1
|
Batool F, Shireen H, Malik MF, Abrar M, Abbasi AA. The combinatorial binding syntax of transcription factors in forebrain-specific enhancers. Biol Open 2025; 14:BIO061751. [PMID: 39976127 DOI: 10.1242/bio.061751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Tissue-specific gene regulation in mammals involves the coordinated binding of multiple transcription factors (TFs). Using the forebrain as a model, we investigated the syntax of TF occupancy to determine tissue-specific enhancer regions. We analyzed forebrain-exclusive enhancers from the VISTA Enhancer Browser and a curated set of 23 TFs relevant to forebrain development and disease. Our findings revealed multiple distinct patterns of combinatorial TF binding, with the HES5-FOXP2-GATA3 triad being the most frequent in forebrain-specific enhancers. This syntactic structure was detected in 2614 enhancers from a genome-wide catalog of 25,000 predicted human forebrain enhancers. Notably, this catalog represents a computationally predicted dataset, distinct from the in vivo validated set of enhancers obtained from the VISTA Enhancer Browser. The shortlisted 2614 enhancers were further analyzed using genome-wide epigenetic data and evaluated for evolutionary conservation and disease relevance. Our findings highlight the value of these 2614 enhancers in forebrain-specific gene regulation and provide a framework for discovering tissue-specific enhancers, enhancing the understanding of enhancer function.
Collapse
Affiliation(s)
- Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Faizan Malik
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
2
|
Domsch K. Comprehensive Predictions of Mef2-Mediated Chromatin Loops, Which May Inhibit Ubx Binding by Blocking Low-Affinity Binding Sites. J Dev Biol 2024; 12:33. [PMID: 39728086 DOI: 10.3390/jdb12040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Gene regulation depends on the interaction between chromatin-associated factors, such as transcription factors (TFs), which promote chromatin loops to ensure tight contact between enhancer and promoter regions. So far, positive interactions that lead to gene activation have been the main focus of research, but regulations related to blocking or inhibiting factor binding are also essential to maintaining a defined cellular status. To understand these interactions in greater detail, I investigated the possibility of the muscle differentiation factor Mef2 to prevent early Hox factor binding, leading to the proper timing of regulatory processes and the activation of differentiation events. My investigations relied on a collection of publicly available genome-wide binding data sets of Mef2 and Ubx (as the Hox factor), Capture-C interactions, and ATAC-seq analysis in Mef2 mutant cells. The analysis indicated that Mef2 can form possible chromatin loops to Ubx-bound regions. These regions contain low-affinity Ubx binding sites, and the chromatin architecture is independent of Mef2's function. High levels of Ubx may disrupt the loops and allow specific Ubx bindings to regulate defined targets. In summary, my investigations highlight that the use of many publicly available data sets enables computational approaches to make robust predictions and, for the first time, suggest a molecular function of Mef2 as a preventer of Hox binding, indicating that it may act as a timer for muscle differentiation.
Collapse
Affiliation(s)
- Katrin Domsch
- Developmental Biology, Heidelberg University, COS, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Murthy S, Dey U, Olymon K, Abbas E, Yella VR, Kumar A. Discerning the Role of DNA Sequence, Shape, and Flexibility in Recognition by Drosophila Transcription Factors. ACS Chem Biol 2024; 19:1533-1543. [PMID: 38902964 DOI: 10.1021/acschembio.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The precise spatial and temporal orchestration of gene expression is crucial for the ontogeny of an organism and is mainly governed by transcription factors (TFs). The mechanism of recognition of cognate sites amid millions of base pairs in the genome by TFs is still incompletely understood. In this study, we focus on DNA sequence composition, shape, and flexibility preferences of 28 quintessential TFs from Drosophila melanogaster that are critical to development and body patterning mechanisms. Our study finds that TFs exhibit distinct predilections for DNA shape, flexibility, and sequence compositions in the proximity of transcription factor binding sites (TFBSs). Notably, certain zinc finger proteins prefer GC-rich areas with less negative propeller twist, while homeodomains mainly seek AT-rich regions with a more negative propeller twist at their sites. Intriguingly, while numerous cofactors share similar binding site preferences and bind closer to each other in the genome, some cofactors that have different preferences bind farther apart. These findings shed light on TF DNA recognition and provide novel insights into possible cofactor binding and transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Eshan Abbas
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur 520002, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| |
Collapse
|
4
|
Ruan ZR, Yu Z, Xing C, Chen EH. Inter-organ steroid hormone signaling promotes myoblast fusion via direct transcriptional regulation of a single key effector gene. Curr Biol 2024; 34:1438-1452.e6. [PMID: 38513654 PMCID: PMC11003854 DOI: 10.1016/j.cub.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Dai S, Guo L, Dey R, Guo M, Zhang X, Bates D, Cayford J, Jiang L, Wei H, Chen Z, Zhang Y, Chen L, Chen Y. Structural insights into the HDAC4-MEF2A-DNA complex and its implication in long-range transcriptional regulation. Nucleic Acids Res 2024; 52:2711-2723. [PMID: 38281192 PMCID: PMC10954479 DOI: 10.1093/nar/gkae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.
Collapse
Affiliation(s)
- Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Liang Guo
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Raja Dey
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiangqian Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Darren Bates
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Justin Cayford
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Pollex T, Marco-Ferreres R, Ciglar L, Ghavi-Helm Y, Rabinowitz A, Viales RR, Schaub C, Jankowski A, Girardot C, Furlong EEM. Chromatin gene-gene loops support the cross-regulation of genes with related function. Mol Cell 2024; 84:822-838.e8. [PMID: 38157845 DOI: 10.1016/j.molcel.2023.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yad Ghavi-Helm
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | | | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
7
|
Barwell T, Seroude L. Polyglutamine disease in peripheral tissues. Hum Mol Genet 2023; 32:3303-3311. [PMID: 37642359 DOI: 10.1093/hmg/ddad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Vishal K, Barajas Alonso E, DeAguero AA, Waters JA, Chechenova MB, Cripps RM. Phosphorylation of the Myogenic Factor Myocyte Enhancer Factor-2 Impacts Myogenesis In Vivo. Mol Cell Biol 2023; 43:241-253. [PMID: 37184381 PMCID: PMC10251773 DOI: 10.1080/10985549.2023.2198167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
Activity of the myogenic regulatory protein myocyte enhancer factor-2 (MEF2) is modulated by post-translational modification. We investigated the in vivo phosphorylation of Drosophila MEF2, and identified serine 98 (S98) as a phosphorylated residue. Phospho-mimetic (S98E) and phospho-null (S98A) isoforms of MEF2 did not differ from wild-type in their activity in vitro, so we used CRISPR/Cas9 to generate an S98A allele of the endogenous gene. In mutant larvae we observed phenotypes characteristic of reduced MEF2 function, including reduced body wall muscle size and reduced expression of myofibrillar protein genes; conversely,S98A homozygotes showed enhanced MEF2 function through muscle differentiation within the adult myoblasts associated with the wing imaginal disc. In adults, S98A homozygotes were viable with normal mobility, yet showed patterning defects in muscles that were enhanced when the S98A allele was combined with a Mef2 null allele. Overall our data indicate that blocking MEF2 S98 phosphorylation in myoblasts enhances its myogenic capability, whereas blocking S98 phosphorylation in differentiating muscles attenuates MEF2 function. Our studies are among the first to assess the functional significance of MEF2 phosphorylation sites in the intact animal, and suggest that the same modification can have profoundly different effects upon MEF2 function depending upon the developmental context.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Ashley A. DeAguero
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Maria B. Chechenova
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
9
|
Alternatively spliced exon regulates context-dependent MEF2D higher-order assembly during myogenesis. Nat Commun 2023; 14:1329. [PMID: 36898987 PMCID: PMC10006080 DOI: 10.1038/s41467-023-37017-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
During muscle cell differentiation, the alternatively spliced, acidic β-domain potentiates transcription of Myocyte-specific Enhancer Factor 2 (Mef2D). Sequence analysis by the FuzDrop method indicates that the β-domain can serve as an interaction element for Mef2D higher-order assembly. In accord, we observed Mef2D mobile nuclear condensates in C2C12 cells, similar to those formed through liquid-liquid phase separation. In addition, we found Mef2D solid-like aggregates in the cytosol, the presence of which correlated with higher transcriptional activity. In parallel, we observed a progress in the early phase of myotube development, and higher MyoD and desmin expression. In accord with our predictions, the formation of aggregates was promoted by rigid β-domain variants, as well as by a disordered β-domain variant, capable of switching between liquid-like and solid-like higher-order states. Along these lines, NMR and molecular dynamics simulations corroborated that the β-domain can sample both ordered and disordered interactions leading to compact and extended conformations. These results suggest that β-domain fine-tunes Mef2D higher-order assembly to the cellular context, which provides a platform for myogenic regulatory factors and the transcriptional apparatus during the developmental process.
Collapse
|
10
|
Yang S, Johnson AN. The serine/threonine kinase Back seat driver prevents cell fusion to maintain cell identity. Dev Biol 2023; 495:35-41. [PMID: 36528051 PMCID: PMC11088746 DOI: 10.1016/j.ydbio.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cell fate specification is essential for every major event of embryogenesis, and subsequent cell maturation ensures individual cell types acquire specialized functions. The mechanisms that regulate cell fate specification have been studied exhaustively, and each technological advance in developmental biology ushers in a new era of studies aimed at uncovering the most fundamental processes by which cells acquire unique identities. What is less appreciated is that mechanisms are in place to ensure cell identity is maintained throughout the life of the organism. The body wall musculature in the Drosophila embryo is a well-established model to study cell fate specification, as each hemisegment in the embryo generates and maintains thirty muscles with distinct identities. Once specified, the thirty body wall muscles fuse with mononucleate muscle precursors that lack a specific identity to form multinucleate striated muscles. Multinucleate body wall muscles do not fuse with each other, which maintains a diversification of muscle cell identities. Here we show the serine/threonine kinase Back seat driver (Bsd) prevents inappropriate muscle fusion to maintain cell identity. Thus, the regulation of cell fusion is one mechanism that maintains cell identity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology Washington University School of Medicine St. Louis, MO 63110
| | - Aaron N. Johnson
- Department of Developmental Biology Washington University School of Medicine St. Louis, MO 63110
| |
Collapse
|
11
|
Bu L, Cripps RM. Promoter architecture of Drosophila genes regulated by Myocyte enhancer factor-2. PLoS One 2022; 17:e0271554. [PMID: 35862472 PMCID: PMC9302807 DOI: 10.1371/journal.pone.0271554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
To gain understanding into the mechanisms of transcriptional activation of muscle genes, we sought to determine if genes targeted by the myogenic transcription factor Myocyte enhancer factor-2 (MEF2) were enriched for specific core promoter elements. We identified 330 known MEF2 target promoters in Drosophila, and analyzed them for for the presence and location of 17 known consensus promoter sequences. As a control, we also searched all Drosophila RNA polymerase II-dependent promoters for the same sequences. We found that promoter motifs were readily detected in the MEF2 target dataset, and that many of them were slightly enriched in frequency compared to the control dataset. A prominent sequence over-represented in the MEF2 target genes was NDM2, that appeared in over 50% of MEF2 target genes and was 2.5-fold over-represented in MEF2 targets compared to background. To test the functional significance of NDM2, we identified two promoters containing a single copy of NDM2 plus an upstream MEF2 site, and tested the activity of these promoters in vivo. Both the sticks and stones and Kahuli fragments showed strong skeletal myoblast-specific expression of a lacZ reporter in embryos. However, the timing and level of reporter expression was unaffected when the NDM2 site in either element was mutated. These studies identify variations in promoter architecture for a set of regulated genes compared to all RNA polymerase II-dependent genes, and underline the potential redundancy in the activities of some core promoter elements.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology and Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
12
|
Bhogale S, Sinha S. Thermodynamics-based modeling reveals regulatory effects of indirect transcription factor-DNA binding. iScience 2022; 25:104152. [PMID: 35465052 PMCID: PMC9018382 DOI: 10.1016/j.isci.2022.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) influence gene expression by binding to DNA, yet experimental data suggests that they also frequently bind regulatory DNA indirectly by interacting with other DNA-bound proteins. Here, we used a data modeling approach to test if such indirect binding by TFs plays a significant role in gene regulation. We first incorporated regulatory function of indirectly bound TFs into a thermodynamics-based model for predicting enhancer-driven expression from its sequence. We then fit the new model to a rich data set comprising hundreds of enhancers and their regulatory activities during mesoderm specification in Drosophila embryogenesis and showed that the newly incorporated mechanism results in significantly better agreement with data. In the process, we derived the first sequence-level model of this extensively characterized regulatory program. We further showed that allowing indirect binding of a TF explains its localization at enhancers more accurately than with direct binding only. Our model also provided a simple explanation of how a TF may switch between activating and repressive roles depending on context. Inclusion of indirect DNA binding of transcription factor improves enhancer function prediction Context specific activating or repressive roles of TFs Indirect binding improves fits to experimental TF-DNA binding data Role of Tinman depends on its DNA-binding mode (direct or indirect)
Collapse
|
13
|
Anllo L, DiNardo S. Visceral mesoderm signaling regulates assembly position and function of the Drosophila testis niche. Dev Cell 2022; 57:1009-1023.e5. [PMID: 35390292 PMCID: PMC9050945 DOI: 10.1016/j.devcel.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Tissue homeostasis often requires a properly placed niche to support stem cells. Morphogenetic processes that position a niche are just being described. For the Drosophila testis, we recently showed that pro-niche cells, specified at disparate positions during early gonadogenesis, must assemble into one collective at the anterior of the gonad. We now find that Slit and FGF signals emanating from adjacent visceral mesoderm regulate assembly. In response to signaling, niche cells express islet, which we find is also required for niche assembly. Without signaling, niche cells specified furthest from the anterior are unable to migrate, remaining dispersed. The function of such niches is severely disrupted, with niche cells evading cell cycle quiescence, compromised in their ability to signal the incipient stem cell pool, and failing to orient stem cell divisions properly. Our work identifies both extrinsic signaling and intrinsic responses required for proper assembly and placement of the testis niche.
Collapse
Affiliation(s)
- Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, United States; The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, United States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, United States; The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
14
|
Secchia S, Forneris M, Heinen T, Stegle O, Furlong EEM. Simultaneous cellular and molecular phenotyping of embryonic mutants using single-cell regulatory trajectories. Dev Cell 2022; 57:496-511.e8. [PMID: 35176234 PMCID: PMC8893321 DOI: 10.1016/j.devcel.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Developmental progression and cellular diversity are largely driven by transcription factors (TFs); yet, characterizing their loss-of-function phenotypes remains challenging and often disconnected from their underlying molecular mechanisms. Here, we combine single-cell regulatory genomics with loss-of-function mutants to jointly assess both cellular and molecular phenotypes. Performing sci-ATAC-seq at eight overlapping time points during Drosophila mesoderm development could reconstruct the developmental trajectories of all major muscle types and reveal the TFs and enhancers involved. To systematically assess mutant phenotypes, we developed a single-nucleus genotyping strategy to process embryo pools of mixed genotypes. Applying this to four TF mutants could identify and quantify their characterized phenotypes de novo and discover new ones, while simultaneously revealing their regulatory input and mode of action. Our approach is a general framework to dissect the functional input of TFs in a systematic, unbiased manner, identifying both cellular and molecular phenotypes at a scale and resolution that has not been feasible before.
Collapse
Affiliation(s)
- Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Baden-Württemberg, Germany
| | - Mattia Forneris
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany
| | - Tobias Heinen
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Württemberg, Germany; Heidelberg University, Faculty of Mathematics and Computer Science, 69120 Heidelberg, Baden-Württemberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Württemberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany.
| |
Collapse
|
15
|
Gera J, Budakoti P, Suhag M, Mandal L, Mandal S. Physiological ROS controls Upd3-dependent modeling of ECM to support cardiac function in Drosophila. SCIENCE ADVANCES 2022; 8:eabj4991. [PMID: 35179958 PMCID: PMC8856619 DOI: 10.1126/sciadv.abj4991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their highly reactive nature, reactive oxygen species (ROS) at the physiological level serve as signaling molecules regulating diverse biological processes. While ROS usually act autonomously, they also function as local paracrine signals by diffusing out of the cells producing them. Using in vivo molecular genetic analyses in Drosophila, we provide evidence for ROS-dependent paracrine signaling that does not entail ROS release. We show that elevated levels of physiological ROS within the pericardial cells activate a signaling cascade transduced by Ask1, c-Jun N-terminal kinase, and p38 to regulate the expression of the cytokine Unpaired 3 (Upd3). Upd3 released by the pericardial cells controls fat body-specific expression of the extracellular matrix (ECM) protein Pericardin, essential for cardiac function and healthy life span. Therefore, our work reveals an unexpected inter-organ communication circuitry wherein high physiological levels of ROS regulate cytokine-dependent modulation of cardiac ECM with implications in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jayati Gera
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Prerna Budakoti
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Meghna Suhag
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Corresponding author.
| |
Collapse
|
16
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
17
|
Wu Y, Xue L, Huang W, Deng M, Lin Y. Profiling transcription factor activity dynamics using intronic reads in time-series transcriptome data. PLoS Comput Biol 2022; 18:e1009762. [PMID: 35007289 PMCID: PMC8782462 DOI: 10.1371/journal.pcbi.1009762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/21/2022] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Activities of transcription factors (TFs) are temporally modulated to regulate dynamic cellular processes, including development, homeostasis, and disease. Recent developments of bioinformatic tools have enabled the analysis of TF activities using transcriptome data. However, because these methods typically use exon-based target expression levels, the estimated TF activities have limited temporal accuracy. To address this, we proposed a TF activity measure based on intron-level information in time-series RNA-seq data, and implemented it to decode the temporal control of TF activities during dynamic processes. We showed that TF activities inferred from intronic reads can better recapitulate instantaneous TF activities compared to the exon-based measure. By analyzing public and our own time-series transcriptome data, we found that intron-based TF activities improve the characterization of temporal phasing of cycling TFs during circadian rhythm, and facilitate the discovery of two temporally opposing TF modules during T cell activation. Collectively, we anticipate that the proposed approach would be broadly applicable for decoding global transcriptional architecture during dynamic processes.
Collapse
Affiliation(s)
- Yan Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China
| | - Lingfeng Xue
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen Huang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
18
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
19
|
Folkendt L, Lohmann I, Domsch K. An Evolutionary Perspective on Hox Binding Site Preferences in Two Different Tissues. J Dev Biol 2021; 9:jdb9040057. [PMID: 34940504 PMCID: PMC8705983 DOI: 10.3390/jdb9040057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
Transcription factor (TF) networks define the precise development of multicellular organisms. While many studies focused on TFs expressed in specific cell types to elucidate their contribution to cell specification and differentiation, it is less understood how broadly expressed TFs perform their precise functions in the different cellular contexts. To uncover differences that could explain tissue-specific functions of such TFs, we analyzed here genomic chromatin interactions of the broadly expressed Drosophila Hox TF Ultrabithorax (Ubx) in the mesodermal and neuronal tissues using bioinformatics. Our investigations showed that Ubx preferentially interacts with multiple yet tissue-specific chromatin sites in putative regulatory regions of genes in both tissues. Importantly, we found the classical Hox/Ubx DNA binding motif to be enriched only among the neuronal Ubx chromatin interactions, whereas a novel Ubx-like motif with rather low predicted Hox affinities was identified among the regions bound by Ubx in the mesoderm. Finally, our analysis revealed that tissues-specific Ubx chromatin sites are also different with regards to the distribution of active and repressive histone marks. Based on our data, we propose that the tissue-related differences in Ubx binding behavior could be a result of the emergence of the mesoderm as a new germ layer in triploblastic animals, which might have required the Hox TFs to relax their binding specificity.
Collapse
Affiliation(s)
- Laura Folkendt
- Developmental Biology, Erlangen-Nürnberg University, 91058 Erlangen, Germany;
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (I.L.); (K.D.)
| | - Katrin Domsch
- Developmental Biology, Erlangen-Nürnberg University, 91058 Erlangen, Germany;
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (I.L.); (K.D.)
| |
Collapse
|
20
|
Zboril E, Yoo H, Chen L, Liu Z. Dynamic Interactions of Transcription Factors and Enhancer Reprogramming in Cancer Progression. Front Oncol 2021; 11:753051. [PMID: 34616687 PMCID: PMC8488287 DOI: 10.3389/fonc.2021.753051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
While improved tumor treatment has significantly reduced the overall mortality rates, invasive progression including recurrence, therapy resistance and metastasis contributes to the majority of deaths caused by cancer. Enhancers are essential distal DNA regulatory elements that control temporal- or spatial-specific gene expression patterns during development and other biological processes. Genome-wide sequencing has revealed frequent alterations of enhancers in cancers and reprogramming of distal enhancers has emerged as one of the important features for tumors. In this review, we will discuss tumor progression-associated enhancer dynamics, its transcription factor (TF) drivers and how enhancer reprogramming modulates gene expression during cancer invasive progression. Additionally, we will explore recent advancements in contemporary technology including single-cell sequencing, spatial transcriptomics and CUT&RUN, which have permitted integrated studies of enhancer reprogramming in vivo. Given the essential roles of enhancer dynamics and its drivers in controlling cancer progression and treatment outcome, understanding these changes will be paramount in mitigating invasive events and discovering novel therapeutic targets.
Collapse
Affiliation(s)
- Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hannah Yoo
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
21
|
Peng Y, Xu M, Dou M, Shi X, Yang G, Li X. MicroRNA-129-5p inhibits C2C12 myogenesis and represses slow fiber gene expression in vitro. Am J Physiol Cell Physiol 2021; 320:C1031-C1041. [PMID: 33826407 DOI: 10.1152/ajpcell.00578.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The miR-129 family is widely reported as tumor repressors, although their roles in skeletal muscle have not been fully investigated. Here, the function and mechanism of miR-129-5p in skeletal muscle, a member of the miR-129 family, were explored using C2C12 cell line. Our study showed that miR-129-5p was widely detected in mouse tissues, with the highest expression in skeletal muscle. Gain- and loss-of-function study showed that miR-129-5p could negatively regulate myogenic differentiation, indicated by reduced ratio of MyHC-positive myofibers and repressed expression of myogenic genes, such as MyoD, MyoG, and MyHC. Furthermore, miR-129-5p was more enriched in fast extensor digitorum longus (EDL) than in slow soleus (SOL). Enhanced miR-129-5p could significantly reduce the expression of mitochondrial cox family, together with that of MyHC I, and knockdown of miR-129-5p conversely increased the expression of cox genes and MyHC I. Mechanistically, miR-129-5p directly targeted the 3'-UTR of Mef2a, which was suppressed by miR-129-5p agomir at both mRNA and protein levels in C2C12 cells. Moreover, overexpression of Mef2a could rescue the inhibitory effects of miR-129-5p on the expression of myogenic factors and MyHC I. Collectively, our data revealed that miR-129-5p is a negative regulator of myogenic differentiation and slow fiber gene expression, thus affecting body metabolic homeostasis.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Meixue Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Xin'E Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| |
Collapse
|
22
|
Niederhuber MJ, McKay DJ. Mechanisms underlying the control of dynamic regulatory element activity and chromatin accessibility during metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:21-28. [PMID: 32979530 PMCID: PMC7985040 DOI: 10.1016/j.cois.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/25/2020] [Indexed: 05/10/2023]
Abstract
Cis-regulatory modules of metazoan genomes determine the when and where of gene expression during development. Here we discuss insights into the genetic and molecular mechanisms behind cis-regulatory module usage that have come from recent application of genomics assays to insect metamorphosis. Assays including FAIRE-seq, ATAC-seq, and CUT&RUN indicate that sequential changes in chromatin accessibility play a key role in mediating stage-specific cis-regulatory module activity and gene expression. We review the current understanding of what controls precisely coordinated changes in chromatin accessibility during metamorphosis and describe evidence that points to systemic hormone signaling as a primary signal to trigger genome-wide shifts in accessibility patterns and cis-regulatory module usage.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
23
|
Liu J, Campagna J, John V, Damoiseaux R, Mokhonova E, Becerra D, Meng H, McNally EM, Pyle AD, Kramerova I, Spencer MJ. A Small-Molecule Approach to Restore a Slow-Oxidative Phenotype and Defective CaMKIIβ Signaling in Limb Girdle Muscular Dystrophy. Cell Rep Med 2020; 1:100122. [PMID: 33205074 PMCID: PMC7659555 DOI: 10.1016/j.xcrm.2020.100122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Mutations in CAPN3 cause limb girdle muscular dystrophy R1 (LGMDR1, formerly LGMD2A) and lead to progressive and debilitating muscle wasting. Calpain 3 deficiency is associated with impaired CaMKIIβ signaling and blunted transcriptional programs that encode the slow-oxidative muscle phenotype. We conducted a high-throughput screen on a target of CaMKII (Myl2) to identify compounds to override this signaling defect; 4 were tested in vivo in the Capn3 knockout (C3KO) model of LGMDR1. The leading compound, AMBMP, showed good exposure and was able to reverse the LGMDR1 phenotype in vivo, including improved oxidative properties, increased slow fiber size, and enhanced exercise performance. AMBMP also activated CaMKIIβ signaling, but it did not alter other pathways known to be associated with muscle growth. Thus, AMBMP treatment activates CaMKII and metabolically reprograms skeletal muscle toward a slow muscle phenotype. These proof-of-concept studies lend support for an approach to the development of therapeutics for LGMDR1.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calpain/deficiency
- Calpain/genetics
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Cell Line
- Creatine Kinase, Mitochondrial Form/genetics
- Creatine Kinase, Mitochondrial Form/metabolism
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/drug therapy
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Myoblasts/drug effects
- Myoblasts/metabolism
- Myoblasts/pathology
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism
- Oxidative Stress
- Phenotype
- Physical Conditioning, Animal
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Pyrimidines/pharmacology
- Signal Transduction
- Small Molecule Libraries/pharmacology
Collapse
Affiliation(s)
- Jian Liu
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesus Campagna
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Varghese John
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Pharmacology, David Geffen School of Medicine and Molecular Screening Shared Resource, Crump Imaging Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ekaterina Mokhonova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Diana Becerra
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Huan Meng
- Department of Medicine, David Geffen School of Medicine and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - April D. Pyle
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Irina Kramerova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Peppriell AE, Gunderson JT, Vorojeikina D, Rand MD. Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology 2020; 443:152561. [PMID: 32800841 PMCID: PMC7530093 DOI: 10.1016/j.tox.2020.152561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant and developmental toxicant known to cause a variety of persistent motor and cognitive deficits. While previous research has focused predominantly on neurotoxic MeHg effects, emerging evidence points to a myotoxic role whereby MeHg induces defects in muscle development and maintenance. A genome wide association study for developmental sensitivity to MeHg in Drosophila has revealed several conserved muscle morphogenesis candidate genes that function in an array of processes from myoblast migration and fusion to myotendinous junction (MTJ) formation and myofibrillogenesis. Here, we investigated candidates for a role in mediating MeHg disruption of muscle development by evaluating morphological and functional phenotypes of the indirect flight muscles (IFMs) in pupal and adult flies following 0, 5, 10, and 15 μM MeHg exposure via feeding at the larval stage. Developmental MeHg exposure induced a dose-dependent increase in muscle detachments (myospheres) within dorsal bundles of the IFMs, which paralleled reductions eclosion and adult flight behaviors. These effects were selectively phenocopied by altered expression of kon-tiki (kon), a chondroitin sulfate proteoglycan 4/NG2 homologue and a central component of MTJ formation. MeHg elevated kon transcript expression at a crucial window of IFM development and transgene overexpression of kon could also phenocopy myosphere phenotypes and eclosion and flight deficits. Finally, the myosphere phenotype resulting from 10 μM MeHg was partially rescued in a background of reduced kon expression using a targeted RNAi approach. Our findings implicate a component of the MTJ as a MeHg toxicity target which broaden the understanding of how motor deficits can emerge from early life MeHg exposure.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
25
|
Rivera J, Keränen SVE, Gallo SM, Halfon MS. REDfly: the transcriptional regulatory element database for Drosophila. Nucleic Acids Res 2020; 47:D828-D834. [PMID: 30329093 PMCID: PMC6323911 DOI: 10.1093/nar/gky957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
The REDfly database provides a comprehensive curation of experimentally-validated Drosophila transcriptional cis-regulatory elements and includes information on DNA sequence, experimental evidence, patterns of regulated gene expression, and more. Now in its thirteenth year, REDfly has grown to over 23 000 records of tested reporter gene constructs and 2200 tested transcription factor binding sites. Recent developments include the start of curation of predicted cis-regulatory modules in addition to experimentally-verified ones, improved search and filtering, and increased interaction with the authors of curated papers. An expanded data model that will capture information on temporal aspects of gene regulation, regulation in response to environmental and other non-developmental cues, sexually dimorphic gene regulation, and non-endogenous (ectopic) aspects of reporter gene expression is under development and expected to be in place within the coming year. REDfly is freely accessible at http://redfly.ccr.buffalo.edu, and news about database updates and new features can be followed on Twitter at @REDfly_database.
Collapse
Affiliation(s)
- John Rivera
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | - Steven M Gallo
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marc S Halfon
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
26
|
Peng PC, Khoueiry P, Girardot C, Reddington JP, Garfield DA, Furlong EEM, Sinha S. The Role of Chromatin Accessibility in cis-Regulatory Evolution. Genome Biol Evol 2020; 11:1813-1828. [PMID: 31114856 PMCID: PMC6601868 DOI: 10.1093/gbe/evz103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transcription factor (TF) binding is determined by sequence as well as chromatin accessibility. Although the role of accessibility in shaping TF-binding landscapes is well recorded, its role in evolutionary divergence of TF binding, which in turn can alter cis-regulatory activities, is not well understood. In this work, we studied the evolution of genome-wide binding landscapes of five major TFs in the core network of mesoderm specification, between Drosophila melanogaster and Drosophila virilis, and examined its relationship to accessibility and sequence-level changes. We generated chromatin accessibility data from three important stages of embryogenesis in both Drosophila melanogaster and Drosophila virilis and recorded conservation and divergence patterns. We then used multivariable models to correlate accessibility and sequence changes to TF-binding divergence. We found that accessibility changes can in some cases, for example, for the master regulator Twist and for earlier developmental stages, more accurately predict binding change than is possible using TF-binding motif changes between orthologous enhancers. Accessibility changes also explain a significant portion of the codivergence of TF pairs. We noted that accessibility and motif changes offer complementary views of the evolution of TF binding and developed a combined model that captures the evolutionary data much more accurately than either view alone. Finally, we trained machine learning models to predict enhancer activity from TF binding and used these functional models to argue that motif and accessibility-based predictors of TF-binding change can substitute for experimentally measured binding change, for the purpose of predicting evolutionary changes in enhancer activity.
Collapse
Affiliation(s)
- Pei-Chen Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign.,Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,American University of Beirut (AUB), Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - James P Reddington
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - David A Garfield
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,IRI-Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
27
|
Pereira AHM, Cardoso AC, Consonni SR, Oliveira RR, Saito A, Vaggione MLB, Matos-Souza JR, Carazzolle MF, Gonçalves A, Fernandes JL, Ribeiro GCA, Lopes MM, Molkentin JD, Franchini KG. MEF2C repressor variant deregulation leads to cell cycle re-entry and development of heart failure. EBioMedicine 2020; 51:102571. [PMID: 31911274 PMCID: PMC6948164 DOI: 10.1016/j.ebiom.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background A pathophysiological link exists between dysregulation of MEF2C transcription factors and heart failure (HF), but the underlying mechanisms remain elusive. Alternative splicing of MEF2C exons α, β and γ provides transcript diversity with gene activation or repression functionalities. Methods Neonatal and adult rat ventricular myocytes were used to overexpress MEF2C splicing variants γ+ (repressor) or γ-, or the inactive MEF2Cγ+23/24 (K23T/R24L). Phenotypic alterations in cardiomyocytes were determined by confocal and electron microscopy, flow cytometry and DNA microarray. We used transgenic mice with cardiac-specific overexpression of MEF2Cγ+ or MEF2Cγ− to explore the impact of MEF2C variants in cardiac phenotype. Samples of non-infarcted areas of the left ventricle from patients and mouse model of myocardial infarction were used to detect the expression of MEF2Cγ+ in failing hearts. Findings We demonstrate a previously unrealized upregulation of the transrepressor MEF2Cγ+ isoform in human and mouse failing hearts. We show that adenovirus-mediated overexpression of MEF2Cγ+ downregulates multiple MEF2-target genes, and drives incomplete cell-cycle reentry, partial dedifferentiation and apoptosis in the neonatal and adult rat. None of these changes was observed in cardiomyocytes overexpressing MEF2Cγ-. Transgenic mice overexpressing MEF2Cγ+, but not the MEF2Cγ-, developed dilated cardiomyopathy, correlated to cell-cycle reentry and apoptosis of cardiomyocytes. Interpretation Our results provide a mechanistic link between MEF2Cγ+ and deleterious abnormalities in cardiomyocytes, supporting the notion that splicing dysregulation in MEF2C towards the selection of the MEF2Cγ+ variant contributes to the pathogenesis of HF by promoting cardiomyocyte dropout. Funding São Paulo Research Foundation (FAPESP); Brazilian National Research Council (CNPq).
Collapse
Affiliation(s)
- Ana Helena M Pereira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Alisson C Cardoso
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Silvio R Consonni
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Renata R Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Angela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Maria Luisa B Vaggione
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Jose R Matos-Souza
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | - Anderson Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | | | | | | | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, USA
| | - Kleber G Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil; Department of Internal Medicine, University of Campinas, Campinas, Brazil.
| |
Collapse
|
28
|
Li H, Russo A, DiAntonio A. SIK3 suppresses neuronal hyperexcitability by regulating the glial capacity to buffer K + and water. J Cell Biol 2019; 218:4017-4029. [PMID: 31645458 PMCID: PMC6891094 DOI: 10.1083/jcb.201907138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Glial regulation of extracellular potassium (K+) helps to maintain appropriate levels of neuronal excitability. While channels and transporters mediating K+ and water transport are known, little is understood about upstream regulatory mechanisms controlling the glial capacity to buffer K+ and osmotically obliged water. Here we identify salt-inducible kinase 3 (SIK3) as the central node in a signal transduction pathway controlling glial K+ and water homeostasis in Drosophila Loss of SIK3 leads to dramatic extracellular fluid accumulation in nerves, neuronal hyperexcitability, and seizures. SIK3-dependent phenotypes are exacerbated by K+ stress. SIK3 promotes the cytosolic localization of HDAC4, thereby relieving inhibition of Mef2-dependent transcription of K+ and water transport molecules. This transcriptional program controls the glial capacity to regulate K+ and water homeostasis and modulate neuronal excitability. We identify HDAC4 as a candidate therapeutic target in this pathway, whose inhibition can enhance the K+ buffering capacity of glia, which may be useful in diseases of dysregulated K+ homeostasis and hyperexcitability.
Collapse
Affiliation(s)
- Hailun Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Alexandra Russo
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Zhou J, Schor IE, Yao V, Theesfeld CL, Marco-Ferreres R, Tadych A, Furlong EEM, Troyanskaya OG. Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development. PLoS Genet 2019; 15:e1008382. [PMID: 31553718 PMCID: PMC6779412 DOI: 10.1371/journal.pgen.1008382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 10/07/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Comprehensive information on the timing and location of gene expression is fundamental to our understanding of embryonic development and tissue formation. While high-throughput in situ hybridization projects provide invaluable information about developmental gene expression patterns for model organisms like Drosophila, the output of these experiments is primarily qualitative, and a high proportion of protein coding genes and most non-coding genes lack any annotation. Accurate data-centric predictions of spatio-temporal gene expression will therefore complement current in situ hybridization efforts. Here, we applied a machine learning approach by training models on all public gene expression and chromatin data, even from whole-organism experiments, to provide genome-wide, quantitative spatio-temporal predictions for all genes. We developed structured in silico nano-dissection, a computational approach that predicts gene expression in >200 tissue-developmental stages. The algorithm integrates expression signals from a compendium of 6,378 genome-wide expression and chromatin profiling experiments in a cell lineage-aware fashion. We systematically evaluated our performance via cross-validation and experimentally confirmed 22 new predictions for four different embryonic tissues. The model also predicts complex, multi-tissue expression and developmental regulation with high accuracy. We further show the potential of applying these genome-wide predictions to extract tissue specificity signals from non-tissue-dissected experiments, and to prioritize tissues and stages for disease modeling. This resource, together with the exploratory tools are freely available at our webserver http://find.princeton.edu, which provides a valuable tool for a range of applications, from predicting spatio-temporal expression patterns to recognizing tissue signatures from differential gene expression profiles.
Collapse
Affiliation(s)
- Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey, United States of America
- Center for Computational Biology, Flatiron Institute, New York, New York, United States of America
| | - Ignacio E. Schor
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Victoria Yao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Chandra L. Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Raquel Marco-Ferreres
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail: (EEMF); (OGT)
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Center for Computational Biology, Flatiron Institute, New York, New York, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (EEMF); (OGT)
| |
Collapse
|
30
|
Thormann V, Rothkegel MC, Schöpflin R, Glaser LV, Djuric P, Li N, Chung HR, Schwahn K, Vingron M, Meijsing SH. Genomic dissection of enhancers uncovers principles of combinatorial regulation and cell type-specific wiring of enhancer-promoter contacts. Nucleic Acids Res 2019; 46:2868-2882. [PMID: 29385519 PMCID: PMC5888794 DOI: 10.1093/nar/gky051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Genomic binding of transcription factors, like the glucocorticoid receptor (GR), is linked to the regulation of genes. However, as we show here, GR binding is a poor predictor of GR-dependent gene regulation even when taking the 3D organization of the genome into account. To connect GR binding sites to the regulation of genes in the endogenous genomic context, we turned to genome editing. By deleting GR binding sites, individually or in combination, we uncovered how cooperative interactions between binding sites contribute to the regulation of genes. Specifically, for the GR target gene GILZ, we show that the simultaneous presence of a cluster of GR binding sites is required for the activity of an individual enhancer and that the GR-dependent regulation of GILZ depends on multiple GR-bound enhancers. Further, by deleting GR binding sites that are shared between different cell types, we show how cell type-specific genome organization and enhancer-blocking can result in cell type-specific wiring of promoter–enhancer contacts. This rewiring allows an individual GR binding site shared between different cell types to direct the expression of distinct transcripts and thereby contributes to the cell type-specific consequences of glucocorticoid signaling.
Collapse
Affiliation(s)
- Verena Thormann
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Maika C Rothkegel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Laura V Glaser
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Petar Djuric
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Na Li
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Ho-Ryun Chung
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Kevin Schwahn
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Sebastiaan H Meijsing
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| |
Collapse
|
31
|
Wu W, Kuo T, Kao C, Girardot C, Hung S, Liu T, Furlong EEM, Liu Y. Expanding the mesodermal transcriptional network by genome‐wide identification of Zinc finger homeodomain 1 (Zfh1) targets. FEBS Lett 2019; 593:1698-1710. [DOI: 10.1002/1873-3468.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Wei‐Hang Wu
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Tai‐Hong Kuo
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Chia‐Wei Kao
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Sheng‐Jou Hung
- Department of Biotechnology and Bioindustry Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Ya‐Hsin Liu
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| |
Collapse
|
32
|
Domsch K, Carnesecchi J, Disela V, Friedrich J, Trost N, Ermakova O, Polychronidou M, Lohmann I. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 2019; 8:42675. [PMID: 31050646 PMCID: PMC6513553 DOI: 10.7554/elife.42675] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.
Collapse
Affiliation(s)
- Katrin Domsch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Vanessa Disela
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Jana Friedrich
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Nils Trost
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
A Large Scale Systemic RNAi Screen in the Red Flour Beetle Tribolium castaneum Identifies Novel Genes Involved in Insect Muscle Development. G3-GENES GENOMES GENETICS 2019; 9:1009-1026. [PMID: 30733381 PMCID: PMC6469426 DOI: 10.1534/g3.118.200995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although muscle development has been widely studied in Drosophila melanogaster there are still many gaps in our knowledge, and it is not known to which extent this knowledge can be transferred to other insects. To help in closing these gaps we participated in a large-scale RNAi screen that used the red flour beetle, Tribolium castaneum, as a screening platform. The effects of systemic RNAi were screened upon double-stranded RNA injections into appropriate muscle-EGFP tester strains. Injections into pupae were followed by the analysis of the late embryonic/early larval muscle patterns, and injections into larvae by the analysis of the adult thoracic muscle patterns. Herein we describe the results of the first-pass screens with pupal and larval injections, which covered ∼8,500 and ∼5,000 genes, respectively, of a total of ∼16,500 genes of the Tribolium genome. Apart from many genes known from Drosophila as regulators of muscle development, a collection of genes previously unconnected to muscle development yielded phenotypes in larval body wall and leg muscles as well as in indirect flight muscles. We then present the main candidates from the pupal injection screen that remained after being processed through a series of verification and selection steps. Further, we discuss why distinct though overlapping sets of genes are revealed by the Drosophila and Tribolium screening approaches.
Collapse
|
34
|
Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 2019; 18:5. [PMID: 30621735 PMCID: PMC6325735 DOI: 10.1186/s12943-019-0938-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, Colombia.
| |
Collapse
|
35
|
Stage-specific differential DNA methylation data analysis during human erythropoiesis in chromosome 16. Genet Res (Camb) 2018; 100:e5. [PMID: 30014809 DOI: 10.1017/s0016672318000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous studies have generated controversial findings regarding the correlation between DNA methylation in the human genome and gene expression. Some reports have indicated that promoter methylation is negatively correlated with gene expression levels; however, in some cases, a poor or positive correlation was reported. Most previous findings were based on general trends observed with whole-genome data analysis. Here, we present a novel chromosome-specific statistical analysis design of empirical Bayes differential tests for five phases of erythroid development. To better understand the common methylation patterns of differentially methylated regions (DMRs) during specific stages, we defined differential phases for each CpG locus, based on a maximum log2 fold change. Analyzing hypermethylated and hypomethylated CpG loci separately showed variations in methylation patterns during erythropoiesis in the gene body, promoter and enhancer regions. Hypomethylated DMRs showed stronger associations with erythroid-specific enhancers at the differentiation start phase and with exons in the intermediate phase. To investigate the hypomethylated DMRs further, transcription factor binding site-enrichment analysis was conducted. This analysis highlighted novel transcription factors during each differentiation stage that were not detected by previous differential methylation data analysis. In contrast, hypermethylated DMRs showed a consistent methylation pattern over the different genomic regions. Thus, a closer examination of DNA methylation patterns in a single chromosome during each developmental stage can contribute to verify the association nature between gene expression and DNA methylation.
Collapse
|
36
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
37
|
Lei X, Kou Y, Fu Y, Rajashekar N, Shi H, Wu F, Xu J, Luo Y, Chen L. The Cancer Mutation D83V Induces an α-Helix to β-Strand Conformation Switch in MEF2B. J Mol Biol 2018; 430:1157-1172. [PMID: 29477338 DOI: 10.1016/j.jmb.2018.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/29/2022]
Abstract
MEF2B is a major target of somatic mutations in non-Hodgkin lymphoma. Most of these mutations are non-synonymous substitutions of surface residues in the MADS-box/MEF2 domain. Among them, D83V is the most frequent mutation found in tumor cells. The link between this hotspot mutation and cancer is not well understood. Here we show that the D83V mutation induces a dramatic α-helix to β-strand switch in the MEF2 domain. Located in an α-helix region rich in β-branched residues, the D83V mutation not only removes the extensive helix stabilization interactions but also introduces an additional β-branched residue that further shifts the conformation equilibrium from α-helix to β-strand. Cross-database analyses of cancer mutations and chameleon sequences revealed a number of well-known cancer targets harboring β-strand favoring mutations in chameleon α-helices, suggesting a commonality of such conformational switch in certain cancers and a new factor to consider when stratifying the rapidly expanding cancer mutation data.
Collapse
Affiliation(s)
- Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yi Kou
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Fu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Niroop Rajashekar
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Haoran Shi
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fang Wu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA
| | - Jiang Xu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yibing Luo
- Department of Statistics, University of California, Davis, CA 95616, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
38
|
Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. Oncotarget 2017; 8:112152-112165. [PMID: 29340119 PMCID: PMC5762387 DOI: 10.18632/oncotarget.22899] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously believed to function in the development of heart and muscle. Recent reports indicate that they are also closely associated with development and progression of many human diseases. Although their role in cancer biology is well established, the molecular mechanisms underlying their action is yet largely unknown. MEF2 family is closely associated with various signaling pathways, including Ca2+ signaling, MAP kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute to regulate the activities of MEF2. In this review, we summarize the known molecular mechanism by which MEF2 family contribute to human diseases.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Gao
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
39
|
Taylor MV, Hughes SM. Mef2 and the skeletal muscle differentiation program. Semin Cell Dev Biol 2017; 72:33-44. [PMID: 29154822 DOI: 10.1016/j.semcdb.2017.11.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023]
Abstract
Mef2 is a conserved and significant transcription factor in the control of muscle gene expression. In cell culture Mef2 synergises with MyoD-family members in the activation of gene expression and in the conversion of fibroblasts into myoblasts. Amongst its in vivo roles, Mef2 is required for both Drosophila muscle development and mammalian muscle regeneration. Mef2 has functions in other cell-types too, but this review focuses on skeletal muscle and surveys key findings on Mef2 from its discovery, shortly after that of MyoD, up to the present day. In particular, in vivo functions, underpinning mechanisms and areas of uncertainty are highlighted. We describe how Mef2 sits at a nexus in the gene expression network that controls the muscle differentiation program, and how Mef2 activity must be regulated in time and space to orchestrate specific outputs within the different aspects of muscle development. A theme that emerges is that there is much to be learnt about the different Mef2 proteins (from different paralogous genes, spliced transcripts and species) and how the activity of these proteins is controlled.
Collapse
Affiliation(s)
- Michael V Taylor
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL UK
| |
Collapse
|
40
|
Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel. Genetics 2017; 207:1181-1193. [PMID: 28935691 PMCID: PMC5676240 DOI: 10.1534/genetics.117.300310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023] Open
Abstract
Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection.
Collapse
|
41
|
Abstract
Macrophages play essential roles in the response to injury and infection and contribute to the development and/or homeostasis of the various tissues they reside in. Conversely, macrophages also influence the pathogenesis of metabolic, neurodegenerative, and neoplastic diseases. Mechanisms that contribute to the phenotypic diversity of macrophages in health and disease remain poorly understood. Here we review the recent application of genome-wide approaches to characterize the transcriptomes and epigenetic landscapes of tissue-resident macrophages. These studies are beginning to provide insights into how distinct tissue environments are interpreted by transcriptional regulatory elements to drive specialized programs of gene expression.
Collapse
|
42
|
Khoueiry P, Girardot C, Ciglar L, Peng PC, Gustafson EH, Sinha S, Furlong EE. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity. eLife 2017; 6. [PMID: 28792889 PMCID: PMC5550276 DOI: 10.7554/elife.28440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Sequence variation within enhancers plays a major role in both evolution and disease, yet its functional impact on transcription factor (TF) occupancy and enhancer activity remains poorly understood. Here, we assayed the binding of five essential TFs over multiple stages of embryogenesis in two distant Drosophila species (with 1.4 substitutions per neutral site), identifying thousands of orthologous enhancers with conserved or diverged combinatorial occupancy. We used these binding signatures to dissect two properties of developmental enhancers: (1) potential TF cooperativity, using signatures of co-associations and co-divergence in TF occupancy. This revealed conserved combinatorial binding despite sequence divergence, suggesting protein-protein interactions sustain conserved collective occupancy. (2) Enhancer in-vivo activity, revealing orthologous enhancers with conserved activity despite divergence in TF occupancy. Taken together, we identify enhancers with diverged motifs yet conserved occupancy and others with diverged occupancy yet conserved activity, emphasising the need to functionally measure the effect of divergence on enhancer activity.
Collapse
Affiliation(s)
- Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Pei-Chen Peng
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - E Hilary Gustafson
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - Eileen Em Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
43
|
Baskin KK, Makarewich CA, DeLeon SM, Ye W, Chen B, Beetz N, Schrewe H, Bassel-Duby R, Olson EN. MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2017; 2:91920. [PMID: 28724790 DOI: 10.1172/jci.insight.91920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes and that MED12 and MEF2 co-occupy promoters of calcium-handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and that overexpression of both increases expression of calcium-handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium-handling genes, consequently mediating contractility in the mammalian heart.
Collapse
Affiliation(s)
| | | | | | | | - Beibei Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and.,Hamon Center for Regenerative Science and Medicine and.,Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N Olson
- Department of Molecular Biology and.,Hamon Center for Regenerative Science and Medicine and.,Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
44
|
Reverse engineering highlights potential principles of large gene regulatory network design and learning. NPJ Syst Biol Appl 2017. [PMID: 28649444 PMCID: PMC5481436 DOI: 10.1038/s41540-017-0019-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 104 genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data (Escherichia coli K14 network reconstruction using network and transcriptomic data), we show that the formalism used to build FRANK can to some extent be a reasonable model for gene regulatory networks in real cells. This work by Carré et al addresses central questions in biology, which are: how very large gene regulatory networks (GRNs) are organized, generate stable gene expression, and can be learnt using machine learning algorithms? In this work authors developed an algorithm able to simulate large GRNs. From these networks they simulate stable or oscillating gene expression and highlights some mathematical rules controlling such a collective (several thousands of genes) behavior. They discuss consequent hypothesis concerning the organization of GRNs in real cells. Using this simulation tool, authors also demonstrate that it’s likely possible to computationally learn GRNs from transcriptomic data and prior knowledge on the network (actual known connections issued from Yeast One Hybrid or ChIP Seq for instance). They particularly highlight the crucial importance of the prior knowledge structure in their capacity to learn large GRNs.
Collapse
|
45
|
Arredondo JJ, Vivar J, Laine-Menéndez S, Martínez-Morentin L, Cervera M. CF2 transcription factor is involved in the regulation of Mef2 RNA levels, nuclei number and muscle fiber size. PLoS One 2017; 12:e0179194. [PMID: 28617826 PMCID: PMC5472297 DOI: 10.1371/journal.pone.0179194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/25/2017] [Indexed: 11/26/2022] Open
Abstract
CF2 and Mef2 influence a variety of developmental muscle processes at distinct stages of development. Nevertheless, the exact nature of the CF2-Mef2 relationship and its effects on muscle building remain yet to be resolved. Here, we explored the regulatory role of CF2 in the Drosophila embryo muscle formation. To address this question and not having proper null CF2 mutants we exploited loss or gain of function strategies to study the contribution of CF2 to Mef2 transcription regulation and to muscle formation. Our data point to CF2 as a factor involved in the regulation of muscle final size and/or the number of nuclei present in each muscle. This function is independent of its role as a Mef2 collaborative factor in the transcriptional regulation of muscle-structural genes. Although Mef2 expression patterns do not change, reductions or increases in parallel in CF2 and Mef2 transcript abundance were observed in interfered and overexpressed CF2 embryos. Since CF2 expression variations yield altered Mef2 expression levels but with correct spatio-temporal Mef2 expression patterns, it can be concluded that only the mechanism controlling expression levels is de-regulated. Here, it is proposed that CF2 regulates Mef2 expression through a Feedforward Loop circuit.
Collapse
Affiliation(s)
- Juan J. Arredondo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo 4, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (JJA); (MC)
| | - Jorge Vivar
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo 4, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Laine-Menéndez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo 4, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Leticia Martínez-Morentin
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo 4, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita Cervera
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo 4, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (JJA); (MC)
| |
Collapse
|
46
|
Casas-Vila N, Bluhm A, Sayols S, Dinges N, Dejung M, Altenhein T, Kappei D, Altenhein B, Roignant JY, Butter F. The developmental proteome of Drosophila melanogaster. Genome Res 2017; 27:1273-1285. [PMID: 28381612 PMCID: PMC5495078 DOI: 10.1101/gr.213694.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023]
Abstract
Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface.
Collapse
Affiliation(s)
- Nuria Casas-Vila
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Alina Bluhm
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sergi Sayols
- Bioinformatics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Nadja Dinges
- RNA Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Tina Altenhein
- Institute of Genetics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Benjamin Altenhein
- Institute of Genetics, Johannes Gutenberg University, 55128 Mainz, Germany.,Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
47
|
Reiter F, Wienerroither S, Stark A. Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev 2017; 43:73-81. [PMID: 28110180 DOI: 10.1016/j.gde.2016.12.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Differential gene expression gives rise to the many cell types of complex organisms. Enhancers regulate transcription by binding transcription factors (TFs), which in turn recruit cofactors to activate RNA Polymerase II at core promoters. Transcriptional regulation is typically mediated by distinct combinations of TFs, enabling a relatively small number of TFs to generate a large diversity of cell types. However, how TFs achieve combinatorial enhancer control and how enhancers, enhancer-bound TFs, and the cofactors they recruit regulate RNA Polymerase II activity is not entirely clear. Here, we review how TF synergy is mediated at the level of DNA binding and after binding, the role of cofactors and the post-translational modifications they catalyze, and discuss different models of enhancer-core-promoter communication.
Collapse
Affiliation(s)
- Franziska Reiter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Sebastian Wienerroither
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
48
|
Shlyueva D, Meireles-Filho ACA, Pagani M, Stark A. Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation. PLoS One 2016; 11:e0161997. [PMID: 27575958 PMCID: PMC5004984 DOI: 10.1371/journal.pone.0161997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
Hox homeodomain transcription factors are key regulators of animal development. They specify the identity of segments along the anterior-posterior body axis in metazoans by controlling the expression of diverse downstream targets, including transcription factors and signaling pathway components. The Drosophila melanogaster Hox factor Ultrabithorax (Ubx) directs the development of thoracic and abdominal segments and appendages, and loss of Ubx function can lead for example to the transformation of third thoracic segment appendages (e.g. halters) into second thoracic segment appendages (e.g. wings), resulting in a characteristic four-wing phenotype. Here we present a Drosophila melanogaster strain with a V5-epitope tagged Ubx allele, which we employed to obtain a high quality genome-wide map of Ubx binding sites using ChIP-seq. We confirm the sensitivity of the V5 ChIP-seq by recovering 7/8 of well-studied Ubx-dependent cis-regulatory regions. Moreover, we show that Ubx binding is predictive of enhancer activity as suggested by comparison with a genome-scale resource of in vivo tested enhancer candidates. We observed densely clustered Ubx binding sites at 12 extended genomic loci that included ANTP-C, BX-C, Polycomb complex genes, and other regulators and the clustered binding sites were frequently active enhancers. Furthermore, Ubx binding was detected at known Polycomb response elements (PREs) and was associated with significant enrichments of Pc and Pho ChIP signals in contrast to binding sites of other developmental TFs. Together, our results show that Ubx targets developmental regulators via strongly clustered binding sites and allow us to hypothesize that regulation by Ubx might involve Polycomb group proteins to maintain specific regulatory states in cooperative or mutually exclusive fashion, an attractive model that combines two groups of proteins with prominent gene regulatory roles during animal development.
Collapse
Affiliation(s)
- Daria Shlyueva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | | | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Swift J, Coruzzi GM. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:75-83. [PMID: 27546191 DOI: 10.1016/j.bbagrm.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Dynamic reprogramming of transcriptional networks enables cells to adapt to a changing environment. Thus, it is crucial not only to understand what gene targets are regulated by a transcription factor (TF) but also when. This review explores the way TFs function with respect to time, paying particular attention to discoveries made in plants - where coordinated, genome-wide responses to environmental change is crucial to the survival of these sessile organisms. We investigate the molecular mechanisms that mediate transient TF-DNA binding, and assess how these rapid and dynamic interactions translate to long-term temporal regulation of genomes. We also discuss how current molecular techniques can catch, and sometimes miss, transient TF-target interactions that underlie dynamic cellular responses. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Joseph Swift
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
50
|
Desjardins CA, Naya FJ. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming. J Cardiovasc Dev Dis 2016; 3. [PMID: 27630998 PMCID: PMC5019174 DOI: 10.3390/jcdd3030026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.
Collapse
|