMID: 34899918 PMCID: PMC8654562 DOI: 10.1155/2021/3060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives We aimed to evaluate the effects of Enhancer of Zeste Homolog 2 (EZH2) on regulation of macrophage migration and expression of anti-inflammatory genes in pulpitis. Methods Dental pulp inflammation was verified by histology in rat pulpitis model induced by lipopolysaccharide (LPS). Immunohistochemistry staining was used to detect changes of the expression of EZH2 and tumor necrosis factor alpha (TNF-α) in dental pulp inflammation. The expression of EZH2, CCL2, and cluster of differentiation 68 (CD68: macrophage surface marker) was measured by immunofluorescence staining. The effect of EZH2 on microphage migration was assessed by cell migration assay. The expressions of anti-inflammatory cytokine interleukins (IL-4 and IL-10) and transforming growth factor-β (TGF-β) in HDPCs which were treated by EZH2 complex, CCL2 complex, and CCL2 antibody were examined by quantitative real-time polymerase chain reaction (q-PCR). Results The expression of TNF-α gradually increased in dental pulp inflammation. The expression of EZH2 in dental pulp decreased in 8 hours after LPS stimulation. However, the expression of EZH2 gradually increased in dental pulp after 1 day stimulation by LPS. The results of immunofluorescence staining showed that the expressions of EZH2, CCL2, and CD68 were significantly upregulated in dental pulp inflammation of rats. EZH2 could enhance macrophage migration. And the chemotactic activity of macrophages exposed to supernatants of EZH2-treated HDPCs could be inhibited by CCL2 inhibition. In addition, EZH2 suppressed the expression of anti-inflammatory genes, but CCL2 inhibition reversed the downregulation of anti-inflammatory factors, including IL-4 and TGF-β in HDPCs. Conclusions EZH2 might affect chemotaxis of macrophages and the expression of anti-inflammatory factors by regulating CCL2. EZH2 plays an important role in the development of dental pulp inflammation, and it might be as a target for treatment of pulpitis.
Collapse
|
30
|
Kanga KJW, Mendonca P, Soliman KFA, Ferguson DT, Darling-Reed SF. Effect of Diallyl Trisulfide on TNF-α-induced CCL2/MCP-1 Release in Genetically Different Triple-negative Breast Cancer Cells. Anticancer Res 2021; 41:5919-5933. [PMID: 34848446 DOI: 10.21873/anticanres.15411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIM Diallyl trisulfide (DATS) has been shown to prevent and inhibit breast carcinogenesis. CCL2/MCP-1 has been shown to play a significant role in breast cancer. This study explored DATS efficacy on triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS DATS efficacy on TNF-α induced TNBC cells were examined via trypan blue exclusion test, wound-healing assay, human cytokine arrays, ELISA, and RT-PCR. RESULTS DATS significantly induced cell death and inhibited cell migration. Expression of CCL2/MCP-1, IL-6, PDGF-BB, NT-3, and GM-CSF in TNF-α-treated cells increased. However, DATS significantly decreased the expression of CCL2/MCP-1 in TNF-α-treated MDA-MB-231 but not in MDA-MB-468 cells. DATS significantly down-regulated mRNA expression of IKBKE and MAPK8 in both cell lines, indicating a possible effect in genes involved in the NF-κB and MAPK signaling. CONCLUSION DATS may have a role in TNBC therapy and prevention by targeting CCL2.
Collapse
Affiliation(s)
- Konan J W Kanga
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Patricia Mendonca
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Dominique T Ferguson
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Selina F Darling-Reed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
31
|
Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021; 9:745177. [PMID: 34805155 PMCID: PMC8602797 DOI: 10.3389/fcell.2021.745177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the most common type of cancer among men and the second most frequent cause of cancer-related mortality around the world. The progression of advanced prostate cancer to castration-resistant prostate cancer (CRPC) plays a major role in disease-associated morbidity and mortality, posing a significant therapeutic challenge. Resistance has been associated with the activation of androgen receptors via several mechanisms, including alternative dehydroepiandrosterone biosynthetic pathways, other androgen receptor activator molecules, oncogenes, and carcinogenic signaling pathways. Tumor microenvironment plays a critical role not only in the cancer progression but also in the drug resistance. Numerous natural products have shown major potential against particular or multiple resistance pathways as shown by in vitro and in vivo studies. However, their efficacy in clinical trials has been undermined by their unfavorable pharmacological properties (hydrophobic molecules, instability, low pharmacokinetic profile, poor water solubility, and high excretion rate). Nanoparticle formulations can provide a way out of the stalemate, employing targeted drug delivery, improved pharmacokinetic drug profile, and transportation of diagnostic and therapeutic agents via otherwise impermeable biological barriers. This review compiles the available evidence regarding the use of natural products for the management of CRPC with a focus on nanoparticle formulations. PubMed and Google Scholar search engines were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical studies. The results of our study suggest the efficacy of natural compounds such as curcumin, resveratrol, apigenin, quercetin, fisetin, luteolin, kaempferol, genistein, berberine, ursolic acid, eugenol, gingerol, and ellagic acid against several mechanisms leading to castration resistance in preclinical studies, but fail to set the disease under control in clinical studies. Nanoparticle formulations of curcumin and quercetin seem to increase their potential in clinical settings. Using nanoparticles based on betulinic acid, capsaicin, sintokamide A, niphatenones A and B, as well as atraric acid seems promising but needs to be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rajat Goyal
- MM School of Pharmacy, MM University, Ambala, India
| | | | | | - Shikha Joon
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Sun BL. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment. Prostate 2021; 81:1125-1134. [PMID: 34435699 DOI: 10.1002/pros.24213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer is the second most common cause of cancer-related death in men in the United States and the fifth worldwide. Most prostate cancer arises as an androgen-dependent tumor but eventually progresses into castration-resistance prostate cancer, incurable by the current androgen deprivation therapy and chemotherapy. The development of immunotherapy in cancer treatment has brought an exciting era of antiprostate cancer therapy through antitumor immune responses. Prostate cancer is recognized as a poorly immunogenic tissue with immunological ignorance showing low levels of antigen-presenting process and cytotoxic T-cell activation, high levels of immune checkpoint molecules and immunosuppressive cytokines/chemokines, and recruitment of immunosuppressive cells. Immunotherapies for prostate cancer have been developed to activate the innate and adaptive immune responses, such as vaccines and adoptive CAR-T cells, or to inhibit immunosuppressive molecules, such as immune checkpoint inhibitors or antibodies. The U.S Food and Drug Administration has approved Sipuleucel-T for the treatment of asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer (mCRPC) and immune checkpoint inhibitor pembrolizumab for the treatment of all solid tumors, including prostate cancer, with impaired mismatch repair genes/microsatellite instability; however, the current clinical outcomes still need to be improved. As various immunosuppressive mechanisms coexist and cross-interact within the tumor microenvironment, different immunotherapy approaches may have to be combined and selected in a highly personalized way. It is hoped that this rapidly evolving field of immunotherapy will achieve successful treatment for mCRPC and will be applied to a wider range of prostate cancer patients.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology, Banner-University Medical Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
33
|
Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol Ther 2021; 231:107986. [PMID: 34481812 DOI: 10.1016/j.pharmthera.2021.107986] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.
Collapse
Affiliation(s)
- Ali N Chamseddine
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Biostatistics and Epidemiology, CESP INSERM U1018, OncoStat, Gustave Roussy, F-94805, Villejuif, France.
| | - Tarek Assi
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Pharmacology, Gustave Roussy, F-94805, Villejuif, France; Department of Ambulatory Care, Gustave Roussy, F-94805, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
34
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
35
|
Shaik B, Zafar T, Balasubramanian K, Gupta SP. An Overview of Ovarian Cancer: Molecular Processes Involved and Development of Target-based Chemotherapeutics. Curr Top Med Chem 2021; 21:329-346. [PMID: 33183204 DOI: 10.2174/1568026620999201111155426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is one of the leading gynecologic diseases with a high mortality rate worldwide. Current statistical studies on cancer reveal that over the past two decades, the fifth most common cause of death related to cancer in females of the western world is ovarian cancer. In spite of significant strides made in genomics, proteomics and radiomics, there has been little progress in transitioning these research advances into effective clinical administration of ovarian cancer. Consequently, researchers have diverted their attention to finding various molecular processes involved in the development of this cancer and how these processes can be exploited to develop potential chemotherapeutics to treat this cancer. The present review gives an overview of these studies which may update the researchers on where we stand and where to go further. The unfortunate situation with ovarian cancer that still exists is that most patients with it do not show any symptoms until the disease has moved to an advanced stage. Undoubtedly, several targets-based drugs have been developed to treat it, but drug-resistance and the recurrence of this disease are still a problem. For the development of potential chemotherapeutics for ovarian cancer, however, some theoretical approaches have also been applied. A description of such methods and their success in this direction is also covered in this review.
Collapse
Affiliation(s)
- Basheerulla Shaik
- Department of Applied Sciences, National Institute of Technical Teachers' Training & Research, Shamla Hills, Shanti Marg, Bhopal-462002, Madhya Pradesh, India
| | - Tabassum Zafar
- Department of Biosciences, Barkatullah University, Bhopal-462026, Madhya Pradesh, India
| | | | - Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250002, India
| |
Collapse
|
36
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
37
|
De La Fuente A, Zilio S, Caroli J, Van Simaeys D, Mazza EMC, Ince TA, Bronte V, Bicciato S, Weed DT, Serafini P. Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Sci Transl Med 2021; 12:12/548/eaav9760. [PMID: 32554710 DOI: 10.1126/scitranslmed.aav9760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Local delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models. In the 4T1 mammary carcinoma model, these doxorubicin-conjugated aptamers outperformed Doxil, the first clinically approved highly optimized nanoparticle for targeted chemotherapy, promoting tumor regression after just three administrations with no detected changes in weight loss or blood chemistry. These RNA aptamers recognized tumor infiltrating myeloid cells in a variety of mouse tumors in vivo and from human HNSCC ex vivo. This work suggests the use of RNA aptamers for the detection of myeloid-derived suppressor cells in humans and for a targeted delivery of chemotherapy to the tumor microenvironment in multiple malignancies.
Collapse
Affiliation(s)
- Adriana De La Fuente
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Dimitri Van Simaeys
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Tan A Ince
- Department of Pathology, Weill Cornell Medicine, Cornell University and New York Presbyterian Brooklyn Methodist Hospital, NY 11215, USA
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, Verona 37100, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Donald T Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA. .,Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Jala VR, Bodduluri SR, Ghosh S, Chheda Z, Singh R, Smith ME, Chilton PM, Fleming CJ, Mathis SP, Sharma RK, Knight R, Yan J, Haribabu B. Absence of CCR2 reduces spontaneous intestinal tumorigenesis in the Apc Min /+ mouse model. Int J Cancer 2021; 148:2594-2607. [PMID: 33497467 DOI: 10.1002/ijc.33477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
The biological activities of chemokine (C-C motif) ligand 2 (CCL2) are mediated via C-C chemokine receptor-2 (CCR2). Increased CCL2 level is associated with metastasis of many cancers. In our study, we investigated the role of the CCL2/CCR2 axis in the development of spontaneous intestinal tumorigenesis using the ApcMin/+ mouse model. Ablation of CCR2 in ApcMin/+ mice significantly increased the overall survival and reduced intestinal tumor burden. Immune cell analysis showed that CCR2-/- ApcMin/+ mice exhibited significant reduction in the myeloid cell population and increased interferon γ (IFN-γ) producing T cells both in spleen and mesenteric lymph nodes compared to ApcMin/+ mice. The CCR2-/- ApcMin/+ tumors showed significantly reduced levels of interleukin (IL)-17 and IL-23 and increased IFN-γ and Granzyme B compared to ApcMin/+ tumors. Transfer of CCR2+/+ ApcMin/+ CD4+ T cells into Rag2-/- mice led to development of colitis phenotype with increased CD4+ T cells hyper proliferation and IL-17 production. In contrast, adoptive transfer of CCR2-/- ApcMin/+ CD4+ T cells into Rag2-/- mice failed to enhance colonic inflammation or IL-17 production. These results a suggest novel additional role for CCR2, where it regulates migration of IL-17 producing cells mediating tumor-promoting inflammation in addition to its role in migration of tumor associated macrophages.
Collapse
Affiliation(s)
- Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Sobha Rani Bodduluri
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Sweta Ghosh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Zinal Chheda
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Michelle E Smith
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Paula M Chilton
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Christopher J Fleming
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Steven Paul Mathis
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Rajesh Kumar Sharma
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Jun Yan
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
39
|
Bhuyan F, de Jesus AA, Mitchell J, Leikina E, VanTries R, Herzog R, Onel KB, Oler A, Montealegre Sanchez GA, Johnson KA, Bichell L, Marrero B, De Castro LF, Huang Y, Calvo KR, Collins MT, Ganesan S, Chernomordik LV, Ferguson PJ, Goldbach-Mansky R. Novel Majeed Syndrome-Causing LPIN2 Mutations Link Bone Inflammation to Inflammatory M2 Macrophages and Accelerated Osteoclastogenesis. Arthritis Rheumatol 2021; 73:1021-1032. [PMID: 33314777 PMCID: PMC8252456 DOI: 10.1002/art.41624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
Objective To identify novel heterozygous LPIN2 mutations in a patient with Majeed syndrome and characterize the pathomechanisms that lead to the development of sterile osteomyelitis. Methods Targeted genetic analysis and functional studies assessing monocyte responses, macrophage differentiation, and osteoclastogenesis were conducted to compare the pathogenesis of Majeed syndrome to interleukin‐1 (IL‐1)–mediated diseases including neonatal‐onset multisystem inflammatory disease (NOMID) and deficiency of the IL‐1 receptor antagonist (DIRA). Results A 4‐year‐old girl of mixed ethnic background presented with sterile osteomyelitis and elevated acute‐phase reactants. She had a 17.8‐kb deletion on the maternal LPIN2 allele and a splice site mutation, p.R517H, that variably spliced out exons 10 and 11 on the paternal LPIN2 allele. The patient achieved long‐lasting remission receiving IL‐1 blockade with canakinumab. Compared to controls, monocytes and monocyte‐derived M1‐like macrophages from the patient with Majeed syndrome and those with NOMID or DIRA had elevated caspase 1 activity and IL‐1β secretion. In contrast, lipopolysaccharide‐stimulated, monocyte‐derived, M2‐like macrophages from the patient with Majeed syndrome released higher levels of osteoclastogenic mediators (IL‐8, IL‐6, tumor necrosis factor, CCL2, macrophage inflammatory protein 1α/β, CXCL8, and CXCL1) compared to NOMID patients and healthy controls. Accelerated osteoclastogenesis in the patient with Majeed syndrome was associated with higher NFATc1 levels, enhanced JNK/MAPK, and reduced Src kinase activation, and partially responded to JNK inhibition and IL‐1 (but not IL‐6) blockade. Conclusion We report 2 novel compound heterozygous disease‐causing mutations in LPIN2 in an American patient with Majeed syndrome. LPIN2 deficiency drives differentiation of proinflammatory M2‐like macrophages and enhances intrinsic osteoclastogenesis. This provides a model for the pathogenesis of sterile osteomyelitis which differentiates Majeed syndrome from other IL‐1–mediated autoinflammatory diseases.
Collapse
Affiliation(s)
- Farzana Bhuyan
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Adriana A de Jesus
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Jacob Mitchell
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Evgenia Leikina
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Rachel VanTries
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | | | - Andrew Oler
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Kim A Johnson
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lena Bichell
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Bernadette Marrero
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Yan Huang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Michael T Collins
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Leonid V Chernomordik
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
40
|
Dorhoi A, Kotzé LA, Berzofsky JA, Sui Y, Gabrilovich DI, Garg A, Hafner R, Khader SA, Schaible UE, Kaufmann SH, Walzl G, Lutz MB, Mahon RN, Ostrand-Rosenberg S, Bishai W, du Plessis N. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. J Clin Invest 2021; 130:2789-2799. [PMID: 32420917 DOI: 10.1172/jci136288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The critical role of suppressive myeloid cells in immune regulation has come to the forefront in cancer research, with myeloid-derived suppressor cells (MDSCs) as a main oncology immunotherapeutic target. Recent improvement and standardization of criteria classifying tumor-induced MDSCs have led to unified descriptions and also promoted MDSC research in tuberculosis (TB) and AIDS. Despite convincing evidence on the induction of MDSCs by pathogen-derived molecules and inflammatory mediators in TB and AIDS, very little attention has been given to their therapeutic modulation or roles in vaccination in these diseases. Clinical manifestations in TB are consequences of complex host-pathogen interactions and are substantially affected by HIV infection. Here we summarize the current understanding and knowledge gaps regarding the role of MDSCs in HIV and Mycobacterium tuberculosis (co)infections. We discuss key scientific priorities to enable application of this knowledge to the development of novel strategies to improve vaccine efficacy and/or implementation of enhanced treatment approaches. Building on recent findings and potential for cross-fertilization between oncology and infection biology, we highlight current challenges and untapped opportunities for translating new advances in MDSC research into clinical applications for TB and AIDS.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Leigh A Kotzé
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Ankita Garg
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, and.,Leibniz Research Alliance INFECTIONS'21, Research Center Borstel, Borstel, Germany
| | - Stefan He Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Gerhard Walzl
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - William Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nelita du Plessis
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
41
|
The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment. J Xenobiot 2021; 11:16-32. [PMID: 33535458 PMCID: PMC7931005 DOI: 10.3390/jox11010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is one of the most common cancers diagnosed in men in the United States and the second leading cause of cancer-related deaths worldwide. Since over 60% of prostate cancer cases occur in men over 65 years of age, and this population will increase steadily in the coming years, prostate cancer will be a major cancer-related burden in the foreseeable future. Accumulating data from more recent research suggest that the tumor microenvironment (TME) plays a previously unrecognized role in every stage of cancer development, including initiation, proliferation, and metastasis. Prostate cancer is not only diagnosed in the late stages of life, but also progresses relatively slowly. This makes prostate cancer an ideal model system for exploring the potential of natural products as cancer prevention and/or treatment reagents because they usually act relatively slowly compared to most synthetic drugs. Resveratrol (RSV) is a naturally occurring stilbenoid and possesses strong anti-cancer properties with few adverse effects. Accumulating data from both in vitro and in vivo experiments indicate that RSV can interfere with prostate cancer initiation and progression by targeting the TME. Therefore, this review is aimed to summarize the recent advancement in RSV-inhibited prostate cancer initiation, proliferation, and metastasis as well as the underlying molecular mechanisms, with particular emphasis on the effect of RSV on TME. This will not only better our understanding of prostate cancer TMEs, but also pave the way for the development of RSV as a potential reagent for prostate cancer prevention and/or therapy.
Collapse
|
42
|
Chu CY, Lee YC, Hsieh CH, Yeh CT, Chao TY, Chen PH, Lin IH, Hsieh TH, Shih JW, Cheng CH, Chang CC, Lin PS, Huang YL, Chen TM, Yen Y, Ann DK, Kung HJ. Genome-wide CRISPR/Cas9 knockout screening uncovers a novel inflammatory pathway critical for resistance to arginine-deprivation therapy. Theranostics 2021; 11:3624-3641. [PMID: 33664852 PMCID: PMC7914361 DOI: 10.7150/thno.51795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/01/2021] [Indexed: 12/24/2022] Open
Abstract
Arginine synthesis deficiency due to the suppressed expression of ASS1 (argininosuccinate synthetase 1) represents one of the most frequently occurring metabolic defects of tumor cells. Arginine-deprivation therapy has gained increasing attention in recent years. One challenge of ADI-PEG20 (pegylated ADI) therapy is the development of drug resistance caused by restoration of ASS1 expression and other factors. The goal of this work is to identify novel factors conferring therapy resistance. Methods: Multiple, independently derived ADI-resistant clones including derivatives of breast (MDA-MB-231 and BT-549) and prostate (PC3, CWR22Rv1, and DU145) cancer cells were developed. RNA-seq and RT-PCR were used to identify genes upregulated in the resistant clones. Unbiased genome-wide CRISPR/Cas9 knockout screening was used to identify genes whose absence confers sensitivity to these cells. shRNA and CRISPR/Cas9 knockout as well as overexpression approaches were used to validate the functions of the resistant genes both in vitro and in xenograft models. The signal pathways were verified by western blotting and cytokine release. Results: Based on unbiased CRISPR/Cas9 knockout screening and RNA-seq analyses of independently derived ADI-resistant (ADIR) clones, aberrant activation of the TREM1/CCL2 axis in addition to ASS1 expression was consistently identified as the resistant factors. Unlike ADIR, MDA-MB-231 overexpressing ASS1 cells achieved only moderate ADI resistance both in vitro and in vivo, and overexpression of ASS1 alone does not activate the TREM1/CCL2 axis. These data suggested that upregulation of TREM1 is an independent factor in the development of strong resistance, which is accompanied by activation of the AKT/mTOR/STAT3/CCL2 pathway and contributes to cell survival and overcoming the tumor suppressive effects of ASS1 overexpression. Importantly, knockdown of TREM1 or CCL2 significantly sensitized ADIR toward ADI. Similar results were obtained in BT-549 breast cancer cell line as well as castration-resistant prostate cancer cells. The present study sheds light on the detailed mechanisms of resistance to arginine-deprivation therapy and uncovers novel targets to overcome resistance. Conclusion: We uncovered TREM1/CCL2 activation, in addition to restored ASS1 expression, as a key pathway involved in full ADI-resistance in breast and prostate cancer models.
Collapse
|
43
|
Moadab F, Khorramdelazad H, Abbasifard M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches. Life Sci 2021; 269:119034. [PMID: 33453247 DOI: 10.1016/j.lfs.2021.119034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Evidence suggests that uncontrolled immune system responses and their components play a significant role in developing rheumatoid arthritis (RA), which is considered an autoimmune disease (AD). Among immune system mediators, cytokines and chemokines are involved in numerous physiological and pathological processes. CCL2 or monocyte chemoattractant protein-1 (MCP-1) is known as a CC chemokine that can induce the locomotion and recruitment of monocytes and macrophages to the site of injury. When CCL2 binds to its receptors, the most important of which is CCR2, various signaling pathways are triggered, eventually leading to various immunological events such as inflammation. This chemokine also participates in several events involved in RA pathogenesis, such as osteoclastogenesis, migration of effector T cells to the RA synovium tissue, and angiogenesis. In this review article, the role of the CCL2/CCR2 axis in RA pathogenesis and the immunotherapy opportunities based on CCL2/CCR2 axis targeting has been discussed based on existing investigations.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine; Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine; Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine; Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
44
|
Liu W, Wang L, Zhang J, Qiao L, Liu Y, Yang X, Zhang J, Zheng W, Ma Z. Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer. 3 Biotech 2021; 11:8. [PMID: 33442507 DOI: 10.1007/s13205-020-02571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Chemokine (CC-motif) ligand 2 (CCL2) is an inflammatory cytokine that regulates the infiltration and migration of monocytes. It is highly expressed by both tumor and stromal cells and has been associated with tumorigenesis. However, the effect of the exogenous administration of CCL2 on ovarian cancer remains largely unknown. In this report, we attempted to establish an expression system in Escherichia coli to produce recombinant hCCL2. The recombinant plasmid containing the hCCL2 cDNA was prepared using the prokaryotic-expression plasmid pGEX-5X-3 and transformed into E. coli BL21. GST-hCCL2 was successfully induced by 0.1 mmol/L IPTG at 20 °C for 6 h, and the recombinant protein was purified using affinity chromatography. The purified protein was identified by SDS-PAGE and Western Blot. In vitro experiments revealed that rhCCL2 promoted the proliferation of ovarian cancer cells and increased the levels of phosphorylation of MEK and ERK1/2, and the levels of JUN, RELB and NF-κB2 mRNA. Furthermore, inhibition of ERK signaling by treatment with PD98059 decreased ovarian cancer cell proliferation and levels of JUN, RELB, and NF-κB2 mRNA, indicating that exogenous rhCCL2 increased the proliferation of ovarian cancer cells, partially by activating the MAPK/ERK pathway, and by targeting JUN, RELB, and NF-κB2. Our study uncovered a promoting role of exogenous CCL2 on ovarian cancer cell proliferation through the MAPK/ERK signaling pathway, which may facilitate the discovery of more potential roles of CCL2 in ovarian cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02571-0.
Collapse
|
45
|
Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021; 12:54-64. [PMID: 33391402 PMCID: PMC7738842 DOI: 10.7150/jca.49692] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment (TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This article reviews the interrelationship between TAMs and tumor microenvironment and its related applications in tumor therapy.
Collapse
Affiliation(s)
- Shunyao Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyi Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xixi Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- Xiaoshan Hosptital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Senlin Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
46
|
Increased Expressions of Matrix Metalloproteinases (MMPs) in Prostate Cancer Tissues of Men with Type 2 Diabetes. Biomedicines 2020; 8:biomedicines8110507. [PMID: 33207809 PMCID: PMC7696165 DOI: 10.3390/biomedicines8110507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with worse prognosis of prostate cancer (PCa). The molecular mechanisms behind this association are still not fully understood. The aim of this study was to identify key factors, which contribute to the more aggressive PCa phenotype in patients with concurrent T2D. Therefore, we investigated benign and PCa tissue of PCa patients with and without diabetes using real time qPCR. Compared to patients without diabetes, patients with T2D showed a decreased E-cadherin/N-cadherin (CDH1/CDH2) ratio in prostate tissue, indicating a switch of epithelial-mesenchymal transition (EMT), which is a pivotal process in carcinogenesis. In addition, the gene expression levels of matrix metalloproteinases (MMPs) and CC chemokine ligands (CCLs) were higher in prostate samples of T2D patients. Next, prostate adenocarcinoma PC3 cells were treated with increasing glucose concentrations to replicate hyperglycemia in vitro. In these cells, high glucose induced expressions of MMPs and CCLs, which showed significant positive associations with the proliferation marker proliferating cell nuclear antigen (PCNA). These results indicate that in prostate tissue of men with T2D, hyperglycemia may induce EMT, increase MMP and CCL gene expressions, which in turn activate invasion and inflammatory processes accelerating the progression of PCa.
Collapse
|
47
|
The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev 2020; 40:303-318. [PMID: 33026575 PMCID: PMC7897206 DOI: 10.1007/s10555-020-09935-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is an aspartate-specific cysteine protease, which is best known for its apoptotic functions. Caspase-8 is placed at central nodes of multiple signal pathways, regulating not only the cell cycle but also the invasive and metastatic cell behavior, the immune cell homeostasis and cytokine production, which are the two major components of the tumor microenvironment (TME). Ovarian cancer often has dysregulated caspase-8 expression, leading to imbalance between its apoptotic and non-apoptotic functions within the tumor and the surrounding milieu. The downregulation of caspase-8 in ovarian cancer seems to be linked to high aggressiveness with chronic inflammation, immunoediting, and immune resistance. Caspase-8 plays therefore an essential role not only in the primary tumor cells but also in the TME by regulating the immune response, B and T lymphocyte activation, and macrophage differentiation and polarization. The switch between M1 and M2 macrophages is possibly associated with changes in the caspase-8 expression. In this review, we are discussing the non-apoptotic functions of caspase-8, highlighting this protein as a modulator of the immune response and the cytokine composition in the TME. Considering the low survival rate among ovarian cancer patients, it is urgently necessary to develop new therapeutic strategies to optimize the response to the standard treatment. The TME is highly heterogenous and provides a variety of opportunities for new drug targets. Given the variety of roles of caspase-8 in the TME, we should focus on this protein in the development of new therapeutic strategies against the TME of ovarian cancer.
Collapse
|
48
|
Zhu Z, Hou Q, Guo H. NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res 2020; 397:112311. [PMID: 32991874 DOI: 10.1016/j.yexcr.2020.112311] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed tumors among human worldwide. Angiogenesis and tumor-associated macrophage (TAM) recruitment are closely associated with CRC development. Nevertheless, the mechanisms revealing CRC progression are still not fully understood. 5'-Nucleotidase domain containing 2 (NT5DC2), a member of the NT5DC family, modulates various cellular events to mediate tumor growth, and thus serves as a disgnostic biomarker. Here, we explored the potential of NT5DC2 on tumor progression in CRC. We first found that NT5DC2 expression was significantly up-regulated in CRC tissues and cell lines. CRC patients with higher NT5DC2 expression showed poor overall survival. Furthermore, CRC cell lines stably transfected with shNT5DC2 lentivirus plasmids exhibited markedly reduced cell proliferation, migration and invasion compared with the negative control group. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGF-A) expression levels were remarkably reduced in CRC cells with NT5DC2 deletion, along with evidently reduced tube formation in the HUVECs cultured in the collected conditional medium. The expression levels of CC chemokine ligand 2 (CCL2) and its receptor CCR2 were found to be greatly down-regulated in CRC cells transfected with shNT5DC2. Moreover, NT5DC2 knockdown markedly suppressed the activation of protein kinase-B/nuclear transcription factor κB (AKT/NF-κB) signaling in CRC cells. Furthermore, we found that NT5DC2 deletion obviously reduced the TAM recruitments through suppressing CCL2/CCR2 and AKT/NF-κB signaling pathways. Intriguingly, our in vitro experiments demonstrated that VEGF reduction was necessary for shNT5DC2-inhibited cell proliferation, migration, invasion, angiogenesis and TAM recruitment. In vivo studies also confirmed that NT5DC2 knockdown effectively reduced the tumor growth and VEGF expression in a xonegraft mouse model with CRC. Lung metastasis of CRC cells was also hindered by NT5DC2 deletion in vivo. Collectively, our results indicated a previously unrecognized NT5DC2/VEGF/CCL2 axis involved in CRC development and metastasis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qingsheng Hou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hongliang Guo
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
49
|
Thomas MU, Messex JK, Dang T, Abdulkadir SA, Jorcyk CL, Liou GY. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK. FEBS J 2020; 288:1871-1886. [PMID: 32865335 DOI: 10.1111/febs.15541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
The risk factors for prostate cancer include a high-fat diet and obesity, both of which are associated with an altered cell environment including increased inflammation. It has been shown that chronic inflammation due to a high-fat diet or bacterial infection has the potential to accelerate prostate cancer as well as its precursor, prostatic intraepithelial neoplasia (PIN), development. However, the underlying mechanism of how chronic inflammation promotes prostate cancer development, especially PIN, remains unclear. In this study, we showed that more macrophages were present in PIN areas as compared to the normal areas of human prostate. When co-culturing PIN cells with macrophages in 3D, more PIN cells had nuclear localized cyclin D1, indicating that macrophages enhanced PIN cell proliferation. We identified ICAM-1 and CCL2 as chemoattractants expressed by PIN cells to recruit macrophages. Furthermore, we discovered that macrophage-secreted cytokines including C5a, CXCL1, and CCL2 were responsible for increased PIN cell proliferation. These three cytokines activated ERK and JNK signaling in PIN cells through a ligand-receptor interaction. However, only blockade of ERK abolished macrophage cytokines-induced cell proliferation of PIN. Overall, our results provide a mechanistic view on how macrophages activated through chronic inflammation can expedite PIN progression during prostate cancer development. The information from our work can facilitate a comprehensive understanding of prostate cancer development, which is required for improvement of current strategies for prostate cancer therapy.
Collapse
Affiliation(s)
- Mikalah U Thomas
- Department of Biological Sciences, Clark Atlanta University, GA, USA
| | - Justin K Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Tu Dang
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, IL, USA.,Department of Pathology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Cheryl L Jorcyk
- Department of Biological Science, Boise State University, ID, USA
| | - Geou-Yarh Liou
- Department of Biological Sciences, Clark Atlanta University, GA, USA.,Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| |
Collapse
|
50
|
Philippou Y, Sjoberg HT, Murphy E, Alyacoubi S, Jones KI, Gordon-Weeks AN, Phyu S, Parkes EE, Gillies McKenna W, Lamb AD, Gileadi U, Cerundolo V, Scheiblin DA, Lockett SJ, Wink DA, Mills IG, Hamdy FC, Muschel RJ, Bryant RJ. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br J Cancer 2020; 123:1089-1100. [PMID: 32641865 PMCID: PMC7525450 DOI: 10.1038/s41416-020-0956-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1. METHODS Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated with 3 × 5 Gy ± anti-PD-L1. RESULTS 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy. CONCLUSION 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour response.
Collapse
Affiliation(s)
| | - Hanna T Sjoberg
- Department of Oncology, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Emma Murphy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Said Alyacoubi
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Keaton I Jones
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Su Phyu
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Oxford, UK
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|