1
|
Shorbaji A, Pushparaj PN, Bakhashab S, Al-Ghafari AB, Al-Rasheed RR, Siraj Mira L, Basabrain MA, Alsulami M, Abu Zeid IM, Naseer MI, Rasool M. Current genetic models for studying congenital heart diseases: Advantages and disadvantages. Bioinformation 2024; 20:415-429. [PMID: 39132229 PMCID: PMC11309114 DOI: 10.6026/973206300200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Congenital heart disease (CHD) encompasses a diverse range of structural and functional anomalies that affect the heart and the major blood vessels. Epidemiological studies have documented a global increase in CHD prevalence, which can be attributed to advancements in diagnostic technologies. Extensive research has identified a plethora of CHD-related genes, providing insights into the biochemical pathways and molecular mechanisms underlying this pathological state. In this review, we discuss the advantages and challenges of various In vitro and in vivo CHD models, including primates, canines, Xenopus frogs, rabbits, chicks, mice, Drosophila, zebrafish, and induced pluripotent stem cells (iPSCs). Primates are closely related to humans but are rare and expensive. Canine models are costly but structurally comparable to humans. Xenopus frogs are advantageous because of their generation of many embryos, ease of genetic modification, and cardiac similarity. Rabbits mimic human physiology but are challenging to genetically control. Chicks are inexpensive and simple to handle; however, cardiac events can vary among humans. Mice differ physiologically, while being evolutionarily close and well-resourced. Drosophila has genes similar to those of humans but different heart structures. Zebrafish have several advantages, including high gene conservation in humans and physiological cardiac similarities but limitations in cross-reactivity with mammalian antibodies, gene duplication, and limited embryonic stem cells for reverse genetic methods. iPSCs have the potential for gene editing, but face challenges in terms of 2D structure and genomic stability. CRISPR-Cas9 allows for genetic correction but requires high technical skills and resources. These models have provided valuable knowledge regarding cardiac development, disease simulation, and the verification of genetic factors. This review highlights the distinct features of various models with respect to their biological characteristics, vulnerability to developing specific heart diseases, approaches employed to induce particular conditions, and the comparability of these species to humans. Therefore, the selection of appropriate models is based on research objectives, ultimately leading to an enhanced comprehension of disease pathology and therapy.
Collapse
Affiliation(s)
- Ayat Shorbaji
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana R Al-Rasheed
- Experimental Biochemistry Unit, King Fahad research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loubna Siraj Mira
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Abdullah Basabrain
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Alsulami
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Che M, Duan Y, Yin R. A bibliometric analysis of cardiotoxicity in cancer radiotherapy. Front Oncol 2024; 14:1362673. [PMID: 38655134 PMCID: PMC11035836 DOI: 10.3389/fonc.2024.1362673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Radiotherapy, a primary treatment for malignant cancer, presents significant clinical challenges globally due to its associated adverse effects, especially with the increased survival rates of cancer patients. Radiation induced heart disease (RIHD) significantly impacts the long-term survival and quality of life of cancer survivors as one of the most devastating consequences. Quite a few studies have been conducted on preclinical and clinical trials of RIHD, showing promising success to some extent. However, no researchers have performed a comprehensive bibliometric study so far. Objective This study attempts to gain a deeper understanding of the focal points and patterns in RIHD research and to pinpoint prospective new research avenues using bibliometrics. Methods The study group obtained related 1554 publications between 1990 and 2023 on the Web of Science Core Collection (WOSCC) through a scientific search query. Visualization tools like CiteSpace and VOSviewer were utilized to realize the visual analysis of countries, authors, journals, references and keywords, identifying the hotspots and frontiers in this research field. Results After collecting all the data, a total of 1554 documents were categorized and analyzed using the above tools. The annual number of publications in the field of RIHD shows a continuous growth trend. In 2013, there was a significant rise in the number of linked publications, with the majority of authors being from the USA, according to the statistics. Among all the journals, INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS published the most relevant papers. Cluster analysis of the references showed that research on RIHD has focused on breast cancer, non-small cell lung cancer (NSCLC), and Hodgkin's lymphoma (also among the three main clusters), preclinical research, childhood cancer, heart dose, coronary artery disease, etc, which are also hot topics in the field. High-frequency keywords in the analysis include risk factors, cancer types, heart disease, survival, trials, proton therapy (PT), etc. Conclusion Future research on RIHD will mostly focus on thoracic cancer, whose exact cause is yet unknown, with preclinical trials playing an important role. Preventing, consistently monitoring, promptly diagnosing, and timely treating are crucial to decreasing RIHD and extending the life expectancy of cancer survivors.
Collapse
Affiliation(s)
- Mengting Che
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Baron V, Sommer ST, Fiegle DJ, Pfeuffer AKM, Peyronnet R, Volk T, Seidel T. Effects of electro-mechanical uncouplers, hormonal stimulation and pacing rate on the stability and function of cultured rabbit myocardial slices. Front Bioeng Biotechnol 2024; 12:1363538. [PMID: 38646013 PMCID: PMC11026719 DOI: 10.3389/fbioe.2024.1363538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: Recent advances have enabled organotypic culture of beating human myocardial slices that are stable for weeks. However, human myocardial samples are rare, exhibit high variability and frequently originate from diseased hearts. Thus, there is a need to adapt long-term slice culture for animal myocardium. When applied to animal cardiac slices, studies in healthy or genetically modified myocardium will be possible. We present the culture of slices from rabbit hearts, which resemble the human heart in microstructure, electrophysiology and excitation-contraction coupling. Methods: Left ventricular myocardium from New Zealand White rabbits was cut using a vibratome and cultured in biomimetic chambers for up to 7 days (d). Electro-mechanical uncoupling agents 2,3-butanedione monoxime (BDM) and cytochalasin D (CytoD) were added during initiation of culture and effects on myocyte survival were quantified. We investigated pacing rates (0.5 Hz, 1 Hz, and 2 Hz) and hormonal supplements (cortisol, T3, catecholamines) at physiological plasma concentrations. T3 was buffered using BSA. Contractile force was recorded continuously. Glucose consumption and lactate production were measured. Whole-slice Ca2+ transients and action potentials were recorded. Effects of culture on microstructure were investigated with confocal microscopy and image analysis. Results: Protocols for human myocardial culture resulted in sustained contracture and myocyte death in rabbit slices within 24 h, which could be prevented by transient application of a combination of BDM and CytoD. Cortisol stabilized contraction amplitude and kinetics in culture. T3 and catecholaminergic stimulation did not further improve stability. T3 and higher pacing rates increased metabolic rate and lactate production. T3 stabilized the response to β-adrenergic stimulation over 7 d. Pacing rates above 1 Hz resulted in progredient decline in contraction force. Image analysis revealed no changes in volume fractions of cardiomyocytes or measures of fibrosis over 7 d. Ca2+ transient amplitudes and responsiveness to isoprenaline were comparable after 1 d and 7 d, while Ca2+ transient duration was prolonged after 7 d in culture. Conclusions: A workflow for rabbit myocardial culture has been established, preserving function for up to 7 d. This research underscores the importance of glucocorticoid signaling in maintaining tissue function and extending culture duration. Furthermore, BDM and CytoD appear to protect from tissue damage during the initiation phase of tissue culture.
Collapse
Affiliation(s)
- V. Baron
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - S. T. Sommer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D. J. Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - A.-K. M. Pfeuffer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R. Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T. Volk
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - T. Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Al Thani NA, Hasan M, Yalcin HC. Use of Animal Models for Investigating Cardioprotective Roles of SGLT2 Inhibitors. J Cardiovasc Transl Res 2023; 16:975-986. [PMID: 37052784 PMCID: PMC10615955 DOI: 10.1007/s12265-023-10379-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors represent one type of new-generation type 2 diabetes (T2DM) drug treatment. The mechanism of action of an SGLT2 inhibitor (SGLT2i) in treating T2DM depends on lowering blood glucose levels effectively via increasing the glomerular excretion of glucose. A good number of randomized clinical trials revealed that SGLT2is significantly prevented heart failure (HF) and cardiovascular death in T2DM patients. Despite ongoing clinical trials in HF patients without T2DM, there have been a limited number of translational studies on the cardioprotective properties of SGLT2is. As the cellular mechanism behind the cardiac benefits of SGLT2is is still to be elucidated, animal models are used to better understand the pathways behind the cardioprotective mechanism of SGLT2i. In this review, we summarize the animal models constructed to study the cardioprotective mechanisms of SGLT2is to help deliver a more comprehensive understanding of the in vivo work that has been done in this field and to help select the most optimal animal model to use when studying the different cardioprotective effects of SGLT2is.
Collapse
Affiliation(s)
- Najlaa A Al Thani
- Research and Development Department, Barzan Holdings, P. O. Box 7178, Doha, Qatar
| | - Maram Hasan
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar.
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
5
|
Szekeres R, Priksz D, Kiss R, Romanescu DD, Bombicz M, Varga B, Gesztelyi R, Szilagyi A, Takacs B, Tarjanyi V, Pelles-Tasko B, Forgacs I, Remenyik J, Szilvassy Z, Juhasz B. Therapeutic Aspects of Prunus cerasus Extract in a Rabbit Model of Atherosclerosis-Associated Diastolic Dysfunction. Int J Mol Sci 2023; 24:13253. [PMID: 37686067 PMCID: PMC10488229 DOI: 10.3390/ijms241713253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This study evaluates the potential therapeutic effects of anthocyanin-rich Prunus cerasus (sour cherry) extract (PCE) on atherosclerosis-associated cardiac dysfunction, described by the impairment of the NO-PKG (nitric oxide-protein kinase G) pathway and the antioxidant capacity. Initially, a rabbit model of atherosclerotic cardiovascular disease was established by administering a cholesterol-rich diet, enabling the examination of the impact of 9 g/kg PCE on the pre-existing compromised cardiovascular condition. After that, the animals were divided into four groups for 12 weeks: the (1) untreated control group; (2) PCE-administered healthy rabbits; (3) hypercholesterolemic (HC) group kept on an atherogenic diet; and (4) PCE-treated HC group. Dyslipidemia, impaired endothelial function, and signs of diastolic dysfunction were evident in hypercholesterolemic rabbits, accompanied by a reduced cardiac expression of eNOS (endothelial nitric oxide synthase), PKG, and SERCA2a (sarco/endoplasmic reticulum calcium ATPase 2a). Subsequent PCE treatment improved the lipid profile and the cardiac function. Additionally, PCE administration was associated with elevated myocardial levels of eNOS, PKG, and SERCA2a, while no significant changes in the vascular status were observed. Western blot analysis further revealed hypercholesterolemia-induced increase and PCE-associated reduction in heme oxygenase-1 expression. The observed effects of anthocyanins indicate their potential as a valuable addition to the treatment regimen for atherosclerosis-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Reka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Dana Diana Romanescu
- Department of Diabetology, Pelican Clinical Hospital, 410087 Oradea, Romania;
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Anna Szilagyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Barbara Takacs
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Vera Tarjanyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Beata Pelles-Tasko
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Ildiko Forgacs
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (I.F.); (J.R.)
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (I.F.); (J.R.)
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| |
Collapse
|
6
|
Dreyfuss AD, Velalopoulou A, Avgousti H, Bell BI, Verginadis II. Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Front Oncol 2022; 12:920867. [PMID: 36313656 PMCID: PMC9596809 DOI: 10.3389/fonc.2022.920867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) is an important modality in cancer treatment with >50% of cancer patients undergoing RT for curative or palliative intent. In patients with breast, lung, and esophageal cancer, as well as mediastinal malignancies, incidental RT dose to heart or vascular structures has been linked to the development of Radiation-Induced Heart Disease (RIHD) which manifests as ischemic heart disease, cardiomyopathy, cardiac dysfunction, and heart failure. Despite the remarkable progress in the delivery of radiotherapy treatment, off-target cardiac toxicities are unavoidable. One of the best-studied pathological consequences of incidental exposure of the heart to RT is collagen deposition and fibrosis, leading to the development of radiation-induced myocardial fibrosis (RIMF). However, the pathogenesis of RIMF is still largely unknown. Moreover, there are no available clinical approaches to reverse RIMF once it occurs and it continues to impair the quality of life of long-term cancer survivors. Hence, there is an increasing need for more clinically relevant preclinical models to elucidate the molecular and cellular mechanisms involved in the development of RIMF. This review offers an insight into the existing preclinical models to study RIHD and the suggested mechanisms of RIMF, as well as available multi-modality treatments and outcomes. Moreover, we summarize the valuable detection methods of RIHD/RIMF, and the clinical use of sensitive radiographic and circulating biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis I. Verginadis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
8
|
Hegyi B, Ko CY, Bossuyt J, Bers DM. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovasc Res 2021; 117:2781-2793. [PMID: 33483728 PMCID: PMC8683706 DOI: 10.1093/cvr/cvab006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Diabetic hyperglycaemia is associated with increased arrhythmia risk. We aimed to investigate whether hyperglycaemia alone can be accountable for arrhythmias or whether it requires the presence of additional pathological factors. METHODS AND RESULTS Action potentials (APs) and arrhythmogenic spontaneous diastolic activities were measured in isolated murine ventricular, rabbit atrial, and ventricular myocytes acutely exposed to high glucose. Acute hyperglycaemia increased the short-term variability (STV) of action potential duration (APD), enhanced delayed afterdepolarizations, and the inducibility of APD alternans during tachypacing in both murine and rabbit atrial and ventricular myocytes. Hyperglycaemia also prolonged APD in mice and rabbit atrial cells but not in rabbit ventricular myocytes. However, rabbit ventricular APD was more strongly depressed by block of late Na+ current (INaL) during hyperglycaemia, consistent with elevated INaL in hyperglycaemia. All the above proarrhythmic glucose effects were Ca2+-dependent and abolished by CaMKII inhibition. Importantly, when the repolarization reserve was reduced by pharmacological inhibition of K+ channels (either Ito, IKr, IKs, or IK1) or hypokalaemia, acute hyperglycaemia further prolonged APD and further increased STV and alternans in rabbit ventricular myocytes. Likewise, when rabbit ventricular myocytes were pretreated with isoproterenol or angiotensin II, hyperglycaemia significantly prolonged APD, increased STV and promoted alternans. Moreover, acute hyperglycaemia markedly prolonged APD and further enhanced STV in failing rabbit ventricular myocytes. CONCLUSION We conclude that even though hyperglycaemia alone can enhance cellular proarrhythmic mechanisms, a second hit which reduces the repolarization reserve or stimulates G protein-coupled receptor signalling greatly exacerbates cardiac arrhythmogenesis in diabetic hyperglycaemia.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| |
Collapse
|
9
|
Primary prevention of chronic anthracycline cardiotoxicity with ACE inhibitor is temporarily effective in rabbits, but benefits wane in post-treatment follow-up. Clin Sci (Lond) 2021; 136:139-161. [PMID: 34878093 DOI: 10.1042/cs20210836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) have been used to treat anthracycline-induced cardiac dysfunction, and they appear beneficial for secondary prevention in high-risk patients. However, it remains unclear whether they truly prevent anthracycline-induced cardiac damage and provide long-lasting cardioprotection. This study aimed to examine the cardioprotective effects of perindopril on chronic anthracycline cardiotoxicity in a rabbit model previously validated with the cardioprotective agent dexrazoxane with focus on post-treatment follow-up (FU). Chronic cardiotoxicity was induced by daunorubicin (3 mg/kg/week for 10 weeks). Perindopril (0.05 mg/kg/day) was administered before and throughout chronic daunorubicin treatment. After the completion of treatment, significant benefits were observed in perindopril co-treated animals, particularly full prevention of daunorubicin-induced mortality and prevention or significant reductions in cardiac dysfunction, plasma cardiac troponin T levels, morphological damage, and most of the myocardial molecular alterations. However, these benefits significantly waned during 3 weeks of drug-free FU, which was not salvageable by administering a higher perindopril dose. In the longer (10-week) FU period, further worsening of left ventricular function and morphological damage occurred together with heart failure-related mortality. Continued perindopril treatment in the FU period did not reverse this trend but prevented heart failure-related mortality and reduced the severity of the progression of cardiac damage. These findings contrasted with the robust long-lasting protection observed previously for dexrazoxane in the same model. Hence, in this study, perindopril provided only temporary control of anthracycline cardiotoxicity development, which may be associated with the lack of effects on anthracycline-induced and topoisomerase II beta-dependent DNA damage responses in the heart.
Collapse
|
10
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
11
|
Jabbour RJ, Owen TJ, Pandey P, Reinsch M, Wang B, King O, Couch LS, Pantou D, Pitcher DS, Chowdhury RA, Pitoulis FG, Handa BS, Kit-Anan W, Perbellini F, Myles RC, Stuckey DJ, Dunne M, Shanmuganathan M, Peters NS, Ng FS, Weinberger F, Terracciano CM, Smith GL, Eschenhagen T, Harding SE. In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight 2021; 6:e144068. [PMID: 34369384 PMCID: PMC8410032 DOI: 10.1172/jci.insight.144068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.5 cm × 1.5 cm × 1.5 mm) consisting of up to 20 million human induced pluripotent stem cell–derived cardiomyocytes (hPSC-CMs) embedded in a fibrin-based hydrogel was developed. A rabbit myocardial infarction model was then established to test for feasibility and efficacy. Our data showed that hPSC-CMs in EHTs became more aligned over 28 days and had improved contraction kinetics and faster calcium transients. Blinded echocardiographic analysis revealed a significant improvement in function in infarcted hearts that received EHTs, along with reduction in infarct scar size by 35%. Vascularization from the host to the patch was observed at week 1 and stable to week 4, but electrical coupling between patch and host heart was not observed. In vivo telemetry recordings and ex vivo arrhythmia provocation protocols showed that the patch was not pro-arrhythmic. In summary, EHTs improved function and reduced scar size without causing arrhythmia, which may be due to the lack of electrical coupling between patch and host heart.
Collapse
Affiliation(s)
- Richard J Jabbour
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J Owen
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pragati Pandey
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Marina Reinsch
- Department of Cardiovascular Science, Hamburg University, Hamburg, Germany
| | - Brian Wang
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Oisín King
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Liam Steven Couch
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Dafni Pantou
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - David S Pitcher
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Rasheda A Chowdhury
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Fotios G Pitoulis
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Balvinder S Handa
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Worrapong Kit-Anan
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Filippo Perbellini
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Rachel C Myles
- Department of Cardiovascular Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Michael Dunne
- Department of Cardiovascular Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Nicholas S Peters
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Florian Weinberger
- Department of Cardiovascular Science, Hamburg University, Hamburg, Germany
| | - Cesare M Terracciano
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Godfrey L Smith
- Department of Cardiovascular Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Thomas Eschenhagen
- Department of Cardiovascular Science, Hamburg University, Hamburg, Germany
| | - Sian E Harding
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Logantha SJRJ, Cai XJ, Yanni J, Jones CB, Stephenson RS, Stuart L, Quigley G, Monfredi O, Nakao S, Oh IY, Starborg T, Kitmitto A, Vohra A, Hutcheon RC, Corno AF, Jarvis JC, Dobrzynski H, Boyett MR, Hart G. Remodeling of the Purkinje Network in Congestive Heart Failure in the Rabbit. Circ Heart Fail 2021; 14:e007505. [PMID: 34190577 PMCID: PMC8288482 DOI: 10.1161/circheartfailure.120.007505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. Methods: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. Results: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. Conclusions: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.
Collapse
Affiliation(s)
- Sunil Jit R J Logantha
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Liverpool Centre for Cardiovascular Science and Department of Cardiovascular and Metabolic Medicine (S.J.R.J.L.), University of Liverpool, United Kingdom
| | - Xue J Cai
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Joseph Yanni
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Caroline B Jones
- Alder Hey Children's National Health Service Foundation Trust, Liverpool, United Kingdom (C.B.J.)
| | - Robert S Stephenson
- School of Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom (R.S.S., J.C.J.).,Institute of Clinical Sciences, University of Birmingham, United Kingdom (R.S.S.)
| | - Luke Stuart
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Manchester University NHS Foundation Trust, United Kingdom (L.S.)
| | - Gillian Quigley
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Oliver Monfredi
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville (O.M.).,Laboratory of Cardiovascular Medicine, National Institute on Aging, NIH Biomedical Research Center, Baltimore, MD (O.M.)
| | - Shu Nakao
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kyoto, Japan (S.N.)
| | - Il-Young Oh
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Department of Internal Medicine, Seoul National University Bundang Hospital, Republic of Korea (I.-Y.O.)
| | - Tobias Starborg
- Wellcome Centre for Cell Matrix Research (T.S.), University of Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Akbar Vohra
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Robert C Hutcheon
- Division of Clinical Sciences (R.C.H.), University of Liverpool, United Kingdom
| | - Antonio F Corno
- Memorial Hermann Children's Hospital, University of Texas Health, Houston (A.F.C.)
| | - Jonathan C Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom (R.S.S., J.C.J.)
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Department of Anatomy, Jagiellonian University, Medical College, Cracow, Poland (H.D.)
| | - Mark R Boyett
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - George Hart
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| |
Collapse
|
13
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
14
|
Rog-Zielinska EA, Moss R, Kaltenbacher W, Greiner J, Verkade P, Seemann G, Kohl P, Cannell MB. Nano-scale morphology of cardiomyocyte t-tubule/sarcoplasmic reticulum junctions revealed by ultra-rapid high-pressure freezing and electron tomography. J Mol Cell Cardiol 2021; 153:86-92. [PMID: 33359037 PMCID: PMC8035077 DOI: 10.1016/j.yjmcc.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022]
Abstract
Detailed knowledge of the ultrastructure of intracellular compartments is a prerequisite for our understanding of how cells function. In cardiac muscle cells, close apposition of transverse (t)-tubule (TT) and sarcoplasmic reticulum (SR) membranes supports stable high-gain excitation-contraction coupling. Here, the fine structure of this key intracellular element is examined in rabbit and mouse ventricular cardiomyocytes, using ultra-rapid high-pressure freezing (HPF, omitting aldehyde fixation) and electron microscopy. 3D electron tomograms were used to quantify the dimensions of TT, terminal cisternae of the SR, and the space between SR and TT membranes (dyadic cleft). In comparison to conventional aldehyde-based chemical sample fixation, HPF-preserved samples of both species show considerably more voluminous SR terminal cisternae, both in absolute dimensions and in terms of junctional SR to TT volume ratio. In rabbit cardiomyocytes, the average dyadic cleft surface area of HPF and chemically fixed myocytes did not differ, but cleft volume was significantly smaller in HPF samples than in conventionally fixed tissue; in murine cardiomyocytes, the dyadic cleft surface area was higher in HPF samples with no difference in cleft volume. In both species, the apposition of the TT and SR membranes in the dyad was more likely to be closer than 10 nm in HPF samples compared to CFD, presumably resulting from avoidance of sample shrinkage associated with conventional fixation techniques. Overall, we provide a note of caution regarding quantitative interpretation of chemically-fixed ultrastructures, and offer novel insight into cardiac TT and SR ultrastructure with relevance for our understanding of cardiac physiology.
Collapse
Affiliation(s)
- E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - R Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - W Kaltenbacher
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Verkade
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - G Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M B Cannell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
15
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Ali S, Awan Z, Mumtaz S, Shakir HA, Ahmad F, Ulhaq M, Tahir HM, Awan MS, Sharif S, Irfan M, Khan MA. Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29266-29279. [PMID: 32436095 DOI: 10.1007/s11356-020-09011-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Mercury and cadmium are highly dangerous metals that can lead to disastrous effects in animals and humans. The aim of the current research was to elucidate the poisonous effects of mercuric chloride and cadmium chloride individually and in combination on biochemical profiles of plasma and their accumulation in heart. The therapeutic effect of vitamin C against these metals in rabbits was also studied. Mercuric chloride (1.2 μg/g), cadmium chloride (1.5 μg/g), and vitamin C (150 μg/g of body weight) were orally given to treatment groups of the rabbits (1-control; 2-vitamin; 3-CdCl2; 4-HgCl2; 5-vitamin + CdCl2; 6-vitamin + HgCl2; 7-CdCl2 + HgCl2, and 8-vitamin + CdCl2 + HgCl2. After the biometric determination of all intoxicated rabbits, biochemical parameters, viz low-density lipoproteins (LDL), high-density lipoproteins (HDL), cholesterol, creatine kinase, and troponin T (TnT) were analyzed using available kits. Levels of cholesterol (0.7 ± 0.1 mmol/l), creatine kinase (2985.2 ± 11 IU/L), LDL (20.35 ± 1.31 mg/dl), and troponin T (1.22 ± 0.03 μg/l) were significantly (P < 0.05) increased. HDL (84.78 ± 4.30 mg/dl) was significantly (P < 0.05) decreased, while supplementation of vitamin C decreased the adverse effects of CdCl2 and HgCl2 on biochemical parameters in all metal-exposed groups. A similar trend was also seen in rabbits treated with CdCl2 + vitamin and vitamin + CdCl2 + HgCl2. Accumulation of Cd and Hg was higher in heart tissues. This study, therefore, provides awareness on the cardiac toxicity of mercury and cadmium chlorides in the rabbits and the possible protective role of vitamin C against the perturbations induced by metals.
Collapse
Affiliation(s)
- Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Zubia Awan
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shumaila Mumtaz
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Farooq Ahmad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mazhar Ulhaq
- Department of Veterinary Biomedical Sciences, PMAS Arid Agriculture University, Rawalpindi, PK-46300, Pakistan
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Saima Sharif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Adeeb Khan
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
17
|
Ambreen G, Siddiq A, Hussain K, Hussain AS, Naz Z. Repeatedly heated mix vegetable oils-induced atherosclerosis and effects of Murraya koenigii. BMC Complement Med Ther 2020; 20:222. [PMID: 32664977 PMCID: PMC7362559 DOI: 10.1186/s12906-020-03012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Background Statins are considered as standard drugs to control cholesterol levels, but their use is also associated with renal hypertrophy, hemorrhagic stroke, hepatomegaly, and myopathy. Murraya koenigii is an herb that is used in traditional cuisine and as a medicine in South Asia. Here we assessed the antidyslipidemic and antiatherosclerotic effects of this spice in repeated heated mix vegetable oils (RHMVO)-induced atherosclerotic models. Methods Aqueous extract of M. koenigii leaves (Mk LE) was prepared and its phytoconstituents were determined. Rabbits were divided into 5 groups (n = 10). Except for the control group, all the other four groups were treated with RHMVO for 16 weeks (dose = 2 ml/kg/day) to induce dyslipidemia and atherosclerosis. These groups were further treated for 10 weeks either with 300 and 500 mg/kg/day Mk LE, lovastatin, RHMVO, or left untreated. Body and organ weights were measured along with oxidative stress and tissue damage parameters. Lipid profile and hepatic function markers were studied. Atheroma measurement and histopathological examination were also performed in control and treated groups. Results Mk LE significantly (p < 0.05) attenuated RHMVO-induced dyslipidemia and atheroma formation. Furthermore, fat accumulation and lipid peroxidation in hepatic tissues were reduced by Mk LE in a dose-dependent manner. Our results indicated that the antidyslipidemic effects of Mk LE in 500 mg/kg/day dose were comparable to lovastatin. Additionally, oxidative stress markers were reduced much more significantly in Mk LE-500 than in the statin group (p < 0.05). Conclusions This study recommends Mk LE as a potent antioxidant and lipid-lowering natural medicine that can attenuate the RHMVO-induced atherosclerotic in optimal doses and duration. Therefore, Mk LE can be accessible, cheap, and free of adverse effects alternate to statins.
Collapse
Affiliation(s)
- Gul Ambreen
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan. .,Department of Pharmacy, Aga Khan University Hospital, Stadium Road (Main Pharmacy), P.O Box 3500, Karachi, 74800, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Kashif Hussain
- Department of Pharmacy, Aga Khan University Hospital, Stadium Road (Main Pharmacy), P.O Box 3500, Karachi, 74800, Pakistan
| | - Abdul Saboor Hussain
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Zara Naz
- Institute of Pharmaceutical Sciences, Peoples University of Medical and Health Sciences, Nawabshah, Sindh, Pakistan
| |
Collapse
|
18
|
Schlaak RA, SenthilKumar G, Boerma M, Bergom C. Advances in Preclinical Research Models of Radiation-Induced Cardiac Toxicity. Cancers (Basel) 2020; 12:E415. [PMID: 32053873 PMCID: PMC7072196 DOI: 10.3390/cancers12020415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin; Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
19
|
Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim 2019; 68:35-47. [PMID: 30089733 PMCID: PMC6389514 DOI: 10.1538/expanim.18-0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Stem cells are promising cell source for treatment of multiple diseases as well as myocardial infarction. Rabbit model has essentially used for cardiovascular diseases and regeneration but information on establishment of induced pluripotent stem cells (iPSCs) and differentiation potential is fairly limited. In addition, there is no report of cardiac differentiation from iPSCs in the rabbit model. In this study, we generated rabbit iPSCs by reprogramming rabbit fibroblasts using the 4 transcription factors (OCT3/4, SOX2, KLF4, and c-Myc). Three iPSC lines were established. The iPSCs from all cell lines expressed genes (OCT3/4, SOX2, KLF4 and NANOG) and proteins (alkaline phosphatase, OCT-3/4 and SSEA-4) essentially described for pluripotency (in vivo and in vitro differentiation). Furthermore, they also had ability to form embryoid body (EB) resulting in three-germ layer differentiation. However, ability of particular cell lines and cell numbers at seeding markedly influenced on EB formation and also their diameters. The cell density at 20,000 cells per EB was selected for cardiac differentiation. After plating, the EBs attached and cardiac-like beating areas were seen as soon as 11 days of culture. The differentiated cells expressed cardiac progenitor marker FLK1 (51 ± 1.48%) on day 5 and cardiac troponin-T protein (10.29 ± 1.37%) on day 14. Other cardiac marker genes (cardiac ryanodine receptors (RYR2), α-actinin and PECAM1) were also expressed. This study concluded that rabbit iPSCs remained their in vitro pluripotency with capability of differentiation into mature-phenotype cardiomyocytes. However, the efficiency of cardiac differentiation is still restricted.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, 15 Kanjanavanich Road, Hat Yai Songkhla 90110, Thailand
| | - Sasitorn Rungarunlert
- Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4 Road, Nakhonpathom, 73170, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Nipan Israsena
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
- The Research and Development Center for Livestock Production Technology at the Faculty of Veterinary Science, Chulalongkorn University, Thailand
| |
Collapse
|
20
|
Thomas RC, Cowley PM, Singh A, Myagmar BE, Swigart PM, Baker AJ, Simpson PC. The Alpha-1A Adrenergic Receptor in the Rabbit Heart. PLoS One 2016; 11:e0155238. [PMID: 27258143 PMCID: PMC4892533 DOI: 10.1371/journal.pone.0155238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse.
Collapse
Affiliation(s)
- R. Croft Thomas
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Patrick M. Cowley
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Abhishek Singh
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Bat-Erdene Myagmar
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Philip M. Swigart
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
| | - Anthony J. Baker
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Paul C. Simpson
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
21
|
Hoeker GS, Hanafy MA, Oster RA, Bers DM, Pogwizd SM. Reduced Arrhythmia Inducibility With Calcium/Calmodulin-dependent Protein Kinase II Inhibition in Heart Failure Rabbits. J Cardiovasc Pharmacol 2016; 67:260-5. [PMID: 26650851 PMCID: PMC4783262 DOI: 10.1097/fjc.0000000000000343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE Calcium/calmodulin-dependent protein kinase II (CaMKII) is activated in heart failure (HF) and can contribute to arrhythmias induced by β-adrenergic receptor-mediated sarcoplasmic reticulum calcium leak. OBJECTIVE To evaluate the effect of CaMKII inhibition on ventricular tachycardia (VT) induction in conscious HF and naive rabbits. METHODS AND RESULTS Nonischemic HF was induced by aortic insufficiency and constriction. Electrocardiograms were recorded in rabbits pretreated with vehicle (saline) or the CaMKII inhibitor KN-93 (300 μg/kg); VT was induced by infusion of increasing doses of norepinephrine (1.56-25 μg·kg⁻¹·min⁻¹) in naive (n = 8) and HF (n = 7) rabbits. With saline, median VT dose threshold in HF was 6.25 versus 12.5 μg·kg⁻¹·min⁻¹ norepinephrine in naive rabbits (P = 0.06). Pretreatment with KN-93 significantly increased VT threshold in HF and naive rabbits (median = 25 μg·kg⁻¹·min⁻¹, P < 0.05 vs. saline for both groups). Mean cycle length of VT initiation was shorter in HF (221 ± 20 milliseconds) than naive (296 ± 23 milliseconds, P < 0.05) rabbits with saline; this difference was not significant after treatment with KN-93. CONCLUSIONS KN-93 significantly reduced arrhythmia inducibility and slowed initiation of VT, suggesting that CaMKII inhibition may have antiarrhythmic effects in the failing human heart.
Collapse
Affiliation(s)
- Gregory S Hoeker
- *Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; †Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; ‡Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and §Department of Pharmacology, University of California Davis, Davis, CA
| | | | | | | | | |
Collapse
|
22
|
Talavera J, Giraldo A, Fernández-Del-Palacio MJ, García-Nicolás O, Seva J, Brooks G, Moraleda JM. An Upgrade on the Rabbit Model of Anthracycline-Induced Cardiomyopathy: Shorter Protocol, Reduced Mortality, and Higher Incidence of Overt Dilated Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:465342. [PMID: 26788502 PMCID: PMC4695679 DOI: 10.1155/2015/465342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/21/2022]
Abstract
Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality.
Collapse
Affiliation(s)
- Jesús Talavera
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Alejandro Giraldo
- School of Biological Sciences, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6AS, UK
| | - María Josefa Fernández-Del-Palacio
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Obdulio García-Nicolás
- Departamento de Anatomía y Anatomía Comparada, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, 30100 Murcia, Spain
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Juan Seva
- Departamento de Anatomía y Anatomía Comparada, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Gavin Brooks
- School of Biological Sciences, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6AS, UK
| | - Jose M. Moraleda
- Unidad de Trasplante Hematopoyético y Terapia Celular, Departamento de Hematología, Hospital Universitario Virgen de la Arrixaca, IMIB, Universidad de Murcia, 30120 Murcia, Spain
| |
Collapse
|
23
|
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146:104-19. [PMID: 25277507 PMCID: PMC4304984 DOI: 10.1016/j.pharmthera.2014.09.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan.
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruo Watanabe
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Efficient creation of an APOE knockout rabbit. Transgenic Res 2014; 24:227-35. [PMID: 25216764 DOI: 10.1007/s11248-014-9834-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
The rabbit is a preferred model system for diverse areas of human disease research, such as hypertension and atherosclerosis, for its close resemblance to human physiology. Its larger size than that of rodents allows for more convenient physiological and surgical manipulations as well as imaging. The rapid development of nuclease technologies enables the rabbit genome to be engineered as readily as that of rats and mice, offering rabbit models a chance to make their due impact on medical research. Here, we report the efficient creation of an APOE knockout rabbit by using zinc finger nucleases. The knockout rabbits had drastically elevated cholesterol and moderately increased triglyceride levels, mimicking symptoms in human heart disease. So far the rabbit genome has been successfully modified with three nuclease technologies. With a gestation period only days longer than those of rodents, we hope additional reports on their creation and characterization will help encourage the use of rabbit models where they are most relevant to human conditions.
Collapse
|
25
|
Wang YT, Popović ZB, Efimov IR, Cheng Y. Longitudinal study of cardiac remodelling in rabbits following infarction. Can J Cardiol 2012; 28:230-8. [PMID: 22265993 PMCID: PMC4754104 DOI: 10.1016/j.cjca.2011.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cardiac remodelling following myocardial infarction (MI) is a complex, dynamic process. There have been few longitudinal studies of these changes. METHODS A 2-dimensional transthoracic echocardiography was performed on 20 rabbits, before and 1, 2, 4, 8, and 12 weeks after MI (n = 14) and twice for controls (n = 6). Chronic left ventricular (LV) infarct size was histologically characterized and correlated with mechanical function. A linear mixed model was used to analyze longitudinal and infarct size-related changes in LV end-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF), sphericity, circumferential strain, and wall motion score index. RESULTS Mean LV infarct size was 28.9% ± 9.3%. After MI, rapid remodelling occurred in LVESV, LVEF, and sphericity for 2 weeks and LVEDV for 4 weeks, with slower changes afterwards. LV infarct size correlated with LVESV (r = 0.76), LVEDV (r = 0.71), and LVEF (r = 0.69). Larger infarcts resulted in greater LVESV dilation (P = 0.04) and faster LVEDV (P < 0.01), LVEF (P < 0.01), and sphericity (P < 0.01) remodelling. Apical global circumferential strain and wall motion score index increased for 1 week, then stabilized, regardless of infarct size, and apical global circumferential strain was correlated with apical infarction (r = 0.58). Additionally, regional circumferential strain decreased in segments with severe (> 80%) infarction more quickly (P < 0.01) and by a greater degree (P = 0.04) compared with segments with minor (< 20%) infarction. CONCLUSIONS The most dynamic remodelling of cardiac function in this model occurred during the first 4 weeks, stabilizing thereafter, with changes maintained up to 12 weeks. Infarct size affected both the early rate and long-term extent of mechanical remodelling.
Collapse
Affiliation(s)
- Yves T. Wang
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Zoran B. Popović
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - Igor R. Efimov
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Yuanna Cheng
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|