1
|
Aberizk K, Addington JM, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF, Ku BS. Relations of Lifetime Perceived Stress and Basal Cortisol With Hippocampal Volume Among Healthy Adolescents and Those at Clinical High Risk for Psychosis: A Structural Equation Modeling Approach. Biol Psychiatry 2024; 96:401-411. [PMID: 38092185 PMCID: PMC11166888 DOI: 10.1016/j.biopsych.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Hippocampal volume (HV) is sensitive to environmental influences. Under normative conditions in humans, HV increases linearly into childhood and asymptotes in early adulthood. Studies of humans and nonhuman animals have provided evidence of inverse relationships between several measures of stress and HV. METHODS Using structural equation modeling, this study aimed to characterize the relationships of age, basal cortisol, biological sex, and lifetime perceived stress with bilateral HV in a sample of healthy adolescents and adolescents at clinical high risk for psychosis (CHR-P) (N = 571, 43% female; age range = 12-19.9 years). This sample included 469 individuals at CHR-P and 102 healthy comparison participants from the combined baseline cohorts of the second and third NAPLS (North American Prodrome Longitudinal Study). RESULTS A structural model that constrained the individual effects of basal cortisol and perceived stress to single path coefficients, and freely estimated the effects of age and biological sex in group models, optimized model fit and parsimony relative to other candidate models. Significant inverse relationships between basal cortisol and bilateral HV were observed in adolescents at CHR-P and healthy comparison participants. Significant sex differences in bilateral HV were also observed, with females demonstrating smaller HV than males in both groups. CONCLUSIONS Multigroup structural equation modeling revealed heterogeneity in the relationships of age and biological sex with basal cortisol, lifetime perceived stress, and bilateral HV in individuals at CHR-P and healthy comparison participants. Moreover, the findings support previous literature indicating that elevated basal cortisol is a nonspecific risk factor for reduced HV.
Collapse
Affiliation(s)
- Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, Georgia.
| | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, California
| | | | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | | | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, California
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, California
| | - Scott W Woods
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
2
|
Karat BG, Genc S, Raven EP, Palombo M, Khan AR, Jones DK. The developing hippocampus: Microstructural evolution through childhood and adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608590. [PMID: 39229062 PMCID: PMC11370384 DOI: 10.1101/2024.08.19.608590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The hippocampus is a structure in the medial temporal lobe which serves multiple cognitive functions. While important, the development of the hippocampus in the formative period of childhood and adolescence has not been extensively investigated, with most contemporary research focusing on macrostructural measures of volume. Thus, there has been little research on the development of the micron-scale structures (i.e., microstructure) of the hippocampus, which engender its cognitive functions. The current study examined age-related changes of hippocampal microstructure using diffusion MRI data acquired with an ultra-strong gradient (300 mT/m) MRI scanner in a sample of children and adolescents (N=88; 8-19 years). Surface-based hippocampal modelling was combined with established microstructural approaches, such as Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion Density Imaging (NODDI), and a more advanced gray matter diffusion model Soma And Neurite Density Imaging (SANDI). No significant changes in macrostructural measures (volume, gyrification, and thickness) were found between 8-19 years, while significant changes in microstructure measures related to neurites (from NODDI and SANDI), soma (from SANDI), and mean diffusivity (from DTI) were found. In particular, there was a significant increase across age in neurite MR signal fraction and a significant decrease in extracellular MR signal fraction and mean diffusivity across the hippocampal subfields and long-axis. A significant negative correlation between age and MR apparent soma radius was found in the subiculum and CA1 throughout the anterior and body of the hippocampus. Further surface-based analyses uncovered variability in age-related microstructural changes between the subfields and long-axis, which may reflect ostensible developmental differences along these two axes. Finally, correlation of hippocampal surfaces representing age-related changes of microstructure with maps derived from histology allowed for postulation of the potential underlying microstructure that diffusion changes across age may be capturing. Overall, distinct neurite and soma developmental profiles in the human hippocampus during late childhood and adolescence are reported for the first time.
Collapse
Affiliation(s)
- Bradley G Karat
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Sila Genc
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Ali R Khan
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Matijevic S, Hoscheidt S, Ryan L. Semantic details in autobiographical memory narratives increase with age among younger adults. Memory 2024; 32:913-923. [PMID: 38870423 DOI: 10.1080/09658211.2024.2365302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
It is well documented that older adults, compared to younger adults, produce fewer episodic details and more semantic details when recalling autobiographical memories. However, group comparisons have provided limited insight into the trajectories of detail generation across the lifespan. Utilising an open source dataset [Clark, I. A., & Maguire, E. A. (2023). Release of cognitive and multimodal MRI data including real-world tasks and hippocampal subfield segmentations. Scientific Data, 10(1), 1-29. https://doi.org/10.1038/s41597-022-01899-x], we examined how episodic and semantic detail generation varied with age among 194 younger adults, ages 20-41. We tested whether age differences were mediated by hippocampal subfield volumes and MTL resting-state functional connectivity. Results indicated that semantic details increased with age, while episodic details remained stable. We observed age differences in hippocampal subfield volumes and MTL connectivity, but these measures did not mediate age effects on semantic detail. Based on these and prior findings [Matijevic, S., Andrews-Hanna, J. R., Wank, A. A., Ryan, L., & Grilli, M. D. (2022). Individual differences in the relationship between episodic detail generation and resting state functional connectivity vary with age. Neuropsychologia, 166, 108138. https://doi.org/10.1016/j.neuropsychologia.2021.108138], we suggest a model of diverging episodic and semantic detail generation trajectories across the adult lifespan.
Collapse
Affiliation(s)
| | | | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
4
|
Tang M, Zhang L, Zhou Z, Cao L, Gao Y, Wang Y, Li H, Hu X, Bao W, Liang K, Kuang W, Sweeney JA, Gong Q, Huang X. Divergent effects of sex on hippocampal subfield alterations in drug-naive patients with major depressive disorder. J Affect Disord 2024; 354:173-180. [PMID: 38492647 DOI: 10.1016/j.jad.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.
Collapse
Affiliation(s)
- Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
5
|
Zeng D, Li D, Li Q, He Y, Li S. Distinct cortical connectome organization of hippocampal subfields is associated with episodic memory. Sci Bull (Beijing) 2024:S2095-9273(24)00348-7. [PMID: 38824119 DOI: 10.1016/j.scib.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Affiliation(s)
- Debin Zeng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Deyu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reaility Technology and Systems, Beihang University, Beijing 100083, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Lorenzetti V, Gaillard A, McTavish E, Grace S, Rossetti MG, Batalla A, Bellani M, Brambilla P, Chye Y, Conrod P, Cousijn J, Labuschagne I, Clemente A, Mackey S, Rendell P, Solowij N, Suo C, Li CSR, Terrett G, Thompson PM, Yücel M, Garavan H, Roberts CA. Cannabis Dependence is Associated with Reduced Hippocampal Subregion Volumes Independently of Sex: Findings from an ENIGMA Addiction Working Group Multi-Country Study. Cannabis Cannabinoid Res 2024. [PMID: 38498015 DOI: 10.1089/can.2023.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Males and females who consume cannabis can experience different mental health and cognitive problems. Neuroscientific theories of addiction postulate that dependence is underscored by neuroadaptations, but do not account for the contribution of distinct sexes. Further, there is little evidence for sex differences in the neurobiology of cannabis dependence as most neuroimaging studies have been conducted in largely male samples in which cannabis dependence, as opposed to use, is often not ascertained. Methods: We examined subregional hippocampus and amygdala volumetry in a sample of 206 people recruited from the ENIGMA Addiction Working Group. They included 59 people with cannabis dependence (17 females), 49 cannabis users without cannabis dependence (20 females), and 98 controls (33 females). Results: We found no group-by-sex effect on subregional volumetry. The left hippocampal cornu ammonis subfield 1 (CA1) volumes were lower in dependent cannabis users compared with non-dependent cannabis users (p<0.001, d=0.32) and with controls (p=0.022, d=0.18). Further, the left cornu ammonis subfield 3 (CA3) and left dentate gyrus volumes were lower in dependent versus non-dependent cannabis users but not versus controls (p=0.002, d=0.37, and p=0.002, d=0.31, respectively). All models controlled for age, intelligence quotient (IQ), alcohol and tobacco use, and intracranial volume. Amygdala volumetry was not affected by group or group-by-sex, but was smaller in females than males. Conclusions: Our findings suggest that the relationship between cannabis dependence and subregional volumetry was not moderated by sex. Specifically, dependent (rather than non-dependent) cannabis use may be associated with alterations in selected hippocampus subfields high in cannabinoid type 1 (CB1) receptors and implicated in addictive behavior. As these data are cross-sectional, it is plausible that differences predate cannabis dependence onset and contribute to the initiation of cannabis dependence. Longitudinal neuroimaging work is required to examine the time-course of the onset of subregional hippocampal alterations in cannabis dependence, and their progression as cannabis dependence exacerbates or recovers over time.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- Centre for Mental Health and Department of Health Sciences and Biostatistics, Swinburne University, Hawthorn, Australia
| | - Eugene McTavish
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Sally Grace
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Maria Gloria Rossetti
- UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marcella Bellani
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Paolo Brambilla
- UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Canada
| | - Janna Cousijn
- Neuroscience of Addiction Lab, Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Izelle Labuschagne
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Peter Rendell
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gill Terrett
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Paul M Thompson
- Department of Neurology, Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Murat Yücel
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Hugh Garavan
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Carl A Roberts
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Kullmann S, Zhao S, Semeia L, Veit R, Luo S, Angelo B, Chow T, Birkenfeld A, Preissl H, Xiang A, Page K. Exposure to gestational diabetes mellitus in utero impacts hippocampal functional connectivity in response to food cues in children. RESEARCH SQUARE 2024:rs.3.rs-3953330. [PMID: 38559106 PMCID: PMC10980092 DOI: 10.21203/rs.3.rs-3953330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Objectives Intrauterine exposure to gestational diabetes mellitus (GDM) increases the risk of obesity in the offspring, but little is known about the underlying neural mechanisms. The hippocampus is crucial for food intake regulation and is vulnerable to the effects of obesity. The purpose of the study was to investigate whether GDM exposure affects hippocampal functional connectivity during exposure to food cues using functional magnetic resonance imaging. Methods Participants were 90 children age 7-11 years (53 females) who underwent an fMRI-based visual food cue task in the fasted state. Hippocampal functional connectivity (FC) was examined using generalized psychophysiological interaction in response to high-calorie food versus non-food cues. Food-cue induced hippocampal FC was compared between children with and without GDM exposure, while controlling for possible confounding effects of age, sex and waist-to-hip ratio. Results Children with GDM exposure exhibited stronger hippocampal FC to the insula and striatum (i.e., putamen, pallidum and nucleus accumbens) compared to unexposed children, while viewing high caloric food cues. Conclusions Intrauterine exposure to GDM was associated with higher food-cue induced hippocampal FC to reward processing regions. Future studies with longitudinal measurements are needed to clarify whether increased hippocampal FC to reward processing regions may raise the risk of the development of metabolic diseases later in life.
Collapse
Affiliation(s)
| | | | | | | | | | - Brendan Angelo
- Keck School of Medicine, University of Southern California
| | - Ting Chow
- Kaiser Permanente Southern California
| | | | | | | | | |
Collapse
|
8
|
Boecker H, Daamen M, Kunz L, Geiß M, Müller M, Neuss T, Henschel L, Stirnberg R, Upadhyay N, Scheef L, Martin JA, Stöcker T, Radbruch A, Attenberger U, Axmacher N, Maurer A. Hippocampal subfield plasticity is associated with improved spatial memory. Commun Biol 2024; 7:271. [PMID: 38443439 PMCID: PMC10914736 DOI: 10.1038/s42003-024-05949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Physical exercise studies are generally underrepresented in young adulthood. Seventeen subjects were randomized into an intervention group (24.2 ± 3.9 years; 3 trainings/week) and 10 subjects into a passive control group (23.7 ± 4.2 years), over a duration of 6 months. Every two months, performance diagnostics, computerized spatial memory tests, and 3 Tesla magnetic resonance imaging were conducted. Here we find that the intervention group, compared to controls, showed increased cardiorespiratory fitness, spatial memory performance and subregional hippocampal volumes over time. Time-by-condition interactions occurred in right cornu ammonis 4 body and (trend only) dentate gyrus, left hippocampal tail and left subiculum. Increases in spatial memory performance correlated with hippocampal body volume changes and, subregionally, with left subicular volume changes. In conclusion, findings support earlier reports of exercise-induced subregional hippocampal volume changes. Such exercise-related plasticity may not only be of interest for young adults with clinical disorders of hippocampal function, but also for sedentary normal cohorts.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany.
| | - Marcel Daamen
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Melanie Geiß
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Moritz Müller
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Neuss
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Leonie Henschel
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Rüdiger Stirnberg
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lukas Scheef
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jason A Martin
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| |
Collapse
|
9
|
Cai L, Maikusa N, Zhu Y, Nishida A, Ando S, Okada N, Kasai K, Nakamura Y, Koike S. Hippocampal Structures Among Japanese Adolescents Before and After the COVID-19 Pandemic. JAMA Netw Open 2024; 7:e2355292. [PMID: 38329755 PMCID: PMC10853829 DOI: 10.1001/jamanetworkopen.2023.55292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/16/2023] [Indexed: 02/09/2024] Open
Abstract
Importance Few studies have used a large-sample, longitudinal, population-based cohort study to examine whether the COVID-19 pandemic as a global major life event is associated with structural plasticity of the adolescent hippocampus. Objective To examine whether Japan's first state of emergency (SoE) during the COVID-19 pandemic was associated with alterations in the macrostructures and microstructures of the hippocampus during its development. Design, Setting, and Participants The population-neuroscience Tokyo TEEN Cohort study is a prospective cohort study with 4 consecutive waves in Tokyo, Japan. Due to the SoE, data collection was suspended between March 27, 2020, and July 30, 2020. Analyzed data, comprising 1149 brain structural scans obtained from 479 participants, of whom 336 participants had undergone 2 or more scans, were collected between October 2013 and November 2021. Data were analyzed from August 2022 to December 2023. Exposures Japan's first SoE (April 7 to May 25, 2020). Main Outcomes and Measures Hippocampal volume, 12 hippocampal subfield volumes, and 7 microstructural measures of the hippocampus. Results A total of 1060 brain scans from 459 participants (214 female participants [47%]) including 246 participants from wave 1 (median [IQR] age, 11.3 [11.1-11.7] years), 358 from wave 2 (median [IQR] age, 13.8 [13.3-14.5] years), 304 from wave 3 (median [IQR] age, 15.9 [15.4-16.5] years), and 152 from wave 4 (median [IQR] age, 17.9 [17.5-18.4] years) were included in the final main analysis. The generalized additive mixed model showed a significant associations of the SoE with the mean hippocampal volume (β = 102.19; 95% CI, 0.61-203.77; P = .049). The generalized linear mixed models showed the main associations of the SoE with hippocampal subfield volume (granule cell and molecular layer of the dentate gyrus: β = 18.19; 95% CI, 2.97-33.41; uncorrected P = .02; CA4: β = 12.75; 95% CI, 0.38-25.12; uncorrected P = .04; hippocampus-amygdala transition area: β = 5.67; 95% CI, 1.18-10.17; uncorrected P = .01), and fractional anisotropy (β = 0.03; 95% CI, 0.00-0.06; uncorrected P = .04). Conclusions and Relevance After the first SoE, a volumetric increase in the hippocampus and trend increase in 3 subfield volumes and microstructural integration of the hippocampus were observed, suggesting that the transient plasticity of the adolescent hippocampus was affected by a major life event along with the typical developmental trajectory.
Collapse
Affiliation(s)
- Lin Cai
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Nishida
- Research Center for Social Science and Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Okada
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Yarmohammadi-Samani P, Vatanparast J. Sex-specific dendritic morphology of hippocampal pyramidal neurons in the adolescent and young adult rats. Int J Dev Neurosci 2024; 84:47-63. [PMID: 37933732 DOI: 10.1002/jdn.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
CA1 and CA3 pyramidal neurons are the major sources of hippocampal efferents. The structural features of these neurons are presumed to be involved in various normal/abnormal cognitive and emotional outcomes by influencing the pattern of synaptic inputs and neuronal signal processing. Although many studies have described hippocampal structure differences between males and females, these reports mainly focused on gross anatomical features in adult or aged models, and such distinctions on neuronal morphology and dendritic spine density during adolescence, a period of high vulnerability to neurodevelopmental disorders, have received much less attention. In this work, we analyzed dendritic architecture and density of spines in CA1 and CA3 neurons of male and female rats in early adolescence (postnatal day, PND 40) and compared them with those in late adolescence/young adulthood (PND 60). On PND 40, CA1 neurons of male rats showed more Sholl intersections and spine density in apical and basal dendrites compared to those in females. The Sholl intersections in basal dendrites of CA3 neurons were also more in males, whereas the number of apical dendrite intersections was not significantly different between sexes. In male rats, there was a notable decrease in the number of branch and terminal points in the basal dendrite of CA1 neurons of young adults when compared to their sex-matched adolescent rats. On the other hand, CA1 neurons in young adult females also showed more Sholl intersections in apical and basal dendrites compared to adolescent females. Meanwhile, the total cable length, the number of branches, and terminal points of apical dendrites in CA3 neurons also exhibited a significant reduction in young adult male rats compared to their sex-matched adolescents. In young adult rats, both apical and basal dendrites of CA3 neurons in males showed fewer intersections with Sholl circles, but there were no significant differences in dendritic spine density or count estimation between males and females. On the other hand, young adult female rats had more Sholl intersections and dendritic spine count on the basal dendrites of CA3 neurons compared to adolescent females. Although no significant sex- and age-dependent difference in neuronal density was detected in CA1 and CA3 subareas, CA3 pyramidal neurons of both male and female rats showed reduced soma area compared to adolescent rats. Our findings show that the sex differences in the dendritic structure of CA1 and CA3 neurons vary by age and also by the compartments of dendritic arbors. Such variations in the morphology of hippocampal pyramidal neurons may take part as a basis for normal cognitive and affective differences between the sexes, as well as distinct sensitivity to interfering factors and the prevalence of neuropsychological diseases.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Zhang J, Xie L, Cheng C, Liu Y, Zhang X, Wang H, Hu J, Yu H, Xu J. Hippocampal subfield volumes in mild cognitive impairment and alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:778-793. [PMID: 37768441 DOI: 10.1007/s11682-023-00804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The hippocampus is a complex structure that consists of several subfields with distinct and specialized functions. Although numerous studies have been performed to explore hippocampal atrophy at the sub-regional level in mild cognitive impairment (MCI) and Alzheimer's disease (AD), the results have been inconsistent especially for whether and which subfields can be served as the most potential biomarkers in MCI and AD. Herein, we used a meta-analytic approach to synthesize the extant literatures on hippocampal subfields in MCI and AD through PubMed, Web of Science, and Embase (PROSPERO CRD42021257586). As a result, a total of twenty studies using Freesurfer 5 and Freesurfer 6 were included in this investigation. These studies revealed that at the sub-regional level, hippocampal subfield volume reductions in MCI and AD were not restricted to specific subfields, and subiculum and presubiculum had the largest z-scores across most comparisons. However, none of the subfield performed much better in discriminating MCI and HC, AD and MCI, AD and HC as compared to whole hippocampus volume. These results suggested that we should explore the changes in the hippocampal subfields in subtypes of MCI or even at an earlier stage, that is subjective cognitive impairment.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Linlin Xie
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Changjiang Cheng
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoyu Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingting Hu
- College of Creative Design, Shenzhen Technology University, Shenzhen, China
| | - Haibo Yu
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Homayouni R, Canada KL, Saifullah S, Foster D, Thill C, Raz N, Daugherty AM, Ofen N. Age-related differences in hippocampal subfield volumes across the human lifespan: A meta-analysis. Hippocampus 2023; 33:1292-1315. [PMID: 37881160 PMCID: PMC10841547 DOI: 10.1002/hipo.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | | | | | - Da’Jonae Foster
- Department of Psychology, Wayne State University, Detroit, MI
| | | | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Max Planck Institute for Human Development, Berlin, Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| |
Collapse
|
13
|
Wang Y, Ma L, Chen R, Liu N, Zhang H, Li Y, Wang J, Hu M, Zhao G, Men W, Tan S, Gao J, Qin S, He Y, Dong Q, Tao S. Emotional and behavioral problems change the development of cerebellar gray matter volume, thickness, and surface area from childhood to adolescence: A longitudinal cohort study. CNS Neurosci Ther 2023; 29:3528-3548. [PMID: 37287420 PMCID: PMC10580368 DOI: 10.1111/cns.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Increasing evidence indicates that major neurodevelopmental disorders have potential links to abnormal cerebellar development. However, the developmental trajectories of cerebellar subregions from childhood to adolescence are lacking, and it is not clear how emotional and behavioral problems affect them. We aim to map the developmental trajectories of gray matter volume (GMV), cortical thickness (CT), and surface area (SA) in cerebellar subregions from childhood to adolescence and examine how emotional and behavioral problems change the cerebellar development trajectory in a longitudinal cohort study. METHOD This population-based longitudinal cohort study used data on a representative sample of 695 children. Emotional and behavioral problems were assessed at baseline and at three annual follow-ups with the Strengths and Difficulties Questionnaire (SDQ). RESULTS Using an innovative automated image segmentation technique, we quantified the GMV, CT, and SA of the whole cerebellum and 24 subdivisions (lobules I-VI, VIIB, VIIIA&B, and IX-X plus crus I-II) with 1319 MRI scans from a large longitudinal sample of 695 subjects aged 6-15 years and mapped their developmental trajectories. We also examined sex differences and found that boys showed more linear growth, while girls showed more nonlinear growth. Boys and girls showed nonlinear growth in the cerebellar subregions; however, girls reached the peak earlier than boys. Further analysis found that emotional and behavioral problems modulated cerebellar development. Specifically, emotional symptoms impede the expansion of the SA of the cerebellar cortex, and no gender differences; conduct problems lead to inadequate cerebellar GMV development only in girls, but not boys; hyperactivity/inattention delays the development of cerebellar GMV and SA, with left cerebellar GMV, right VIIIA GMV and SA in boys and left V GMV and SA in girls; peer problems disrupt CT growth and SA expansion, resulting in delayed GMV development, with bilateral IV, right X CT in boys and right Crus I GMV, left V SA in girls; and prosocial behavior problems impede the expansion of the SA and lead to excessive CT growth, with bilateral IV, V, right VI CT, left cerebellum SA in boys and right Crus I GMV in girls. CONCLUSIONS This study maps the developmental trajectories of GMV, CT, and SA in cerebellar subregions from childhood to adolescence. In addition, we provide the first evidence for how emotional and behavioral problems affect the dynamic development of GMV, CT, and SA in the cerebellum, which provides an important basis and guidance for the prevention and intervention of cognitive and emotional behavioral problems in the future.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yuanyuan Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan HospitalPeking UniversityBeijingChina
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
14
|
Orendain N, Ayaz A, Chung PJ, Bookheimer S, Galván A. Perceptions of neighborhood threat and caregiver support in early adolescence: Sex differences in neural and behavioral correlates in the ABCD study. CHILD ABUSE & NEGLECT 2023:106446. [PMID: 37704547 DOI: 10.1016/j.chiabu.2023.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Adolescents, particularly racial and ethnic minorities, are at increased risk for neighborhood threat and violence exposure, which impacts behavioral and neural outcomes. Caregiver support is associated with healthy socioemotional adjustment and self-regulatory and coping behaviors; however, it remains unclear whether caregiver support, specifically, consolation, can moderate the behavioral and neural impacts of neighborhood threat. OBJECTIVE The aim of this study was to examine the role of youth-perceived neighborhood threat on neural and behavioral correlates and to test the moderating potential of caregiver support. Sex differences in associations were examined. PARTICIPANTS AND SETTING 11,559 nine- and ten-year old youth enrolled in the multi-site Adolescent Brain Cognitive Development (ABCD) Study at baseline. METHODS Associations were examined via linear regression models employing youth-perceived neighborhood threat and caregiver support. Regression and interaction models controlled for youth age, sex, race and ethnicity, primary caregiver's education, family income, family structure, youth-perceived school threat, and intracranial volume when examining neural outcomes. An ANOVA employing a Chi-square test and simple slopes analysis were used to identify significant interactions in moderation models. RESULTS Neighborhood threat is associated with structural alterations in the left amygdala (p = .004). Meanwhile, caregiver support interacts in a dose-response fashion with neighborhood threat to attenuate its relationship with left amygdala volume (p = .008). Among youth reporting neighborhood threat, problematic behaviors were more common (p < .0001). While not significant, males reported higher rates of neighborhood threat than females (p = .267). Females reported greater levels of caregiver support (p = .017). Lastly, racial and ethnic differences in neighborhood threat and caregiver support were evident (p < .001). CONCLUSIONS While youth may not have been exposed to direct or immediate sources of threat and violence, these findings shed light on the impact of neighborhood threat perception on problematic behaviors and amygdala volume among nine- and ten-year olds. Future research should identify other culturally inclusive sources and measures of support and resiliency.
Collapse
Affiliation(s)
- Natalia Orendain
- Center for Cognitive Neuroscience, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Aliza Ayaz
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Paul J Chung
- Departments of Pediatrics and Health Policy & Management, University of California, Los Angeles, CA, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Susan Bookheimer
- Center for Cognitive Neuroscience, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Adriana Galván
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Vinci-Booher S, Schlichting ML, Preston AR, Pestilli F. Development of human hippocampal subfield microstructure and relation to associative inference. Cereb Cortex 2023; 33:10207-10220. [PMID: 37557916 PMCID: PMC10502573 DOI: 10.1093/cercor/bhad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023] Open
Abstract
The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree to which the cellular organization within each subfield is related to these functions throughout development is not well understood. We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field 1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference; neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields might undergo distinct developmental trajectories that support inference and memory performance throughout development.
Collapse
Affiliation(s)
- Sophia Vinci-Booher
- Indiana University, Psychological and Brain Sciences, 1101 E. 10th St., Bloomington, Indiana, 47405, United States
- Vanderbilt University, Psychology and Human Development, 230 Appleton Pl., Nashville, TN 37203, United States
| | - Margaret L Schlichting
- University of Toronto, Psychology, 100 St. George St., Toronto, ON M5S 3G3, Canada
- University of Texas at Austin, Psychology, 108 E. Dean Keeton Street, Austin, TX 78712, United States
| | - Alison R Preston
- University of Texas at Austin, Psychology, 108 E. Dean Keeton Street, Austin, TX 78712, United States
| | - Franco Pestilli
- University of Texas at Austin, Psychology, 108 E. Dean Keeton Street, Austin, TX 78712, United States
| |
Collapse
|
16
|
Plachti A, Latzman RD, Balajoo SM, Hoffstaedter F, Madsen KS, Baare W, Siebner HR, Eickhoff SB, Genon S. Hippocampal anterior- posterior shift in childhood and adolescence. Prog Neurobiol 2023; 225:102447. [PMID: 36967075 PMCID: PMC10185869 DOI: 10.1016/j.pneurobio.2023.102447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Hippocampal-cortical networks play an important role in neurocognitive development. Applying the method of Connectivity-Based Parcellation (CBP) on hippocampal-cortical structural covariance (SC) networks computed from T1-weighted magnetic resonance images, we examined how the hippocampus differentiates into subregions during childhood and adolescence (N = 1105, 6-18 years). In late childhood, the hippocampus mainly differentiated along the anterior-posterior axis similar to previous reported functional differentiation patterns of the hippocampus. In contrast, in adolescence a differentiation along the medial-lateral axis was evident, reminiscent of the cytoarchitectonic division into cornu ammonis and subiculum. Further meta-analytical characterization of hippocampal subregions in terms of related structural co-maturation networks, behavioural and gene profiling suggested that the hippocampal head is related to higher order functions (e.g. language, theory of mind, autobiographical memory) in late childhood morphologically co-varying with almost the whole brain. In early adolescence but not in childhood, posterior subicular SC networks were associated with action-oriented and reward systems. The findings point to late childhood as an important developmental period for hippocampal head morphology and to early adolescence as a crucial period for hippocampal integration into action- and reward-oriented cognition. The latter may constitute a developmental feature that conveys increased propensity for addictive disorders.
Collapse
Affiliation(s)
- Anna Plachti
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
| | - Robert D Latzman
- Data Sciences Institute, Takeda Pharmaceutical, Cambridge, MA, USA
| | | | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - William Baare
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; GIGA-CRC In vivo Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
17
|
Shi Y, Yang Y, Li W, Zhao Z, Yan L, Wang W, Aschner M, Zhang J, Zheng G, Shen X. High blood lead level correlates with selective hippocampal subfield atrophy and neuropsychological impairments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114945. [PMID: 37105093 DOI: 10.1016/j.ecoenv.2023.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lead contamination is a major public health concern. Previous studies have demonstrated that lead exposure could affect the hippocampus, which is a complex and heterogeneous structure composed of 12 subregions. Here, we explored volumetric and functional changes in hippocampal subfields and neuropsychological alterations after lead exposure. METHODS We performed a cross-sectional study at a smelting company between September 2020 and December 2021. Blood lead level was recorded, and neuropsychological functions were assessed by Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). The hippocampus was segmented into 12 subfields in each hemisphere in magnetic resonance images (MRIs). Then, the effect of altered hippocampal subfield volumes on brain functions were studied by seed-based functional connectivity (FC) analysis. Finally, the relationships between the lead level with hippocampal subfield volumes and neuropsychological functions were investigated. Baseline characteristics, hippocampal subfield volumes, and FC analysis were compared between lead-exposed (≥ 300 μg/L) and the control group (≤ 100 μg/L). RESULTS In 76 participants, lead level positively correlated with SDS(r = 0.422) and negatively correlated with MoCA(r = -0.414), MMSE(r = -0.251), Concentration(r = -0.331), Recall(r = -0.319), Orientation(r = -0.298) and Executive Function/Visuospatial abilities(r = -0.231). Lead group (26 participants) had lower MoCA and MMSE and higher SDS than control group (23 participants). A significantly decreased volume in the left CA4 and GC-ML-DG subfields was found in the lead group compared with the control group. The left GC-ML-DG of the lead group showed a decreased FC with the bilateral postcentral gyrus. The left CA4(r = -0.409) and left GC-ML-DG (r = -0.383) volumes negatively correlated with lead level. The FC between left GC-ML-DG and left postcentral gyrus positively correlated with MoCA(r = 0.318), MMSE(r = 0.379) and Recall(r = 0.311). The FC between left GC-ML-DG and right postcentral gyrus positively correlated with MoCA(r = 0.326), Executive Function/Visuospatial abilities(r = 0.307) and Concentration(r = 0.297). CONCLUSION High blood lead level was associated with neuropsychological alterations, hippocampal structural and functional changes. The left GC-ML-DG and CA4 atrophy might serve as predictive imaging markers for neurological damage associated with high lead exposure.
Collapse
Affiliation(s)
- Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yang Yang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Linfeng Yan
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wen Wang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
18
|
Huang L, Li H, Shu Y, Li K, Xie W, Zeng Y, Long T, Zeng L, Liu X, Peng D. Changes in Functional Connectivity of Hippocampal Subregions in Patients with Obstructive Sleep Apnea after Six Months of Continuous Positive Airway Pressure Treatment. Brain Sci 2023; 13:brainsci13050838. [PMID: 37239310 DOI: 10.3390/brainsci13050838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that the structural and functional impairments of hippocampal subregions in patients with obstructive sleep apnea (OSA) are related to cognitive impairment. Continuous positive airway pressure (CPAP) treatment can improve the clinical symptoms of OSA. Therefore, this study aimed to investigate functional connectivity (FC) changes in hippocampal subregions of patients with OSA after six months of CPAP treatment (post-CPAP) and its relationship with neurocognitive function. We collected and analyzed baseline (pre-CPAP) and post-CPAP data from 20 patients with OSA, including sleep monitoring, clinical evaluation, and resting-state functional magnetic resonance imaging. The results showed that compared with pre-CPAP OSA patients, the FC between the right anterior hippocampal gyrus and multiple brain regions, and between the left anterior hippocampal gyrus and posterior central gyrus were reduced in post-CPAP OSA patients. By contrast, the FC between the left middle hippocampus and the left precentral gyrus was increased. The changes in FC in these brain regions were closely related to cognitive dysfunction. Therefore, our findings suggest that CPAP treatment can effectively change the FC patterns of hippocampal subregions in patients with OSA, facilitating a better understanding of the neural mechanisms of cognitive function improvement, and emphasizing the importance of early diagnosis and timely treatment of OSA.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
19
|
Chao AM, Zhou Y, Erus G, Davatzikos C, Cardel MI, Foster GD, Wadden TA. A randomized controlled trial examining the effects of behavioral weight loss treatment on hippocampal volume and neurocognition. Physiol Behav 2023; 267:114228. [PMID: 37156318 DOI: 10.1016/j.physbeh.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND/PURPOSE Obesity in midlife is an established risk factor for dementia. In middle-aged adults, elevated body mass index (BMI) is associated with lower neurocognition and smaller hippocampal volumes. It is unclear whether behavioral weight loss (BWL) can improve neurocognition. The purpose of this study was to evaluate whether BWL, compared to wait list control (WLC), improved hippocampal volume and neurocognition. We also examined if baseline hippocampal volume and neurocognition were associated with weight loss. METHODS We randomly assigned women with obesity (N=61; mean±SD age=41.1±9.9 years; BMI=38.6±6.2 kg/m2; and 50.8% Black) to BWL or WLC. Participants completed assessments at baseline and follow-up including T1-weighted structural magnetic resonance imaging scans and the National Institutes of Health (NIH) Toolbox Cognition Battery. RESULTS The BWL group lost 4.7±4.9% of initial body weight at 16 to 25 weeks, which was significantly more than the WLC group which gained 0.2±3.5% (p<0.001). The BWL and WLC groups did not differ significantly in changes in hippocampal volume or neurocognition (ps>0.05). Baseline hippocampal volume and neurocognition scores were not significantly associated with weight loss (ps>0.05). CONCLUSIONS AND IMPLICATIONS Contrary to our hypothesis, we found no overall benefit of BWL relative to WLC on hippocampal volumes or cognition in young- and middle-aged women. Baseline hippocampal volume and neurocognition were not associated with weight loss.
Collapse
Affiliation(s)
- Ariana M Chao
- University of Pennsylvania School of Nursing, Department of Biobehavioral Health Sciences, Philadelphia, PA, USA; Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA.
| | - Yingjie Zhou
- University of Pennsylvania School of Nursing, Department of Biobehavioral Health Sciences, Philadelphia, PA, USA
| | - Guray Erus
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA; University of Pennsylvania, Center for Biomedical Image Computing and Analytics, Philadelphia, PA, USA
| | - Christos Davatzikos
- University of Pennsylvania, Center for Biomedical Image Computing and Analytics, Philadelphia, PA, USA
| | - Michelle I Cardel
- WW International, Inc., New York, New York, USA; Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gary D Foster
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA; WW International, Inc., New York, New York, USA
| | - Thomas A Wadden
- Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| |
Collapse
|
20
|
Dettweiler U, Gerchen M, Mall C, Simon P, Kirsch P. Choice matters: Pupils' stress regulation, brain development and brain function in an outdoor education project. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2023; 93 Suppl 1:152-173. [PMID: 35872620 DOI: 10.1111/bjep.12528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Education outside the classroom (EOtC) is considered beneficial to children's physical and mental health. Especially, stress resilience has been linked to nature experience. AIMS This study experimentally explored the effects of pupils' autonomy support (AUT) and physical activity (PA) on their biological stress responses and brain development in EOtC. SAMPLE The study comprised 48 fifth and sixth graders. METHODS The intervention consisted of one day/week taught in a forest over one school year. Structural magnetic resonance imaging (MRI) was conducted at the beginning and the end of the school year, functional MRI under a stress condition at the end. Regions of interest were amygdala, hippocampus and the anterior cingulate cortex (ACC). All other measures were obtained at the beginning, at mid-term and at the end of the school year. PA was measured using accelerometry. Cortisol levels were obtained three times during the examined school days. AUT was measured with a paper-based survey. Data were analysed using Bayesian multivariate models. RESULTS EOtC students exhibit more efficient regulation of biological stress-reactivity and show a reduction of cortisol over the day associated with light PA in the forest. Cortisol is further associated with amygdala activation in the stress condition. Cerebral structural change is best explained by age; however, AUT has a positive direct effect on the maturation of the ACC, which is stronger in EOtC. CONCLUSIONS Our results support the idea that autonomy supportive teaching fosters cerebral maturation and that EOtC can have a positive effect on biological stress regulation.
Collapse
Affiliation(s)
- Ulrich Dettweiler
- Cognitive and Behavioral Neuroscience Lab, Faculty of Arts and Education, University of Stavanger, Stavanger, Norway
| | - Martin Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Mall
- Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Perikles Simon
- Faculty of Social Science, Media and Sport, Johannes Gutenberg University, Mainz, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
21
|
Dick AS, Ralph Y, Farrant K, Reeb-Sutherland B, Pruden S, Mattfeld AT. Volumetric development of hippocampal subfields and hippocampal white matter connectivity: Relationship with episodic memory. Dev Psychobiol 2022; 64:e22333. [PMID: 36426794 DOI: 10.1002/dev.22333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
The hippocampus is a complex structure composed of distinct subfields. It has been central to understanding neural foundations of episodic memory. In the current cross-sectional study, using a large sample of 830, 3- to 21-year-olds from a unique, publicly available dataset we examined the following questions: (1) Is there elevated grey matter volume of the hippocampus and subfields in late compared to early development? (2) How does hippocampal volume compare with the rest of the cerebral cortex at different developmental stages? and (3) What is the relation between hippocampal volume and connectivity with episodic memory performance? We found hippocampal subfield volumes exhibited a nonlinear relation with age and showed a lag in volumetric change with age when compared to adjacent cortical regions (e.g., entorhinal cortex). We also observed a significant reduction in cortical volume across older cohorts, while hippocampal volume showed the opposite pattern. In addition to age-related differences in gray matter volume, dentate gyrus/cornu ammonis 3 volume was significantly related to episodic memory. We did not, however, find any associations with episodic memory performance and connectivity through the uncinate fasciculus, fornix, or cingulum. The results are discussed in the context of current research and theories of hippocampal development and its relation to episodic memory.
Collapse
Affiliation(s)
- Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Yvonne Ralph
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Kristafor Farrant
- Department of Psychology, Florida International University, Miami, Florida, USA
| | | | - Shannon Pruden
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
22
|
Botdorf M, Dunstan J, Sorcher L, Dougherty LR, Riggins T. Socioeconomic disadvantage and episodic memory ability in the ABCD sample: Contributions of hippocampal subregion and subfield volumes. Dev Cogn Neurosci 2022; 57:101138. [PMID: 35907312 PMCID: PMC9335384 DOI: 10.1016/j.dcn.2022.101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/06/2023] Open
Abstract
Socioeconomic disadvantage is associated with volumetric differences in stress-sensitive neural structures, including the hippocampus, and deficits in episodic memory. Rodent studies provide evidence that memory deficits arise via stress-related structural differences in hippocampal subdivisions; however, human studies have only provided limited evidence to support this notion. We used a sample of 10,695 9-13-year-old participants from two timepoints of the Adolescent Brain and Cognitive Development (ABCD) Study to assess whether socioeconomic disadvantage relates to episodic memory performance through hippocampal volumes. We explored associations among socioeconomic disadvantage, measured via the Area Deprivation Index (ADI), concurrent subregion (anterior, posterior) and subfield volumes (CA1, CA3, CA4/DG, subiculum), and episodic memory, assessed via the NIH Toolbox Picture Sequence Memory Test at baseline and 2-year follow-up (Time 2). Results showed that higher baseline ADI related to smaller concurrent anterior, CA1, CA4/DG, and subiculum volumes and poorer Time 2 memory performance controlling for baseline memory. Moreover, anterior, CA1, and subiculum volumes mediated the longitudinal association between the ADI and memory. Results suggest that greater socioeconomic disadvantage relates to smaller hippocampal subregion and subfield volumes and less age-related improvement in memory. These findings shed light on the neural mechanisms linking socioeconomic disadvantage and cognitive ability in childhood.
Collapse
Affiliation(s)
- Morgan Botdorf
- University of Maryland, College Park, Department of Psychology, United States; University of Pennsylvania, Department of Psychology, United States.
| | - Jade Dunstan
- University of Maryland, College Park, Department of Psychology, United States
| | - Leah Sorcher
- University of Maryland, College Park, Department of Psychology, United States
| | - Lea R Dougherty
- University of Maryland, College Park, Department of Psychology, United States
| | - Tracy Riggins
- University of Maryland, College Park, Department of Psychology, United States
| |
Collapse
|
23
|
Learning and memory impairment and transcriptomic profile in hippocampus of offspring after maternal fructose exposure during gestation and lactation. Food Chem Toxicol 2022; 169:113394. [PMID: 36049592 DOI: 10.1016/j.fct.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Increased fructose intake is a global issue, especially in mothers. Maternal fructose exposure during gestation and lactation can affect learning and memory in offspring; however, the detailed mechanism is still unknown. The hippocampus is a mind locale liable for learning and memory. Here, we established a maternal high-fructose diet model by administering 13% and 40% fructose water, applied the Morris Water Maze test on postnatal day 60 offspring, and performed full-length RNA sequencing using the Oxford Nanopore Technologies platform to explore the changes in gene expression in the hippocampus. The results showed that learning and memory in offspring were negatively affected. Compared with the control group, 369 differentially expressed transcripts (DETs) were identified in the 13% fructose group, and 501 DETs were identified in the 40% fructose group. Gene Ontology enriched term and Kyoto Encyclopedia of Genes and Genomes enriched pathway analyses identified several terms and pathways related to brain development and cognitive function. Furthermore, we confirmed that the Wnt/β-catenin signaling pathway was down-regulated and neuron degeneration was enhanced. In summary, our results indicate that maternal fructose exposure during gestation and lactation can impair learning and memory in offspring and affect brain function at the transcriptome level.
Collapse
|
24
|
Rakesh D, Zalesky A, Whittle S. Assessment of Parent Income and Education, Neighborhood Disadvantage, and Child Brain Structure. JAMA Netw Open 2022; 5:e2226208. [PMID: 35980639 PMCID: PMC9389347 DOI: 10.1001/jamanetworkopen.2022.26208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IMPORTANCE Although different aspects of socioeconomic status (SES) may represent distinct risk factors for poor mental health in children, knowledge of their differential and synergistic associations with the brain is limited. OBJECTIVE To examine the independent associations between distinct SES factors and child brain structure. DESIGN, SETTING, AND PARTICIPANTS We used baseline data from participants aged 9 to 10 years in the Adolescent Brain Cognitive Development (ABCD) study. These data were collected from 21 US sites between September 2017 and August 2018. Study participants were recruited from schools to create a participant sample that closely reflects the US population. EXPOSURES Neighborhood disadvantage was measured using the area deprivation index. We also used data on total parent or caregiver educational attainment (in years) and household income-to-needs ratio. MAIN OUTCOMES AND MEASURES T1-weighted magnetic resonance imaging was used to assess measures of cortical thickness, surface area, and subcortical volume. RESULTS Data from 8862 ABCD participants aged 9 to 10 years were analyzed. The mean (SD) age was 119.1 (7.5) months; there were 4243 girls (47.9%) and 4619 boys (52.1%). Data on race or ethnicity were available for 8857 of 8862 participants: 173 (2.0%) were Asian, 1099 (12.4%) were Black or African American, 1688 (19.1%) were Hispanic, 4967 (56.1%) were White, and 930 (10.5%) reported multiple races or ethnicities. Using 10-fold, within-sample split-half replication, we found that neighborhood disadvantage was associated with lower cortical thickness in the following brain regions (η2 = 0.004-0.009): cuneus (B [SE] = -0.099 [0.013]; P < .001), lateral occipital (B [SE] = -0.088 [0.011]; P < .001), lateral orbitofrontal (B [SE] = -0.072 [0.012]; P < .001), lingual (B [SE] = -0.104 [0.012]; P < .001), paracentral (B [SE] = -0.086 [0.012]; P < .001), pericalcarine (B [SE] = -0.077 [0.012]; P < .001), postcentral (B [SE] = -0.069 [0.012]; P < .001), precentral (B [SE] = -0.059 [0.011]; P < .001), rostral middle frontal (B [SE] = -0.076 [0.011]; P < .001), and superior parietal (B [SE] = -0.060 [0.011]; P < .001). Exploratory analyses showed that the associations of low educational attainment or neighborhood disadvantage and low cortical thickness were attenuated in the presence of a high income-to-needs ratio (η2 = 0.003-0.007). CONCLUSIONS AND RELEVANCE The findings of this cross-sectional study suggest that different SES indicators have distinct associations with children's brain structure. A high income-to-needs ratio may play a protective role in the context of neighborhood disadvantage and low parent or caregiver educational attainment. This study highlights the importance of considering the joint associations of different SES indicators in future work.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia
- Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Di Benedetto MG, Scassellati C, Cattane N, Riva MA, Cattaneo A. Neurotrophic factors, childhood trauma and psychiatric disorders: A systematic review of genetic, biochemical, cognitive and imaging studies to identify potential biomarkers. J Affect Disord 2022; 308:76-88. [PMID: 35378148 DOI: 10.1016/j.jad.2022.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exposure to traumatic experience represents one of the key environmental factors influencing the risk for several psychiatric disorders, in particular when suffered during childhood, a critical period for brain development, characterized by a high level of neuroplasticity. Abnormalities affecting neurotrophic factors might play a fundamental role in the link between childhood trauma (CT) and early life stress (ELS) and psychiatric disorders. METHODS A systematic review was conducted, considering genetic, biochemical and expression studies along with cognitive and brain structure imaging investigations, based on PubMed and Web of Science databases (available up until November 2021), to identify potential neuroplasticity related biomarkers associated both with CT/ELS and psychiatric disorders. The search was followed by data abstraction and study quality assessment (Newcastle-Ottawa Scale). RESULTS 103 studies met our eligibility criteria. Among them, 65 were available for genetic, 30 for biochemical and 3 for mRNA data; 45 findings were linked to specific symptomatology/pathologies, 16 with various cognitive functions, 19 with different brain areas, 6 on methylation and 36 performed on control subjects for the Brain Derived Neurotrophic Factor (BDNF); whereas 4 expression/biochemical studies covered Neurotrophin 4 (NT-4), Vascular Endothelium Growth Factor (VEGF), Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Transforming Growth Factor β1 (TGF-β1). LIMITATIONS Heterogeneity of assessments (biological, psychological, of symptomatology, and CT/ELS), age range and ethnicity of samples for BDNF studies; limited studies for other neurotrophins. CONCLUSIONS Results support the key role of BDNF (in form of Met allele) as biomarker, both at genetic and biochemical level, in mediating the effect of CT/ELS in psychiatric disorders, passing through specific cognitive functions and specific brain region architecture.
Collapse
Affiliation(s)
- Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
26
|
Botdorf M, Canada KL, Riggins T. A meta-analysis of the relation between hippocampal volume and memory ability in typically developing children and adolescents. Hippocampus 2022; 32:386-400. [PMID: 35301771 PMCID: PMC9313816 DOI: 10.1002/hipo.23414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
Memory is supported by a network of brain regions, with the hippocampus serving a critical role in this cognitive process. Previous meta-analyses on the association between hippocampal structure and memory have largely focused on adults. Multiple studies have since suggested that hippocampal volume is related to memory performance in children and adolescents; however, the strength and direction of this relation varies across reports, and thus, remains unclear. To further understand this brain-behavior relation, we conducted a meta-analysis to investigate the association between hippocampal volume (assessed as total volume) and memory during typical development. Across 25 studies and 61 memory outcomes with 1357 participants, results showed a small, but significant, positive association between total hippocampal volume and memory performance. Estimates of the variability across studies in the relation between total volume and memory were not explained by differences in memory task type (delayed vs. immediate; relational vs. nonrelational), participant age range, or the method of normalization of hippocampal volumes. Overall, findings suggest that larger total hippocampal volume relates to better memory performance in children and adolescents and that this relation is similar across the memory types and age ranges assessed. To facilitate enhanced generalization across studies in the future, we discuss considerations for the field moving forward.
Collapse
Affiliation(s)
- Morgan Botdorf
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelsey L. Canada
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Tracy Riggins
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
27
|
Solé-Padullés C, Macià D, Andersson M, Stiernstedt M, Pudas S, Düzel S, Zsoldos E, Ebmeier KP, Binnewies J, Drevon CA, Brandmaier AM, Mowinckel AM, Fjell AM, Madsen KS, Baaré WFC, Lindenberger U, Nyberg L, Walhovd KB, Bartrés-Faz D. No Association Between Loneliness, Episodic Memory and Hippocampal Volume Change in Young and Healthy Older Adults: A Longitudinal European Multicenter Study. Front Aging Neurosci 2022; 14:795764. [PMID: 35283753 PMCID: PMC8905540 DOI: 10.3389/fnagi.2022.795764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Loneliness is most prevalent during adolescence and late life and has been associated with mental health disorders as well as with cognitive decline during aging. Associations between longitudinal measures of loneliness and verbal episodic memory and brain structure should thus be investigated. Methods We sought to determine associations between loneliness and verbal episodic memory as well as loneliness and hippocampal volume trajectories across three longitudinal cohorts within the Lifebrain Consortium, including children, adolescents (N = 69, age range 10-15 at baseline examination) and older adults (N = 1468 over 60). We also explored putative loneliness correlates of cortical thinning across the entire cortical mantle. Results Loneliness was associated with worsening of verbal episodic memory in one cohort of older adults. Specifically, reporting medium to high levels of loneliness over time was related to significantly increased memory loss at follow-up examinations. The significance of the loneliness-memory change association was lost when eight participants were excluded after having developed dementia in any of the subsequent follow-up assessments. No significant structural brain correlates of loneliness were found, neither hippocampal volume change nor cortical thinning. Conclusion In the present longitudinal European multicenter study, the association between loneliness and episodic memory was mainly driven by individuals exhibiting progressive cognitive decline, which reinforces previous findings associating loneliness with cognitive impairment and dementia.
Collapse
Affiliation(s)
- Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,*Correspondence: Cristina Solé-Padullés,
| | - Dídac Macià
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,ISGlobal, Hospital Clínic – University of Barcelona, Barcelona, Spain
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Mikael Stiernstedt
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Enikő Zsoldos
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Julia Binnewies
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian A. Drevon
- Vitas Ltd., Oslo, Norway,Department of Nutrition, Institute of Basic Medical Sciences, Faculty Medicine, University of Oslo, Oslo, Norway
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Athanasia M. Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark,Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - William F. C. Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
28
|
Keresztes A, Raffington L, Bender AR, Bögl K, Heim C, Shing YL. Longitudinal Developmental Trajectories Do Not Follow Cross-Sectional Age Associations in Hippocampal Subfield and Memory Development. Dev Cogn Neurosci 2022; 54:101085. [PMID: 35278767 PMCID: PMC8917271 DOI: 10.1016/j.dcn.2022.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
|
29
|
Romanovska L, Janssen R, Bonte M. Longitudinal changes in cortical responses to letter-speech sound stimuli in 8-11 year-old children. NPJ SCIENCE OF LEARNING 2022; 7:2. [PMID: 35079026 PMCID: PMC8789908 DOI: 10.1038/s41539-021-00118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/16/2021] [Indexed: 05/29/2023]
Abstract
While children are able to name letters fairly quickly, the automatisation of letter-speech sound mappings continues over the first years of reading development. In the current longitudinal fMRI study, we explored developmental changes in cortical responses to letters and speech sounds across 3 yearly measurements in a sample of 18 8-11 year old children. We employed a text-based recalibration paradigm in which combined exposure to text and ambiguous speech sounds shifts participants' later perception of the ambiguous sounds towards the text. Our results showed that activity of the left superior temporal and lateral inferior precentral gyri followed a non-linear developmental pattern across the measurement sessions. This pattern is reminiscent of previously reported inverted-u-shape developmental trajectories in children's visual cortical responses to text. Our findings suggest that the processing of letters and speech sounds involves non-linear changes in the brain's spoken language network possibly related to progressive automatisation of reading skills.
Collapse
Affiliation(s)
- Linda Romanovska
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Roef Janssen
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
30
|
OUP accepted manuscript. Arch Clin Neuropsychol 2022; 37:1502-1514. [DOI: 10.1093/arclin/acac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
|
31
|
Sandry J, Dobryakova E. Global hippocampal and selective thalamic nuclei atrophy differentiate chronic TBI from Non-TBI. Cortex 2021; 145:37-56. [PMID: 34689031 DOI: 10.1016/j.cortex.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/04/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) may increase susceptibility to neurodegenerative diseases later in life. One neurobiological parallel between chronic TBI and neurodegeneration may be accelerated aging and the nature of atrophy across subcortical gray matter structures. The main aim of the present investigation is to evaluate and rank the degree that subcortical gray matter atrophy differentiates chronic moderate-severe TBI from non-TBI participants by evaluating morphometric differences between groups. Forty individuals with moderate-severe chronic TBI (9.23 yrs from injury) and 33 healthy controls (HC) underwent high resolution 3D T1-weighted structural magnetic resonance imaging. Whole brain volume was classified into white matter, cortical and subcortical gray matter structures with hippocampi and thalami further segmented into subfields and nuclei, respectively. Extensive atrophy was observed across nearly all brain regions for chronic TBI participants. A series of multivariate logistic regression models identified subcortical gray matter structures of the hippocampus and thalamus as the most sensitive to differentiating chronic TBI from non-TBI participants (McFadden R2 = .36, p < .001). Further analyses revealed the pattern of hippocampal atrophy to be global, occurring across nearly all subfields. The pattern of thalamic atrophy appeared to be much more selective and non-uniform, with largest between-group differences evident for nuclei bordering the ventricles. Subcortical gray matter was negatively correlated with time since injury (r = -.31, p = .054), while white matter and cortical gray matter were not. Cognitive ability was lower in the chronic TBI group (Cohen's d = .97, p = .003) and correlated with subcortical structures including the pallidum (r2 = .23, p = .038), thalamus (r2 = .36, p = .007) and ventral diencephalon (r2 = .23, p = .036). These data may support an accelerated aging hypothesis in chronic moderate-severe TBI that coincides with a similar neuropathological profile found in neurodegenerative diseases.
Collapse
Affiliation(s)
- Joshua Sandry
- Psychology Department, Montclair State University, Montclair, NJ, USA.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School Newark, NJ, USA
| |
Collapse
|
32
|
Mu S, Wu H, Zhang J, Chang C. Structural Brain Changes and Associated Symptoms of ADHD Subtypes in Children. Cereb Cortex 2021; 32:1152-1158. [PMID: 34409439 DOI: 10.1093/cercor/bhab276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is presumed to be heterogeneous, but the best way to characterize this heterogeneity remains unclear. Although considerable evidence suggests that the 2 different types of ADHD, inattention and combined, have different cognitive and behavioral profiles, and underlying neurobiologies, we currently lack information on whether these subtypes reflect separated brain structure changes. Structural magnetic resonance imaging scans (N = 234), diagnostic, and demographic information were obtained from the ADHD-200 database. Of this sample, 138 were Typically Developing people, 37 were ADHD-Combined, and 59 were ADHD-Inattentive patients. Freesurfer segmentation methods were used to measure cortical thickness, area, and volume, subcortical volume and hipposubfield volume. ADHD-Inattentive patients showed milder clinical symptoms but more serious cognitive injury than ADHD-Combined patients. In addition, dissociable structural brain changes were found in different subtypes of ADHD, particularly in terms of decreased subcortical volume in ADHD-Combined patients compared with Typically Developing people. Clinical symptoms were predominantly related to smaller rh_caudalanteriorcingulate thickness and left-Pallidum volume, whereas verbal IQ injury was correlated strongly with smaller rh_insula area. These findings indicate that there are significant differences in clinical symptoms and gray matter damage between ADHD-Combined and -Inattentive patients. This supports the growing evidence of heterogeneity in the ADHD-Inattentive subtype and the evidence of brain structure differences.
Collapse
Affiliation(s)
- ShuHua Mu
- School of Psychology, Faculty of Education, Shenzhen University, Shenzhen 518060, China
| | - HuiJun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Jian Zhang
- Health Science Center School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518055, China
| | - ChunQi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China.,Pengcheng Laboratory, Shenzhen 518038, China
| |
Collapse
|
33
|
Mechie IR, Plaisted-Grant K, Cheke LG. How does episodic memory develop in adolescence? ACTA ACUST UNITED AC 2021; 28:204-217. [PMID: 34011517 PMCID: PMC8139634 DOI: 10.1101/lm.053264.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Key areas of the episodic memory (EM) network demonstrate changing structure and volume during adolescence. EM is multifaceted and yet studies of EM thus far have largely examined single components, used different methods and have unsurprisingly yielded inconsistent results. The Treasure Hunt task is a single paradigm that allows parallel investigation of memory content, associative structure, and the impact of different retrieval support. Combining the cognitive and neurobiological accounts, we hypothesized that some elements of EM performance may decline in late adolescence owing to considerable restructuring of the hippocampus at this time. Using the Treasure Hunt task, we examined EM performance in 80 participants aged 10–17 yr. Results demonstrated a cubic trajectory with youngest and oldest participants performing worst. This was emphasized in associative memory, which aligns well with existing literature indicating hippocampal restructuring in later adolescence. It is proposed that memory development may follow a nonlinear path as children approach adulthood, but that future work is required to confirm and extend the trends demonstrated in this study.
Collapse
Affiliation(s)
- Imogen R Mechie
- Department of Psychology, University of Cambridge, Cambridge CB23EB, United Kingdom
| | - Kate Plaisted-Grant
- Department of Psychology, University of Cambridge, Cambridge CB23EB, United Kingdom
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Cambridge CB23EB, United Kingdom
| |
Collapse
|
34
|
Prathap S, Nagel BJ, Herting MM. Understanding the role of aerobic fitness, spatial learning, and hippocampal subfields in adolescent males. Sci Rep 2021; 11:9311. [PMID: 33927247 PMCID: PMC8084987 DOI: 10.1038/s41598-021-88452-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Physical exercise during adolescence, a critical developmental window, can facilitate neurogenesis in the dentate gyrus and astrogliogenesis in Cornu Ammonis (CA) hippocampal subfields of rats, and which have been associated with improved hippocampal dependent memory performance. Recent translational studies in humans also suggest that aerobic fitness is associated with hippocampal volume and better spatial memory during adolescence. However, associations between fitness, hippocampal subfield morphology, and learning capabilities in human adolescents remain largely unknown. Employing a translational study design in 34 adolescent males, we explored the relationship between aerobic fitness, hippocampal subfield volumes, and both spatial and verbal memory. Aerobic fitness, assessed by peak oxygen utilization on a high-intensity exercise test (VO2 peak), was positively associated with the volumetric enlargement of the hippocampal head, and the CA1 head region specifically. Larger CA1 volumes were also associated with spatial learning on a Virtual Morris Water Maze task and verbal learning on the Rey Auditory Verbal Learning Test, but not recall memory. In line with previous animal work, the current findings lend support for the long-axis specialization of the hippocampus in the areas of exercise and learning during adolescence.
Collapse
Affiliation(s)
- Sandhya Prathap
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90023, USA
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA.
| |
Collapse
|
35
|
Canada KL, Hancock GR, Riggins T. Modeling longitudinal changes in hippocampal subfields and relations with memory from early- to mid-childhood. Dev Cogn Neurosci 2021; 48:100947. [PMID: 33774332 PMCID: PMC8039550 DOI: 10.1016/j.dcn.2021.100947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/25/2023] Open
Abstract
The hippocampus has been suggested to show protracted postnatal developmental growth across childhood. Most previous studies during this developmental period have been cross-sectional in nature and have focused on age-related differences in either hippocampal subregions or subfields, but not both, potentially missing localized changes. This study capitalized on a latent structural equation modeling approach to examine the longitudinal development of hippocampal subfields (cornu ammonis (CA) 2-4/dentate gyrus (DG), CA1, subiculum) in both the head and the body of the hippocampus, separately, in 165 typically developing 4- to 8-year-old children. Our findings document differential development of subfields within hippocampal head and body. Specifically, within hippocampal head, CA1 volume increased between 4-5 years and within hippocampal body, CA2-4/DG and subiculum volume increased between 5-6 years. Additionally, changes in CA1 volume in the head and changes in subiculum in the body between 4-5 years related to improvements in memory between 4-5 years. These findings demonstrate the protracted development of subfields in vivo during early- to mid-childhood, illustrate the importance of considering subfields separately in the head and body of the hippocampus, document co-occurring development of brain and behavior, and highlight the strength of longitudinal data and latent modeling when examining brain development.
Collapse
Affiliation(s)
- Kelsey L Canada
- Department of Psychology, University of Maryland, College Park, United States.
| | - Gregory R Hancock
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, United States
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, United States
| |
Collapse
|
36
|
Homayouni R, Yu Q, Ramesh S, Tang L, Daugherty AM, Ofen N. Test-retest reliability of hippocampal subfield volumes in a developmental sample: Implications for longitudinal developmental studies. J Neurosci Res 2021; 99:2327-2339. [PMID: 33751637 DOI: 10.1002/jnr.24831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
The hippocampus (Hc) is composed of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors 1-3 (CA1-3), and subiculum. Limited evidence suggests differential maturation rates across the Hc subfields. While longitudinal studies are essential in demonstrating differential development of Hc subfields, a prerequisite for interpreting meaningful longitudinal effects is establishing test-retest consistency of Hc subfield volumes measured in vivo over time. Here, we examined test-retest consistency of Hc subfield volumes measured from structural MR images in two independent developmental samples. Sample One (n = 28, ages 7-20 years, M = 12.64, SD = 3.35) and Sample Two (n = 28, ages 7-17 years, M = 11.72, SD = 2.88) underwent MRI twice with a 1-month and a 2-year delay, respectively. High-resolution PD-TSE-T2 -weighted MR images (0.4 × 0.4 × 2 mm3 ) were collected and manually traced using a longitudinal manual demarcation protocol. In both samples, we found excellent consistency of Hc subfield volumes between the two visits, assessed by two-way mixed intraclass correlation (ICC (3) single measures ≥ 0.87), and no difference between children and adolescents. The results further indicated that discrepancies between repeated measures were not related to Hc subfield volumes, or visit number. In addition to high consistency, with the applied longitudinal protocol, we detected significant variability in Hc subfield volume changes over the 2-year delay, implying high sensitivity of the method in detecting individual differences. Establishing unbiased, high longitudinal consistency of Hc subfield volume measurements optimizes statistical power of a hypothesis test and reduces standard error of the estimate, together improving external validity of the measures in constructing theoretical models of memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.,Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.,Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Sruthi Ramesh
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Lingfei Tang
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.,Department of Psychology, Wayne State University, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.,Department of Psychology, Wayne State University, Detroit, MI, USA.,Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
37
|
Volumetric trajectories of hippocampal subfields and amygdala nuclei influenced by adolescent alcohol use and lifetime trauma. Transl Psychiatry 2021; 11:154. [PMID: 33654086 PMCID: PMC7925562 DOI: 10.1038/s41398-021-01275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alcohol use and exposure to psychological trauma frequently co-occur in adolescence and share many risk factors. Both exposures have deleterious effects on the brain during this sensitive developmental period, particularly on the hippocampus and amygdala. However, very little is known about the individual and interactive effects of trauma and alcohol exposure and their specific effects on functionally distinct substructures within the adolescent hippocampus and amygdala. Adolescents from a large longitudinal sample (N = 803, 2684 scans, 51% female, and 75% White/Caucasian) ranging in age from 12 to 21 years were interviewed about exposure to traumatic events at their baseline evaluation. Assessments for alcohol use and structural magnetic resonance imaging scans were completed at baseline and repeated annually to examine neurodevelopmental trajectories. Hippocampal and amygdala subregions were segmented using Freesurfer v6.0 tools, followed by volumetric analysis with generalized additive mixed models. Longitudinal statistical models examined the effects of cumulative lifetime trauma measured at baseline and alcohol use measured annually on trajectories of hippocampal and amygdala subregions, while controlling for covariates known to impact brain development. Greater alcohol use, quantified using the Cahalan scale and measured annually, was associated with smaller whole hippocampus (β = -12.0, pFDR = 0.009) and left hippocampus tail volumes (β = -1.2, pFDR = 0.048), and larger right CA3 head (β = 0.4, pFDR = 0.027) and left subiculum (β = 0.7, pFDR = 0.046) volumes of the hippocampus. In the amygdala, greater alcohol use was associated with larger right basal nucleus volume (β = 1.3, pFDR = 0.040). The effect of traumatic life events measured at baseline was associated with larger right CA3 head volume (β = 1.3, pFDR = 0.041) in the hippocampus. We observed an interaction between baseline trauma and within-person age change where younger adolescents with greater trauma exposure at baseline had smaller left hippocampal subfield volumes in the subiculum (β = 0.3, pFDR = 0.029) and molecular layer HP head (β = 0.3, pFDR = 0.041). The interaction also revealed that older adolescents with greater trauma exposure at baseline had larger right amygdala nucleus volume in the paralaminar nucleus (β = 0.1, pFDR = 0.045), yet smaller whole amygdala volume overall (β = -3.7, pFDR = 0.003). Lastly, we observed an interaction between alcohol use and baseline trauma such that adolescents who reported greater alcohol use with greater baseline trauma showed smaller right hippocampal subfield volumes in the CA1 head (β = -1.1, pFDR = 0.011) and hippocampal head (β = -2.6, pFDR = 0.025), yet larger whole hippocampus volume overall (β = 10.0, pFDR = 0.032). Cumulative lifetime trauma measured at baseline and alcohol use measured annually interact to affect the volume and trajectory of hippocampal and amygdala substructures (measured via structural MRI annually), regions that are essential for emotion regulation and memory. Our findings demonstrate the value of examining these substructures and support the hypothesis that the amygdala and hippocampus are not homogeneous brain regions.
Collapse
|
38
|
Fernandez‐Baizan C, Arias JL, Mendez M. Egocentric and allocentric spatial memory in young children: A comparison with young adults. INFANT AND CHILD DEVELOPMENT 2021. [DOI: 10.1002/icd.2216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cristina Fernandez‐Baizan
- Neuroscience Institute of Principado de Asturias (INEUROPA) 33003 Oviedo Spain
- Department of Psychology University of Oviedo 33003 Oviedo Spain
| | - Jorge L. Arias
- Neuroscience Institute of Principado de Asturias (INEUROPA) 33003 Oviedo Spain
- Department of Psychology University of Oviedo 33003 Oviedo Spain
| | - Marta Mendez
- Neuroscience Institute of Principado de Asturias (INEUROPA) 33003 Oviedo Spain
- Department of Psychology University of Oviedo 33003 Oviedo Spain
| |
Collapse
|
39
|
Fernández de Gamarra-Oca L, Zubiaurre-Elorza L, Junqué C, Solana E, Soria-Pastor S, Vázquez É, Delgado I, Macaya A, Ojeda N, Poca MA. Reduced hippocampal subfield volumes and memory performance in preterm children with and without germinal matrix-intraventricular hemorrhage. Sci Rep 2021; 11:2420. [PMID: 33510243 PMCID: PMC7844245 DOI: 10.1038/s41598-021-81802-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Preterm newborns with germinal matrix-intraventricular hemorrhage (GM-IVH) are at a higher risk of evidencing neurodevelopmental alterations. Present study aimed to explore the long-term effects that GM-IVH have on hippocampal subfields, and their correlates with memory. The sample consisted of 58 participants, including 36 preterm-born (16 with GM-IVH and 20 without neonatal brain injury), and 22 full-term children aged between 6 and 15 years old. All participants underwent a cognitive assessment and magnetic resonance imaging study. GM-IVH children evidenced lower scores in Full Intelligence Quotient and memory measures compared to their low-risk preterm and full-term peers. High-risk preterm children with GM-IVH evidenced significantly lower total hippocampal volumes bilaterally and hippocampal subfield volumes compared to both low-risk preterm and full-term groups. Finally, significant positive correlations between memory and hippocampal subfield volumes were only found in preterm participants together; memory and the right CA-field correlation remained significant after Bonferroni correction was applied (p = .002). In conclusion, memory alterations and both global and regional volumetric reductions in the hippocampus were found to be specifically related to a preterm sample with GM-IVH. Nevertheless, results also suggest that prematurity per se has a long-lasting impact on the association between the right CA-field volume and memory during childhood.
Collapse
Affiliation(s)
- Lexuri Fernández de Gamarra-Oca
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain.
| | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Hospital Clinic, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Elisabeth Solana
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataró, Mataró, Catalonia, Spain
| | - Élida Vázquez
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Ignacio Delgado
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Catalonia, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Maria A Poca
- Department of Neurosurgery and Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
40
|
Wan M, Ye Y, Lin H, Xu Y, Liang S, Xia R, He J, Qiu P, Huang C, Tao J, Chen L, Zheng G. Deviations in Hippocampal Subregion in Older Adults With Cognitive Frailty. Front Aging Neurosci 2021; 12:615852. [PMID: 33519422 PMCID: PMC7838368 DOI: 10.3389/fnagi.2020.615852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cognitive frailty is a particular state of cognitive vulnerability toward dementia with neuropathological hallmarks. The hippocampus is a complex, heterogeneous structure closely relates to the cognitive impairment in elderly which is composed of 12 subregions. Atrophy of these subregions has been implicated in a variety of neurodegenerative diseases. The aim of this study was to explore the changes in hippocampal subregions in older adults with cognitive frailty and the relationship between subregions and cognitive impairment as well as physical frailty. METHODS Twenty-six older adults with cognitive frailty and 26 matched healthy controls were included in this study. Cognitive function was evaluated by the Montreal Cognitive Assessment (MoCA) scale (Fuzhou version) and Wechsler Memory Scale-Revised Chinese version (WMS-RC), while physical frailty was tested with the Chinese version of the Edmonton Frailty Scale (EFS) and grip strength. The volume of the hippocampal subregions was measured with structural brain magnetic resonance imaging. Partial correlation analysis was carried out between the volumes of hippocampal subregions and MoCA scores, Wechsler's Memory Quotient and physical frailty indexes. RESULTS A significant volume decrease was found in six hippocampal subregions, including the bilateral presubiculum, the left parasubiculum, molecular layer of the hippocampus proper (molecular layer of the HP), and hippocampal amygdala transition area (HATA), and the right cornu ammonis subfield 1 (CA1) area, in older adults with cognitive frailty, while the proportion of brain parenchyma and total number of white matter fibers were lower than those in the healthy controls. Positive correlations were found between Wechsler's Memory Quotient and the size of the left molecular layer of the HP and HATA and the right presubiculum. The sizes of the left presubiculum, molecular of the layer HP, and HATA and right CA1 and presubiculum were found to be positively correlated with MoCA score. The sizes of the left parasubiculum, molecular layer of the HP and HATA were found to be negatively correlated with the physical frailty index. CONCLUSION Significant volume decrease occurs in hippocampal subregions of older adults with cognitive frailty, and these changes are correlated with cognitive impairment and physical frailty. Therefore, the atrophy of hippocampal subregions could participate in the pathological progression of cognitive frailty.
Collapse
Affiliation(s)
- Mingyue Wan
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Xu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chengwu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
41
|
Caregiving adversity during infancy and preschool cognitive function: adaptations to context? J Dev Orig Health Dis 2021; 12:890-901. [PMID: 33436135 DOI: 10.1017/s2040174420001348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
From a conditional adaptation vantage point, early life caregiving adversity likely enhances aspects of cognition needed to manage interpersonal threats. Yet, research examining early life care and offspring cognition predominantly relies upon experiments including affectively neutral stimuli, with findings generally interpreted as "early-life caregiving adversity is, de facto, 'bad' for cognitive performance." Here, in a Southeast Asian sample, we examined observed maternal sensitivity in infancy and cognitive performance 3 years later as preschoolers took part in three tasks, each involving both a socioemotional (SE) and non-socioemotional (NSE) version: relational memory (n = 236), cognitive flexibility (n = 203), and inhibitory control (n = 255). Results indicate the relation between early life caregiving adversity and memory performance significantly differs (Wald test = 7.67, (1), P = 0.006) depending on the SE versus NSE context, with maternal sensitivity in infancy highly predictive of worse memory for SE stimuli, and amongst girls, also predictive of better memory when NSE stimuli are used. Results concerning inhibitory control, as well as cognitive flexibility in girls, also tentatively suggest the importance of considering the SE nature of stimuli when assessing relations between the caregiving environment and cognitive performance. As not all approaches to missing data yielded similar results, implications for statistical approaches are elaborated. We conclude by considering how an adaptation-to-context framework approach may aid in designing pedagogical strategies and well-being interventions that harness pre-existing cognitive strengths.
Collapse
|
42
|
Mu SH, Yuan BK, Tan LH. Effect of Gender on Development of Hippocampal Subregions From Childhood to Adulthood. Front Hum Neurosci 2020; 14:611057. [PMID: 33343321 PMCID: PMC7744655 DOI: 10.3389/fnhum.2020.611057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022] Open
Abstract
The hippocampus is known to be comprised of several subfields, but the developmental trajectories of these subfields are under debate. In this study, we analyzed magnetic resonance imaging (MRI) data from a cross-sectional sample (198 healthy Chinese) using an automated segmentation tool to delineate the development of the hippocampal subregions from 6 to 26 years of age. We also examined whether gender and hemispheric differences influence the development of these subregions. For the whole hippocampus, the trajectory of development was observed to be an inverse-u. A significant increase in volume with age was found for most of the subregions, except for the L/R-parasubiculum, L/R-fimbria, and L-HATA. Gender-related differences were also found in the development of most subregions, especially for the hippocampal tail, CA1, molecular layer HP, GC-DG, CA3, and CA4, which showed a consistent increase in females and an early increase followed by a decrease in males. A comparison of the average volumes showed that the right whole hippocampus was significantly larger, along with the R-presubiculum, R-hippocampal-fissure, L/R-CA1, and L/R-molecular layer HP in males in comparison to females. Additionally, the average volume of the right hemisphere was shown to be significantly larger for the hippocampal tail, CA1, molecular layer HP, GC-DG, CA3, and CA4. However, for the presubiculum, parasubiculum, and fimbria, the left side was shown to be larger. In conclusion, the hippocampal subregions appear to develop in various ways from childhood to adulthood, with both gender and hemispheric differences affecting their development.
Collapse
Affiliation(s)
- Shu Hua Mu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Bin Ke Yuan
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Li Hai Tan
- Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
43
|
Barry DN, Clark IA, Maguire EA. The relationship between hippocampal subfield volumes and autobiographical memory persistence. Hippocampus 2020; 31:362-374. [PMID: 33320970 PMCID: PMC8048905 DOI: 10.1002/hipo.23293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Abstract
Structural integrity of the human hippocampus is widely acknowledged to be necessary for the successful encoding and retrieval of autobiographical memories. However, evidence for an association between hippocampal volume and the ability to recall such memories in healthy individuals is mixed. Here we examined this issue further by combining two approaches. First, we focused on the anatomically distinct subregions of the hippocampus where more nuanced associations may be expressed compared to considering the whole hippocampal volume. A manual segmentation protocol of hippocampal subregions allowed us to separately calculate the volumes of the dentate gyrus/CA4, CA3/2, CA1, subiculum, pre/parasubiculum and uncus. Second, a critical feature of autobiographical memories is that they can span long time periods, and so we sought to consider how memory details persist over time by conducting a longitudinal study whereby participants had to recall the same autobiographical memories on two visits spaced 8 months apart. Overall, we found that there was no difference in the total number of internal (episodic) details produced at Visits 1 and 2. However, further probing of detail subcategories revealed that specifically the amount of subjective thoughts and emotions included during recall had declined significantly by the second visit. We also observed a strong correlation between left pre/parasubiculum volume and the amount of autobiographical memory internal details produced over time. This positive relationship was evident for particular facets of the memories, with remembered events, perceptual observations and thoughts and emotions benefitting from greater volume of the left pre/parasubiculum. These preliminary findings expand upon existing functional neuroimaging evidence by highlighting a potential link between left pre/parasubiculum volume and autobiographical memory. A larger pre/parasubiculum appears not only to protect against memory decay, but may possibly enhance memory persistence, inviting further scrutiny of the role of this brain region in remote autobiographical memory retrieval.
Collapse
Affiliation(s)
- Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ian A Clark
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
44
|
Womersley JS, Hemmings SMJ, Ziegler C, Gutridge A, Ahmed-Leitao F, Rosenstein D, Domschke K, Seedat S. Childhood emotional neglect and oxytocin receptor variants: Association with limbic brain volumes. World J Biol Psychiatry 2020; 21:513-528. [PMID: 30806136 DOI: 10.1080/15622975.2019.1584331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Childhood emotional neglect (EN) is a predictor for the development of affective disorders. Oxytocin (OXT) may mediate the interplay between EN and changes in stress biological systems, brain development, and mental health outcomes. We investigated, in a cross-sectional study, the associations between EN, (epi)genetic variation in the OXT receptor (OXTR) gene, and amygdalar and hippocampal volumes, two brain regions implicated in emotional processing.Methods: We recruited 63 Caucasian South African adults (35 women) with and without social anxiety disorder. Childhood EN was assessed using the Childhood Trauma Questionnaire. rs53576 and rs2254298 genotypes, as well as methylation status, was determined using DNA purified from whole blood. Bilateral amygdalar and hippocampal volumes were determined by structural magnetic resonance imaging. The relationships between these variables were investigated using linear regression.Results: The interaction of the rs2254298 A risk allele and EN was nominally associated with reduced left hippocampal volume. The rs2254298 A risk allele was independently associated with reduced bilateral amygdalar volumes. We found no association between EN, OXTR methylation and amygdalar or hippocampal volumes. The rs53576 GG risk genotype was, however, associated with decreased OXTR methylation.Conclusions: The rs2254298 A allele may increase susceptibility to the structural brain effects of EN.
Collapse
Affiliation(s)
- Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 70104, Freiburg, Germany
| | - Ashley Gutridge
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Fatima Ahmed-Leitao
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - David Rosenstein
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 70104, Freiburg, Germany
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| |
Collapse
|
45
|
Reinhardt VP, Iosif AM, Libero L, Heath B, Rogers SJ, Ferrer E, Nordahl C, Ghetti S, Amaral D, Solomon M. Understanding Hippocampal Development in Young Children With Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2020; 59:1069-1079. [PMID: 31449875 PMCID: PMC9940822 DOI: 10.1016/j.jaac.2019.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We examined growth trajectories of hippocampal volume (HV) in early childhood in a longitudinal cohort of male and female participants with autism spectrum disorder (ASD) and typically developing (TD) individuals, and investigated HV in those with large brains. Relations between factors potentially associated with hippocampal size and growth were investigated. METHOD Participants received 1 to 3 structural magnetic resonance imaging scans between ages 25 and 80 months (unique participants: ASD, n =200; TD, n =110; total longitudinal scans, n = 593). HV growth during this period was examined using mixed-effects linear models. Associations between early HV and growth rates, and IQ and adaptive functioning, were evaluated. RESULTS After accounting for cerebral hemisphere volume, male participants exhibited larger left and right HV than female participants. Hippocampal growth rates did not differ by sex. In children with larger hemisphere volumes, male and female participants with ASD had relatively larger HV than TD participants of similar hemisphere volume. This effect was present in a broader group than only those with disproportionate megalencephaly (male participants with large cerebral volumes relative to body size). Right hippocampi were larger than left hippocampi in both groups and sexes. Right versus left volume differences were greater for ASD. After adjusting for hemisphere volume, male participants with ASD showed a significant positive association between right hippocampal growth and adaptive behavior. CONCLUSION HV was relatively greater in ASD in analyses adjusting for hemisphere volume, whereas only subtle differences were observed in HV and growth between participants with ASD and TD participants in unadjusted analyses, suggesting that ASD involves atypical coupling between HV and brain size.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Amaral
- University of California, Davis; MIND Institute, Davis, California
| | - Marjorie Solomon
- University of California, Davis; MIND Institute, Davis, California; UC Davis Imaging Research Center, Davis, California.
| |
Collapse
|
46
|
Merz EC, He X, Myers B, Noble KG. Socioeconomic Disadvantage, Chronic Stress, and Hippocampal Subfield Development in Children. Neurosci Insights 2020; 15:2633105520931098. [PMID: 32637937 PMCID: PMC7323261 DOI: 10.1177/2633105520931098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Recent findings indicate that hair cortisol concentrations significantly mediate associations between socioeconomic disadvantage and reduced hippocampal CA3 and dentate gyrus volumes in children. In this commentary, we discuss these results and highlight important future research directions, including focusing on hippocampal subfield structural development in relation to episodic memory and mental health; the mechanistic role of excitatory amino acids, such as glutamate; and how chronic stress and cognitive stimulation may make unique proximal contributions to socioeconomic differences in hippocampal subfield volume. Building on the findings in these ways will contribute to advances in strategies aimed at reducing socioeconomic disparities in academic achievement and mental health.
Collapse
Affiliation(s)
- Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kimberly G Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
47
|
van Eijk L, Hansell NK, Strike LT, Couvy-Duchesne B, de Zubicaray GI, Thompson PM, McMahon KL, Zietsch BP, Wright MJ. Region-specific sex differences in the hippocampus. Neuroimage 2020; 215:116781. [DOI: 10.1016/j.neuroimage.2020.116781] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
|
48
|
Becht AI, Mills KL. Modeling Individual Differences in Brain Development. Biol Psychiatry 2020; 88:63-69. [PMID: 32245576 PMCID: PMC7305975 DOI: 10.1016/j.biopsych.2020.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
Within the field of developmental cognitive neuroscience, there is an increasing interest in studying individual differences in human brain development in order to predict mental health outcomes. So far, however, most longitudinal neuroimaging studies focus on group-level estimates. In this review, we highlight longitudinal neuroimaging studies that have moved beyond group-level estimates to illustrate the heterogeneity in patterns of brain development. We provide practical methodological recommendations on how longitudinal neuroimaging datasets can be used to understand heterogeneity in human brain development. Finally, we address how taking an individual-differences approach in developmental neuroimaging studies could advance our understanding of why some individuals develop mental health disorders.
Collapse
Affiliation(s)
- Andrik I Becht
- Brain and Development Research Center, Developmental and Educational Psychology Unit, Leiden University, Leiden; Adolescent Development Research Center, Utrecht University, Utrecht, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus University, Rotterdam, the Netherlands
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
49
|
Canada KL, Botdorf M, Riggins T. Longitudinal development of hippocampal subregions from early- to mid-childhood. Hippocampus 2020; 30:1098-1111. [PMID: 32497411 DOI: 10.1002/hipo.23218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/11/2023]
Abstract
Early childhood is characterized by vast changes in behaviors supported by the hippocampus and an increased susceptibility of the hippocampus to environmental influences. Thus, it is an important time to investigate the development of the hippocampus. Existing research suggests subregions of the hippocampus (i.e., head, body, tail) have dissociable functions and that the relations between subregions and cognitive abilities vary across development. However, longitudinal research examining age-related changes in subregions in humans, particularly during early childhood (i.e., 4-6 years), is limited. Using a large sample of 184 healthy 4- to 8-year-old children, the present study is the first to characterize developmental changes in hippocampal subregion volume from early- to mid-childhood. Results reveal differential developmental trajectories in hippocampal head, body, and tail during this period. Specifically, head volume showed a quadratic pattern of change, and both body and tail showed linear increases, resulting in a pattern of cubic change for total hippocampal volume. Further, main effects of sex on hippocampal volume (males > females) and hemispheric differences in developmental trajectories were observed. These findings provide an improved understanding of the development of the hippocampus and have important implications for research investigating a range of cognitive abilities and behaviors.
Collapse
Affiliation(s)
- Kelsey L Canada
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Morgan Botdorf
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
50
|
Brown EM, Pierce ME, Clark DC, Fischl BR, Iglesias JE, Milberg WP, McGlinchey RE, Salat DH. Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners. Neuroimage 2020; 210:116563. [DOI: 10.1016/j.neuroimage.2020.116563] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022] Open
|