1
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
2
|
Pereira-Fantini PM, Byars SG, Kamlin COF, Manley BJ, Davis PG, Tingay DG. Plasma Proteome Profiles Associated with Early Development of Lung Injury in Extremely Preterm Infants. Am J Respir Cell Mol Biol 2024; 71:677-687. [PMID: 39051934 DOI: 10.1165/rcmb.2024-0034oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
The biological mediators that initiate lung injury in extremely preterm infants during early postnatal life remain largely unidentified, limiting opportunities for early treatment and diagnosis. In this exploratory study, we used sequential window acquisition of all theoretical mass spectra mass spectrometry to identify bronchopulmonary dysplasia (BPD)-specific changes in protein abundance in plasma samples obtained in the first 72 hours of life from extremely preterm infants and bioinformatic analysis to identify BPD-related biological categories and pathways. Last, binary logistic regression analysis was used to test the BPD predictive potential of a base model alone (gestational age, birth weight, sex) and with the protein biomarker added, with bootstrap resampling used to internally validate protein predictors and adjust for overoptimism. We observed disturbance of key processes, including coagulation, complement activation, development, and extracellular matrix organization, in the first days of life in extremely preterm infants who later received diagnoses of BPD. In the BPD prediction analysis, 49 plasma proteins were identified; when each singularly was combined with birth characteristics the optimism-adjusted C index was 0.65-0.84, suggesting predictive potential for BPD outcomes. Taken together, the results of this study demonstrate that alterations in plasma proteins can be detected from 4 hours of age in extremely preterm infants who later develop BPD and that protein biomarkers, when combined with three birth characteristics, have the potential to predict BPD development within the first 72 hours of life.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group and
- Department of Paediatrics and
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Sean G Byars
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - C Omar F Kamlin
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Brett J Manley
- Victorian Infant Brain Studies Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Peter G Davis
- Neonatal Research Group and
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - David G Tingay
- Neonatal Research Group and
- Department of Paediatrics and
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| |
Collapse
|
3
|
Knipper K, Lyu SI, Jung JO, Alich N, Popp FC, Schröder W, Fuchs HF, Bruns CJ, Quaas A, Nienhueser H, Schmidt T. Semaphorin 3F (SEMA3F) influences patient survival in esophageal adenocarcinoma. Sci Rep 2024; 14:20589. [PMID: 39232098 PMCID: PMC11375056 DOI: 10.1038/s41598-024-71616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
In esophageal adenocarcinoma, the presence of lymph node metastases predicts patients' survival even after curative resection. Currently, there is no highly accurate marker for detecting the presence of lymph node metastasis. The SEMA3F/NRP2 axis was initially characterized in axon guidance and recent evidence has revealed its significant involvement in lymphangiogenesis, angiogenesis, and carcinogenesis. Hence, the objective of this study was to elucidate the roles of SEMA3F and its receptor NRP2 in esophageal adenocarcinoma. We conducted an immunohistochemical evaluation of SEMA3F and NRP2 protein expression in 776 patients with esophageal adenocarcinoma who underwent Ivor-Lewis esophagectomy at the University Hospital of Cologne. Total and positive cancer cell counts were digitally analyzed using QuPath and verified by experienced pathologists to ensure accuracy. Positive expression was determined as a cell percentage exceeding the 50th percentile threshold. In our cohort, patients exhibiting SEMA3F positive expression experience significantly lower pT- and pN-stages. In contrast, positive NRP2 expression is associated with the presence of lymph node metastases. Survival analyses showed that the expression status of NRP2 had no impact on patient survival. However, SEMA3F positivity was associated with a favorable patient survival outcome (median OS: 38.9 vs. 26.5 months). Furthermore, SEMA3F could be confirmed as an independent factor for better patient survival in patients with early tumor stage (pT1N0-3: HR = 0.505, p = 0.014, pT1-4N0: HR = 0.664, p = 0.024, pT1N0: HR = 0.483, p = 0.040). In summary, SEMA3F emerges as an independent predictor for a favorable prognosis in patients with early-stage esophageal adenocarcinoma. Additionally, NRP2 expression is linked to a higher risk of lymph node metastases occurrence. We hypothesize that low SEMA3F expression could identify patients with early-stage tumors who might benefit from more aggressive treatment options or intensified follow-up. Furthermore, SEMA3F and its associated pathways should be explored as potential tumor-suppressing agents.
Collapse
Affiliation(s)
- Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| | - Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jin-On Jung
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Niklas Alich
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Felix C Popp
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hans F Fuchs
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Henrik Nienhueser
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Lupo F, Pezzini F, Pasini D, Fiorini E, Adamo A, Veghini L, Bevere M, Frusteri C, Delfino P, D'agosto S, Andreani S, Piro G, Malinova A, Wang T, De Sanctis F, Lawlor RT, Hwang CI, Carbone C, Amelio I, Bailey P, Bronte V, Tuveson D, Scarpa A, Ugel S, Corbo V. Axon guidance cue SEMA3A promotes the aggressive phenotype of basal-like PDAC. Gut 2024; 73:1321-1335. [PMID: 38670629 PMCID: PMC11287654 DOI: 10.1136/gutjnl-2023-329807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | | | - Pietro Delfino
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele, Milan, Italy
| | - Sabrina D'agosto
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- Human Technopole, Milan, Italy
| | - Silvia Andreani
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Biochemistry and Molecular Biology, University of Würzburg, Wurzburg, Germany
| | - Geny Piro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonia Malinova
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Tian Wang
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Chang-Il Hwang
- Microbiology and Molecular Genetics, UC Davis Department of Microbiology, Davis, California, USA
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | | | - David Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Sanit J, Intakhad J, Kittilukkana A, Vachiraarunwong A, Wongpoomchai R, Pilapong C. Enhanced axon guidance and synaptic markers in rat brains using ferric-tannic nanoparticles. Metallomics 2024; 16:mfae031. [PMID: 38936837 DOI: 10.1093/mtomcs/mfae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Ferric-tannic nanoparticles (FTs) are now considered to be new pharmaceuticals appropriate for the prevention of brain aging and related diseases. We have previously shown that FTs could activate axon guidance pathways and cellular clearance functioning in neuronal cell lines. Herein, we further investigated whether FTs could activate the two coordinated neuronal functions of axon guidance and synaptic function in rat brains and neuronal cell lines. A single intravenous injection of a safe dose of FTs has been shown to activate a protein expression of axon attractant Netrin-1 and neurotransmitter receptor GABRA4 in the cerebral cortexes of male Wistar rats. According to RNA-seq with targeted analysis, axon guidance and synapses have been enriched and Ephrin membered genes have been identified as coordinating a network of genes for such processes. In vitro, as expected, FTs are also found to activate axon guidance markers and promote neuronal tubes in neuronal cell lines. At the same time, pre-synaptic markers (synaptophysin), post-synaptic markers (synapsin), and GABRA4 neurotransmitter receptors have been found to be activated by FTs. Interestingly, synaptophysin has been found to localize along the promoted neuronal tubes, suggesting that enhanced axon guidance is associated with the formation and transportation of pre-synaptic vesicles. Preliminarily, repeated injection of FTs into adult rats every 3 days for 10 times could enhance an expression of synaptophysin in the cerebral cortex, as compared to control rats. This work demonstrates that FTs can be used for activating brain function associated with axon guidance and synaptic function.
Collapse
Affiliation(s)
- Jantira Sanit
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jannarong Intakhad
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aiyarin Kittilukkana
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermchai Pilapong
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Jin R, Forbes CM, Miller NL, Lafin J, Strand DW, Case T, Cates JM, Liu Q, Ramirez-Solano M, Mohler JL, Matusik RJ. Transcriptomic analysis of benign prostatic hyperplasia identifies critical pathways in prostatic overgrowth and 5-alpha reductase inhibitor resistance. Prostate 2024; 84:441-459. [PMID: 38168866 DOI: 10.1002/pros.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor M Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Urology Department, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole L Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Lafin
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Douglas W Strand
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marisol Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Prajapati K, Yan C, Yang Q, Arbitman S, Fitzgerald DP, Sharee S, Shaik J, Bosiacki J, Myers K, Paucarmayta A, Johnson DM, O’Neill T, Kundu S, Cusumano Z, Langermann S, Langenau DM, Patel S, Flies DB. The FLRT3-UNC5B checkpoint pathway inhibits T cell-based cancer immunotherapies. SCIENCE ADVANCES 2024; 10:eadj4698. [PMID: 38427724 PMCID: PMC10906930 DOI: 10.1126/sciadv.adj4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
Cancers exploit coinhibitory receptors on T cells to escape tumor immunity, and targeting such mechanisms has shown remarkable clinical benefit, but in a limited subset of patients. We hypothesized that cancer cells mimic noncanonical mechanisms of early development such as axon guidance pathways to evade T cell immunity. Using gain-of-function genetic screens, we profiled axon guidance proteins on human T cells and their cognate ligands and identified fibronectin leucine-rich transmembrane protein 3 (FLRT3) as a ligand that inhibits T cell activity. We demonstrated that FLRT3 inhibits T cells through UNC5B, an axon guidance receptor that is up-regulated on activated human T cells. FLRT3 expressed in human cancers favored tumor growth and inhibited CAR-T and BiTE + T cell killing and infiltration in humanized cancer models. An FLRT3 monoclonal antibody that blocked FLRT3-UNC5B interactions reversed these effects in an immune-dependent manner. This study supports the concept that axon guidance proteins mimic T cell checkpoints and can be targeted for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Chuan Yan
- Molecular Pathology and Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Qiqi Yang
- Molecular Pathology and Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - David M. Langenau
- Molecular Pathology and Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
8
|
Hani T, Fujita K, Kudo T, Taya Y, Sato K, Soeno Y. Tissue-Targeted Transcriptomics Reveals SEMA3D Control of Hypoglossal Nerve Projection to Mouse Tongue Primordia. Acta Histochem Cytochem 2024; 57:35-46. [PMID: 38463205 PMCID: PMC10918430 DOI: 10.1267/ahc.23-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 03/12/2024] Open
Abstract
The mouse hypoglossal nerve originates in the occipital motor nuclei at embryonic day (E)10.5 and projects a long distance, reaching the vicinity of the tongue primordia, the lateral lingual swellings, at E11.5. However, the details of how the hypoglossal nerve correctly projects to the primordia are poorly understood. To investigate the molecular basis of hypoglossal nerve elongation, we used a novel transcriptomic approach using the ROKU method. The ROKU algorithm identified 3825 genes specific for lateral lingual swellings at E11.5, of which 34 genes were predicted to be involved in axon guidance. Ingenuity Pathway Analysis-assisted enrichment revealed activation of the semaphorin signaling pathway during tongue development, and quantitative PCR showed that the expressions of Sema3d and Nrp1 in this pathway peaked at E11.5. Immunohistochemistry detected NRP1 in the hypoglossal nerve and SEMA3D as tiny granules in the extracellular space beneath the epithelium of the tongue primordia and in lateral and anterior regions of the mandibular arch. Fewer SEMA3D granules were localized around hypoglossal nerve axons and in the space where they elongated. In developing tongue primordia, tissue-specific regulation of SEMA3D might control the route of hypoglossal nerve projection via its repulsive effect on NRP1.
Collapse
Affiliation(s)
- Taisuke Hani
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, 102-8159 Tokyo, Japan
| | - Kazuya Fujita
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, 102-8159 Tokyo, Japan
| | - Tomoo Kudo
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, 102-8159 Tokyo, Japan
| | - Yuji Taya
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, 102-8159 Tokyo, Japan
| | - Kaori Sato
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, 102-8159 Tokyo, Japan
| | - Yuuichi Soeno
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, 102-8159 Tokyo, Japan
| |
Collapse
|
9
|
Pei F, Ma L, Guo T, Zhang M, Jing J, Wen Q, Feng J, Lei J, He J, Janečková E, Ho TV, Chen JF, Chai Y. Sensory nerve regulates progenitor cells via FGF-SHH axis in tooth root morphogenesis. Development 2024; 151:dev202043. [PMID: 38108472 PMCID: PMC10820866 DOI: 10.1242/dev.202043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Kim EY, Kim JE, Chung SH, Park JE, Yoon D, Min HJ, Sung Y, Lee SB, Kim SW, Chang EJ. Concomitant induction of SLIT3 and microRNA-218-2 in macrophages by toll-like receptor 4 activation limits osteoclast commitment. Cell Commun Signal 2023; 21:213. [PMID: 37596575 PMCID: PMC10436635 DOI: 10.1186/s12964-023-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-β isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Dohee Yoon
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo Been Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
11
|
Sakaguchi S, Mizuno S, Okochi Y, Tanegashima C, Nishimura O, Uemura T, Kadota M, Naoki H, Kondo T. Single-cell transcriptome atlas of Drosophila gastrula 2.0. Cell Rep 2023:112707. [PMID: 37433294 DOI: 10.1016/j.celrep.2023.112707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing accurate spatial and lineage information are still lacking. Here, we report a single-cell transcriptome atlas of Drosophila gastrulae, divided into 77 transcriptomically distinct clusters. We find that the expression profiles of plasma-membrane-related genes, but not those of transcription-factor genes, represent each germ layer, supporting the nonequivalent contribution of each transcription-factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstruct the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation.
Collapse
Affiliation(s)
- Shunta Sakaguchi
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sonoko Mizuno
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Okochi
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tadashi Uemura
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Center for Living Systems Information Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Honda Naoki
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8511, Japan; Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Brundu S, Napolitano V, Franzolin G, Lo Cascio E, Mastrantonio R, Sardo G, Cascardi E, Verginelli F, Sarnataro S, Gambardella G, Pisacane A, Arcovito A, Boccaccio C, Comoglio PM, Giraudo E, Tamagnone L. Mutated axon guidance gene PLXNB2 sustains growth and invasiveness of stem cells isolated from cancers of unknown primary. EMBO Mol Med 2023; 15:e16104. [PMID: 36722641 PMCID: PMC9994481 DOI: 10.15252/emmm.202216104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.
Collapse
Affiliation(s)
| | - Virginia Napolitano
- Department of Life Sciences and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Ettore Lo Cascio
- Department of Biotechnological Sciences and Intensive CareUniversità Cattolica del Sacro CuoreRomeItaly
| | - Roberta Mastrantonio
- Department of Life Sciences and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Eliano Cascardi
- Candiolo Cancer InstituteFPO‐IRCCSTurinItaly
- Department of Medical SciencesUniversity of TurinTurinItaly
| | | | | | - Gennaro Gambardella
- Telethon Institute of Genetic and MedicinePozzuoliItaly
- Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
| | | | - Alessandro Arcovito
- Department of Biotechnological Sciences and Intensive CareUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Gemelli (FPG) – IRCCSRomeItaly
| | - Carla Boccaccio
- Candiolo Cancer InstituteFPO‐IRCCSTurinItaly
- Department of OncologyUniversity of TurinTurinItaly
| | | | - Enrico Giraudo
- Candiolo Cancer InstituteFPO‐IRCCSTurinItaly
- Department of Science and Drug TechnologyUniversity of TurinTurinItaly
| | - Luca Tamagnone
- Department of Life Sciences and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Gemelli (FPG) – IRCCSRomeItaly
| |
Collapse
|
13
|
Bagci O, Tumer S, Altungoz O. Chromosome 1p status in neuroblastoma correlates with higher expression levels of miRNAs targeting neuronal differentiation pathway. In Vitro Cell Dev Biol Anim 2023; 59:100-108. [PMID: 36800078 DOI: 10.1007/s11626-023-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
Neuroblastoma (NB) is characterized by acquired segmental and numerical chromosome aberrations. Although deletions of distal 1p and 11q are frequent alterations, no candidate tumor suppressor gene residing in these chromosomal sites could be identified so far. In the present study, we detected the genomic imbalances of six neuroblastoma cell lines using the multiplex ligation-dependent probe amplification (MLPA) technique and the microRNA (miRNA) expression profiles of the cell lines by a microarray study. According to MLPA results, we aimed to assess the miRNA expression profiles of the cell lines harboring 11q and 1p deletions. The cell lines with 1p deletions revealed statistically significant higher levels of expression for 29 miRNAs in contrast to the cell lines without 1p deletion in microarray study. We also performed GO enrichment analysis for predicted targets of the differentially expressed miRNAs. According to GO enrichment analysis, miRNAs that showed the high change in expression was associated with neuronal differentiation. We showed that hsa-miR-494, hsa-miR-495, and hsa-miR-543 target most of mRNAs in neuronal differentiation pathway. Although limited to the cell lines, our results highly suggest that NBs with different segmental chromosome abnormalities may have different dysregulated miRNA expression signatures that target the genes involved in neuronal differentiation.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Department of Medical Genetics, School of Medicine, Selcuk University, Konya, Turkey
| | - Sait Tumer
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Acibadem Genetic Diagnosis Center, Istanbul, Turkey
| | - Oguz Altungoz
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| |
Collapse
|
14
|
Li D, Wang J, Fang Y, Hu Y, Xiao Y, Cui Q, Jiang C, Sun S, Chen H, Ye L, Sun Q. Impaired cell-cell communication and axon guidance because of pulmonary hypoperfusion during postnatal alveolar development. Respir Res 2023; 24:12. [PMID: 36631871 PMCID: PMC9833865 DOI: 10.1186/s12931-023-02319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pulmonary hypoperfusion is common in children with congenital heart diseases (CHDs) or pulmonary hypertension (PH) and causes adult pulmonary dysplasia. Systematic reviews have shown that some children with CHDs or PH have mitigated clinical outcomes with COVID-19. Understanding the effects of pulmonary hypoperfusion on postnatal alveolar development may aid in the development of methods to improve the pulmonary function of children with CHDs or PH and improve their care during the COVID-19 pandemic, which is characterized by cytokine storm and persistent inflammation. METHODS AND RESULTS We created a neonatal pulmonary hypoperfusion model through pulmonary artery banding (PAB) surgery at postnatal day 1 (P1). Alveolar dysplasia was confirmed by gross and histological examination at P21. Transcriptomic analysis of pulmonary tissues at P7(alveolar stage 2) and P14(alveolar stage 4) revealed that the postnatal alveolar development track had been changed due to pulmonary hypoperfusion. Under the condition of pulmonary hypoperfusion, the cell-cell communication and axon guidance, which both determine the final number of alveoli, were lost; instead, there was hyperactive cell cycle activity. The transcriptomic results were further confirmed by the examination of axon guidance and cell cycle markers. Because axon guidance controls inflammation and immune cell activation, the loss of axon guidance may explain the lack of severe COVID-19 cases among children with CHDs or PH accompanied by pulmonary hypoperfusion. CONCLUSIONS This study suggested that promoting cell-cell communication or supplementation with guidance molecules may treat pulmonary hypoperfusion-induced alveolar dysplasia, and that COVID-19 is less likely to cause a cytokine storm in children with CHD or PH accompanied by pulmonary hypoperfusion.
Collapse
Affiliation(s)
- Debao Li
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Jing Wang
- grid.16821.3c0000 0004 0368 8293Department of Infectious Diseases, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Hu
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Xiao
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Qing Cui
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Jiang
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Sijuan Sun
- grid.16821.3c0000 0004 0368 8293Department of Pediatric Intensive Care Unit, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Lincai Ye
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Qi Sun
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| |
Collapse
|
15
|
Atkinson CE, Kesic MJ, Hernandez ML. Ozone in the Development of Pediatric Asthma and Atopic Disease. Immunol Allergy Clin North Am 2022; 42:701-713. [PMID: 36265970 PMCID: PMC10519373 DOI: 10.1016/j.iac.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ozone (O3) is a ubiquitous outdoor air pollutant, which may be derived from various primary pollutants such as nitrates, hydrocarbons, and volatile organ compounds through ultraviolet radiation exposure, and has been shown to negatively impact respiratory health. O3 is the most common noninfectious environmental cause of asthma exacerbations among children and adults. Its effects on pediatric respiratory health could be due to multiple physiologic factors that may contribute to enhanced O3 exposure seen in children compared with adults, including differences in lung surface area per unit of body weight and ventilation rates. O3 can reach the distal regions of human lungs due to its low water solubility, resulting in either injury or activation of airway epithelial cells and macrophages. Multiple epidemiologic studies have highlighted a link between exposure to air pollution and the development of asthma. This review article specifically focuses on examining the impact of early life O3 exposure on lung development, lung function, and the risk of developing atopic diseases including asthma, allergic rhinitis, and atopic dermatitis among children.
Collapse
Affiliation(s)
- Claire E Atkinson
- Division of Allergy & Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Matthew J Kesic
- Campbell University College of Pharmacy & Health Sciences, Physician Assistant Program, Buies Creek, NC, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Shao A, Gearhart MD, Chan SC, Miao Z, Susztak K, Igarashi P. Multiomics analysis reveals that hepatocyte nuclear factor 1β regulates axon guidance genes in the developing mouse kidney. Sci Rep 2022; 12:17586. [PMID: 36266461 PMCID: PMC9585060 DOI: 10.1038/s41598-022-22327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
The transcription factor hepatocyte nuclear factor 1β (HNF-1β) is essential for normal development of the kidney and other epithelial organs. In the developing mouse kidney, HNF-1β is required for the differentiation and patterning of immature nephrons and branching morphogenesis of the ureteric bud (UB). Here, we used ChIP-sequencing (ChIP-seq) and RNA sequencing (RNA-seq) to identify genes that are regulated by HNF-1β in embryonic mouse kidneys. ChIP-seq revealed that HNF-1β binds to 8284 sites in chromatin from E14.5 mouse kidneys. Comparison with previous ATAC-seq and histone modification studies showed that HNF-1β binding peaks colocalized with open chromatin and epigenetic marks of transcriptional activation (H3K27 acetylation, H3K4 trimethylation, H3K4 monomethylation), indicating that the binding sites were functional. To investigate the relationship between HNF-1β binding and HNF-1β-dependent gene regulation, RNA-seq was performed on UB cells purified from wild-type and HNF-1β mutant embryonic kidneys. A total of 1632 genes showed reduced expression in HNF-1β-deficient UB cells, and 485 genes contained nearby HNF-1β binding sites indicating that they were directly activated by HNF-1β. Conversely, HNF-1β directly repressed the expression of 526 genes in the UB. Comparison with snATAC-seq analysis of UB-derived cells showed that both HNF-1β-dependent activation and repression correlated with chromatin accessibility. Pathway analysis revealed that HNF-1β binds near 68 axon guidance genes in the developing kidney. RNA-seq analysis showed that Nrp1, Sema3c, Sema3d, Sema6a, and Slit2 were activated by HNF-1β, whereas Efna1, Epha3, Epha4, Epha7, Ntn4, Plxna2, Sema3a, Sema4b, Slit3, Srgap1, Unc5c and Unc5d were repressed by HNF-1β. RNAscope in situ hybridization showed that Nrp1, Sema3c, Sema3d, Sema6a, and Slit2 were expressed in wild-type UB and were dysregulated in HNF-1β mutant UB. These studies show that HNF-1β directly regulates the expression of multiple axon guidance genes in the developing mouse kidney. Dysregulation of axon guidance genes may underlie kidney defects in HNF-1β mutant mice.
Collapse
Affiliation(s)
- Annie Shao
- grid.17635.360000000419368657Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 194, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN USA
| | - Micah D. Gearhart
- grid.17635.360000000419368657Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Siu Chiu Chan
- grid.17635.360000000419368657Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 194, Minneapolis, MN 55455 USA
| | - Zhen Miao
- grid.25879.310000 0004 1936 8972Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA USA
| | - Katalin Susztak
- grid.25879.310000 0004 1936 8972Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA USA
| | - Peter Igarashi
- grid.17635.360000000419368657Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 194, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
17
|
Chandrasekaran A, Clarke A, McQueen P, Fang HY, Papoian GA, Giniger E. Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol Biol Cell 2022; 33:ar92. [PMID: 35857718 PMCID: PMC9582807 DOI: 10.1091/mbc.e21-11-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Edward Giniger
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| |
Collapse
|
18
|
Şen S, Erber R. Neuronal Guidance Molecules in Bone Remodeling and Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms231710077. [PMID: 36077474 PMCID: PMC9456342 DOI: 10.3390/ijms231710077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
During orthodontic tooth movement, mechanically induced remodeling occurs in the alveolar bone due to the action of orthodontic forces. The number of factors identified to be involved in mechanically induced bone remodeling is growing steadily. With the uncovering of the functions of neuronal guidance molecules (NGMs) for skeletal development as well as for bone homeostasis, NGMs are now also among the potentially significant factors for the regulation of bone remodeling during orthodontic tooth movement. This narrative review attempts to summarize the functions of NGMs in bone homeostasis and provides insight into the currently sparse literature on the functions of these molecules during orthodontic tooth movement. Presently, four families of NGMs are known: Netrins, Slits, Semaphorins, ephrins and Eph receptors. A search of electronic databases revealed roles in bone homeostasis for representatives from all four NGM families. Functions during orthodontic tooth movement, however, were only identified for Semaphorins, ephrins and Eph receptors. For these, crucial prerequisites for participation in the regulation of orthodontically induced bone remodeling, such as expression in cells of the periodontal ligament and in the alveolar bone, as well as mechanical inducibility, were shown, which suggests that the importance of NGMs in orthodontic tooth movement may be underappreciated to date and further research might be warranted.
Collapse
Affiliation(s)
- Sinan Şen
- Department of Orthodontics, University Medical Center Schleswig-Holstein, Campus Kiel, Christian Albrechts University, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-5002-6301
| | - Ralf Erber
- Department of Orthodontics and Dentofacial Orthopedics, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Waters BJ, Blum B. Axon Guidance Molecules in the Islets of Langerhans. Front Endocrinol (Lausanne) 2022; 13:869780. [PMID: 35498433 PMCID: PMC9048200 DOI: 10.3389/fendo.2022.869780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
The islets of Langerhans, responsible for regulating blood glucose in vertebrates, are clusters of endocrine cells distributed throughout the exocrine pancreas. The spatial architecture of the different cell types within the islets controls cell-cell communication and impacts their ability to collectively regulate glucose. Islets rely on a range of chemotactic and adhesive cues to establish and manage intercellular relationships. Growing evidence indicates that axon guidance molecules such as Slit-Robo, Semaphorin-Neuropilin, Ephrin-Eph, and Netrins, influence endocrine progenitors' cell migration to establish correct architecture during islet morphogenesis, as well as directly regulating physical cell-cell communication in the mature islet to coordinate hormone secretion. In this mini-review, we discuss what is known and not yet known about how axon guidance molecules contribute to islet morphogenesis and function.
Collapse
Affiliation(s)
| | - Barak Blum
- *Correspondence: Bayley J. Waters, ; Barak Blum,
| |
Collapse
|
20
|
Elshalofy A, Wagener K, Weber K, Blanco M, Bauersachs S, Bollwein H. Identification of genes associated with susceptibility to persistent breeding-induced endometritis by RNA-sequencing of uterine cytobrush samples. Reprod Biol 2021; 22:100577. [PMID: 34883452 DOI: 10.1016/j.repbio.2021.100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the susceptibility to persistent breeding-induced endometritis (PBIE). Cytobrush samples were collected from 81 broodmares 1-3 days before artificial insemination (AI). Susceptibility to PBIE was evaluated by the presence of ≥ 2 cm of intrauterine fluid 24 h after AI, besides the fertility was determined by a sonographic pregnancy diagnosis 2 weeks after ovulation. RNA expressions were compared between susceptible non-pregnant (SNP) mares (n=9) and resistant pregnant (RP) mares (n=9) as well as between susceptible pregnant (SP) mares (n=9) and susceptible non-pregnant (SNP) mares. 66 differentially expressed genes (DEGs) were identified between SNP and RP mares and 60 DEGs between SP and SNP mares. In SNP compared to RP mares, transcript levels of genes regulating steroid hormone metabolism and neutrophil chemotaxis were lower, while higher for genes participating in uterine inflammation.Transcripts of genes related to extracellular matrix degradation, tissue adhesions, and fibrosis were lower in SP mares than in SNP mares, while higher for genes related to uterine cell proliferation, differentiation, and angiogenesis in SP mares than SNP mares. In conclusion, increased transcript levels of apolipoprotein E (APOE) and roundabout 2 (ROBO2), cluster domain 44 (CD44), integrin beta 3 (ITGB3), and epidermal growth factor (EGF) are possible biomarkers for susceptibility to PBIE. While higher expression of fibroblast growth factor 9 (FGF9), kinase domain receptor (KDR), and C-X-C motif chemokine ligand (CXCL) 16, collagen type V alpha 2 (COL5A2) and fibronectin (FN1) are suggested indicators of fertility in susceptible mares if they receive proper breeding management.
Collapse
Affiliation(s)
- Amr Elshalofy
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland; Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Karen Wagener
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Katharina Weber
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | | | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland.
| |
Collapse
|
21
|
Karolak JA, Gambin T, Szafranski P, Maywald RL, Popek E, Heaney JD, Stankiewicz P. Perturbation of semaphorin and VEGF signaling in ACDMPV lungs due to FOXF1 deficiency. Respir Res 2021; 22:212. [PMID: 34315444 PMCID: PMC8314029 DOI: 10.1186/s12931-021-01797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznań, Poland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Dlamini Z, Mathabe K, Padayachy L, Marima R, Evangelou G, Syrigos KN, Bianchi A, Lolas G, Hull R. Many Voices in a Choir: Tumor-Induced Neurogenesis and Neuronal Driven Alternative Splicing Sound Like Suspects in Tumor Growth and Dissemination. Cancers (Basel) 2021; 13:cancers13092138. [PMID: 33946706 PMCID: PMC8125307 DOI: 10.3390/cancers13092138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Significant progress has recently been made in understanding the role of the neuronal system in cancer biology, in many solid tumors such as prostate, breast, pancreatic, gastric and brain cancers. Solid tumors and the nervous system appear to influence each other’s development both directly and indirectly. A recurring element in such interactions is constituted by nerve-related substances such as neurotransmitters and neurotrophins, to which the first part of the current review is devoted. The second part of the review focuses on the potential role played by alternative splicing in cancer progression associated with neural signaling. Alternative splicing is the process where pre-mRNA is cut and re-ligated in different ways to give rise to multiple protein isoforms whose expression profile is often cancer specific. Alternative splicing is known to take place in the mRNA of genes that code for proteins involved in neuronal development and the creation of new nerve fibers. The change in alternative splicing patterns that occur as tumors develop and progress may make these splice variants potential targets for the development of drug treatments. They may also serve as diagnostic or prognostic biomarkers. Abstract During development, as tissues expand and grow, they require circulatory, lymphatic, and nervous system expansion for proper function and support. Similarly, as tumors arise and develop, they also require the expansion of these systems to support them. While the contribution of blood and lymphatic systems to the development and progression of cancer is well known and is targeted with anticancer drugs, the contribution of the nervous system is less well studied and understood. Recent studies have shown that the interaction between neurons and a tumor are bilateral and promote metastasis on one hand, and the formation of new nerve structures (neoneurogenesis) on the other. Substances such as neurotransmitters and neurotrophins being the main actors in such interplay, it seems reasonable to expect that alternative splicing and the different populations of protein isoforms can affect tumor-derived neurogenesis. Here, we report the different, documented ways in which neurons contribute to the development and progression of cancer and investigate what is currently known regarding cancer-neuronal interaction in several specific cancer types. Furthermore, we discuss the incidence of alternative splicing that have been identified as playing a role in tumor-induced neoneurogenesis, cancer development and progression. Several examples of changes in alternative splicing that give rise to different isoforms in nerve tissue that support cancer progression, growth and development have also been investigated. Finally, we discuss the potential of our knowledge in alternative splicing to improve tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Correspondence:
| | - Kgomotso Mathabe
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Urology, University of Pretoria, Pretoria 0084, South Africa
| | - Llewellyn Padayachy
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Neurosurgery, University of Pretoria, Pretoria 0084, South Africa
| | - Rahaba Marima
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| | - George Evangelou
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Konstantinos N. Syrigos
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | | | - Georgios Lolas
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Rodney Hull
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| |
Collapse
|
23
|
Karolak JA, Gambin T, Szafranski P, Stankiewicz P. Potential interactions between the TBX4-FGF10 and SHH-FOXF1 signaling during human lung development revealed using ChIP-seq. Respir Res 2021; 22:26. [PMID: 33478486 PMCID: PMC7818749 DOI: 10.1186/s12931-021-01617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background The epithelial-mesenchymal signaling involving SHH-FOXF1, TBX4-FGF10, and TBX2 pathways is an essential transcriptional network operating during early lung organogenesis. However, precise regulatory interactions between different genes and proteins in this pathway are incompletely understood. Methods To identify TBX2 and TBX4 genome-wide binding sites, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) in human fetal lung fibroblasts IMR-90. Results We identified 14,322 and 1,862 sites strongly-enriched for binding of TBX2 and TBX4, respectively, 43.95% and 18.79% of which are located in the gene promoter regions. Gene Ontology, pathway enrichment, and DNA binding motif analyses revealed a number of overrepresented cues and transcription factor binding motifs relevant for lung branching that can be transcriptionally regulated by TBX2 and/or TBX4. In addition, TBX2 and TBX4 binding sites were found enriched around and within FOXF1 and its antisense long noncoding RNA FENDRR, indicating that the TBX4-FGF10 cascade may directly interact with the SHH-FOXF1 signaling. Conclusions We highlight the complexity of transcriptional network driven by TBX2 and TBX4 and show that disruption of this crosstalk during morphogenesis can play a substantial role in etiology of lung developmental disorders.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Laminin N-terminus α31 protein distribution in adult human tissues. PLoS One 2020; 15:e0239889. [PMID: 33264294 PMCID: PMC7710073 DOI: 10.1371/journal.pone.0239889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/25/2020] [Indexed: 02/03/2023] Open
Abstract
Laminin N-terminus α31 (LaNt α31) is a netrin-like protein derived from alternative splicing of the laminin α3 gene. Although LaNt α31 has been demonstrated to influence corneal and skin epithelial cell function, its expression has not been investigated beyond these tissues. In this study, we used immunohistochemistry to characterise the distribution of this protein in a wide-array of human tissue sections in comparison to laminin α3. The data revealed widespread LaNt α31 expression. In epithelial tissue, LaNt α31 was present in the basal layer of the epidermis, throughout the epithelium of the digestive tract, and in much of the epithelium of the reproductive system. LaNt α31 was also found throughout the vasculature of most tissues, with enrichment in reticular-like fibres in the extracellular matrix surrounding large vessels. A similar matrix pattern was observed around the terminal ducts in the breast and around the alveolar epithelium in the lung, where basement membrane staining was also evident. Specific enrichment of LaNt α31 was identified in sub-populations of cells of the kidney, liver, pancreas, and spleen, with variations in intensity between different cell types in the collecting ducts and glomeruli of the kidney. Intriguingly, LaNt α31 immunoreactivity was also evident in neurons of the central nervous system, in the cerebellum, cerebral cortex, and spinal cord. Together these findings suggest that LaNt α31 may be functionally relevant in a wider range of tissue contexts than previously anticipated, and the data provides a valuable basis for investigation into this interesting protein.
Collapse
|
25
|
Qu Z, Zhang A, Yan D. Robo functions as an attractive cue for glial migration through SYG-1/Neph. eLife 2020; 9:e57921. [PMID: 33211005 PMCID: PMC7676865 DOI: 10.7554/elife.57921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023] Open
Abstract
As one of the most-studied receptors, Robo plays functions in many biological processes, and its functions highly depend on Slit, the ligand of Robo. Here we uncover a Slit-independent role of Robo in glial migration and show that neurons can release an extracellular fragment of Robo upon cleavage to attract glia during migration in Caenorhabditis elegans. Furthermore, we identified the conserved cell adhesion molecule SYG-1/Neph as a receptor for the cleaved extracellular Robo fragment to mediate glial migration and SYG-1/Neph functions through regulation of the WAVE complex. Our studies reveal a previously unknown Slit-independent function and regulatory mechanism of Robo and show that the cleaved extracellular fragment of Robo can function as a ligand for SYG-1/Neph to guide glial migration. As Robo, the cleaved region of Robo, and SYG-1/Neph are all highly conserved across the animal kingdom, our findings may present a conserved Slit-independent Robo mechanism during brain development.
Collapse
Affiliation(s)
- Zhongwei Qu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Regeneration Next Initiative, Duke Center for Neurodegeneration and Neurotherapeutics, and Duke Institute for Brain Sciences, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
26
|
Lee JR, Kuo DH. Netrin expressed by the ventral ectoderm lineage guides mesoderm migration in epibolic gastrulation of the leech. Dev Biol 2020; 463:39-52. [PMID: 32360631 DOI: 10.1016/j.ydbio.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
Netrin is a remarkably conserved midline landmark, serving as a chemotactic factor that organizes the bilateral neural architecture in the post-gastrula bilaterian embryos. Netrin signal also guides cell migration in many other neural and non-neural organogenesis events in later developmental stages but has never been found to participate in gastrulation - the earliest cell migration in metazoan embryogenesis. Here, we found that the netrin signaling molecules and their receptors are expressed during gastrulation of the leech Helobdella. Intriguingly, Hau-netrin-1 was expressed in the N lineage, which gives rise in part to the ventral midline of ectoderm, at the onset of gastrulation. We demonstrated that the N lineage is required for the entrance of mesoderm into the germinal band and that misexpression of Hau-netrin-1 in early gastrulation prevented mesoderm from entering the germinal band. Together, these results suggested that Hau-netrin-1 secreted by the N lineage guides mesoderm migration during germinal band assembly. Furthermore, ectopic expression of Hau-netrin-1 after the completion of germinal band assembly disrupted the epibolic migration of the germinal bands in a later stage of gastrulation. Thus, Hau-netrin-1 is likely involved in two distinct events in sequential stages of leech gastrulation: the assembly of germinal bands in early gastrulation and their epibolic migration in mid-gastrulation. Given that the leech netrin is expressed in the precursor cells of the ventral midline during gastrulation, we propose that a heterochronic change from the midline netrin expression had taken place in the evolution of a novel mode of gastrulation in the directly developing leech embryos.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Present Address: Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Netrin-1: A new promising diagnostic marker for muscle invasion in bladder cancer. Urol Oncol 2020; 38:640.e1-640.e12. [PMID: 32156466 DOI: 10.1016/j.urolonc.2020.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bladder cancer is the most common urological malignancy with a high tendency for progression and recurrence. So far, no reliable diagnostic marker is present with 100% sensitivity and specificity. Netrins are related to laminin proteins, and were first discovered to be involved in neural development. After that, they were found in other organs of the body and several studies stated that they have implicated in cancer progression. PURPOSE This study aimed at investigating the netrin-1 gene expression in bladder cancer tissues, in addition to the possibility of using urinary netrin-1 as a marker for muscle invasion diagnosis in bladder cancer cases. METHODS Netrin-1 gene expression in bladder cancer tissue was detected in this study by real-time polymerase chain reaction. Moreover, netrin-1 protein was measured in tissue and urinary deposit samples by western blotting. RESULTS The results of this study revealed that netrin-1 is expressed in bladder cancer and control tissues, with a strong positive correlation between netrin-1 in tissues and urinary netrin-1 (rs = 0.762, P < 0.0005). Receiver operating characteristic curve analysis confirmed the muscle-invasion diagnostic value of urinary netrin-1 with bladder cancer cases, providing an area under the curve equals to 0.758 (95% confidence interval, 0.630-0.886, P < 0.0005), with 96% sensitivity and 67% specificity. Bladder cancer patients had been included to examine risk factors for local recurrence, distant metastasis, and death. Cox regression models showed that netrin-1 gene expression, tumor size, and age are positive predictor markers for local tumor recurrence. Age is a predictor for distant metastasis, and tumor stage is a predictor for death. CONCLUSION Urinary netrin-1 can be used as a promising biomarker for diagnosis of muscle invasion, which may help in the follow up of non-invasive tumors. In addition, tissue netrin-1 expression may serve as a predictor of local tumor recurrence.
Collapse
|
28
|
Koohini Z, Koohini Z, Teimourian S. Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment. Pathol Oncol Res 2019; 25:1285-1293. [PMID: 30610466 DOI: 10.1007/s12253-018-00568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Angiogenesis and metastasis are two critical steps for cancer cells survival and migration. The microenvironment of tumor sphere induces new blood vessels formation for enhancing tumor mass. Preexisting capillaries and postcapillary venules in tumors bring about new blood vessels. ROBO1-ROBO4 are transmembrane receptors family which act as guidance molecules of the nervous system. The SLITs family is secreted glycoproteins that bind to these receptors. SLIT-ROBO signaling pathway plays an important role in neurogenesis and immune response. Linkage between ROBOs and their ligands (SLITs) induce chemorepllent signal for regulation of axon guidance and leukocyte cell migration, recent finding shows that it is also involved in endothelial cell migration and angiogenesis in various type of cancers. In this article we review recent finding of SLIT-ROBO pathway in angiogenesis and metastasis.
Collapse
Affiliation(s)
- Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 2019; 15:e1008107. [PMID: 31194736 PMCID: PMC6563950 DOI: 10.1371/journal.pgen.1008107] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M. Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K. Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M. Huusko
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Riitta Marttila
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
30
|
Chiang TS, Lin MC, Tsai MC, Chen CH, Jang LT, Lee FJS. ADP-ribosylation factor-like 4A interacts with Robo1 to promote cell migration by regulating Cdc42 activation. Mol Biol Cell 2019; 30:69-81. [PMID: 30427759 PMCID: PMC6337904 DOI: 10.1091/mbc.e18-01-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cell migration is a highly regulated event that is initiated by cell membrane protrusion and actin reorganization. Robo1, a single-pass transmembrane receptor, is crucial for neuronal guidance and cell migration. ADP-ribosylation factor (Arf)-like 4A (Arl4A), an Arf small GTPase, functions in cell morphology, cell migration, and actin cytoskeleton remodeling; however, the molecular mechanisms of Arl4A in cell migration are unclear. Here, we report that the binding of Arl4A to Robo1 modulates cell migration by promoting Cdc42 activation. We found that Arl4A interacts with Robo1 in a GTP-dependent manner and that the Robo1 amino acid residues 1394-1398 are required for this interaction. The Arl4A-Robo1 interaction is essential for Arl4A-induced cell migration and Cdc42 activation but not for the plasma membrane localization of Robo1. In addition, we show that the binding of Arl4A to Robo1 decreases the association of Robo1 with the Cdc42 GTPase-activating protein srGAP1. Furthermore, Slit2/Robo1 binding down-regulates the Arl4A-Robo1 interaction in vivo, thus attenuating Cdc42-mediated cell migration. Therefore, our study reveals a novel mechanism by which Arl4A participates in Slit2/Robo1 signaling to modulate cell motility by regulating Cdc42 activity.
Collapse
Affiliation(s)
- Tsai-Shin Chiang
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ming-Chieh Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Meng-Chen Tsai
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chieh-Hsin Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Ting Jang
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
31
|
Xu R, Qin N, Xu X, Sun X, Chen X, Zhao J. Implication of SLIT3-ROBO1/ROBO2 in granulosa cell proliferation, differentiation and follicle selection in the prehierarchical follicles of hen ovary. Cell Biol Int 2018; 42:1643-1657. [PMID: 30288875 DOI: 10.1002/cbin.11063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
The SLIT/ROBO pathway has been implicated in prehierarchical follicular development of hen ovary by an intrafollicular autocrine and/or paracrine fashion. SLIT3, one of the key components of the SLIT/ROBO family, serves as a ligand that potentially interacts with the four receptors, ROBO1, ROBO2, ROBO3 and ROBO4. But the exact roles and regulatory mechanism of SLIT3 in chicken ovarian follicle development remain largely unclear. The present study was conducted to investigate the potential roles and molecular regulation of SLIT3 in granulosa cell (GC) proliferation, differentiation and follicle selection within the prehierarchical follicles of hen ovary. We found that SLIT3 interacts physically with the four ROBO receptors, but the expression of the ROBO1 and ROBO2 genes are more susceptible to the regulation of SLIT3 ligand than that of the ROBO3 and ROBO4 genes. Moreover, the siRNA-mediated knockdown of SLIT3 in the follicular GCs leads to a significant increase in cell proliferation. Conversely, overexpression of SLIT3 results in a remarkable reduction in GC proliferation. Furthermore, the overexpressed SLIT3 has notably decreased the mRNA and protein expression levels of follicle-stimulating hormone (FSHR), growth and differentiation factor 9 (GDF9), steroidogenic acute regulatory protein (STAR) and cytochrome P450 11A1 (CYP11A1) in the GCs. These results indicated that SLIT3 may play an inhibitory effect on GC proliferation, differentiation and follicle selection, and these suppressive actions of SLIT3 in the GC proliferation can be prohibited by the siRNA-mediated knockdown of ROBO1 and ROBO2 receptors. The current data provide a basis for further investigation of molecular mechanisms of SLIT3-ROBO1/2 pathway in controlling the prehierarchical follicle development of the hen ovary.
Collapse
Affiliation(s)
- Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Avenue, No. 2888, Changchun, 130118, Jilin, P. R. China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, 130118, P. R. China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Avenue, No. 2888, Changchun, 130118, Jilin, P. R. China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, 130118, P. R. China
| | - Xiaoxing Xu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Hawaii, 96822, USA
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Avenue, No. 2888, Changchun, 130118, Jilin, P. R. China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Avenue, No. 2888, Changchun, 130118, Jilin, P. R. China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Avenue, No. 2888, Changchun, 130118, Jilin, P. R. China
| |
Collapse
|
32
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
33
|
Circulating microRNAs are associated with Pulmonary Hypertension and Development of Chronic Lung Disease in Congenital Diaphragmatic Hernia. Sci Rep 2018; 8:10735. [PMID: 30013141 PMCID: PMC6048121 DOI: 10.1038/s41598-018-29153-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/28/2018] [Indexed: 01/16/2023] Open
Abstract
Pulmonary hypertension (PH) contributes to high mortality in congenital diaphragmatic hernia (CDH). A better understanding of the regulatory mechanisms underlying the pathology in CDH might allow the identification of prognostic biomarkers and potential therapeutic targets. We report the results from an expression profiling of circulating microRNAs (miRNAs) in direct post-pulmonary blood flow of 18 CDH newborns. Seven miRNAs differentially expressed in children that either died or developed chronic lung disease (CLD) up to 28 days after birth, compared to those who survived without developing CLD during this period, were identified. Target gene and pathway analyses indicate that these miRNAs functions include regulation of the cell cycle, inflammation and morphogenesis, by targeting molecules responsive to growth factors, cytokines and cellular stressors. Furthermore, we identified hub molecules by constructing a protein-protein interaction network of shared targets, and ranked the relative importance of the identified miRNAs. Our results suggest that dysregulations in miRNAs let-7b-5p, -7c-5p, miR-1307-3p, -185-3p, -8084, -331-3p and -210-3p may be detrimental for the development and function of the lungs and pulmonary vasculature, compromise cardiac function and contribute to the development of CLD in CDH. Further investigation of the biomarker and therapeutic potential of these circulating miRNAs is encouraged.
Collapse
|
34
|
Kaul Z, Chakrabarti O. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration. Traffic 2018; 19:485-495. [DOI: 10.1111/tra.12569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
- Homi Bhabha National Institute; Mumbai India
| |
Collapse
|
35
|
Sato Y, Matsuo A, Kudoh S, Fang L, Hasegawa K, Shinmyo Y, Ito T. Expression of Draxin in Lung Carcinomas. Acta Histochem Cytochem 2018; 51:53-62. [PMID: 29622850 PMCID: PMC5880803 DOI: 10.1267/ahc.17035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Guidance molecules, such as Netrin-1, and their receptors have important roles in controlling axon pathfinding, modulate biological activities of various cancer cells, and may be a useful target for cancer therapy. Dorsal repulsive axon guidance protein (Draxin) is a novel guidance molecule that binds not only common guidance molecule receptors with Netrin-1, but also directly binds the EGF domain of Netrin-1 through a 22-amino-acid peptide (22aa). By immunostaining, Draxin was positively expressed in small cell carcinoma, adenocarcinoma (ADC), and squamous cell carcinoma of the lung. In addition, western blot analysis revealed that Draxin was expressed in all histological types of lung cancer cell lines examined. Knockdown of Draxin in an ADC cell line H358 resulted in altered expression of molecules associated with proliferation and apoptosis. The Ki-67 labeling index of Draxin-knockdown ADC cells was increased compared to that of control ADC cells. In H358 cells, treatment of 22aa induced phosphorylation of histone H3, but did not change apoptosis-associated enzymes. These data suggest that Draxin might be involved in cell proliferation and apoptosis in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Liu Fang
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University
| | - Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University
| | - Yohei Shinmyo
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
36
|
Liu L, Wang J, Song X, Zhu Q, Shen S, Zhang W. Semaphorin 3A promotes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells. Exp Ther Med 2018; 15:3489-3494. [PMID: 29545873 DOI: 10.3892/etm.2018.5813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/29/2017] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the role of Semaphorin 3A (Sema3A) in the osteogenic differentiation of human alveolar bone marrow mesenchymal stem cells (hABMMSCs). To investigate whether Sema3A affects hABMMSC proliferation and osteogenic differentiation, a stable Sema3A-overexpression cell line was generated by infection with the pAdCMV-SEMA3A-MCS-EGFP vector. Cell counting kit-8 and clone formation assays were performed to determine the proliferation ability of hABMMSCs, while cell osteogenic differentiation was assayed using Alizarin Red S staining. In addition, reverse transcription-quantitative polymerase chain reaction was employed to detect the mRNA expression level of osteogenesis-associated genes, Runt-related transcription factor 2 (Runx2), osteopontin (Opn) and osteocalcin (Ocn), during the osteogenic differentiation. The results revealed that, compared with the normal control group, the cell morphology of the infected cells was stable and no significant alterations were observed. Overexpression of Sema3A in hABMMSCs significantly increased the cell proliferation ability compared with the control group. Furthermore, the Alizarin Red S staining assay results indicated that the ossification process of hABMMSCs overexpressing Sema3A was evidently faster in comparison with that of the control group cells. Overexpression of Sema3A by pAdCMV-SEMA3A-MCS-EGFP infection also significantly increased the mRNA expression levels of the osteogenic marker genes Runx2, Opn and Ocn. In conclusion, Sema3A was observed to be a key positive regulator in hABMMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Li Liu
- Department of Prosthodontics, Shanghai Stomatological Hospital, Shanghai 200000, P.R. China
| | - Jue Wang
- Department of Prosthodontics, Shanghai Stomatological Hospital, Shanghai 200000, P.R. China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| | - Qingping Zhu
- Department of Very Important People (VIP), Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| | - Shuping Shen
- Department of Very Important People (VIP), Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Department of Very Important People (VIP), Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
37
|
Li Y, Zhang XT, Wang XY, Wang G, Chuai M, Münsterberg A, Yang X. Robo signaling regulates the production of cranial neural crest cells. Exp Cell Res 2017; 361:73-84. [PMID: 28987541 DOI: 10.1016/j.yexcr.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022]
Abstract
Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1+ cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development.
Collapse
Affiliation(s)
- Yan Li
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China; The key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Tan Zhang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
38
|
Feinstein J, Ramkhelawon B. Netrins & Semaphorins: Novel regulators of the immune response. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3183-3189. [PMID: 28918114 DOI: 10.1016/j.bbadis.2017.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
Netrins and semaphorins, members of the neuronal guidance cue family, exhibit a rich biology with significant roles that extend beyond chemotactic guidance of the axons to build the neuronal patterns of the body. Screening of adult tissues and specific cellular subsets have illuminated that these proteins are also abundantly expressed under both steady state and pathological scenarios. This observation suggests that, in addition to their role in the development of the axonal tree, these proteins possess additional novel functions in adult physiopathology. Notably, a series of striking evidence has emerged in the literature describing their roles as potent regulators of both innate and adaptive immunity, providing extra dimension to our knowledge of neuronal guidance cues. In this review, we summarize the key complex roles of netrins and semaphorins outside the central nervous system (CNS) with focus on their immunomodulatory functions that impact pathophysiological conditions.
Collapse
Affiliation(s)
- Jordyn Feinstein
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
39
|
Peng WF, Xu SS, Ren X, Lv FH, Xie XL, Zhao YX, Zhang M, Shen ZQ, Ren YL, Gao L, Shen M, Kantanen J, Li MH. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Anim Genet 2017; 48:570-579. [PMID: 28703336 DOI: 10.1111/age.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 01/20/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied in livestock to identify genes associated with traits of economic interest. Here, we conducted the first GWAS of the supernumerary nipple phenotype in Wadi sheep, a native Chinese sheep breed, based on Ovine Infinium HD SNP BeadChip genotypes in a total of 144 ewes (75 cases with four teats, including two normal and two supernumerary teats, and 69 control cases with two teats). We detected 63 significant SNPs at the chromosome-wise threshold. Additionally, one candidate region (chr1: 170.723-170.734 Mb) was identified by haplotype-based association tests, with one SNP (rs413490006) surrounding functional genes BBX and CD47 on chromosome 1 being commonly identified as significant by the two mentioned analyses. Moreover, Gene Ontology enrichment for the significant SNPs identified by the GWAS analysis was functionally clustered into the categories of receptor activity and synaptic membrane. In addition, pathway mapping revealed four promising pathways (Wnt, oxytocin, MAPK and axon guidance) involved in the development of the supernumerary nipple phenotype. Our results provide novel and important insights into the genetic mechanisms underlying the phenotype of supernumerary nipples in mammals, including humans. These findings may be useful for future breeding and genetics in sheep and other livestock.
Collapse
Affiliation(s)
- W-F Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - S-S Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - X Ren
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - F-H Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - X-L Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Y-X Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - M Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Z-Q Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - Y-L Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - L Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - M Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - J Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - M-H Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
40
|
Wijnands KPJ, Chen J, Liang L, Verbiest MMPJ, Lin X, Helbing WA, Gittenberger-de Groot AC, van der Spek PJ, Uitterlinden AG, Steegers-Theunissen RPM. Genome-wide methylation analysis identifies novel CpG loci for perimembranous ventricular septal defects in human. Epigenomics 2017; 9:241-251. [DOI: 10.2217/epi-2016-0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Congenital heart diseases are the most common birth defects worldwide and leading cause of infant mortality. The perimembranous ventricular septal defect is most prevalent. Epigenetics may provide an underlying mechanism of the gene–environment interactions involved. Materials & methods: We examined epigenome-wide DNA methylation using the Illumina HumanMethylation450 BeadChip in 84 case children and 196 control children. Results: We identified differential methylation of a CpG locus (cg17001566) within the PRDM16 gene after Bonferroni correction (p = 9.17 × 10-8). This was validated by bisulfite pyrosequencing. PRDM16 functions as a repressor of TGF-β signaling controlling tissue morphogenesis crucial during cardiogenesis. At 15% false-discovery rate, we identified seven additional CpG loci. Conclusion: These findings provide novel insights in the pathogenesis of perimembranous ventricular septal defect, which is of interest for future prediction and prevention.
Collapse
Affiliation(s)
- Kim PJ Wijnands
- Department of Obstetrics & Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jun Chen
- Division of Biomedical Statistics & Informatics & Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael MPJ Verbiest
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Willem A Helbing
- Department of Paediatrics, Division of Paediatric Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
41
|
Zhang M, Liu D, Li W, Wu X, Gao C, Li X. Identification of featured biomarkers in breast cancer with microRNA microarray. Arch Gynecol Obstet 2016; 294:1047-1053. [DOI: 10.1007/s00404-016-4141-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
|
42
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
43
|
Asan A, Raiders SA, Priess JR. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes. PLoS Genet 2016; 12:e1005950. [PMID: 27035721 PMCID: PMC4817974 DOI: 10.1371/journal.pgen.1005950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik’s cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells. This report uses the intestine of the nematode C. elegans as a model system to address how progenitor cells form a three-dimensional organ. The fully formed intestine is a cylindrical tube of only 20 epithelial cells, and all of these cells are descendants of a single cell, the E blastomere. The E descendants form a primordium that changes shape over time as different E descendants divide and move. Cells in the primordium must continually adhere to each other during these movements to maintain the integrity of the primordium. Here, we generated a 3D graphic reconstruction of the developing intestine in order to analyze these events. We found that the cell movements are highly reproducible, suggesting that they are programmed by asymmetric gene expression in the primordium. In particular, we found that the conserved receptor LIN-12/Notch appears to modulate left-right adhesion in the primordium, leading to the asymmetric packing of cells. One of the most remarkable events in intestinal morphogenesis is the circumferential rotation of a subset of cells. We found that rotation appears to have a role in aligning the developing lumen of the intestine, and involves a conserved, UNC-6/netrin signaling pathway that is best known for its roles in the guided growth of neurons.
Collapse
Affiliation(s)
- Alparsan Asan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephan A. Raiders
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
44
|
Yasmin T, Ali MT, Haque S, Hossain M. Interaction of Quercetin of Onion with Axon Guidance Protein Receptor, NRP-1 Plays Important Role in Cancer Treatment: An In Silico Approach. Interdiscip Sci 2015; 9:184-191. [PMID: 26706905 DOI: 10.1007/s12539-015-0137-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 12/01/2022]
Abstract
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein receptor whose distinct sites bind semaphorins and vascular endothelial growth factor family members to mediate the role of these ligands in neuronal axon guidance and angiogenesis, respectively. Similarly, Eph receptors and ephrin ligands play critical roles in various biological functions, and deregulated activation of Eph/ephrin signaling in humans is thought to lead to tumorigenesis. Therefore, in this paper, an attempt was made to elucidate the inhibition potential of nine bioactive compounds from four different native spices of Bangladesh against this couple of receptors via molecular docking study. The molecular docking study was carried out using Vina docking protocol. Finally, the receptor-ligand interaction analysis was carried out using the Discovery Studio Client package. Quercetin and diosgenin of onion showed favorable binding with NRP-1 with low binding energy of -7.8 and -7.2 kcal/mol, respectively, in comparison with the control inhibitor (-6.1 kcal/mol). The study suggests that ligand interaction with the residues Asp 48, Thr 44, Thr 77, Tyr 81, Trp29, Ile 143 of NRP-1 and Lys 653, Phe 765, Ser 763, Thr 699, Ile 683 of Eph might be critical for the inhibitory activity of these receptors. The study provides evidence for consideration of quercetin and diosgenin of onion as valuable small ligand molecules for targeting NRP-1 receptor in treatment and prevention of neurological disorders as well as cancer.
Collapse
Affiliation(s)
- Tahirah Yasmin
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad Tuhin Ali
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Shaila Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mahmud Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
45
|
Thakkar A, Raj H, Ravishankar, Muthuvelan B, Balakrishnan A, Padigaru M. High Expression of Three-Gene Signature Improves Prediction of Relapse-Free Survival in Estrogen Receptor-Positive and Node-Positive Breast Tumors. Biomark Insights 2015; 10:103-12. [PMID: 26648682 PMCID: PMC4666521 DOI: 10.4137/bmi.s30559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to validate prognostic gene signature for estrogen receptor alpha-positive (ER03B1+) and lymph node (+) breast cancer for improved selection of patients for adjuvant therapy. In our previous study, we identified a group of seven genes (GATA3, NTN4, SLC7A8, ENPP1, MLPH, LAMB2, and PLAT) that show elevated messenger RNA (mRNA) expression levels in ERα (+) breast cancer patient samples. The prognostic values of these genes were evaluated using gene expression data from three public data sets of breast cancer patients (n = 395). Analysis of ERα (+) breast cancer cohort (n = 195) showed high expression of GATA3, NTN4, and MLPH genes significantly associated with longer relapse-free survival (RFS). Next cohort of ERα (+) and node (+) samples (n = 109) revealed high mRNA expression of GATA3, SLC7A8, and MLPH significantly associated with longer RFS. Multivariate analysis of combined three-gene signature for ERα (+) cohort, and ERα (+) and node (+) cohorts showed better hazard ratio than individual genes. The validated three-gene signature sets for ERα (+) cohort, and ERα (+) and node (+) cohort may have potential clinical utility since they demonstrated predictive and prognostic ability in three independent public data sets.
Collapse
Affiliation(s)
- Arvind Thakkar
- Piramal Life Sciences Ltd, Nirlon Complex, Goregaon (E), Mumbai, India. ; Western University of Health Sciences, Pomona, CA, USA
| | - Hemanth Raj
- Apollo Speciality Hospital, Chennai, Tamil Nadu, India
| | - Ravishankar
- Apollo Speciality Hospital, Chennai, Tamil Nadu, India
| | | | - Arun Balakrishnan
- Piramal Life Sciences Ltd, Nirlon Complex, Goregaon (E), Mumbai, India
| | | |
Collapse
|
46
|
Villanueva H, Visbal AP, Obeid NF, Ta AQ, Faruki AA, Wu MF, Hilsenbeck SG, Shaw CA, Yu P, Plummer NW, Birnbaumer L, Lewis MT. An essential role for Gα(i2) in Smoothened-stimulated epithelial cell proliferation in the mammary gland. Sci Signal 2015; 8:ra92. [PMID: 26373672 DOI: 10.1126/scisignal.aaa7355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hedgehog (Hh) signaling is critical for organogenesis, tissue homeostasis, and stem cell maintenance. The gene encoding Smoothened (SMO), the primary effector of Hh signaling, is expressed aberrantly in human breast cancer, as well as in other cancers. In mice that express a constitutively active form of SMO that does not require Hh stimulation in mammary glands, the cells near the transgenic cells proliferate and participate in hyperplasia formation. Although SMO is a seven-transmembrane receptor like G protein-coupled receptors (GPCRs), SMO-mediated activation of the Gli family of transcription factors is not known to involve G proteins. However, data from Drosophila and mammalian cell lines indicate that SMO functions as a GPCR that couples to heterotrimeric G proteins of the pertussis toxin (PTX)-sensitive Gαi class. Using genetically modified mice, we demonstrated that SMO signaling through G proteins occurred in the mammary gland in vivo. SMO-induced stimulation of proliferation was PTX-sensitive and required Gαi2, but not Gαi1, Gαi3, or activation of Gli1 or Gli2. Our findings show that activated SMO functions as a GPCR to stimulate proliferation in vivo, a finding that may have clinical importance because most SMO-targeted agents have been selected based largely on their ability to block Gli-mediated transcription.
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adriana P Visbal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadine F Obeid
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Q Ta
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adeel A Faruki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng-Fen Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Qin N, Fan XC, Zhang YY, Xu XX, Tyasi TL, Jing Y, Mu F, Wei ML, Xu RF. New insights into implication of the SLIT/ROBO pathway in the prehierarchical follicle development of hen ovary. Poult Sci 2015; 94:2235-46. [PMID: 26188027 DOI: 10.3382/ps/pev185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/19/2015] [Indexed: 01/28/2023] Open
Abstract
The SLIT/Roundabout (ROBO) pathway is involved in follicle development of mammalian ovary, and 2 secreted hormones activin A and inhibin A have potential roles in modulation of the SLIT/ROBO system, but the related actions remain poorly understood in bird. The aims of the present study were to examine the spatial and temporal expression of the SLIT ligand genes (SLIT1, SLIT2, and SLIT3) and their receptor ROBO1, ROBO2, ROBO3, and ROBO4 genes in various-sized prehierarchical follicles during hen ovary development and the effects of activin A and inhibin A on the expression of these genes in the cultured hen follicles. Our result demonstrated that the transcripts of the 3 SLIT genes were highly expressed in the developing follicles and expression patterns of the SLIT transcripts were different from those of ROBO genes detected by real-time quantitative reverse transcriptase PCR. Both SLIT and ROBO transcripts were predominantly expressed in oocytes and granulosa cells from the prehierarchichal follicles examined by in situ hybridization. The localization for SLIT and ROBO proteins was revealed by immunohistochemistry similar to the spatial distribution of their transcript. In cultured follicles (4 to 8 mm in diameter), the expression levels of SLIT and ROBO members are hormonally regulated by activin A (10 ng/mL) and/or inhibin A (20 ng/mL) after treatment for 24 h. However, the expression of only SLIT2, SLIT3, and ROBO3 mRNA presented a directly opposite response to activin A and inhibin A hormones. These results indicate that SLIT/ROBO pathway is implicated in the prehierarchical follicular development of the hen ovary by an intrafollicular autocrine and/or paracrine action, and is influenced by activin A and inhibin A hormones.
Collapse
Affiliation(s)
- N Qin
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X C Fan
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Y Zhang
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - X X Xu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - T L Tyasi
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Y Jing
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - F Mu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - M L Wei
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - R F Xu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
48
|
Li J, Ye Y, Zhang R, Zhang L, Hu X, Han D, Chen J, He X, Wang G, Yang X, Wang L. Robo1/2 regulate follicle atresia through manipulating granulosa cell apoptosis in mice. Sci Rep 2015; 5:9720. [PMID: 25988316 PMCID: PMC4437031 DOI: 10.1038/srep09720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
Secreted Slit proteins and their Roundabout (Robo) receptors act as a repulsive cue to prevent axons from migrating to inappropriate locations during the development of the nervous system. Slit/Robo has also been implicated in reproductive system development, but the molecular mechanism of the Slit/Robo pathway in the reproductive system remains poorly understood. Using a transgenic mouse model, we investigated the function of the Slit/Robo pathway on ovarian follicle development and atresia. We first demonstrated that more offspring were born to mice with a partial knockout of the Robo1/2 genes in mice. We next showed that Robo1 and Robo2 are strongly expressed in ovarian granulosa cells. Apoptosis in granulosa cells was reduced when Robo1/2 were partially knocked out, and this observation was further verified by in vitro Robo1/2 knockout experiments in mouse and human granulosa cells. We also found that ovarian angiogenesis was enhanced by a partial lack of Robo1/2 genes. In summary, our data suggest that the Slit/Robo pathway can impact follicle development and atresia by influencing granulosa cell apoptosis.
Collapse
Affiliation(s)
- Jiangchao Li
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxiang Ye
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renli Zhang
- Reproductive Medicine Center, Guangdong General Hospital, Guangzhou 515006, China
| | - Lili Zhang
- Reproductive Medicine Center, Guangdong General Hospital, Guangzhou 515006, China
- Southern Medical University, Guangzhou 510515, China
| | - Xiwen Hu
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dong Han
- Reproductive Medicine Center, Guangdong General Hospital, Guangzhou 515006, China
| | - Jiayuan Chen
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong He
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Lijing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
49
|
Ek CJ, Nathanielsz P, Li C, Mallard C. Transcriptomal changes and functional annotation of the developing non-human primate choroid plexus. Front Neurosci 2015; 9:82. [PMID: 25814924 PMCID: PMC4357249 DOI: 10.3389/fnins.2015.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/25/2015] [Indexed: 12/04/2022] Open
Abstract
The choroid plexuses are small organs that protrude into each brain ventricle producing cerebrospinal fluid that constantly bathes the brain. These organs differentiate early in development just after neural closure at a stage when the brain is little vascularized. In recent years the plexus has been shown to have a much more active role in brain development than previously appreciated thereby it can influence both neurogenesis and neural migration by secreting factors into the CSF. However, much of choroid plexus developmental function is still unclear. Most previous studies on this organ have been undertaken in rodents but translation into humans is not straightforward since they have a different timing of brain maturation processes. We have collected choroid plexus from three fetal gestational ages of a non-human primate, the baboon, which has much closer brain development to humans. The transcriptome of the plexuses was determined by next generation sequencing and Ingenuity Pathway Analysis software was used to annotate functions and enrichment of pathways of changes in the transcriptome. The number of unique transcripts decreased with development and the majority of differentially expressed transcripts were down-regulated through development suggesting a more complex and active plexus earlier in fetal development. The functional annotation indicated changes across widespread biological functions in plexus development. In particular we find age-dependent regulation of genes associated with annotation categories: Gene Expression, Development of Cardiovascular System, Nervous System Development and Molecular Transport. Our observations support the idea that the choroid plexus has roles in shaping brain development.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Peter Nathanielsz
- Department of Obstetrics, Center for Pregnancy and Newborn Research, The University of Texas Health Science Center San Antonio, TX, USA
| | - Cun Li
- Department of Obstetrics, Center for Pregnancy and Newborn Research, The University of Texas Health Science Center San Antonio, TX, USA
| | - Carina Mallard
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| |
Collapse
|
50
|
Schrenk S, Schuster A, Klotz M, Schleser F, Lake J, Heuckeroth RO, Kim YJ, Laschke MW, Menger MD, Schäfer KH. Vascular and neural stem cells in the gut: do they need each other? Histochem Cell Biol 2014; 143:397-410. [PMID: 25371326 DOI: 10.1007/s00418-014-1288-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Enteric neurons and blood vessels form intricate networks throughout the gastrointestinal tract. To support the hypothesis of a possible interaction of both networks, we investigated whether primary mesenteric vascular cells (MVCs) and enteric nervous system (ENS)-derived cells (ENSc) depend on each other using two- and three-dimensional in vitro assays. In a confrontation assay, both cell types migrated in a target-oriented manner towards each other. The migration of MVCs was significantly increased when cultured in ENSc-conditioned medium. Co-cultures of ENSc with MVCs resulted in an improved ENSc proliferation and differentiation. Moreover, we analysed the formation of the vascular and nervous system in developing mice guts. It was found that the patterning of newly formed microvessels and neural stem cells, as confirmed by nestin and SOX2 stainings, is highly correlated in all parts of the developing gut. In particular in the distal colon, nestin/SOX2-positive cells were found in the tissues adjacent to the capillaries and in the capillaries themselves. Finally, in order to provide evidences for a mutual interaction between endothelial and neural cells, the vascular patterns of a RET((-/-)) knockout mouse model as well as human Hirschsprung's cases were analysed. In the distal colon of postnatal RET((-/-)) knockout mice, the vascular and neural networks were similarly disrupted. In aganglionic zones of Hirschsprung's patients, the microvascular density was significantly increased compared with the ganglionic zone within the submucosa. Taken together, these findings indicate a strong interaction between the enteric nervous and vascular system.
Collapse
Affiliation(s)
- Sandra Schrenk
- Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|