1
|
Cavalleri A, Astori C, Truskina J, Cucinotta M, Farcot E, Chrysanthou E, Xu X, Muino JM, Kaufmann K, Kater MM, Vernoux T, Weijers D, Bennett MJ, Bhosale R, Bishopp A, Colombo L. Auxin-dependent post-translational regulation of MONOPTEROS in the Arabidopsis root. Cell Rep 2024; 43:115083. [PMID: 39675001 DOI: 10.1016/j.celrep.2024.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition. Here, we show that levels of the ARF5/MONOPTEROS (MP) protein are regulated in a cell-type-specific and isoform-dependent manner. We find that the stability of MP isoforms is differentially controlled depending on the auxin level. The canonical MP isoform is degraded by the proteasome in root tissues with low auxin levels. While auxin sharpens the MP localization domain in roots, it does not do so in ovules or embryos. Our research highlights a mechanism for providing spatial control of auxin signaling capacity. Together with recent advances in understanding the tissue-specific expression and post-transcriptional modification of auxin signaling components, these results provide insights into understanding how auxin can elicit so many distinct responses.
Collapse
Affiliation(s)
- Alex Cavalleri
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Chiara Astori
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Mara Cucinotta
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, NG7 2RD Nottingham, UK
| | - Elina Chrysanthou
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Martin M Kater
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6700 ET Wageningen, the Netherlands
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Lucia Colombo
- Departiment of BioScience, University of Milan, 20133 Milano, Italy.
| |
Collapse
|
2
|
Ren Y, Zhang Z, Zhanakhmetova D, Li W, Chen S, Werner T, Liesche J. Fast and simple fluorometric measurement of phloem loading exposes auxin-dependent regulation of Arabidopsis sucrose transporter AtSUC2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2305-2318. [PMID: 39485912 PMCID: PMC11629736 DOI: 10.1111/tpj.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
The rate of sucrose export from leaves is a major factor in balancing whole-plant carbon and energy partitioning. A comprehensive study of its dynamics and relationship to photosynthesis, sink demand, and other relevant processes is hampered by the shortcomings of current methods for measuring sucrose phloem loading. We utilize the ability of sucrose transporter proteins, known as SUCs or SUTs, to specifically transport the fluorescent molecule esculin in a novel assay to measure phloem loading rates. Esculin was administered to source leaves and its fluorescence in the leaf extract was measured after 1 or 2 h. Dicot plants with an active phloem loading strategy showed an export-dependent reduction of esculin fluorescence. Relative leaf esculin export rates correlated with leaf export rates of isotopic carbon and phloem exudate sucrose levels. We used esculin experiments to examine the effects of phytohormones on phloem loading in Arabidopsis, showing, for example, that auxin induces phloem loading while cytokinin reduces it. Transcriptional regulation of AtSUC2 by AUXIN RESPONSE FACTOR1 (ARF1) corroborated the link between auxin signaling and phloem loading. Unlike established methods, the esculin assay is rapid and does not require specialized equipment. Potential applications and limitations of the esculin assay are discussed.
Collapse
Affiliation(s)
- Yunjuan Ren
- College of Life SciencesNorthwest A&F University712100YanglingChina
- Biomass Energy Center for Arid and Semiarid LandsNorthwest A&F University712100YanglingChina
| | - Ziyu Zhang
- College of Life SciencesNorthwest A&F University712100YanglingChina
- Biomass Energy Center for Arid and Semiarid LandsNorthwest A&F University712100YanglingChina
| | - Diana Zhanakhmetova
- College of Life SciencesNorthwest A&F University712100YanglingChina
- Biomass Energy Center for Arid and Semiarid LandsNorthwest A&F University712100YanglingChina
| | - Wenhui Li
- College of Life SciencesNorthwest A&F University712100YanglingChina
- Biomass Energy Center for Arid and Semiarid LandsNorthwest A&F University712100YanglingChina
| | - Shaolin Chen
- College of Life SciencesNorthwest A&F University712100YanglingChina
- Biomass Energy Center for Arid and Semiarid LandsNorthwest A&F University712100YanglingChina
| | - Tomáš Werner
- Institute of BiologyUniversity of Graz8010 GrazAustria
| | - Johannes Liesche
- College of Life SciencesNorthwest A&F University712100YanglingChina
- Biomass Energy Center for Arid and Semiarid LandsNorthwest A&F University712100YanglingChina
- Institute of BiologyUniversity of Graz8010 GrazAustria
| |
Collapse
|
3
|
Ferreira Neres D, Taylor JS, Bryant JA, Bargmann BOR, Wright RC. Identification of potential auxin response candidate genes for soybean rapid canopy coverage through comparative evolution and expression analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1463438. [PMID: 39421145 PMCID: PMC11484095 DOI: 10.3389/fpls.2024.1463438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Introduction Throughout domestication, crop plants have gone through strong genetic bottlenecks, dramatically reducing the genetic diversity in today's available germplasm. This has also reduced the diversity in traits necessary for breeders to develop improved varieties. Many strategies have been developed to improve both genetic and trait diversity in crops, from backcrossing with wild relatives, to chemical/radiation mutagenesis, to genetic engineering. However, even with recent advances in genetic engineering we still face the rate limiting step of identifying which genes and mutations we should target to generate diversity in specific traits. Methods Here, we apply a comparative evolutionary approach, pairing phylogenetic and expression analyses to identify potential candidate genes for diversifying soybean (Glycine max) canopy cover development via the nuclear auxin signaling gene families, while minimizing pleiotropic effects in other tissues. In soybean, rapid canopy cover development is correlated with yield and also suppresses weeds in organic cultivation. Results and discussion We identified genes most specifically expressed during early canopy development from the TIR1/AFB auxin receptor, Aux/IAA auxin co-receptor, and ARF auxin response factor gene families in soybean, using principal component analysis. We defined Arabidopsis thaliana and model legume species orthologs for each soybean gene in these families allowing us to speculate potential soybean phenotypes based on well-characterized mutants in these model species. In future work, we aim to connect genetic and functional diversity in these candidate genes with phenotypic diversity in planta allowing for improvements in soybean rapid canopy cover, yield, and weed suppression. Further development of this and similar algorithms for defining and quantifying tissue- and phenotype-specificity in gene expression may allow expansion of diversity in valuable phenotypes in important crops.
Collapse
Affiliation(s)
- Deisiany Ferreira Neres
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Joseph S. Taylor
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John A. Bryant
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Bastiaan O. R. Bargmann
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - R. Clay Wright
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
4
|
Lorrai R, Erguvan Ö, Raggi S, Jonsson K, Široká J, Tarkowská D, Novák O, Griffiths J, Jones AM, Verger S, Robert S, Ferrari S. Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation. PLANT PHYSIOLOGY 2024; 196:1562-1578. [PMID: 38976579 PMCID: PMC11444296 DOI: 10.1093/plphys/kiae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development are still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS1 (HLS1) and PHYTOCHROME INTERACTING FACTOR4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins, or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima, and PIF4 and HLS1 expression. Analyses of plants expressing a Förster resonance energy transfer-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signaling module to control differential cell elongation during hook formation.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Rome, Italy
| | - Özer Erguvan
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Sara Raggi
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Kristoffer Jonsson
- IRBV, Department of Biological Sciences, University of Montreal, QC H1X 2B2 Montreal, Quebec, Canada
| | - Jitka Široká
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, CZ-77900 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, CZ-77900 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, CZ-77900 Olomouc, Czech Republic
| | - Jayne Griffiths
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, UK
| | - Stéphane Verger
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Simone Ferrari
- Dipartimento di Biologia e biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
5
|
de Roij M, Borst JW, Weijers D. Protein degradation in auxin response. THE PLANT CELL 2024; 36:3025-3035. [PMID: 38652687 PMCID: PMC11371164 DOI: 10.1093/plcell/koae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
The signaling molecule auxin sits at the nexus of plant biology where it coordinates essentially all growth and developmental processes. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterization of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub that relies on degradation of a family of transcriptional inhibitor proteins-the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.
Collapse
Affiliation(s)
- Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| |
Collapse
|
6
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
7
|
Yan J, Cheng J, Xie D, Wang Y, Wang M, Yang S, Jiang B, Chen L, Cai J, Liu W. A nonsynonymous mutation in BhLS, encoding an acyl-CoA N-acyltransferase leads to fruit and seed size variation in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:100. [PMID: 38602584 DOI: 10.1007/s00122-024-04604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Wax gourd (Benincasa hispida (Thunb.) Cogn., 2n = 2x = 24) is an economically important vegetable crop cultivated widely in many tropical and subtropical regions, including China, India, and Japan. Both fruit and seeds are prized agronomic attributes in wax gourd breeding and production. However, the genetic mechanisms underlying these traits remain largely unexplored. In this study, we observed a strong correlation between fruit size and seed size variation in our mapping population, indicating genetic control by a single gene, BhLS, with large size being dominant over small. Through bulk segregant analysis sequencing and fine mapping with a large F2 population, we precisely located the BhLS gene within a 47.098-kb physical interval on Chromosome 10. Within this interval, only one gene, Bhi10M000649, was identified, showing homology to Arabidopsis HOOKLESS1. A nonsynonymous mutation (G to C) in the second exon of Bhi10M000649 was found to be significantly associated with both fruit and seed size variation in wax gourd. These findings collectively highlight the pleiotropic effect of the BhLS gene in regulating fruit and seed size in wax gourd. Our results offer molecular insights into the variation of fruit and seed size in wax gourd and establish a fundamental framework for breeding wax gourd cultivars with desired traits.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, People's Republic of China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Yi Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Jinsen Cai
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
8
|
Zhang Y, Wu W, Shen H, Yang L. Genome-wide identification and expression analysis of ARF gene family in embryonic development of Korean pine (Pinus koraiensis). BMC PLANT BIOLOGY 2024; 24:267. [PMID: 38600459 PMCID: PMC11005186 DOI: 10.1186/s12870-024-04827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND The Auxin Responsive Factor (ARF) family plays a crucial role in mediating auxin signal transduction and is vital for plant growth and development. However, the function of ARF genes in Korean pine (Pinus koraiensis), a conifer species of significant economic value, remains unclear. RESULTS This study utilized the whole genome of Korean pine to conduct bioinformatics analysis, resulting in the identification of 13 ARF genes. A phylogenetic analysis revealed that these 13 PkorARF genes can be classified into 4 subfamilies, indicating the presence of conserved structural characteristics within each subfamily. Protein interaction prediction indicated that Pkor01G00962.1 and Pkor07G00704.1 may have a significant role in regulating plant growth and development as core components of the PkorARFs family. Additionally, the analysis of RNA-seq and RT-qPCR expression patterns suggested that PkorARF genes play a crucial role in the development process of Korean pine. CONCLUSION Pkor01G00962.1 and Pkor07G00704.1, which are core genes of the PkorARFs family, play a potentially crucial role in regulating the fertilization and developmental process of Korean pine. This study provides a valuable reference for investigating the molecular mechanism of embryonic development in Korean pine and establishes a foundation for cultivating high-quality Korean pine.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wei Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hailong Shen
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
9
|
Lv J, Feng Y, Zhai L, Jiang L, Wu Y, Huang Y, Yu R, Wu T, Zhang X, Wang Y, Han Z. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. HORTICULTURE RESEARCH 2024; 11:uhae051. [PMID: 38706578 PMCID: PMC11069427 DOI: 10.1093/hr/uhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/17/2023] [Indexed: 05/07/2024]
Abstract
Apple rootstock dwarfing and dense planting are common practices in apple farming. However, the dwarfing mechanisms are not understood. In our study, the expression of MdARF3 in the root system of dwarfing rootstock 'M9' was lower than in the vigorous rootstock from Malus micromalus due to the deletion of the WUSATAg element in the promoter of the 'M9' genotype. Notably, this deletion variation was significantly associated with dwarfing rootstocks. Subsequently, transgenic tobacco (Nicotiana tabacum) cv. Xanthi was generated with the ARF3 promoter from 'M9' and M. micromalus genotypes. The transgenic apple with 35S::MdARF3 was also obtained. The transgenic tobacco and apple with the highly expressed ARF3 had a longer root system and a higher plant height phenotype. Furthermore, the yeast one-hybrid, luciferase, electrophoretic mobility shift assays, and Chip-qPCR identified MdWOX4-1 in apples that interacted with the pMm-ARF3 promoter but not the pM9-ARF3 promoter. Notably, MdWOX4-1 significantly increased the transcriptional activity of MdARF3 and MdLBD16-2. However, MdARF3 significantly decreased the transcriptional activity of MdLBD16-2. Further analysis revealed that MdARF3 and MdLBD16-2 were temporally expressed during different stages of lateral root development. pMdLBD16-2 was mainly expressed during the early stage of lateral root development, which promoted lateral root production. On the contrary, pMmARF3 was expressed during the late stage of lateral root development to promote elongation. The findings in our study will shed light on the genetic causes of apple plant dwarfism and provide strategies for molecular breeding of dwarfing apple rootstocks.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Longmei Zhai
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yue Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yimei Huang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Runqi Yu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
10
|
Cui X, Wang J, Li K, Lv B, Hou B, Ding Z. Protein post-translational modifications in auxin signaling. J Genet Genomics 2024; 51:279-291. [PMID: 37451336 DOI: 10.1016/j.jgg.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Protein post-translational modifications (PTMs), such as ubiquitination, phosphorylation, and small ubiquitin-like modifier (SUMO)ylation, are crucial for regulating protein stability, activity, subcellular localization, and binding with cofactors. Such modifications remarkably increase the variety and complexity of proteomes, which are essential for regulating numerous cellular and physiological processes. The regulation of auxin signaling is finely tuned in time and space to guide various plant growth and development. Accumulating evidence indicates that PTMs play critical roles in auxin signaling regulations. Thus, a thorough and systematic review of the functions of PTMs in auxin signal transduction will improve our profound comprehension of the regulation mechanism of auxin signaling and auxin-mediated various processes. This review discusses the progress of protein ubiquitination, phosphorylation, histone acetylation and methylation, SUMOylation, and S-nitrosylation in the regulation of auxin signaling.
Collapse
Affiliation(s)
- Xiankui Cui
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ke Li
- Shandong Academy of Grape, Jinan, Shandong 250100, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
11
|
Zhang H, Xue F, Guo L, Cheng J, Jabbour F, DuPasquier PE, Xie Y, Zhang P, Wu Y, Duan X, Kong H, Zhang R. The mechanism underlying asymmetric bending of lateral petals in Delphinium (Ranunculaceae). Curr Biol 2024; 34:755-768.e4. [PMID: 38272029 DOI: 10.1016/j.cub.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
During the process of flower opening, most petals move downward in the direction of the pedicel (i.e., epinastic movement). In most Delphinium flowers, however, their two lateral petals display a very peculiar movement, the mirrored helical rotation, which requires the twist of the petal stalk. However, in some lineages, their lateral petals also exhibit asymmetric bending that increases the degree of mirrored helical rotation, facilitating the formation of a 3D final shape. Notably, petal asymmetric bending is a novel trait that has not been noticed yet, so its morphological nature, developmental process, and molecular mechanisms remain largely unknown. Here, by using D. anthriscifolium as a model, we determined that petal asymmetric bending was caused by the localized expansion of cell width, accompanied by the specialized array of cell wall nano-structure, on the adaxial epidermis. Digital gene analyses, gene expression, and functional studies revealed that a class I homeodomain-leucine zipper family transcription factor gene, DeanLATE MERISTEM IDENTITY1 (DeanLMI1), contributes to petal asymmetric bending; knockdown of it led to the formation of explanate 2D petals. Specifically, DeanLMI1 promotes cell expansion in width and influences the arrangement of cell wall nano-structure on the localized adaxial epidermis. These results not only provide a comprehensive portrait of petal asymmetric bending for the first time but also shed some new insights into the mechanisms of flower opening and helical movement in plants.
Collapse
Affiliation(s)
- Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Xue
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris 75005, France
| | | | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijia Wu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoshan Duan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Jhanji S, Goyal E, Chumber M, Kaur G. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108352. [PMID: 38266558 DOI: 10.1016/j.plaphy.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
In higher plants, seed is a propagule which ensures dissemination and survival of species. Developmental phases of a seed comprise embryogenesis, maturation and germination paving a way to its final fate i.e. seedling establishment. The final stage of seed maturation is marked by dehydration, acquisition of dessication tolerance and induction of dormancy. A precise Abscisic acid (ABA) to Gibberellins (GA) ratio, accumulation of miRNA 156, low level of reactive oxygen species (ROS) and enzyme inactivity govern seed dormancy. This also prevent pre harvest sprouting of the seeds. Overtime, stored seed mRNAs and proteins are degraded through oxidation of specific nucleotides in response to ROS accumulation. This degradation alleviates seed dormancy and transforms a dormant seed into a germinating seed. At this stage, ABA catabolism and degradation accompanied by GA synthesis contribute to low ABA to GA ratio. GA as well as ROS acts downstream, to mobilize reserve food materials, rupture testa, enhance imbibition and protrude radicle. All these events mark seed germination. Further, seedling is established under the governance of auxin and light. ABA and GA are master regulators while auxin, cytokinins, ethylene, jasmonic acid, brassinosteroids act through interdependent pathways to tightly regulate seed dormancy, germination and seedling establishment. In this review, the role of phytohormones and ROS in accordance with environmental factors in governing seed dormancy, promoting seed germination and thus, establishing a seedling is discussed in detail.
Collapse
Affiliation(s)
- Shalini Jhanji
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Eena Goyal
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manisha Chumber
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurpreet Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
13
|
Liu J, Tian H, Zhang M, Sun Y, Wang J, Yu Q, Ding Z. STOP1 attenuates the auxin response to maintain root stem cell niche identity. Cell Rep 2024; 43:113617. [PMID: 38150366 DOI: 10.1016/j.celrep.2023.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
In plant roots, the identity of the stem cell niche (SCN) is maintained by an auxin gradient with its maximum in the quiescent center (QC). Optimal levels of auxin signaling are essential for root SCN identity, but the regulatory mechanisms that control this pathway in root are largely unknown. Here, we find that the zinc finger transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates root SCN identity by negative feedback of auxin signaling in root tips. Mutation and overexpression of STOP1 both affect QC cell division and distal stem cell differentiation in the root. We find that auxin treatment stabilizes STOP1 via MPK3/6-dependent phosphorylation. Accumulating STOP1 can compete with AUX/IAAs to interact with, and enhance the repressive activity of, auxin-repressive response factor ARF2. Overall, we show that the MPK3/6-STOP1-ARF2 module prevents excessive auxin signaling in the presence of auxin to maintain root SCN identity.
Collapse
Affiliation(s)
- Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Mengxin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Qianqian Yu
- College of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
15
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
16
|
Prigge MJ, Morffy N, de Neve A, Szutu W, Abraham-Juárez MJ, Johnson K, Do N, Lavy M, Hake S, Strader L, Estelle M, Richardson AE. Comparative mutant analyses reveal a novel mechanism of ARF regulation in land plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566459. [PMID: 38014308 PMCID: PMC10680667 DOI: 10.1101/2023.11.09.566459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A major challenge in plant biology is to understand how the plant hormone auxin regulates diverse transcriptional responses throughout development, in different environments, and in different species. The answer may lie in the specific complement of auxin signaling components in each cell. The balance between activators (class-A AUXIN RESPONSE FACTORS) and repressors (class-B ARFs) is particularly important. It is unclear how this balance is achieved. Through comparative analysis of novel, dominant mutants in maize and the moss Physcomitrium patens , we have discovered a ∼500-million-year-old mechanism of class-B ARF protein level regulation, important in determining cell fate decisions across land plants. Thus, our results add a key piece to the puzzle of how auxin regulates plant development.
Collapse
|
17
|
Jing H, Strader LC. AUXIN RESPONSE FACTOR protein accumulation and function. Bioessays 2023; 45:e2300018. [PMID: 37584215 PMCID: PMC10592145 DOI: 10.1002/bies.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo-cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | |
Collapse
|
18
|
Neres DF, Taylor JS, Bryant JA, Bargmann BOR, Wright RC. Identification of potential Auxin Response Candidate genes for soybean rapid canopy coverage through comparative evolution and expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564213. [PMID: 37961442 PMCID: PMC10634891 DOI: 10.1101/2023.10.26.564213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glycine max, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds. Genome-wide association studies have found natural variants associated with RCC, however causal mechanisms are unclear. Auxin modulates plant growth and development and has been implicated in RCC traits. Therefore, modulation of auxin regulatory genes may enhance RCC. Here, we focus on the use of genomic tools and existing datasets to identify auxin signaling pathway RCC candidate genes, using a comparative phylogenetics and expression analysis approach. We identified genes encoding 14 TIR1/AFB auxin receptors, 61 Aux/IAA auxin co-receptors and transcriptional co-repressors, and 55 ARF auxin response factors in the soybean genome. We used Bayesian phylogenetic inference to identify soybean orthologs of Arabidopsis thaliana genes, and defined an ortholog naming system for these genes. To further define potential auxin signaling candidate genes for RCC, we examined tissue-level expression of these genes in existing datasets and identified highly expressed auxin signaling genes in apical tissues early in development. We identified at least 4 TIR1/AFB, 8 Aux/IAA, and 8 ARF genes with highly specific expression in one or more RCC-associated tissues. We hypothesize that modulating the function of these genes through gene editing or traditional breeding will have the highest likelihood of affecting RCC while minimizing pleiotropic effects.
Collapse
|
19
|
Cai K, Zhao Q, Zhang J, Yuan H, Li H, Han L, Li X, Li K, Jiang T, Zhao X. Unraveling the Guardians of Growth: A Comprehensive Analysis of the Aux/ IAA and ARF Gene Families in Populus simonii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3566. [PMID: 37896029 PMCID: PMC10610179 DOI: 10.3390/plants12203566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families.
Collapse
Affiliation(s)
- Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Jinwang Zhang
- Tongliao Forestry and Grassland Science Research Institute, Tongliao 028000, China; (J.Z.); (H.Y.)
| | - Hongtao Yuan
- Tongliao Forestry and Grassland Science Research Institute, Tongliao 028000, China; (J.Z.); (H.Y.)
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Lu Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| | - Xuebo Li
- Changling County Front Seven State-Owned Forest Protection Center, Changling 131500, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
20
|
Zhang J, Chen W, Li X, Shi H, Lv M, He L, Bai W, Cheng S, Chu J, He K, Gou X, Li J. Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. PLANT PHYSIOLOGY 2023; 193:1561-1579. [PMID: 37467431 PMCID: PMC10517256 DOI: 10.1093/plphys/kiad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Bai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Chen C, Hussain N, Ma Y, Zuo L, Jiang Y, Sun X, Gao J. The ARF2-MYB6 module mediates auxin-regulated petal expansion in rose. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4489-4502. [PMID: 37158672 DOI: 10.1093/jxb/erad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
In cut rose (Rosa hybrida), the flower-opening process is closely associated with vase life. Auxin induces the expression of transcription factor genes that function in petal growth via cell expansion. However, the molecular mechanisms underlying the auxin effect during flower opening are not well understood. Here, we identified the auxin-inducible transcription factor gene RhMYB6, whose expression level is high during the early stages of flower opening. Silencing of RhMYB6 delayed flower opening by controlling petal cell expansion through down-regulation of cell expansion-related genes. Furthermore, we demonstrated that the auxin response factor RhARF2 directly interacts with the promoter of RhMYB6 and represses its transcription. Silencing of RhARF2 resulted in larger petal size and delayed petal movement. We also showed that the expression of genes related to ethylene and petal movement showed substantial differences in RhARF2-silenced petals. Our results indicate that auxin-regulated RhARF2 is a critical player that controls flower opening by governing RhMYB6 expression and mediating the crosstalk between auxin and ethylene signaling.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nisar Hussain
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Kocaoglan EG, Radhakrishnan D, Nakayama N. Synthetic developmental biology: molecular tools to re-design plant shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3864-3876. [PMID: 37155965 PMCID: PMC10826796 DOI: 10.1093/jxb/erad169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Plant morphology and anatomy strongly influence agricultural yield. Crop domestication has strived for desirable growth and developmental traits, such as larger and more fruits and semi-dwarf architecture. Genetic engineering has accelerated rational, purpose-driven engineering of plant development, but it can be unpredictable. Developmental pathways are complex and riddled with environmental and hormonal inputs, as well as feedback and feedforward interactions, which occur at specific times and places in a growing multicellular organism. Rational modification of plant development would probably benefit from precision engineering based on synthetic biology approaches. This review outlines recently developed synthetic biology technologies for plant systems and highlights their potential for engineering plant growth and development. Streamlined and high-capacity genetic construction methods (Golden Gate DNA Assembly frameworks and toolkits) allow fast and variation-series cloning of multigene transgene constructs. This, together with a suite of gene regulation tools (e.g. cell type-specific promoters, logic gates, and multiplex regulation systems), is starting to enable developmental pathway engineering with predictable outcomes in model plant and crop species.
Collapse
Affiliation(s)
- Elif Gediz Kocaoglan
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Dhanya Radhakrishnan
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Naomi Nakayama
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
23
|
Xiong J, Yang F, Wei F, Yang F, Lin H, Zhang D. Inhibition of SIZ1-mediated SUMOylation of HOOKLESS1 promotes light-induced apical hook opening in Arabidopsis. THE PLANT CELL 2023; 35:2027-2043. [PMID: 36890719 PMCID: PMC10226575 DOI: 10.1093/plcell/koad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 05/12/2023]
Abstract
The apical hook protects cotyledons and the shoot apical meristem from mechanical injuries during seedling emergence from the soil. HOOKLESS1 (HLS1) is a central regulator of apical hook development, as a terminal signal onto which several pathways converge. However, how plants regulate the rapid opening of the apical hook in response to light by modulating HLS1 function remains unclear. In this study, we demonstrate that the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HLS1 and mediates its SUMOylation in Arabidopsis thaliana. Mutating SUMO attachment sites of HLS1 results in impaired function of HLS1, indicating that HLS1 SUMOylation is essential for its function. SUMOylated HLS1 was more likely to assemble into oligomers, which are the active form of HLS1. During the dark-to-light transition, light induces rapid apical hook opening, concomitantly with a drop in SIZ1 transcript levels, resulting in lower HLS1 SUMOylation. Furthermore, ELONGATED HYPOCOTYL5 (HY5) directly binds to the SIZ1 promoter and suppresses its transcription. HY5-initiated rapid apical hook opening partially depended on HY5 inhibition of SIZ1 expression. Taken together, our study identifies a function for SIZ1 in apical hook development, providing a dynamic regulatory mechanism linking the post-translational modification of HLS1 during apical hook formation and light-induced apical hook opening.
Collapse
Affiliation(s)
- Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fan Wei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
24
|
Wang Q, Sun J, Wang R, Zhang Z, Liu N, Jin H, Zhong B, Zhu Z. The origin, evolution and functional divergence of HOOKLESS1 in plants. Commun Biol 2023; 6:460. [PMID: 37101003 PMCID: PMC10133230 DOI: 10.1038/s42003-023-04849-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Apical hooks are functional innovations only observed in angiosperms, which effectively protect the apical meristems out of damage during plant seedlings penetrating soil covers. Acetyltransferase like protein HOOKLESS1 (HLS1) in Arabidopsis thaliana is required for hook formation. However, the origin and evolution of HLS1 in plants are still not solved. Here, we traced the evolution of HLS1 and found that HLS1 originated in embryophytes. Moreover, we found that Arabidopsis HLS1 delayed plant flowering time, in addition to their well-known functions in apical hook development and newly reported roles in thermomorphogenesis. We further revealed that HLS1 interacted with transcription factor CO and repressed the expression of FT to delay flowering. Lastly, we compared the functional divergence of HLS1 among eudicot (A. thaliana), bryophytes (Physcomitrium patens and Marchantia polymorpha) and lycophyte (Selaginella moellendorffii). Although HLS1 from these bryophytes and lycophyte partially rescued the thermomorphogenesis defects in hls1-1 mutants, the apical hook defects and early flowering phenotypes could not be reversed by either P. patens, M. polymorpha or S. moellendorffii orthologs. These results illustrate that HLS1 proteins from bryophytes or lycophyte are able to modulate thermomorphogenesis phenotypes in A. thaliana likely through a conserved gene regulatory network. Our findings shed new light on the understanding of the functional diversity and origin of HLS1, which controls the most attractive innovations in angiosperms.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ran Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Nana Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huanhuan Jin
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
25
|
Li Y, Han S, Qi Y. Advances in structure and function of auxin response factor in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:617-632. [PMID: 36263892 DOI: 10.1111/jipb.13392] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development. Auxin signal transduction is mainly controlled by two gene families: auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA). ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxin-responsive genes. ARF proteins contain three conserved regions: a conserved N-terminal B3 DNA-binding domain, a variable intermediate middle region domain that functions in activation or repression, and a C-terminal domain including the Phox and Bem1p region for dimerization, similar to the III and IV elements of Aux/IAA, which facilitate protein-protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins. In the two decades following the identification of the first ARF, 23 ARF members have been identified and characterized in Arabidopsis. Using whole-genome sequencing, 22, 25, 23, 25, and 36 ARF genes have been identified in tomato, rice, wheat, sorghum, and maize, respectively, in addition to which the related biofunctions of some ARFs have been reported. ARFs play crucial roles in regulating the growth and development of roots, leaves, flowers, fruits, seeds, responses to biotic and abiotic stresses, and phytohormone signal crosstalk. In this review, we summarize the research progress on the structures and functions of ARFs in Arabidopsis, tomato, and cereal crops, to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.
Collapse
Affiliation(s)
- Yonghui Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
27
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Xue H, Meng J, Lei P, Cao Y, An X, Jia M, Li Y, Liu H, Sheen J, Liu X, Yu F. ARF2-PIF5 interaction controls transcriptional reprogramming in the ABS3-mediated plant senescence pathway. EMBO J 2022; 41:e110988. [PMID: 35942625 PMCID: PMC9531305 DOI: 10.15252/embj.2022110988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jingjing Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yongxin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Xue An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Present address:
Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCAUSA
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Department of Molecular Biology and Centre for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
29
|
Aizezi Y, Xie Y, Guo H, Jiang K. New Wine in an Old Bottle: Utilizing Chemical Genetics to Dissect Apical Hook Development. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081285. [PMID: 36013464 PMCID: PMC9410295 DOI: 10.3390/life12081285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem during soil emergence. Regulated by many phytohormones, the apical hook has been taken as a model to study the crosstalk between individual signaling pathways. Over recent decades, the roles of different phytohormones and environmental signals in apical hook development have been illustrated. However, key regulators downstream of canonical hormone signaling have rarely been identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation. Chemical genetics that utilize small molecules to perturb and elucidate biological processes could provide a complementary strategy to overcome the limitations in classical genetics. In this review, we summarize current progress in hormonal regulation of the apical hook, and previously reported chemical tools that could assist the understanding of this complex developmental process. We also provide insight into novel strategies for chemical screening and target identification, which could possibly lead to discoveries of new regulatory components in apical hook development, or unidentified signaling crosstalk that is overlooked by classical genetics screening.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| |
Collapse
|
30
|
Jiang W, Xia Y, Su X, Pang Y. ARF2 positively regulates flavonols and proanthocyanidins biosynthesis in Arabidopsis thaliana. PLANTA 2022; 256:44. [PMID: 35857143 DOI: 10.1007/s00425-022-03936-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factor 2 acts as a positive regulator to fine-tune the spatial and temporal accumulation of flavonoid compounds, mainly flavonols and proanthocyanidins in Arabidopsis. Auxin response factor (ARF) proteins are reported to involve in auxin-mediated regulation of flavonoid biosynthesis. However, the detailed regulation mechanism of ARF remains still unknown. Here, we provide genetic and molecular evidence that one of the twenty-three ARF members-ARF2-positively regulates flavonoid biosynthesis at multi-level in tissue-specific manner in Arabidopsis thaliana. Loss-of-function mutation of ARF2 led to significant reduction in flavonoid content (e.g., flavonols and proanthocyanidins) in the seedlings and seeds of the Arabidopsis arf2 mutants. Over-expression of ARF2 increased flavonols and proanthocyanidins content in Arabidopsis. Additionally, the changes of flavonoid content correlate well with the transcript abundance of several regulatory genes (e.g., MYB11, MYB12, MYB111, TT2, and GL3), and key biosynthetic genes (e.g., CHS, F3'H, FLS, ANS, ANR, TT12, TT19, and TT15), in the arf2 mutant and ARF2 over-expression lines. Transient transactivation assays with site-directed mutagenesis confirmed that ARF2 directly regulates the expression of MYB12 and FLS genes in the flavonol pathway and ANR in the proanthocyanidin pathway, and indirectly regulates MYB11 and MYB111 genes in the flavonol pathway, and ANS, TT12, TT19 and TT15 genes in the proanthocyanidin pathway. Further genetic results indicated that ARF2 acts upstream of MYB12 to regulate flavonol accumulation, and of TT2 to regulate proanthocyanidins accumulation. In particular, yeast two-hybrid assays revealed that ARF2 physically interacts with TT2, a master regulator of proanthocyanidins biosynthesis. Combined together, these results indicated that ARF2 functions as a positive regulator for the fine-tuned spatial and temporal regulation of flavonoids (mainly flavonols and proanthocyanidins) accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
31
|
Jing H, Korasick DA, Emenecker RJ, Morffy N, Wilkinson EG, Powers SK, Strader LC. Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nat Commun 2022; 13:4015. [PMID: 35817767 PMCID: PMC9273615 DOI: 10.1038/s41467-022-31628-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/26/2022] [Indexed: 11/08/2022] Open
Abstract
Auxin critically regulates plant growth and development. Auxin-driven transcriptional responses are mediated through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARF protein condensation attenuates ARF activity, resulting in dramatic shifts in the auxin transcriptional landscape. Here, we perform a forward genetics screen for ARF hypercondensation, identifying an F-box protein, which we named AUXIN RESPONSE FACTOR F-BOX1 (AFF1). Functional characterization of SCFAFF1 revealed that this E3 ubiquitin ligase directly interacts with ARF19 and ARF7 to regulate their accumulation, condensation, and nucleo-cytoplasmic partitioning. Mutants defective in AFF1 display attenuated auxin responsiveness, and developmental defects, suggesting that SCFAFF1 -mediated regulation of ARF protein drives aspects of auxin response and plant development.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC, 27008, USA
- Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA
| | - David A Korasick
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Ryan J Emenecker
- Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Nicholas Morffy
- Department of Biology, Duke University, Durham, NC, 27008, USA
- Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA
| | - Edward G Wilkinson
- Department of Biology, Duke University, Durham, NC, 27008, USA
- Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA
| | - Samantha K Powers
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC, 27008, USA.
- Center for Engineering MechanoBiology, Washington University, St. Louis, MO, 63130, USA.
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
32
|
Wang W, Xiong H, Sun K, Zhang B, Sun MX. New insights into cell-cell communications during seed development in flowering plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:215-229. [PMID: 34473416 DOI: 10.1111/jipb.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
33
|
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong JH, Ren H, Cohen JD, Li C, Gray WM. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. SCIENCE ADVANCES 2022; 8:eabj1570. [PMID: 35020423 PMCID: PMC8754305 DOI: 10.1126/sciadv.abj1570] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Steward
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (C.L.); (W.M.G.)
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Corresponding author. (C.L.); (W.M.G.)
| |
Collapse
|
34
|
Abstract
Auxin signaling regulates growth and developmental processes in plants. The core of nuclear auxin signaling relies on just three components: TIR1/AFBs, Aux/IAAs, and ARFs. Each component is itself made up of several domains, all of which contribute to the regulation of auxin signaling. Studies of the structural aspects of these three core signaling components have deepened our understanding of auxin signaling dynamics and regulation. In addition to the structured domains of these components, intrinsically disordered regions within the proteins also impact auxin signaling outcomes. New research is beginning to uncover the role intrinsic disorder plays in auxin-regulated degradation and subcellular localization. Structured and intrinsically disordered domains affect auxin perception, protein degradation dynamics, and DNA binding. Taken together, subtle differences within the domains and motifs of each class of auxin signaling component affect signaling outcomes and specificity.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
35
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
36
|
Peng Y, Zhang D, Qiu Y, Xiao Z, Ji Y, Li W, Xia Y, Wang Y, Guo H. Growth asymmetry precedes differential auxin response during apical hook initiation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:5-22. [PMID: 34786851 DOI: 10.1111/jipb.13190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with high-throughput infrared imaging and 2-D clinostat treatment that, when gravity-induced root bending is absent, apical hook formation still takes place. In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, such de novo asymmetric growth, but not the following hook enlargement, precedes the establishment of a detectable auxin response asymmetry, and is largely independent of auxin biosynthesis, transport and signaling. Moreover, we found that functional cortical microtubule array is essential for the following enlargement of hook curvature. When microtubule array was disrupted by oryzalin, the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region. Taken together, we propose a more comprehensive model for apical hook initiation, in which the microtubule-dependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place, induced by gravitropic response, or both, to generate a significant auxin gradient that drives the full development of the apical hook.
Collapse
Affiliation(s)
- Yang Peng
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Dan Zhang
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuping Qiu
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhina Xiao
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusi Ji
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Microlens Technologies, Beijing, 100086, China
| | - Wenyang Li
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiji Xia
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Yichuan Wang
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
37
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
38
|
Li YJ, Yu Y, Liu X, Zhang XS, Su YH. The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. THE PLANT CELL 2021; 33:1907-1926. [PMID: 33730150 PMCID: PMC8290293 DOI: 10.1093/plcell/koab084] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 05/18/2023]
Abstract
Seed size is a major factor determining crop yields that is controlled through the coordinated development of maternal and zygotic tissues. Here, we identified Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 (MEE45) as a B3 transcription factor that controls cell proliferation and maternally regulates seed size through its transcriptional activation of AINTEGUMENTA (ANT) and its downstream control of auxin biosynthesis in the ovule integument. After characterizing reduced seed and organ size phenotypes in mee45 mutants and finding that overexpression of MEE45 causes oversized seeds, we discovered that the MEE45 protein can bind to the promoter region of the ANT locus and positively regulate its transcription. ANT in-turn activates the expression of auxin biosynthetic genes (e.g. YUCCA4) in the ovule integument. Our results thus illustrate mechanisms underlying maternal tissue-mediated regulation of seed size and suggest that MEE45 and its downstream components can be harnessed to develop higher-yielding crop varieties.
Collapse
Affiliation(s)
- Ying Ju Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Yang Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China
| | - Xiuying Liu
- Novogene Bioinformatics Institute, Beijing, 100020, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China
- Authors for Correspondence: ;
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018, Shandong, China
- Authors for Correspondence: ;
| |
Collapse
|
39
|
Deng J, Wang X, Liu Z, Mao T. The microtubule-associated protein WDL4 modulates auxin distribution to promote apical hook opening in Arabidopsis. THE PLANT CELL 2021; 33:1927-1944. [PMID: 33730147 PMCID: PMC8290285 DOI: 10.1093/plcell/koab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 05/08/2023]
Abstract
The unique apical hook in dicotyledonous plants protects the shoot apical meristem and cotyledons when seedlings emerge through the soil. Its formation involves differential cell growth under the coordinated control of plant hormones, especially ethylene and auxin. Microtubules are essential players in plant cell growth that are regulated by multiple microtubule-associated proteins (MAPs). However, the role and underlying mechanisms of MAP-microtubule modules in differential cell growth are poorly understood. In this study, we found that the previously uncharacterized Arabidopsis MAP WAVE-DAMPENED2-LIKE4 (WDL4) protein plays a positive role in apical hook opening. WDL4 exhibits a temporal expression pattern during hook development in dark-grown seedlings that is directly regulated by ethylene signaling. WDL4 mutants showed a delayed hook opening phenotype while overexpression of WDL4 resulted in enhanced hook opening. In particular, wdl4-1 mutants exhibited stronger auxin accumulation in the concave side of the apical hook. Furthermore, the regulation of the auxin maxima and trafficking of the auxin efflux carriers PIN-FORMED1 (PIN1) and PIN7 in the hook region is critical for WDL4-mediated hook opening. Together, our study demonstrates that WDL4 positively regulates apical hook opening by modulating auxin distribution, thus unraveling a mechanism for MAP-mediated differential plant cell growth.
Collapse
Affiliation(s)
- Jia Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
40
|
Li X, Kong X, Zhou J, Luo Z, Lu H, Li W, Tang W, Zhang D, Ma C, Zhang H, Dong H. Seeding depth and seeding rate regulate apical hook formation by inducing GhHLS1 expression via ethylene during cotton emergence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:92-100. [PMID: 33975148 DOI: 10.1016/j.plaphy.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Apical hook formation is essential for the emergence and stand establishment of cotton plants. Searching for agronomic measures to regulate apical hook formation and clarifying its mechanism are important for full stand establishment in cotton. In this study, cotton seeds were sown at varying seeding rates or depths in sand to determine if and how apical hook formation was regulated by seeding rates or depths. The results showed that deep seeding or low seeding rates increased mechanical pressure and then increased ethylene content by increasing GhACO1 and GhACS2 expression to improve apical hook formation. Silencing of the GhACO1 and GhACS2 genes or exogenous application of 1-methylcyclopropene (1-MCP) decreased the ethylene content and inhibited apical hook formation in the cotton seedlings. Deep seeding, a low seeding rate, or 1-amino cyclopropane-1-carboxylic acid (ACC) treatment increased the expression of GhHLS1 and GhPIF3 genes, but their expression was decreased in theVIGS-ACO1 and VIGS-ACS2 seedlings. Silencing of the GhHLS1 and GhPIF3 genes inhibited apical hook formation, although the expression of GhACO1 and GhACS2 was unchanged. GhPIF3 may act upstream of GhHLS1, as the expression of GhPIF3 in the VIGS-HLS1 seedlings was unchanged, while the expression of GhHLS1 in the VIGS-PIF3 seedlings decreased. These results suggested that raised mechanical pressure could increase ethylene content by inducing GhACO1 and GhACS2 gene expression, which promoted apical hook formation by increasing the expression of GhHLS1. Therefore, adjusting the mechanical pressure through changing the seeding depth or seeding rate is an important means to regulate apical hook formation and emergence.
Collapse
Affiliation(s)
- Xue Li
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; School of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiangqiang Kong
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; School of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Jingyuan Zhou
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; School of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhen Luo
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Hequan Lu
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Weijiang Li
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Wei Tang
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Dongmei Zhang
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Changle Ma
- School of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Hui Zhang
- School of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Hezhong Dong
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; School of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
41
|
Jewaria PK, Yu M, Li X. Cell Wall and Hormone Interplay Controls Growth Asymmetry. TRENDS IN PLANT SCIENCE 2021; 26:665-667. [PMID: 33958277 DOI: 10.1016/j.tplants.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Plant cell elongation and expansion require the biosynthesis and remodeling of cell wall composition. Recently, Aryal et al. reported how feedback between the cell wall and the auxin response controls differential growth in apical hook development.
Collapse
Affiliation(s)
- Pawan Kumar Jewaria
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- College of Life Sciences, Hebei Agriculture University, Baoding 071001, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
42
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Li X, Yu R, Fan Y. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. PLANT CELL REPORTS 2021; 40:1269-1284. [PMID: 34052884 DOI: 10.1007/s00299-021-02709-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 05/19/2023]
Abstract
Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Economics and Management, Kunming University, Kunming, 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Hibara KI, Miya M, Benvenuto SA, Hibara-Matsuo N, Mimura M, Yoshikawa T, Suzuki M, Kusaba M, Taketa S, Itoh JI. Regulation of the plastochron by three many-noded dwarf genes in barley. PLoS Genet 2021; 17:e1009292. [PMID: 33970916 PMCID: PMC8136844 DOI: 10.1371/journal.pgen.1009292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/20/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | - Masayuki Miya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sean Akira Benvenuto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Hibara-Matsuo
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | | | | | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shin Taketa
- Group of Genetic Resources and Functions, Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Zhang Y, Li N, Wang L. Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Rep 2021; 35:109095. [PMID: 33979615 DOI: 10.1016/j.celrep.2021.109095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Dicotyledonous plants form an apical hook to protect the fragile apical meristem during upward protrusion from the soil. Etiolated pifq (pif1 pif3 pif4 pif5) seedlings display constitutive apical hook opening. Here, we show that PIF proteins control apical hook opening by regulating the expression of Budding Uninhibited by Benzimidazole 3.1 (BUB3.1) and affecting cytokinesis. Consistent with the major function of BUB3.1 in the organization of phragmoplasts during cytokinesis, the phragmoplasts are well formed in dark-grown pifq but not in wild type. DNA staining and flow cytometry analysis further demonstrate that cellular endoreduplication levels are dramatically reduced in pifq. Chemical treatment with caffeine, an inhibitor of phragmoplast-based cytokinesis, shows that cytokinesis is involved in the apical hook opening. Genetically, BUB3.1 is epistatic to PIFq in the regulation of cytokinesis. Our findings reveal an organ-specific role of PIF proteins in regulating cytokinesis by BUB3.1 during apical hook development.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Na Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Liu Z, Wang Y, Pu W, Zhu H, Liang J, Wu J, Hong L, Guan P, Hu J. 4-CPA (4-Chlorophenoxyacetic Acid) Induces the Formation and Development of Defective "Fenghou" ( Vitis vinifera × V. labrusca) Grape Seeds. Biomolecules 2021; 11:biom11040515. [PMID: 33808413 PMCID: PMC8067128 DOI: 10.3390/biom11040515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
For some horticultural plants, auxins can not only induce normal fruit setting but also form fake seeds in the induced fruits. This phenomenon is relatively rare, and, so far, the underlying mechanism remains unclear. In this study, “Fenghou” (Vitis vinifera × V. labrusca) grapes were artificially emasculated before flowering and then sprayed with 4-CPA (4-chlorophenoxyacetic acid) to analyze its effect on seed formation. The results show that 4-CPA can induce normal fruit setting in “Fenghou” grapes. Although more seeds were detected in the fruits of the 4-CPA-treated grapevine, most seeds were immature. There was no significant difference in the seed shape; namely, both fruit seeds of the grapevines with and without 4-CPA treatment contained a hard seed coat. However, the immature seeds lacked embryo and endosperm tissue and could not germinate successfully; these were considered defective seeds. Tissue structure observation of defective seeds revealed that a lot of tissue redifferentiation occurred at the top of the ovule, which increased the number of cell layers of the outer integument; some even differentiated into new ovule primordia. The qRT-PCR results demonstrated that 4-CPA application regulated the expression of the genes VvARF2 and VvAP2, which are associated with integument development in “Fenghou” grape ovules. Together, this study evokes the regulatory role of 4-CPA in the division and continuous redifferentiation of integument cells, which eventually develop into defective seeds with thick seed coats in grapes.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Yan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Wenjiang Pu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Haifeng Zhu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Jinjun Liang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Jiang Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Liang Hong
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Z.L.); (Y.W.); (W.P.); (H.Z.); (J.L.); (J.W.); (L.H.)
- Correspondence: ; Tel.: +86-010-62732488
| |
Collapse
|
46
|
Liu S, Chen H. Ethylene Signaling Facilitates Plant Adaption to Physical Barriers. FRONTIERS IN PLANT SCIENCE 2021; 12:697988. [PMID: 34394151 PMCID: PMC8358396 DOI: 10.3389/fpls.2021.697988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 05/11/2023]
Abstract
The morphological changes are usually observed in the terrestrial plants to respond to physical barriers. The phytohormone ethylene plays an essential role in the morphological development of plants encountering exogenous mechanical impedance, which enables plants to grow optimally in response to physical barriers. Ethylene is shown to regulate these developmental processes directly or in concert with other phytohormones, especially auxin. In this mini review, the involvement of ethylene action in seedling emergence from the soil, root movement within the soil, and parasitic plant invasion of the host plant are described.
Collapse
Affiliation(s)
- Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Simu Liu,
| | - Hui Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease, School of Medicine, Shenzhen University, Shenzhen, China
- Hui Chen, ;
| |
Collapse
|
47
|
Li K, Wang S, Wu H, Wang H. Protein Levels of Several Arabidopsis Auxin Response Factors Are Regulated by Multiple Factors and ABA Promotes ARF6 Protein Ubiquitination. Int J Mol Sci 2020; 21:ijms21249437. [PMID: 33322385 PMCID: PMC7763875 DOI: 10.3390/ijms21249437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022] Open
Abstract
The auxin response factor (ARF) transcription factors are a key component in auxin signaling and play diverse functions in plant growth, development, and stress response. ARFs are regulated at the transcript level and posttranslationally by protein modifications. However, relatively little is known regarding the control of ARF protein levels. We expressed five different ARFs with an HA (hemagglutinin) tag and observed that their protein levels under the same promoter varied considerably. Interestingly, their protein levels were affected by several hormonal and environmental conditions, but not by the auxin treatment. ABA (abscisic acid) as well as 4 °C and salt treatments decreased the levels of HA-ARF5, HA-ARF6, and HA-ARF10, but not that of HA-ARF19, while 37 °C treatment increased the levels of the four HA-ARFs, suggesting that the ARF protein levels are regulated by multiple factors. Furthermore, MG132 inhibited the reduction of HA-ARF6 level by ABA and 4 °C treatments, suggesting that these treatments decrease HA-ARF6 level through 26S proteasome-mediated protein degradation. It was also found that ABA treatment drastically increased HA-ARF6 ubiquitination, without strongly affecting the ubiquitination profile of the total proteins. Together, these results reveal another layer of control on ARFs, which could serve to integrate multiple hormonal and environmental signals into the ARF-regulated gene expression.
Collapse
Affiliation(s)
- Keke Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresouces, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresouces, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (H.W.); (H.W.)
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Correspondence: (H.W.); (H.W.)
| |
Collapse
|
48
|
Role of myo-inositol during skotomorphogenesis in Arabidopsis. Sci Rep 2020; 10:17329. [PMID: 33060662 PMCID: PMC7567114 DOI: 10.1038/s41598-020-73677-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022] Open
Abstract
Myo-inositol is a ubiquitous metabolite of plants. It is synthesized by a highly conserved enzyme L-myo-inositol phosphate synthase (MIPS; EC 5.5.1.4). Myo-inositol is well characterized during abiotic stress tolerance but its role during growth and development is unclear. In this study, we demonstrate that the apical hook maintenance and hypocotyl growth depend on myo-inositol. We discovered the myo-inositol role during hook formation and its maintenance via ethylene pathway in Arabidopsis by supplementation assays and qPCR. Our results suggest an essential requirement of myo-inositol for mediating the ethylene response and its interaction with brassinosteroid to regulate the skotomorphogenesis. A model is proposed outlining how MIPS regulates apical hook formation and hypocotyl growth.
Collapse
|
49
|
Hamasaki H, Ayano M, Nakamura A, Fujioka S, Asami T, Takatsuto S, Yoshida S, Oka Y, Matsui M, Shimada Y. Light Activates Brassinosteroid Biosynthesis to Promote Hook Opening and Petiole Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:1239-1251. [PMID: 32333772 DOI: 10.1093/pcp/pcaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Although brassinosteroids (BRs) have been proposed to be negative regulators of photomorphogenesis, their physiological role therein has remained elusive. We studied light-induced photomorphogenic development in the presence of the BR biosynthesis inhibitor, brassinazole (Brz). Hook opening was inhibited in the presence of Brz; this inhibition was reversed in the presence of brassinolide (BL). Hook opening was accompanied by cell expansion on the inner (concave) side of the hook. This cell expansion was inhibited in the presence of Brz but was restored upon the addition of BL. We then evaluated light-induced organ-specific expression of three BR biosynthesis genes, DWF4, BR6ox1 and BR6ox2, and a BR-responsive gene, SAUR-AC1, during the photomorphogenesis of Arabidopsis. Expression of these genes was induced, particularly in the hook region, in response to illumination. The induction peaked after 3 h of light exposure and preceded hook opening. Phytochrome-deficient mutants, hy1, hy2 and phyAphyB, and a light-signaling mutant, hy5, were defective in light-induced expression of BR6ox1, BR6ox2 and SAUR-AC1. Light induced both expression of BR6ox genes and petiole development. Petiole development was inhibited in the presence of Brz. Our results largely contradict the early view that BRs are negative regulators of photomorphogenesis. Our data collectively suggest that light activates the expression of BR biosynthesis genes in the hook region via a phytochrome-signaling pathway and HY5 and that BR biosynthesis is essential for hook opening and petiole development during photomorphogenesis.
Collapse
Affiliation(s)
- Hidefumi Hamasaki
- Kihara Institute for Biological Research, Yokohama City University Kihara Institute for Biological Research, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
| | - Madoka Ayano
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| | - Ayako Nakamura
- Kihara Institute for Biological Research, Yokohama City University Kihara Institute for Biological Research, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
| | - Shozo Fujioka
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Suguru Takatsuto
- Department of Chemistry, Joetsu University of Education, Joetsu, Niigata, 943-8512 Japan
| | - Shigeo Yoshida
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Yoshito Oka
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| | - Minami Matsui
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Sustainable Resource Science, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University Kihara Institute for Biological Research, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
50
|
Ahammed GJ, Gantait S, Mitra M, Yang Y, Li X. Role of ethylene crosstalk in seed germination and early seedling development: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:124-131. [PMID: 32220785 DOI: 10.1016/j.plaphy.2020.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/20/2023]
Abstract
Seed germination and early seedling development are two critical phases in plant lifecycle that largely determine crop yield. Phytohormones play an essential role in governing these developmental processes; of these, ethylene (ET; C2H4), the smallest gaseous hormone, plays a major role via crosstalk with other hormones. Typically, the mechanism of hormone (for instance, auxin, cytokinins, ET, and gibberellins) action is determined by cellular context, revealing either synergistic or antagonistic relations. Significant progress has been made, so far, on unveiling ET crosstalk with other hormones and environmental signals, such as light. In particular, stimulatory and inhibitory effects of ET on hypocotyl growth in light and dark, respectively, and its interaction with other hormones provide an ideal model to study the growth-regulatory pathways. In this review, we aim at exploring the mechanisms of multifarious phenomena that occur via ET crosstalk during the germination of seeds (overcoming dormancy), and all through the development of seedlings. Understanding the remarkably complex mechanism of ET crosstalk that emerges from the interaction between hormones and other molecular players to modulate plant growth, remains a challenge in plant developmental biology.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, PR China.
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Monisha Mitra
- Department of Agricultural Biotechnology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|