1
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025:d4na00393d. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
2
|
Xiao B, Zhang S, Ainiwaer M, Liu H, Ning L, Hong Y, Sun Y, Ji Y. Deep learning-based assessment of missense variants in the COG4 gene presented with bilateral congenital cataract. BMJ Open Ophthalmol 2025; 10:e001906. [PMID: 39809522 PMCID: PMC11751923 DOI: 10.1136/bmjophth-2024-001906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE We compared the protein structure and pathogenicity of clinically relevant variants of the COG4 gene with AlphaFold2 (AF2), Alpha Missense (AM), and ThermoMPNN for the first time. METHODS AND ANALYSIS The sequences of clinically relevant Cog4 missense variants (one novel identified p.Y714F and three pre-existing p.G512R, p.R729W and p.L769R from Uniprot Q9H9E3) were imported into AF2 for protein structural prediction, and the pathogenicity was estimated using AM and ThermoMPNN. Different pathogenicity metrics were aggregated with principal component analysis (PCA) and further analysed at three levels (amino acid position, substitution and post-translation) based on all possible Cog4 missense variants (n=14 915). RESULTS Localised protein structural impact including change of conformation and amino acid polarity, breakage of hydrogen bond and salt-bridge, and formation of alpha-helix were identified among clinically relevant Cog4 variants. The global structural comparison with multidimensional scaling demonstrated variants with similar protein structures (AF2) tended to exhibit similar clinical and biological phenotypes. The Cog4 p.Y714F variant exhibited greater protein structural similarity to mutated Cog4 found in Saul‒Wilson syndrome (p.G512R) and shared similar clinical phenotype (congenital cataract and psychomotor retardation). PCA of included pathogenic metrics demonstrated p.Y714F occurred at a critical position in Cog4 amino acid sequence with disrupted post-translational phosphorylation. CONCLUSION Deep learning algorithms, including AF2, AM and ThermoMPNN, can be useful for evaluating variant of uncertain significance (VUS) by structural and pathogenicity prediction. Despite classified as VUS (American College of Medical Genetics and Genomics criteria: PM1, PP4), the pathogenicity in this Cog4 variant cannot be ruled out and warrants further investigation.
Collapse
Affiliation(s)
- Binghe Xiao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Maierdanjiang Ainiwaer
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Houyi Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Ning
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
3
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Liu H, Ouyang Z, Li S. Advances of M1 macrophages-derived extracellular vesicles in tumor therapy. Biomed Pharmacother 2024; 181:117735. [PMID: 39644871 DOI: 10.1016/j.biopha.2024.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles derived from classically activated M1 macrophages (M1 EVs) have shown great potential in both tumor treatment and drug delivery. M1 EVs inherit specific biological messengers from their parent cells and possess the capability to activate immune cells residing in close or distant tumor tissues for antitumor therapy. Moreover, M1 EVs are commonly used as an attractive drug delivery system due to their tumor-targeting ability, biocompatibility, and non-toxic. They can effectively encapsulate various therapeutic cargoes through specific methods such as electroporation, co-incubation, sonication, extrusion, transfection, or click chemistry reaction. In this review, we provide a comprehensive summary of the advancements in M1 EVs for tumor therapy, discussing their application prospects and existing problems.
Collapse
Affiliation(s)
- Houli Liu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| | - Zhaorong Ouyang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Siyu Li
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| |
Collapse
|
5
|
Sumya FT, Aragon-Ramirez WS, Lupashin VV. Comprehensive Proteomic Characterization of the Intra-Golgi Trafficking Intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620336. [PMID: 39484492 PMCID: PMC11527126 DOI: 10.1101/2024.10.25.620336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular trafficking relies on small vesicular intermediates, though their specific role in Golgi function is still debated. To clarify this, we induced acute dysfunction of the Conserved Oligomeric Golgi (COG) complex and analyzed vesicles from cis, medial, and trans-Golgi compartments. Proteomic analysis of Golgi-derived vesicles from wild-type cells revealed distinct molecular profiles, indicating a robust recycling system for Golgi proteins. Notably, these vesicles retained various vesicular coats, while COG depletion accelerated uncoating. The increased overlap in molecular profiles with COG depletion suggests that persistent defects in vesicle tethering disrupt intra-Golgi sorting. Our findings reveal that the entire Golgi glycosylation machinery recycles within vesicles in a COG-dependent manner, whereas secretory and ER-Golgi trafficking proteins were not enriched. These results support a model in which the COG complex orchestrates multi-step recycling of glycosylation machinery, coordinated by specific Golgi coats, tethers, Rabs, and SNAREs.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Walter S. Aragon-Ramirez
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
6
|
Sagia GM, Georgiou X, Chamilos G, Diallinas G, Dimou S. Distinct trafficking routes of polarized and non-polarized membrane cargoes in Aspergillus nidulans. eLife 2024; 13:e103355. [PMID: 39431919 DOI: 10.7554/elife.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.
Collapse
Affiliation(s)
- Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| |
Collapse
|
7
|
Yadav D, Hacisuleyman A, Dergai M, Khalifeh D, Abriata LA, Peraro MD, Fasshauer D. A look beyond the QR code of SNARE proteins. Protein Sci 2024; 33:e5158. [PMID: 39180485 PMCID: PMC11344281 DOI: 10.1002/pro.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor (SNARE) proteins catalyze the fusion process of vesicles with target membranes in eukaryotic cells. To do this, they assemble in a zipper-like fashion into stable complexes between the membranes. Structural studies have shown that the complexes consist of four different helices, which we subdivide into Qa-, Qb-, Qc-, and R-helix on the basis of their sequence signatures. Using a combination of biochemistry, modeling and molecular dynamics, we investigated how the four different types are arranged in a complex. We found that there is a matching pattern in the core of the complex that dictates the position of the four fundamental SNARE types in the bundle, resulting in a QabcR complex. In the cell, several different cognate QabcR-SNARE complexes catalyze the different transport steps between the compartments of the endomembrane system. Each of these cognate QabcR complexes is compiled from a repertoire of about 20 SNARE subtypes. Our studies show that exchange within the four types is largely tolerated structurally, although some non-cognate exchanges lead to structural imbalances. This suggests that SNARE complexes have evolved for a catalytic mechanism, a mechanism that leaves little scope for selectivity beyond the QabcR rule.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Aysima Hacisuleyman
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Mykola Dergai
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Dany Khalifeh
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Luciano A. Abriata
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Zuriegat Q, Abubakar YS, Wang Z, Chen M, Zhang J. Emerging Roles of Exocyst Complex in Fungi: A Review. J Fungi (Basel) 2024; 10:614. [PMID: 39330374 PMCID: PMC11433146 DOI: 10.3390/jof10090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The exocyst complex, an evolutionarily conserved octameric protein assembly, plays a central role in the targeted binding and fusion of vesicles at the plasma membrane. In fungal cells, this transport system is essential for polarized growth, morphogenesis, cell wall maintenance and virulence. Recent advances have greatly improved our understanding of the role and regulation of the exocyst complex in fungi. This review synthesizes these developments and focuses on the intricate interplay between the exocyst complex, specific fungal cargos and regulatory proteins. Insights into thestructure of the exocyst and its functional dynamics have revealed new dimensions of its architecture and its interactions with the cellular environment. Furthermore, the regulation of exocyst activity involves complex signaling pathways and interactions with cytoskeletal elements that are crucial for its role in vesicle trafficking. By exploring these emerging themes, this review provides a comprehensive overview of the multifaceted functions of the exocyst complex in fungal biology. Understanding these mechanisms offers potential avenues for novel therapeutic strategies against fungal pathogens and insights into the general principles of vesicle trafficking in eukaryotic cells. The review therefore highlights the importance of the exocyst complex in maintaining cellular functions and its broader implications in fungal pathogenicity and cell biology.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| |
Collapse
|
9
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
10
|
Xu H, Wang S, Wang X, Zhang P, Zheng Q, Qi C, Liu X, Li M, Liu Y, Liu J. Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells. J Microbiol 2024; 62:581-590. [PMID: 39212865 DOI: 10.1007/s12275-024-00162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Shengnan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
- The ShangHai Hanvet Bio-Pharm Co. Ltd., Shanghai, 200135, People's Republic of China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Pu Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Tai`an, 271000, Shandong, People's Republic of China
| | - Qi Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - ChangXi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaoting Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Muzi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596058. [PMID: 38853868 PMCID: PMC11160616 DOI: 10.1101/2024.05.27.596058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role advancing a new understanding of how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact, and contributing to a basic understanding of how transport carriers in a model intracellular pathway are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
12
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00969-z. [PMID: 39023664 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
13
|
Licari E, Cricrì G, Mauri M, Raimondo F, Dioni L, Favero C, Giussani A, Starace R, Nucera S, Biondi A, Piazza R, Bollati V, Dander E, D'Amico G. ActivinA modulates B-acute lymphoblastic leukaemia cell communication and survival by inducing extracellular vesicles production. Sci Rep 2024; 14:16083. [PMID: 38992199 PMCID: PMC11239915 DOI: 10.1038/s41598-024-66779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) are a new mechanism of cellular communication, by delivering their cargo into target cells to modulate molecular pathways. EV-mediated crosstalk contributes to tumor survival and resistance to cellular stress. However, the role of EVs in B-cell Acute Lymphoblastic Leukaemia (B-ALL) awaits to be thoroughly investigated. We recently published that ActivinA increases intracellular calcium levels and promotes actin polymerization in B-ALL cells. These biological processes guide cytoskeleton reorganization, which is a crucial event for EV secretion and internalization. Hence, we investigated the role of EVs in the context of B-ALL and the impact of ActivinA on this phenomenon. We demonstrated that leukemic cells release a higher number of EVs in response to ActivinA treatment, and they can actively uptake EVs released by other B-ALL cells. Under culture-induced stress conditions, EVs coculture promoted cell survival in B-ALL cells in a dose-dependent manner. Direct stimulation of B-ALL cells with ActivinA or with EVs isolated from ActivinA-stimulated cells was even more effective in preventing cell death. This effect can be possibly ascribed to the increase of vesiculation and modifications of EV-associated microRNAs induced by ActivinA. These data demonstrate that ActivinA boosts EV-mediated B-ALL crosstalk, improving leukemia survival in stress conditions.
Collapse
Affiliation(s)
- Eugenia Licari
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Giulia Cricrì
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomic Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alice Giussani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Rita Starace
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Silvia Nucera
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- CRC, Center for Environmental Health, University of Milan, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy.
| |
Collapse
|
14
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
15
|
Hodeify R, Kreydiyyeh S, Zaid LMJ. Identified and potential internalization signals involved in trafficking and regulation of Na +/K + ATPase activity. Mol Cell Biochem 2024; 479:1583-1598. [PMID: 37634170 PMCID: PMC11254989 DOI: 10.1007/s11010-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The sodium-potassium pump (NKA) or Na+/K+ ATPase consumes around 30-40% of the total energy expenditure of the animal cell on the generation of the sodium and potassium electrochemical gradients that regulate various electrolyte and nutrient transport processes. The vital role of this protein entails proper spatial and temporal regulation of its activity through modulatory mechanisms involving its expression, localization, enzymatic activity, and protein-protein interactions. The residence of the NKA at the plasma membrane is compulsory for its action as an antiporter. Despite the huge body of literature reporting on its trafficking between the cell membrane and intracellular compartments, the mechanisms controlling the trafficking process are by far the least understood. Among the molecular determinants of the plasma membrane proteins trafficking are intrinsic sequence-based endocytic motifs. In this review, we (i) summarize previous reports linking the regulation of Na+/K+ ATPase trafficking and/or plasma membrane residence to its activity, with particular emphasis on the endocytic signals in the Na+/K+ ATPase alpha-subunit, (ii) map additional potential internalization signals within Na+/K+ ATPase catalytic alpha-subunit, based on canonical and noncanonical endocytic motifs reported in the literature, (iii) pinpoint known and potential phosphorylation sites associated with NKA trafficking, (iv) highlight our recent studies on Na+/K+ ATPase trafficking and PGE2-mediated Na+/K+ ATPase modulation in intestine, liver, and kidney cells.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Leen Mohammad Jamal Zaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
16
|
Biran A, Dingjan T, Futerman AH. How has the evolution of our understanding of the compartmentalization of sphingolipid biosynthesis over the past 30 years altered our view of the evolution of the pathway? CURRENT TOPICS IN MEMBRANES 2024:S1063-5823(24)00009-7. [PMID: 39078394 DOI: 10.1016/bs.ctm.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Sphingolipids are unique among cellular lipids inasmuch as their biosynthesis is compartmentalized between the endoplasmic reticulum (ER) and the Golgi apparatus. This compartmentalization was first recognized about thirty years ago, and the current review not only updates studies on the compartmentalization of sphingolipid biosynthesis, but also discusses the ramifications of this feature for our understanding of how the pathway could have evolved. Thus, we augment some of our recent studies by inclusion of two further molecular pathways that need to be considered when analyzing the evolutionary requirements for generation of sphingolipids, namely contact sites between the ER and the Golgi apparatus, and the mechanism(s) of vesicular transport between these two organelles. Along with evolution of the individual enzymes of the pathway, their subcellular localization, and the supply of essential metabolites via the anteome, it becomes apparent that current models to describe evolution of the sphingolipid biosynthetic pathway may need substantial refinement.
Collapse
Affiliation(s)
- Assaf Biran
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Chatterjee R, Setty SRG, Chakravortty D. SNAREs: a double-edged sword for intravacuolar bacterial pathogens within host cells. Trends Microbiol 2024; 32:477-493. [PMID: 38040624 DOI: 10.1016/j.tim.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
In the tug-of-war between host and pathogen, both evolve to combat each other's defence arsenals. Intracellular phagosomal bacteria have developed strategies to modify the vacuolar niche to suit their requirements best. Conversely, the host tries to target the pathogen-containing vacuoles towards the degradative pathways. The host cells use a robust system through intracellular trafficking to maintain homeostasis inside the cellular milieu. In parallel, intracellular bacterial pathogens have coevolved with the host to harbour strategies to manipulate cellular pathways, organelles, and cargoes, facilitating the conversion of the phagosome into a modified pathogen-containing vacuole (PCV). Key molecular regulators of intracellular traffic, such as changes in the organelle (phospholipid) composition, recruitment of small GTPases and associated effectors, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs), etc., are hijacked to evade lysosomal degradation. Legionella, Salmonella, Coxiella, Chlamydia, Mycobacterium, and Brucella are examples of pathogens which diverge from the endocytic pathway by using effector-mediated mechanisms to overcome the challenges and establish their intracellular niches. These pathogens extensively utilise and modulate the end processes of secretory pathways, particularly SNAREs, in repurposing the PCV into specialised compartments resembling the host organelles within the secretory network; at the same time, they avoid being degraded by the host's cellular mechanisms. Here, we discuss the recent research advances on the host-pathogen interaction/crosstalk that involves host SNAREs, conserved cellular processes, and the ongoing host-pathogen defence mechanisms in the molecular arms race against each other. The current knowledge of SNAREs, and intravacuolar bacterial pathogen interactions, enables us to understand host cellular innate immune pathways, maintenance of homeostasis, and potential therapeutic strategies to combat ever-growing antimicrobial resistance.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
18
|
Zhu X, Wang F, Wang M, Lv L, Fang L, Song J, Wang X, Ding F. Development of a breast cancer prognostic model based on vesicle-mediated transport-related genes to predict immune landscape and clinical drug therapy. Hum Mol Genet 2024; 33:553-562. [PMID: 38129105 DOI: 10.1093/hmg/ddad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Vesicle-mediated transport, vital for substance exchange and intercellular communication, is linked to tumor initiation and progression. This work was designed to study the role of vesicle-mediated transport-related genes (VMTRGs) in breast cancer (BC)prognosis. METHODS Univariate Cox analysis was utilized to screen prognosis-related VMTRGs. BC samples underwent unsupervised clustering based on VMTRGs to analyze survival, clinical factors, and immune cell abundance across different subtypes. We constructed a risk model using univariate Cox and LASSO regression analysis, with validation conducted using GEO datasets. Subsequently, we performed tumor mutational burden analysis, and immune landscape analysis on both groups. Ultimately, we conducted immunophenoscore (IPS) scoring to forecast immunotherapy and performed drug sensitivity analysis. RESULTS We identified 102 VMTRGs associated with BC prognosis. Using these 102 VMTRGs, BC patients were classified into 3 subtypes, with Cluster3 patients showing significantly better survival rates. We constructed a prognostic model for BC based on 12 VMTRGs that effectively predicted patient survival. Riskscore was an independent prognostic factor for BC patients. According to median risk score, high-risk group (HRG) had higher TMB values. The immune landscape of the HRG exhibited characteristics of cold tumor, with higher immune checkpoint expression levels and lower IPS scores, whereas Gemcitabine, Nilotinib, and Oxaliplatin were more suitable for treating low-risk group. CONCLUSION We classified BC subtypes and built a prognostic model based on VMTRGs. The genes in the prognostic model may serve as potential targets for BC therapy.
Collapse
Affiliation(s)
- Xiaotao Zhu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Fan Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Mingzhen Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Lin Lv
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Linghui Fang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Jialu Song
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Xiaohui Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Fengsheng Ding
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| |
Collapse
|
19
|
Kang CJ, Guzmán-Clavel LE, Lei K, Koo M, To S, Roche JP. The exocyst subunit Sec15 is critical for proper synaptic development and function at the Drosophila NMJ. Mol Cell Neurosci 2024; 128:103914. [PMID: 38086519 DOI: 10.1016/j.mcn.2023.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The exocyst protein complex is important for targeted vesicle fusion in a variety of cell types, however, its function in neurons is still not entirely known. We found that presynaptic knockdown (KD) of the exocyst component sec15 by transgenic RNAi expression caused a number of unexpected morphological and physiological defects in the synapse. These include the development of active zones (AZ) devoid of essential presynaptic proteins, an increase in the branching of the presynaptic arbor, the appearance of satellite boutons, and a decrease in the amplitude of stimulated postsynaptic currents as well as a decrease in the frequency of spontaneous synaptic vesicle release. We also found the release of extracellular vesicles from the presynaptic neuron was greatly diminished in the Sec15 KDs. These effects were mimicked by presynaptic knockdown of Rab11, a protein known to interact with the exocyst. sec15 RNAi expression caused an increase in phosphorylated Mothers against decapentaplegic (pMad) in the presynaptic terminal, an indication of enhanced bone morphogenic protein (BMP) signaling. Some morphological phenotypes caused by Sec15 knockdown were reduced by attenuation of BMP signaling through knockdown of wishful thinking (Wit), while other phenotypes were unaffected. Individual knockdown of multiple proteins of the exocyst complex also displayed a morphological phenotype similar to Sec15 KD. We conclude that Sec15, functioning as part of the exocyst complex, is critically important for proper formation and function of neuronal synapses. We propose a model in which Sec15 is involved in the trafficking of vesicles from the recycling endosome to the cell membrane as well as possibly trafficking extracellular vesicles for presynaptic release and these processes are necessary for the correct structure and function of the synapse.
Collapse
Affiliation(s)
- Chris J Kang
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Luis E Guzmán-Clavel
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Katherine Lei
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Martin Koo
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Steven To
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - John P Roche
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America; Department of Biology, Amherst College, Amherst, MA 01002, United States of America.
| |
Collapse
|
20
|
Yang S, Song L, Wang J, Zhao J, Tang H, Bao X. Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins. ENGINEERING MICROBIOLOGY 2024; 4:100122. [PMID: 39628786 PMCID: PMC11611019 DOI: 10.1016/j.engmic.2023.100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2024]
Abstract
Saccharomyces cerevisiae is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in S. cerevisiae engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in S. cerevisiae.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyun Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Wang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongting Tang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
21
|
Wu W, Huang T, Li S, Gong G, Zhao D, Qiu Y. Subtyping and prognostic model construction based on vesicle-mediated transport-related genes in colorectal cancer. Hum Mol Genet 2024; 33:478-490. [PMID: 37971354 DOI: 10.1093/hmg/ddad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is impacted by various environmental and genetic variables. Dysregulation of vesicle-mediated transport-related genes (VMTRGs) has been observed in many malignancies, but their effect on prognosis in CRC remains unclear. METHODS CRC samples were clustered into varying subtypes per differential expression of VMTRGs. R package was utilized to explore differences in survival, immune, and drug sensitivity among different disease subtypes. According to differentially expressed genes (DEGs) between subtypes, regression analysis was employed to build a riskscore model and identify independent prognostic factors. The model was validated through a Gene Expression Omnibus (GEO) dataset. Immune landscape, immunophenoscore (IPS), and Tumor Immune Dysfunction and Exclusion (TIDE) scores for different risk groups were calculated. RESULTS Two subtypes of CRC were identified based on VMTRGs, which showed significant differences in survival rates, immune cell infiltration abundance, immune functional activation levels, and immune checkpoint expression levels. Cluster2 exhibited higher sensitivity to anti-tumor drugs such as Nilotinib, Cisplatin, and Oxaliplatin compared to Cluster1. DEGs were mainly enriched in biological processes such as epidermis development, epidermal cell differentiation, and receptor-ligand activity, and signaling pathways like pancreatic secretion. The constructed 13-gene riskscore model demonstrated good predictive ability for CRC patients' prognosis. Furthermore, differences in immune landscape, IPS, and TIDE scores were observed among different risk groups. CONCLUSION This study successfully obtained two CRC subtypes with distinct survival statuses and immune levels based on differential expression of VMTRGs. A 13-gene risk model was constructed. The findings had important implications for prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Wei Wu
- Department of General Surgery, The Central Hospital of Xiaogan, 6 Guangchang Road, Xiaogan City, Hubei Province 432000, China
| | - Tong Huang
- Department of General Surgery, The Central Hospital of Xiaogan, 6 Guangchang Road, Xiaogan City, Hubei Province 432000, China
| | - Shengwen Li
- Department of General Surgery, The Central Hospital of Xiaogan, 6 Guangchang Road, Xiaogan City, Hubei Province 432000, China
| | - Guangwei Gong
- Department of General Surgery, The Central Hospital of Xiaogan, 6 Guangchang Road, Xiaogan City, Hubei Province 432000, China
| | - Dan Zhao
- Department of General Surgery, The Central Hospital of Xiaogan, 6 Guangchang Road, Xiaogan City, Hubei Province 432000, China
| | - Yue Qiu
- Department of General Surgery, The Central Hospital of Xiaogan, 6 Guangchang Road, Xiaogan City, Hubei Province 432000, China
| |
Collapse
|
22
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, Singh S, Gore MT, le Noble F, Gabhann FM, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. Angiogenesis 2024; 27:67-89. [PMID: 37695358 PMCID: PMC10881643 DOI: 10.1007/s10456-023-09893-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Amy Gill
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Renee Li
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Simcha Singh
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Zhou H, Zhang W, Qian J. Hypersecretory production of glucose oxidase in Pichia pastoris through combinatorial engineering of protein properties, synthesis, and secretion. Biotechnol Bioeng 2024; 121:735-748. [PMID: 38037762 DOI: 10.1002/bit.28600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Glucose oxidase (EC 1.1.3.4, GOD) is a widely used industrial enzyme. To construct a GOD-hyperproducing Pichia pastoris strain, combinatorial strategies have been applied to improve GOD activity, synthesis, and secretion. First, wild-type GOD was subjected to saturation mutagenesis to obtain an improved variant, MGOD1 (V20W/T30S), with 1.7-fold higher kcat /KM . Subsequently, efficient signal peptides were screened, and the copy number of MGOD1 was optimized to generate a high-producing strain, 8GM1, containing eight copies of AOX1 promoter-GAS1 signal peptide-MGOD1 expression cassette. Finally, the vesicle trafficking of 8GM1 was engineered to obtain the hyperproducing strain G1EeSe co-expressing the trafficking components EES and SEC. 22, and the EES gene (PAS_chr3_0685) was found to facilitate both protein secretion and production for the first time. Using these strategies, GOD secretion was enhanced 65.2-fold. In the 5-L bioreactor, conventional fed-batch fermentation without any process optimization resulted in up to 7223.0 U/mL extracellular GOD activity (3.3-fold higher than the highest level reported to date), with almost only GOD in the fermentation supernatant at a protein concentration of 30.7 g/L. Therefore, a GOD hyperproducing strain for industrial applications was developed, and this successful case can provide a valuable reference for the construction of high-producing strains for other industrial enzymes.
Collapse
Affiliation(s)
- Huzhi Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyu Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiangchao Qian
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Zhang H, Rui M, Ma Z, Gong S, Zhang S, Zhou Q, Gan C, Gong W, Wang S. Golgi-to-ER retrograde transport prevents premature differentiation of Drosophila type II neuroblasts via Notch-signal-sending daughter cells. iScience 2024; 27:108545. [PMID: 38213621 PMCID: PMC10783626 DOI: 10.1016/j.isci.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.
Collapse
Affiliation(s)
- Huanhuan Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhixin Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Sifan Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shuliu Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qingxia Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Congfeng Gan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wenting Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
25
|
Abdul-Rahman T, Ghosh S, Kalmanovich JB, Awuah AW, Zivcevska M, Khalifa S, Bassey EE, Ali NA, Ferreira MMDS, Umar TP, Garg N, Nweze VN, Inturu VSS, Abdelwahab MM, Kurian S, Alexiou A, Alfaleh M, Alqurashi TMA, Ashraf GM. The role of membrane trafficking and retromer complex in Parkinson's and Alzheimer's disease. J Neurosci Res 2024; 102:e25261. [PMID: 38284858 DOI: 10.1002/jnr.25261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.
Collapse
Affiliation(s)
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, USA
| | - Samar Khalifa
- Clinical Psychology Department, Faculty of Arts, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | | | | | | | - Tungki Pratama Umar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, New Jersey, USA
| | | | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Mohammed Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M A Alqurashi
- Department of Pharmacology, Medical College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
26
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Ricardi MM, Wallmeroth N, Cermesoni C, Mehlhorn DG, Richter S, Zhang L, Mittendorf J, Godehardt I, Berendzen KW, von Roepenack-Lahaye E, Stierhof YD, Lipka V, Jürgens G, Grefen C. A tyrosine phospho-switch within the Longin domain of VAMP721 modulates SNARE functionality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1633-1651. [PMID: 37659090 DOI: 10.1111/tpj.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.
Collapse
Affiliation(s)
- Martiniano Maria Ricardi
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Sandra Richter
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
- University of Tübingen, ZMBP Central Facilities, Tübingen, Germany
| | - Lei Zhang
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Josephine Mittendorf
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Ingeborg Godehardt
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | | | | | | | - Volker Lipka
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Gerd Jürgens
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| |
Collapse
|
28
|
Shao Q, Wijaya CS, Wang S, Meng X, Yuan C, Ma C, Xu S. The SNARE complex formed by RIC-4/SEC-22/SYX-2 promotes C. elegans epidermal wound healing. Cell Rep 2023; 42:113349. [PMID: 37910502 DOI: 10.1016/j.celrep.2023.113349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Maintaining cellular viability relies on the integrity of the plasma membrane, which must be repaired upon damage. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is a crucial mechanism involved in membrane repair. In C. elegans epidermal cell hyp 7, syntaxin-2 (SYX-2) facilitates large membrane wound repair; however, the underlying molecular mechanism remains unclear. Here, we found that SNAP-25 protein RIC-4 and synaptobrevin protein SEC-22 are required for SYX-2 recruitment at the wound site. They interact to form a SNARE complex to promote membrane repair in vivo and fusion in vitro. Moreover, we found that SEC-22 localized in multiple intracellular compartments, including endosomes and the trans-Golgi network, which recruited to the wounds. Furthermore, inhibition of RAB-5 disrupted SEC-22 localization and prevented its interaction with SYX-2. Our findings suggest that RAB-5 facilitates the formation of the RIC-4/SEC-22/SYX-2 SNARE complex and provides valuable insights into the molecular mechanism of how cells repair large membrane wounds.
Collapse
Affiliation(s)
- Qingfang Shao
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chandra Sugiarto Wijaya
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinan Meng
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Yuan
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Suhong Xu
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
29
|
Liu ZY, Li YH, Li BW, Xin L. Development and validation of a vesicle-mediated transport-associated gene signature for predicting prognosis and immune therapy response in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13211-13230. [PMID: 37479759 DOI: 10.1007/s00432-023-05079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor with a poor prognosis. The progression of numerous malignancies has been linked to abnormal vesicle-mediated transport-related gene (VMTRG) expression. The prognostic importance of VMTRGs in HCC is uncertain nonetheless. METHODS Utilizing HCC data from TCGA and ICGC, we employed univariate cox analysis, unsupervised clustering, and lasso analysis to construct molecular subtypes and prognostic signature of HCC based on the prognostic-associated VMTRGs expression levels. Subsequently, we validated the expression levels of the signature genes. We investigated the probable pathways using gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). Six methods were utilized to compare immune cell infiltration between two risk groups. Moreover, the "pRRophetic" algorithm was utilized to test the drug sensitivity of both groups. RESULTS We identified two distinct subtypes with divergent biological behaviors and immune functionality through unsupervised clustering. Subtype C1 demonstrated a poorer prognosis. A prognostic signature incorporating two VMTRGs (KIF2C and RAC1) was formulated. Immunohistochemistry and qRT-PCR analyses unveiled a significant upregulation of these pivotal genes within HCC tissues. The prognosis was worse for the high-risk group, which also had a higher clinicopathological grade, higher levels of tumor mutation burden (TMB), a higher immunological infiltration of CD8 + T cells, a higher expression of immune checkpoints, and enhanced immunotherapy efficacy. These two risk groups also have varied chemotherapy drug sensitivities. CONCLUSIONS Based on VMTRGs, we have developed a signature that assists in accurate prognosis prediction and formulating personalized treatment strategies for HCC patients.
Collapse
Affiliation(s)
- Zhi-Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yi-He Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bo-Wen Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
30
|
Stuckey PV, Santiago-Tirado FH. Fungal mechanisms of intracellular survival: what can we learn from bacterial pathogens? Infect Immun 2023; 91:e0043422. [PMID: 37506189 PMCID: PMC10501222 DOI: 10.1128/iai.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Fungal infections represent a major, albeit neglected, public health threat with serious medical and economic burdens globally. With unacceptably high mortality rates, invasive fungal pathogens are responsible for millions of deaths each year, with a steadily increasing incidence primarily in immunocompromised individuals. The poor therapeutic options and rise of antifungal drug resistance pose further challenges in controlling these infections. These fungal pathogens have adapted to survive within mammalian hosts and can establish intracellular niches to promote survival within host immune cells. To do that, they have developed diverse methods to circumvent the innate immune system attack. This includes strategies such as altering their morphology, counteracting macrophage antimicrobial action, and metabolic adaptation. This is reminiscent of how bacterial pathogens have adapted to survive within host cells and cause disease. However, relative to the great deal of information available concerning intracellular bacterial pathogenesis, less is known about the mechanisms fungal pathogens employ. Therefore, here we review our current knowledge and recent advances in our understanding of how fungi can evade and persist within host immune cells. This review will focus on the major fungal pathogens, including Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus, among others. As we discover and understand the strategies used by these fungi, similarities with their bacterial counterparts are becoming apparent, hence we can use the abundant information from bacteria to guide our studies in fungi. By understanding these strategies, new lines of research will open that can improve the treatments of these devastating fungal diseases.
Collapse
Affiliation(s)
- Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
31
|
Lee KS, Park JY, Jeong YJ, Lee MS. The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin-associated Extracellular Vesicles in Host Cells. J Microbiol 2023; 61:715-727. [PMID: 37665555 DOI: 10.1007/s12275-023-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
32
|
Das K, Paul S, Mukherjee T, Ghosh A, Sharma A, Shankar P, Gupta S, Keshava S, Parashar D. Beyond Macromolecules: Extracellular Vesicles as Regulators of Inflammatory Diseases. Cells 2023; 12:1963. [PMID: 37566042 PMCID: PMC10417494 DOI: 10.3390/cells12151963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammation is the defense mechanism of the immune system against harmful stimuli such as pathogens, toxic compounds, damaged cells, radiation, etc., and is characterized by tissue redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in the recruitment of immune cells at the site of infection, which not only aids in the elimination of the cause, but also initiates the healing process. However, prolonged inflammation often brings about several chronic inflammatory disorders; hence, a balance between the pro- and anti-inflammatory responses is essential in order to eliminate the cause while producing the least damage to the host. A growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell-cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA, RNAs, miRNAs, etc., between the cells. The present review provides a brief classification of the EVs followed by a detailed description of how EVs contribute to the pathogenesis of various inflammation-associated diseases and their implications as a therapeutic measure. The latter part of the review also highlights how EVs act as a bridging entity in blood coagulation disorders and associated inflammation. The findings illustrated in the present review may open a new therapeutic window to target EV-associated inflammatory responses, thereby minimizing the negative outcomes.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Anshul Sharma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
33
|
Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023; 243:125232. [PMID: 37302628 DOI: 10.1016/j.ijbiomac.2023.125232] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 μm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | | | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Saghebasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
34
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
35
|
Ma D, Yu M, Eszterhas S, Rollenhagen C, Lee SA. A C. albicans TRAPP Complex-Associated Gene Contributes to Cell Wall Integrity, Hyphal and Biofilm Formation, and Tissue Invasion. Microbiol Spectr 2023; 11:e0536122. [PMID: 37222596 PMCID: PMC10269527 DOI: 10.1128/spectrum.05361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
While endocytic and secretory pathways are well-studied cellular processes in the model yeast Saccharomyces cerevisiae, they remain understudied in the opportunistic fungal pathogen Candida albicans. We previously found that null mutants of C. albicans homologs of the S. cerevisiae early endocytosis genes ENT2 and END3 not only exhibited delayed endocytosis but also had defects in cell wall integrity, filamentation, biofilm formation, extracellular protease activity, and tissue invasion in an in vitro model. In this study, we focused on a potential C. albicans homolog to S. cerevisiae TCA17, which was discovered in our whole-genome bioinformatics approach aimed at identifying genes involved in endocytosis. In S. cerevisiae, TCA17 encodes a transport protein particle (TRAPP) complex-associated protein. Using a reverse genetics approach with CRISPR-Cas9-mediated gene deletion, we analyzed the function of the TCA17 homolog in C. albicans. Although the C. albicans tca17Δ/Δ null mutant did not have defects in endocytosis, it displayed an enlarged cell and vacuole morphology, impaired filamentation, and reduced biofilm formation. Moreover, the mutant exhibited altered sensitivity to cell wall stressors and antifungal agents. When assayed using an in vitro keratinocyte infection model, virulence properties were also diminished. Our findings indicate that C. albicans TCA17 may be involved in secretion-related vesicle transport and plays a role in cell wall and vacuolar integrity, hyphal and biofilm formation, and virulence. IMPORTANCE The fungal pathogen Candida albicans causes serious opportunistic infections in immunocompromised patients and has become a major cause of hospital-acquired bloodstream infections, catheter-associated infections, and invasive disease. However, due to a limited understanding of Candida molecular pathogenesis, clinical approaches for the prevention, diagnosis, and treatment of invasive candidiasis need significant improvement. In this study, we focus on identifying and characterizing a gene potentially involved in the C. albicans secretory pathway, as intracellular transport is critical for C. albicans virulence. We specifically investigated the role of this gene in filamentation, biofilm formation, and tissue invasion. Ultimately, these findings advance our current understanding of C. albicans biology and may have implications for the diagnosis and treatment of candidiasis.
Collapse
Affiliation(s)
- Dakota Ma
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Dartmouth College, Hanover, New Hampshire, USA
| | - Miranda Yu
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Dartmouth College, Hanover, New Hampshire, USA
| | - Susan Eszterhas
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christiane Rollenhagen
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Samuel A. Lee
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
36
|
Liang J, Yu D, Luo C, Bennett C, Jedrychowski M, Gygi SP, Widlund HR, Puigserver P. Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas. Nat Commun 2023; 14:3251. [PMID: 37277330 PMCID: PMC10241879 DOI: 10.1038/s41467-023-38968-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
While targeted treatment against BRAF(V600E) improve survival for melanoma patients, many will see their cancer recur. Here we provide data indicating that epigenetic suppression of PGC1α defines an aggressive subset of chronic BRAF-inhibitor treated melanomas. A metabolism-centered pharmacological screen further identifies statins (HMGCR inhibitors) as a collateral vulnerability within PGC1α-suppressed BRAF-inhibitor resistant melanomas. Lower PGC1α levels mechanistically causes reduced RAB6B and RAB27A expression, whereby their combined re-expression reverses statin vulnerability. BRAF-inhibitor resistant cells with reduced PGC1α have increased integrin-FAK signaling and improved extracellular matrix detached survival cues that helps explain their increased metastatic ability. Statin treatment blocks cell growth by lowering RAB6B and RAB27A prenylation that reduces their membrane association and affects integrin localization and downstream signaling required for growth. These results suggest that chronic adaptation to BRAF-targeted treatments drive novel collateral metabolic vulnerabilities, and that HMGCR inhibitors may offer a strategy to treat melanomas recurring with suppressed PGC1α expression.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Parthenon Therapeutics, Boston, MA, 02135, USA
| | - Christopher Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Atavistik Bio, Cambridge, MA, 02139, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
38
|
Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang K, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes. Front Endocrinol (Lausanne) 2023; 14:1170237. [PMID: 37305058 PMCID: PMC10248434 DOI: 10.3389/fendo.2023.1170237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of β-cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it's also involved in pathological changes including autoimmune response, insulin resistance and β-cell failure associated with DM. In addition, EVs may serve as biomarkers and therapeutic agents that respectively reflect the status and improve function and viability of pancreatic islets. In this review, we provide an overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of pancreatic islet under physiological and diabetic conditions, and summarize the emerging applications of EVs in the diagnosis and treatment of DM. A better understanding of EVs-mediated intercellular and interorgan communication of pancreatic islets will broaden and enrich our knowledge of physiological homeostasis maintenance as well as the development, diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Junlun Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Tingrui Han
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaoting Chen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Jin G, Lin L, Li K, Li J, Yu C, Wei Z. Structural basis of ELKS/Rab6B interaction and its role in vesicle capturing enhanced by liquid-liquid phase separation. J Biol Chem 2023:104808. [PMID: 37172719 DOI: 10.1016/j.jbc.2023.104808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
ELKS proteins play a key role in organizing intracellular vesicle trafficking and targeting in both neurons and non-neuronal cells. While it is known that ELKS interacts with the vesicular traffic regulator, the Rab6 GTPase, the molecular basis governing ELKS-mediated trafficking of Rab6-coated vesicles has remained unclear. In this study, we solved the Rab6B structure in complex with the Rab6-binding domain of ELKS1, revealing that a C-terminal segment of ELKS1 forms a helical hairpin to recognize Rab6B through a unique binding mode. We further showed that liquid-liquid phase separation (LLPS) of ELKS1 allows it to compete with other Rab6 effectors for binding to Rab6B and accumulate Rab6B-coated liposomes to the protein condensate formed by ELKS1. We also found that the ELKS1 condensate recruits Rab6B-coated vesicles to vesicle releasing sites and promotes vesicle exocytosis. Together, our structural, biochemical, and cellular analyses suggest that ELKS1, via the LLPS-enhanced interaction with Rab6, captures Rab6-coated vesicles from the cargo transport machine for efficient vesicle releasing at exocytotic sites. These findings shed new light on the understanding of spatiotemporal regulation of vesicle trafficking through the interplay between membranous structures and membraneless condensates.
Collapse
Affiliation(s)
- Gaowei Jin
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Leishu Lin
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kaiyue Li
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiashan Li
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China 518055.
| | - Zhiyi Wei
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
40
|
Rademacher DJ. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines 2023; 11:biomedicines11041187. [PMID: 37189807 DOI: 10.3390/biomedicines11041187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes, and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout the Parkinson's disease (PD) brain and exacerbate neurodegenerative processes. Here, we review attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents including an ability to readily cross the blood-brain barrier, the potential for targeted delivery of therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of next-generation therapeutics for the treatment of PD.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Microbiology and Immunology and Core Imaging Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
41
|
Sun S, Sui SF. Structural insights into assembly of TRAPPII and its activation of Rab11/Ypt32. Curr Opin Struct Biol 2023; 80:102596. [PMID: 37068358 DOI: 10.1016/j.sbi.2023.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 04/19/2023]
Abstract
Transport protein particle (TRAPP) complexes belong to the multisubunit tethering complex. They are guanine nucleotide exchange factors (GEFs) that play essential roles in secretory and endocytic recycling pathway and autophagy. There are two major forms of TRAPP complexes, TRAPPII and TRAPPIII, which share a core set of small subunits. TRAPPIII activates Rab1, while TRAPPII primarily activates Rab11. A steric gating mechanism has been proposed to control the substrate selection in vivo. However, the detailed mechanisms underlying the transition from TRAPPIII's GEF activity for Rab1 to TRAPPII's GEF activity for Rab11 and the roles of the complex-specific subunits in this transition are insufficiently understood. In this review, we discuss recent advances in understanding the mechanism of specific activation of Rab11/Ypt32 by TRAPPII, with a particular focus on new findings from structural studies.
Collapse
Affiliation(s)
- Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
42
|
Wang B, Xu Y, Xu S, Wu H, Qu P, Tong Z, Lü P, Cheng C. Characterization of Banana SNARE Genes and Their Expression Analysis under Temperature Stress and Mutualistic and Pathogenic Fungal Colonization. PLANTS (BASEL, SWITZERLAND) 2023; 12:1599. [PMID: 37111823 PMCID: PMC10142651 DOI: 10.3390/plants12081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors) are engines for almost all of the membrane fusion and exocytosis events in organism cells. In this study, we identified 84 SNARE genes from banana (Musa acuminata). Gene expression analysis revealed that the expression of MaSNAREs varied a lot in different banana organs. By analyzing their expression patterns under low temperature (4 °C), high temperature (45 °C), mutualistic fungus (Serendipita indica, Si) and fungal pathogen (Fusarium oxysporum f. sp. Cubense Tropical Race 4, FocTR4) treatments, many MaSNAREs were found to be stress responsive. For example, MaBET1d was up-regulate by both low and high temperature stresses; MaNPSN11a was up-regulated by low temperature but down-regulated by high temperature; and FocTR4 treatment up-regulated the expression of MaSYP121 but down-regulated MaVAMP72a and MaSNAP33a. Notably, the upregulation or downregulation effects of FocTR4 on the expression of some MaSNAREs could be alleviated by priorly colonized Si, suggesting that they play roles in the Si-enhanced banana wilt resistance. Foc resistance assays were performed in tobacco leaves transiently overexpressing MaSYP121, MaVAMP72a and MaSNAP33a. Results showed that transient overexpression of MaSYP121 and MaSNPA33a suppressed the penetration and spread of both Foc1 (Foc Race 1) and FocTR4 in tobacco leaves, suggesting that they play positive roles in resisting Foc infection. However, the transient overexpression of MaVAMP72a facilitated Foc infection. Our study can provide a basis for understanding the roles of MaSNAREs in the banana responses to temperature stress and mutualistic and pathogenic fungal colonization.
Collapse
Affiliation(s)
- Bin Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanbing Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengyan Qu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
43
|
Fan T, Fan Y, Yang Y, Qian D, Niu Y, An L, Xiang Y. SEC1A and SEC6 synergistically regulate pollen tube polar growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36951316 DOI: 10.1111/jipb.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.
Collapse
Affiliation(s)
- Tingting Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
44
|
Estévez-Souto V, Da Silva-Álvarez S, Collado M. The role of extracellular vesicles in cellular senescence. FEBS J 2023; 290:1203-1211. [PMID: 35904466 DOI: 10.1111/febs.16585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, an evolutionarily conserved mechanism that prevents the proliferation of damaged cells, is a very relevant cellular response involved in both physiological and pathological conditions. Even though senescent cells are stably growth arrested, they exhibit a complex and poorly understood secretory phenotype, known as senescence-associated secretory phenotype, composed of soluble proteins and extracellular vesicles (EVs). Extracellular vesicles were initially described as a waste management mechanism to remove damaged components of cellular metabolism, but increasing evidence shows that EVs could also play important roles in intercellular communication. Recently, some studies showed that EVs could have fundamental functions during cellular senescence. Our purpose in this review is to clarify the increasing literature on the role of EVs in cellular senescence as key mediators in cell-to-cell communication.
Collapse
Affiliation(s)
- Valentín Estévez-Souto
- Laboratory of Cell Senescence, Cancer and Aging, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| | - Sabela Da Silva-Álvarez
- Laboratory of Cell Senescence, Cancer and Aging, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| |
Collapse
|
45
|
Zhao R, Li N, Lin Q, Li M, Shen X, Peng Y, Du Y, Ning Q, Li Y, Zhan J, Yang F, Xu F, Zhang Z, Liu L. ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by mediating vesicle aggregation and tethering in maize. PLANT, CELL & ENVIRONMENT 2023; 46:975-990. [PMID: 36515184 DOI: 10.1111/pce.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus. ZmBET5L1 knock-out increased the primary root elongation rate under 20% polyethylene glycol-simulated osmotic stress and the survival rate under drought stress compared to wild-type seedlings. In addition, we found that ZmBET5L1 moderates PIN1 polar localization and auxin flow to maintain normal root growth. ZmBET5L1 knock-out optimized auxin flow to the lateral side of the root and promoted its growth to generate a robust root, which may be related to improved osmotic stress tolerance. Together, these findings demonstrate that ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by regulating vesicle transport and auxin distribution. This study has improved our understanding of the role of tethering factors in response to abiotic stresses and identified desirable variants for breeding osmotic stress tolerance in maize.
Collapse
Affiliation(s)
- Ran Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Nan Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qianrun Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Manfei Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Shandong, Tai-An, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Xu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Jorgenson LM, Knight L, Widner RE, Rucks EA. Eukaryotic Clathrin Adapter Protein and Mediator of Cholesterol Homeostasis, PICALM, Affects Trafficking to the Chlamydial Inclusion. Mol Cell Biol 2023; 43:1-13. [PMID: 36779337 PMCID: PMC9980547 DOI: 10.1080/10985549.2023.2171695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with C. trachomatis resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.
Collapse
Affiliation(s)
- Lisa M. Jorgenson
- UNeMed Corporation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lindsey Knight
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ray E. Widner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
47
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
48
|
Guo Z, Liu X, Wang N, Mo P, Shen J, Liu M, Zhang H, Wang P, Zhang Z. Membrane component ergosterol builds a platform for promoting effector secretion and virulence in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2023; 237:930-943. [PMID: 36300785 DOI: 10.1111/nph.18575] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The plasma membrane (PM) functions as a physical border between the extracellular and cytoplasmic environments that contribute to the interaction between host plants and pathogenic fungi. As a specific sterol constituent in the cell membrane, ergosterol plays a significant role in fungal development. However, the role of ergosterol in the infection of the rice blast fungus Magnaporthe oryzae remains unclear. In this study, we found that a sterol reductase, MoErg4, is involved in ergosterol biosynthesis and the regulation of plasma membrane integrity in M. oryzae. We found that defects in ergosterol biosynthesis disrupt lipid raft formation in the PM and cause an abnormal distribution of the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein MoSso1, inhibiting its interaction with the v-SNARE protein MoSnc1. In addition, we found that MoSso1-MoSnc1 interaction is important for biotrophic interface complex development and cytoplasmic effector protein secretion. Our findings suggested that ergosterol-enriched lipid rafts constitute a platform for interactions among various SNARE proteins that are required for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Ziqian Guo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nian Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Mo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ju Shen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
49
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
50
|
Chen Y, Kang J, Zhen R, Zhang L, Chen C. A genome-wide CRISPR screen identifies the CCT chaperonin as a critical regulator of vesicle trafficking. FASEB J 2023; 37:e22757. [PMID: 36607310 DOI: 10.1096/fj.202201580r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.
Collapse
Affiliation(s)
- Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ru Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|