1
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Liu R, Wang C, Sun Z, Shi X, Zhang Z, Luo J. Neuronal CFL1 upregulation in head and neck squamous cell carcinoma enhances tumor-nerve crosstalk and promotes tumor growth. Mol Carcinog 2024; 63:874-884. [PMID: 38353363 DOI: 10.1002/mc.23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer type, marked by a pronounced nerve density within the tumor microenvironment and a high rate of perineural invasion (PNI). Growing evidence suggests that the nervous system plays a vital role in HNSCC progression. Yet, the mechanisms governing cancer-nerve interactions remain largely elusive. Our research revealed that cofilin-1 (CFL1) is significantly overexpressed in HNSCC and correlates with both PNI and unfavorable prognosis. Utilizing multiplex fluorescent immunohistochemistry, we have localized CFL1 chiefly to the nerves adjacent to tumor sites. Significantly, it is the elevated expression of CFL1 in neuronal structures, rather than in the tumor cells, that aligns with diminished patient survival rates. We observed that HNSCC cells induced the expression of neuronal CFL1 and that the conditional knockout of neuronal CFL1 impedes tumor-nerve interactions. Both Gene Ontology functional enrichment analyses and Gene Set Enrichment Analysis demonstrate that CFL1 expression in HNSCC is associated with specific biological processes, including "RIBOSOME," "PROTEASOME," and "cadherin binding." In summary, HNSCC promotes the expression of CFL1 in nerves, which is essential for cancer-nerve interactions. The neuronal CFL1 is associated with PNI and may be a potential molecular prognostic marker of poor survival in HNSCC.
Collapse
Affiliation(s)
- Ruoyan Liu
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
| | - Chunli Wang
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhonghao Sun
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaotian Shi
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ze Zhang
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingtao Luo
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
4
|
Advedissian T, Frémont S, Echard A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat Commun 2024; 15:1949. [PMID: 38431632 PMCID: PMC10908825 DOI: 10.1038/s41467-024-46062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Cell division is completed by the abscission of the intercellular bridge connecting the daughter cells. Abscission requires the polymerization of an ESCRT-III cone close to the midbody to both recruit the microtubule severing enzyme spastin and scission the plasma membrane. Here, we found that the microtubule and the membrane cuts are two separate events that are regulated differently. Using HeLa cells, we uncovered that the F-actin disassembling protein Cofilin-1 controls the disappearance of a transient pool of branched F-actin which is precisely assembled at the tip of the ESCRT-III cone shortly before the microtubule cut. Functionally, Cofilin-1 and Arp2/3-mediated branched F-actin favor abscission by promoting local severing of the microtubules but do not participate later in the membrane scission event. Mechanistically, we propose that branched F-actin functions as a physical barrier that limits ESCRT-III cone elongation and thereby favors stable spastin recruitment. Our work thus reveals that F-actin controls the timely and local disassembly of microtubules required for cytokinetic abscission.
Collapse
Affiliation(s)
- Tamara Advedissian
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
5
|
Wiggan O, Stasevich TJ. Single molecule imaging of the central dogma reveals myosin-2A gene expression is regulated by contextual translational buffering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579797. [PMID: 38370738 PMCID: PMC10871341 DOI: 10.1101/2024.02.11.579797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While protein homeostasis is a hallmark of gene regulation, unraveling the hidden regulatory mechanisms that maintain homeostasis is difficult using traditional methods. To confront this problem, we CRISPR engineered a human cell line with multiple tags in the endogenous MYH9 gene, which encodes the essential and ubiquitous myosin-2A cytoskeletal motor. Using these cells, we imaged MYH9 transcription, translation, and mature mRNA and protein in distinct colors, enabling a full dissection of the central dogma. Our data show that MYH9 transcription is upregulated in an SRF-dependent manner in response to cytoskeletal cues and that MYH9 translation can either buffer or match the transcriptional response depending on context. Upon knockdown of actin-depolymerizing proteins like cofilin, translation efficiency drops by a factor of two to buffer strong transcriptional upregulation, likely to help prevent excessive myosin activity. In contrast, following serum stimulation, translation matches the transcriptional response to readily reestablish steady state. Our results identify contextual translational buffering as an important regulatory mechanism driving stable MYH9 expression. They also demonstrate the power and broad applicability of our cell line, which can now be used to accurately quantify central dogma dynamics in response to diverse forms of cellular perturbations.
Collapse
Affiliation(s)
- O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80525
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80525
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Argentati C, Morena F, Guidotti G, Soccio M, Lotti N, Martino S. Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness. Cells 2023; 12:1746. [PMID: 37443780 PMCID: PMC10341130 DOI: 10.3390/cells12131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Mechanotransduction is a molecular process by which cells translate physical stimuli exerted by the external environment into biochemical pathways to orchestrate the cellular shape and function. Even with the advancements in the field, the molecular events leading to the signal cascade are still unclear. The current biotechnology of tissue engineering offers the opportunity to study in vitro the effect of the physical stimuli exerted by biomaterial on stem cells and the mechanotransduction pathway involved in the process. Here, we cultured multipotent human mesenchymal/stromal cells (hMSCs) isolated from bone marrow (hBM-MSCs) and adipose tissue (hASCs) on films of poly(butylene 1,4-cyclohexane dicarboxylate) (PBCE) and a PBCE-based copolymer containing 50 mol% of butylene diglycolate co-units (BDG50), to intentionally tune the surface hydrophilicity and the stiffness (PBCE = 560 Mpa; BDG50 = 94 MPa). We demonstrated the activated distinctive mechanotransduction pathways, resulting in the acquisition of an elongated shape in hBM-MSCs on the BDG50 film and in maintaining the canonical morphology on the PBCE film. Notably, hASCs acquired a new, elongated morphology on both the PBCE and BDG50 films. We found that these events were mainly due to the differences in the expression of Cofilin1, Vimentin, Filamin A, and Talin, which established highly sensitive machinery by which, rather than hASCs, hBM-MSCs distinguished PBCE from BDG50 films.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
- CEMIN (Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
7
|
Radler MR, Liu X, Peng M, Doyle B, Toyo-Oka K, Spiliotis ET. Pyramidal neuron morphogenesis requires a septin network that stabilizes filopodia and suppresses lamellipodia during neurite initiation. Curr Biol 2023; 33:434-448.e8. [PMID: 36538929 PMCID: PMC9905282 DOI: 10.1016/j.cub.2022.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Pyramidal neurons are a major cell type of the forebrain, consisting of a pyramidally shaped soma with axonal and apicobasal dendritic processes. It is poorly understood how the neuronal soma develops its pyramidal morphology, while generating neurites of the proper shape and orientation. Here, we discovered that the spherical somata of immature neurite-less neurons possess a circumferential wreath-like network of septin filaments, which promotes neuritogenesis by balancing the protrusive activity of lamellipodia and filopodia. In embryonic rat hippocampal and mouse cortical neurons, the septin wreath network consists of curvilinear filaments that contain septins 5, 7, and 11 (Sept5/7/11). The Sept5/7/11 wreath network demarcates a zone of myosin II enrichment and Arp2/3 diminution at the base of filopodial actin bundles. In Sept7-depleted neurons, cell bodies are enlarged with hyperextended lamellae and abnormally shaped neurites that originate from lamellipodia. This phenotype is accompanied by diminished myosin II and filopodia lifetimes and increased Arp2/3 and lamellipodial activity. Inhibition of Arp2/3 rescues soma and neurite phenotypes, indicating that the septin wreath network suppresses the extension of lamellipodia, facilitating the formation of neurites from the filopodia of a consolidated soma. We show that this septin function is critical for developing a pyramidally shaped soma with properly distributed and oriented dendrites in cultured rat hippocampal neurons and in vivo in mouse perinatal cortical neurons. Therefore, the somatic septin cytoskeleton provides a key morphogenetic mechanism for neuritogenesis and the development of pyramidal neurons.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Megan Peng
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Brenna Doyle
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One 2022; 17:e0279746. [PMID: 36584207 PMCID: PMC9803305 DOI: 10.1371/journal.pone.0279746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is highly metastatic and of poor prognosis. Metastasis involves coordinated actin filament dynamics mediated by cofilin and associated proteins. Activated androgen receptor (AR) is believed to contribute to TNBC tumorigenesis. Our current work studied roles of activated AR and cofilin phospho-regulation during migration of three AR+ TNBC cell lines to determine if altered cofilin regulation can explain their migratory differences. Untreated or AR agonist-treated BT549, MDA-MB-453, and SUM159PT cells were compared to cells silenced for cofilin (KD) or AR expression/function (bicalutamide). Cofilin-1 was found to be the only ADF/cofilin isoform expressed in each TNBC line. Despite a significant increase in cofilin kinase caused by androgens, the ratio of cofilin:p-cofilin (1:1) did not change in SUM159PT cells. BT549 and MDA-MB-453 cells contain high p-cofilin levels which underwent androgen-induced dephosphorylation through increased cofilin phosphatase expression, but surprisingly maintain a leading-edge with high p-cofilin/total cofilin not found in SUM159PT cells. Androgens enhanced cell polarization in all lines, stimulated wound healing and transwell migration rates and increased N/E-cadherin mRNA ratios while reducing cell adhesion in BT549 and MDA-MB-453 cells. Cofilin KD negated androgen effects in MDA-MB-453 except for cell adhesion, while in BT549 cells it abrogated androgen-reduced cell adhesion. In SUM159PT cells, cofilin KD with and without androgens had similar effects in almost all processes studied. AR dependency of the processes were confirmed. In conclusion, cofilin regulation downstream of active AR is dependent on which actin-mediated process is being examined in addition to being cell line-specific. Although MDA-MB-453 cells demonstrated some control of cofilin through an AR-dependent mechanism, other AR-dependent pathways need to be further studied. Non-cofilin-dependent mechanisms that modulate migration of SUM159PT cells need to be investigated. Categorizing TNBC behavior as AR responsive and/or cofilin dependent can inform on decisions for therapeutic treatment.
Collapse
Affiliation(s)
- Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: ,
| | - Ahmad Alzghoul
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sydney Alderfer
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
9
|
Minamide LS, Hylton R, Swulius M, Bamburg JR. Visualizing Cofilin-Actin Filaments by Immunofluorescence and CryoEM: Essential Steps for Observing Cofilactin in Cells. Methods Mol Biol 2022; 2593:265-281. [PMID: 36513938 DOI: 10.1007/978-1-0716-2811-9_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorescence microscopy of cytoskeletal proteins in situ using immunolabeling, fluorescent reagents, or expression of tagged proteins has been a common practice for decades but often with too little regard for what might not be visualized. This is especially true for assembled filamentous actin (F-actin), for which binding of fluorescently labeled phalloidin is taken as the gold standard for its quantification even though it is well known that F-actin saturated with cofilin (cofilactin) binds neither fluorescently labeled phalloidin nor genetically encoded F-actin reporters, such as LifeAct. Here, using expressed fluorescent cofilactin reporters, we show that cofilactin is the major component of some actin-containing structures in both normal and stressed neurons and present various fixation, permeabilization, and cryo-preservation methods for optimizing its observation.
Collapse
Affiliation(s)
- Laurie S Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Hylton
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Swulius
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
10
|
Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol (Dordr) 2022; 45:1119-1136. [PMID: 36149601 DOI: 10.1007/s13402-022-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metastasis refers to the spread of cancer cells from a primary tumor to other parts of the body via the lymphatic system and bloodstream. With tremendous effort over the past decades, remarkable progress has been made in understanding the molecular and cellular basis of metastatic processes. Metastasis occurs through five steps, including infiltration and migration, intravasation, survival, extravasation, and colonization. Various molecular and cellular factors involved in the metastatic process have been identified, such as epigenetic factors of the extracellular matrix (ECM), cell-cell interactions, soluble signaling, adhesion molecules, and mechanical stimuli. However, the underlying cause of cancer metastasis has not been elucidated. CONCLUSION In this review, we have focused on changes in the mechanical properties of cancer cells and their surrounding environment to understand the causes of cancer metastasis. Cancer cells have unique mechanical properties that distinguish them from healthy cells. ECM stiffness is involved in cancer cell growth, particularly in promoting the epithelial-mesenchymal transition (EMT). During tumorigenesis, the mechanical properties of cancer cells change in the direction opposite to their environment, resulting in a mechanical stress imbalance between the intracellular and extracellular domains. Disruption of mechanical homeostasis may be one of the causes of EMT that triggers the metastasis of cancer cells.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
11
|
Zieliński T, Pabijan J, Zapotoczny B, Zemła J, Wesołowska J, Pera J, Lekka M. Changes in nanomechanical properties of single neuroblastoma cells as a model for oxygen and glucose deprivation (OGD). Sci Rep 2022; 12:16276. [PMID: 36175469 PMCID: PMC9523022 DOI: 10.1038/s41598-022-20623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.
Collapse
Affiliation(s)
- Tomasz Zieliński
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Bartłomiej Zapotoczny
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Julita Wesołowska
- Laboratory of in Vivo and in Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31343, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31503, Kraków, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland.
| |
Collapse
|
12
|
Hollósi A, Pászty K, Bunta BL, Bozó T, Kellermayer M, Debreczeni ML, Cervenak L, Baccarini M, Varga A. BRAF increases endothelial cell stiffness through reorganization of the actin cytoskeleton. FASEB J 2022; 36:e22478. [PMID: 35916021 DOI: 10.1096/fj.202200344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
The dynamics of the actin cytoskeleton and its connection to endothelial cell-cell junctions determine the barrier function of endothelial cells. The proper regulation of barrier opening/closing is necessary for the normal function of vessels, and its dysregulation can result in chronic and acute inflammation leading to edema formation. By using atomic force microscopy, we show here that thrombin-induced permeability of human umbilical vein endothelial cells, associated with actin stress fiber formation, stiffens the cell center. The depletion of the MEK/ERK kinase BRAF reduces thrombin-induced permeability prevents stress fiber formation and cell stiffening. The peripheral actin ring becomes stabilized by phosphorylated myosin light chain, while cofilin is excluded from the cell periphery. All these changes can be reverted by the inhibition of ROCK, but not of the MEK/ERK module. We propose that the balance between the binding of cofilin and myosin to F-actin in the cell periphery, which is regulated by the activity of ROCK, determines the local dynamics of actin reorganization, ultimately driving or preventing stress fiber formation.
Collapse
Affiliation(s)
- Anna Hollósi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Katalin Pászty
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Levente Bunta
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Márta Lídia Debreczeni
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Manuela Baccarini
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Andrea Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Takayama K, Matsuda K, Abe H. Formation of actin-cofilin rods by depletion forces. Biochem Biophys Res Commun 2022; 626:200-204. [PMID: 35994830 DOI: 10.1016/j.bbrc.2022.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
Various stress conditions induce the formation of actin-cofilin rods in either the nucleus or the cytoplasm, although the mechanism of rod formation is unclear. In this study, we constituted actin-cofilin rods using purified actin, cofilin and actin interacting protein 1 (AIP1) in the presence of a physiological buffer containing a crowding agent, 0.8% methylcellulose (MC), which led to bundled actin filaments formed by depletion forces. Most of the F-actin bundles formed with methylcellulose were linear, whereas cofilin-bound F-actin bundles often had bent, looped, and often ring-like shapes. Increasing the amount of AIP1 shortened actin-cofilin bundles into rod-like bundles with tapering at both ends. As much shorter actin-cofilin filaments were formed in the presence of AIP1 before MC was added to the mixture, the rod-like bundle might be a mass of those short filaments. Furthermore, the small rods fused with each other to become larger rods, indicating that these rods were anisotropic liquid droplets. Several minutes after the addition of MC to the F-actin-cofilin-AIP1 mixture, we observed some long bundles in which the thick and thin parts appear alternately, reminiscent of a Plateau-Rayleigh instability observed in fluid columns. Simultaneously, we found images in which thin parts were interrupted, but the thick parts were arranged in a row in the longitudinal direction. These structures were also observed in cytoplasmic actin-cofilin rods in cells overexpressing cofilin-GFP, suggesting that cytoplasmic actin-cofilin rods have the same structure formation process as the rods reconstituted in vitro.
Collapse
Affiliation(s)
- Kohki Takayama
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Kota Matsuda
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Hiroshi Abe
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan; Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
14
|
King ZT, Butler MT, Hockenberry MA, Subramanian BC, Siesser PF, Graham DM, Legant WR, Bear JE. Coro1B and Coro1C regulate lamellipodia dynamics and cell motility by tuning branched actin turnover. J Cell Biol 2022; 221:e202111126. [PMID: 35657370 PMCID: PMC9170525 DOI: 10.1083/jcb.202111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Actin filament dynamics must be precisely controlled in cells to execute behaviors such as vesicular trafficking, cytokinesis, and migration. Coronins are conserved actin-binding proteins that regulate several actin-dependent subcellular processes. Here, we describe a new conditional knockout cell line for two ubiquitous coronins, Coro1B and Coro1C. These coronins, which strongly co-localize with Arp2/3-branched actin, require Arp2/3 activity for proper subcellular localization. Coronin null cells have altered lamellipodial protrusion dynamics due to increased branched actin density and reduced actin turnover within lamellipodia, leading to defective haptotaxis. Surprisingly, excessive cofilin accumulates in coronin null lamellipodia, a result that is inconsistent with the current models of coronin-cofilin functional interaction. However, consistent with coronins playing a pro-cofilin role, coronin null cells have increased F-actin levels. Lastly, we demonstrate that the loss of coronins increases accompanied by an increase in cellular contractility. Together, our observations reveal that coronins are critical for proper turnover of branched actin networks and that decreased actin turnover leads to increased cellular contractility.
Collapse
Affiliation(s)
- Zayna T. King
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Mitchell T. Butler
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Max A. Hockenberry
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Bhagawat C. Subramanian
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Priscila F. Siesser
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - David M. Graham
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Wesley R. Legant
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
15
|
Hylton RK, Heebner JE, Grillo MA, Swulius MT. Cofilactin filaments regulate filopodial structure and dynamics in neuronal growth cones. Nat Commun 2022; 13:2439. [PMID: 35508487 PMCID: PMC9068697 DOI: 10.1038/s41467-022-30116-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cofilin is best known for its ability to sever actin filaments and facilitate cytoskeletal recycling inside of cells, but at higher concentrations in vitro, cofilin stabilizes a more flexible, hyper-twisted state of actin known as “cofilactin”. While this filament state is well studied, a structural role for cofilactin in dynamic cellular processes has not been observed. With a combination of cryo-electron tomography and fluorescence imaging in neuronal growth cones, we observe that filopodial actin filaments switch between a fascin-linked and a cofilin-decorated state, and that cofilactin is associated with a variety of dynamic events within filopodia. The switch to cofilactin filaments occurs in a graded fashion and correlates with a decline in fascin cross-linking within the filopodia, which is associated with curvature in the bundle. Our tomographic data reveal that the hyper-twisting of actin from cofilin binding leads to a rearrangement of filament packing, which largely excludes fascin from the base of filopodia. Our results provide mechanistic insight into the fundamentals of cytoskeletal remodeling inside of confined cellular spaces, and how the interplay between fascin and cofilin regulates the dynamics of searching filopodia. In this manuscript the authors show that Filopodia switch between bundles of fascin-crosslinked actin and cofilin-decorated filaments, which exclude fascin binding due to altered structure and packing, as well as affect filopodial searching dynamics.
Collapse
Affiliation(s)
- Ryan K Hylton
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica E Heebner
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael A Grillo
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew T Swulius
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
16
|
Bamburg JR. Meet the Editorial Board Member. Curr Neuropharmacol 2022. [PMCID: PMC9413792 DOI: 10.2174/1570159x2002220216142719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology
Molecular and Radiological Bioscience Building, Room 235
Fort Collins, CO 80523-1870
Colorado State University
USA
| |
Collapse
|
17
|
Chandra A, Butler MT, Bear JE, Haugh JM. Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling. Biophys J 2022; 121:102-118. [PMID: 34861242 PMCID: PMC8758409 DOI: 10.1016/j.bpj.2021.11.2889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.
Collapse
Affiliation(s)
- Ankit Chandra
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
18
|
Yamamoto K, Miura H, Ishida M, Mii Y, Kinoshita N, Takada S, Ueno N, Sawai S, Kondo Y, Aoki K. Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis. Nat Commun 2021; 12:7145. [PMID: 34880255 PMCID: PMC8654997 DOI: 10.1038/s41467-021-27458-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, subcellular dynamics of actomyosin contractility underlying such processes remains elusive. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility at the subcellular level. The system, named OptoMYPT, combines a protein phosphatase 1c (PP1c)-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination is sufficient to induce dephosphorylation of myosin regulatory light chains and a decrease in actomyosin contractile force in mammalian cells and Xenopus embryos. The OptoMYPT system is further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We find that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system provides opportunities to understand cellular and tissue mechanics.
Collapse
Affiliation(s)
- Kei Yamamoto
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Haruko Miura
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Motohiko Ishida
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yusuke Mii
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Noriyuki Kinoshita
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Naoto Ueno
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yohei Kondo
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo, 105-0001, Japan.
| |
Collapse
|
19
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
20
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
21
|
Ullo MF, Logue JS. ADF and cofilin-1 collaborate to promote cortical actin flow and the leader bleb-based migration of confined cells. eLife 2021; 10:67856. [PMID: 34169836 PMCID: PMC8253594 DOI: 10.7554/elife.67856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Melanoma cells have been shown to undergo fast amoeboid (leader bleb-based) migration, requiring a single large bleb for migration. In leader blebs, is a rapid flow of cortical actin that drives the cell forward. Using RNAi, we find that co-depleting cofilin-1 and actin depolymerizing factor (ADF) led to a large increase in cortical actin, suggesting that both proteins regulate cortical actin. Furthermore, severing factors can promote contractility through the regulation of actin architecture. However, RNAi of cofilin-1 but not ADF led to a significant decrease in cell stiffness. We found cofilin-1 to be enriched at leader bleb necks, whereas RNAi of cofilin-1 and ADF reduced bleb sizes and the frequency of motile cells. Strikingly, cells without cofilin-1 and ADF had blebs with abnormally long necks. Many of these blebs failed to retract and displayed slow actin turnover. Collectively, our data identifies cofilin-1 and ADF as actin remodeling factors required for fast amoeboid migration.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| |
Collapse
|
22
|
Rogg M, Maier JI, Dotzauer R, Artelt N, Kretz O, Helmstädter M, Abed A, Sammarco A, Sigle A, Sellung D, Dinse P, Reiche K, Yasuda-Yamahara M, Biniossek ML, Walz G, Werner M, Endlich N, Schilling O, Huber TB, Schell C. SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. J Am Soc Nephrol 2021; 32:563-579. [PMID: 33514561 PMCID: PMC7920176 DOI: 10.1681/asn.2020081126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Robert Dotzauer
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Urology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Dominik Sellung
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Dinse
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Karoline Reiche
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Berta-Ottenstein Program, Medical Faculty, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Wayt J, Cartagena-Rivera A, Dutta D, Donaldson JG, Waterman CM. Myosin II isoforms promote internalization of spatially distinct clathrin-independent endocytosis cargoes through modulation of cortical tension downstream of ROCK2. Mol Biol Cell 2020; 32:226-236. [PMID: 33326251 PMCID: PMC8098828 DOI: 10.1091/mbc.e20-07-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell–cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.
Collapse
Affiliation(s)
- Jessica Wayt
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD 20814
| | - Alexander Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Dipannita Dutta
- National Center for Advancing Translational Sciences, Department of Health and Human Services, Rockville, MD 20850
| | - Julie G Donaldson
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD 20814
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD 20814
| |
Collapse
|
24
|
Wufuer R, Ma HX, Luo MY, Xu KY, Kang L. Downregulation of Rac1/PAK1/LIMK1/cofilin signaling pathway in colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 33:102143. [PMID: 33307230 DOI: 10.1016/j.pdpdt.2020.102143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most common gastrointestinal malignancies. Photodynamic therapy (PDT) is a novel and non-invasive treatment for tumors as PDT features small trauma, good applicability, andaccurate targeting. PDT may also be a potential treatment for colon cancer as itmay may induce suppressive effects on metastatic potential.. However, the molecular mechanism of the Chlorin e6 Photodynamic therapy (Ce6-PDT) inhibiting the migration of human colon cancer SW620 cells remains unclear. METHODS Scratch wound healing assay, scanning electron microscope, MTT, immunofluorescence and laser confocal technique were used to investigate the suppressive effects of Ce6-PDT on the SW620 cells migration, pseudopodia, viability and the actin cytoskeleton. The effect of Ce6-PDT on actin-Filaments and signaling molecules of the Rac1/PAK1/LIMK1/cofilin signaling pathway in SW620 cells were examined by western blot analysis. RNA interference (RNAi) technology was used to establish siRNA-Rac1/SW620 cells. The combined effects of Ce6-PDT and RNAi on colon cancer SW620 cells was investigated by the same technology and methods mentioned above to clarify the signal transduction effect of Rac1/PAK1/LIMK1/cofilin signaling pathway in Ce6-PDT caused inhibition of SW620 cell migration. RESULTS The healing and migration rate of the SW620 cells was significantly reduced and the cell pseudopodia were reduced or disappeared by Ce6-PDT. The Immunofluorescence and western blot analysis results showed that Ce6-PDT destroy microfilament's original structure and significantly downregulated F-actin protein expression. The Rac1/PAK1/LIMK1/cofilin signaling pathway was downregulated by Ce6-PDT. Furthermore, the RNAi significantly strengthened the effect of Ce6-PDT on colon cancer SW620 cells migration. CONCLUSIONS Actin cytoskeleton and protrusions of SW620 cells correlate with its migration ability. Ce6-PDT suppresses SW620 cells migration by downregulating the Rac1/PAK1/LIMK1/cofilin signaling pathway, and its suppressive effect was enhanced by knocking down Rac1 gene expression.
Collapse
Affiliation(s)
- Reziwan Wufuer
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Hai-Xiu Ma
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Meng-Yu Luo
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Kai-Yue Xu
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Ling Kang
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China.
| |
Collapse
|
25
|
Kelkar M, Bohec P, Charras G. Mechanics of the cellular actin cortex: From signalling to shape change. Curr Opin Cell Biol 2020; 66:69-78. [DOI: 10.1016/j.ceb.2020.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
26
|
Lee S, Kumar S. Cofilin is required for polarization of tension in stress fiber networks during migration. J Cell Sci 2020; 133:jcs243873. [PMID: 32501289 PMCID: PMC7358140 DOI: 10.1242/jcs.243873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Cell migration is associated with the establishment of defined leading and trailing edges, which in turn requires polarization of contractile forces. While the actomyosin stress fiber (SF) network plays a critical role in enforcing this polarity, precisely how this asymmetry is established remains unclear. Here, we provide evidence for a model in which the actin-severing protein cofilin (specifically cofilin-1) participates in symmetry breakage by removing low-tension actomyosin filaments during transverse arc assembly. Cofilin knockdown (KD) produces a non-polarized SF architecture that cannot be rescued with chemokines or asymmetric matrix patterns. Whereas cofilin KD increases whole-cell prestress, it decreases prestress within single SFs, implying an accumulation of low-tension SFs. This notion is supported by time-lapse imaging, which reveals weakly contractile and incompletely fused transverse arcs. Confocal and super-resolution imaging further associate this failed fusion with the presence of crosslinker-rich, tropomyosin-devoid nodes at the junctions of multiple transverse arc fragments and dorsal SFs. These results support a model in which cofilin facilitates the formation of high-tension transverse arcs, thereby promoting mechanical asymmetry.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, USA
- UC Berkeley Department of Bioengineering, UC Berkeley, CA, USA
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, USA
- UC Berkeley Department of Bioengineering, UC Berkeley, CA, USA
- UC Berkeley Department of Chemical and Biomolecular Engineering, 274A Stanley Hall #1762, UC Berkeley, Berkeley, CA 94720-1762, UC Berkeley, CA, USA
| |
Collapse
|
27
|
Giardino E, Catalano R, Barbieri AM, Treppiedi D, Mangili F, Spada A, Arosio M, Mantovani G, Peverelli E. Cofilin is a mediator of RET-promoted medullary thyroid carcinoma cell migration, invasion and proliferation. Mol Cell Endocrinol 2019; 495:110519. [PMID: 31352037 DOI: 10.1016/j.mce.2019.110519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that originates from parafollicular thyroid C cells and accounts for 5% of thyroid cancers. In inherited cases of MTC, and in about 40% of sporadic cases, activating mutations of the receptor tyrosine kinase proto-oncogene RET are found. Constitutively active RET triggers signaling pathways involved in cell proliferation, survival and motility, but the mechanisms underlying malignant transformation of C-cells have been only partially elucidated. Cofilin is a key regulator of actin cytoskeleton dynamics. A crucial role of cofilin in tumor development, progression, invasion and metastasis has been demonstrated in different human cancers, but no data are available in MTC. Interestingly, RET activation upregulates cofilin gene expression. The aim of this study was to investigate cofilin contribution in invasiveness and growth of MTC cells, and its relevance in the context of mutant RET signaling. We found that cofilin transfection in human MTC cell line TT significantly increased migration (178 ± 44%, p < 0.001), invasion (165 ± 28%, p < 0.01) and proliferation (146 ± 18%, p < 0.001), accompanied by an increase of ERK1/2 phosphorylation (2.23-fold) and cyclin D1 levels (1.43-fold). Accordingly, all these responses were significantly reduced after genetic silencing of cofilin (-55 ± 10% migration, p < 0.001, -41 ± 8% invasion, p < 0.001, -17 ± 3% proliferation, p < 0.001). These results have been confirmed in primary cells cultures obtained from human MTCs. The inhibition of constitutively active RET in TT cells by both the RET pharmacological inhibitor RPI-1 and the transfection of dominant negative RET mutant (RETΔTK) resulted in a reduction of cofilin expression (-37 ± 8%, p < 0.001 and -31 ± 16%, p < 0.01, respectively). Furthermore, RPI-1 inhibitory effects on TT cell migration (-57 ± 13%, p < 0.01), but not on cell proliferation, were completely abolished in cells transfected with cofilin. In conclusion, these data indicate that an unbalanced cofilin expression, induced by oncogenic RET, contributes to promote MTC invasiveness and growth, suggesting the possibility of targeting cofilin pathway for more effective treatment of MTC.
Collapse
Affiliation(s)
- E Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - A M Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - F Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - E Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Bowes C, Redd M, Yousfi M, Tauzin M, Murayama E, Herbomel P. Coronin 1A depletion restores the nuclear stability and viability of Aip1/Wdr1-deficient neutrophils. J Cell Biol 2019; 218:3258-3271. [PMID: 31471458 PMCID: PMC6781450 DOI: 10.1083/jcb.201901024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Bowes et al. show that in zebrafish embryos deficient in the cofilin cofactor AIP1/Wdr1, neutrophils display F-actin as cytoplasmic aggregates, spatially uncoupled from active myosin, then undergo a progressive unwinding of their nucleus followed by eruptive cell death. This adverse phenotype is fully rescued by depletion of another cofilin cofactor, coronin 1A. Actin dynamics is central for cells, and especially for the fast-moving leukocytes. The severing of actin filaments is mainly achieved by cofilin, assisted by Aip1/Wdr1 and coronins. We found that in Wdr1-deficient zebrafish embryos, neutrophils display F-actin cytoplasmic aggregates and a complete spatial uncoupling of phospho-myosin from F-actin. They then undergo an unprecedented gradual disorganization of their nucleus followed by eruptive cell death. Their cofilin is mostly unphosphorylated and associated with F-actin, thus likely outcompeting myosin for F-actin binding. Myosin inhibition reproduces in WT embryos the nuclear instability and eruptive death of neutrophils seen in Wdr1-deficient embryos. Strikingly, depletion of the main coronin of leukocytes, coronin 1A, fully restores the cortical location of F-actin, nuclear integrity, viability, and mobility of Wdr1-deficient neutrophils in vivo. Our study points to an essential role of actomyosin contractility in maintaining the integrity of the nucleus of neutrophils and a new twist in the interplay of cofilin, Wdr1, and coronin in regulating F-actin dynamics.
Collapse
Affiliation(s)
- Charnese Bowes
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Michael Redd
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT
| | - Malika Yousfi
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Muriel Tauzin
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Emi Murayama
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France .,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| |
Collapse
|
29
|
Kumar R, Saha S, Sinha B. Cell spread area and traction forces determine myosin-II-based cortex thickness regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118516. [PMID: 31348954 DOI: 10.1016/j.bbamcr.2019.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
Actomyosin network under the plasma membrane of cells forms a cortical layer that regulates cellular deformations during different processes. What regulates the cortex? Characterized by its thickness, it is believed to be regulated by actin dynamics, filament-length regulators and myosin motor proteins. However, its regulation by cellular morphology (e.g. cell spread area) or mechanical microenvironment (e.g. substrate stiffness) has remained largely unexplored. In this study, super- and high-resolution imaging of actin in CHO cells demonstrates that at high spread areas (>450 μm2), the cortex is thinner, better separated as layers, and sensitive to deactivation of myosin II motors or reduction of substrate stiffness (and traction forces). In less spread cells (<400 μm2) such perturbations do not elicit a response. Myosin IIA's mechanosensing is limited here due to its lowered actin-bound fraction and higher turnover rate. Cofilin, in line with its competitive inhibitory role, is found to be overexpressed in these cells. To establish the causal relation, we initiate a spread area drop by de-adhesion and find enhanced actin dynamics and fragmentation along with oscillations and increase in thickness. This is more correlated to the reduction of traction forces than the endocytosis-based reduction in cell volume. Cortex thickness control by spread area is also found be true during differentiation of THP-1 monocytes to macrophages. Thus, we propose that spread area regulates cortex and its thickness by traction-based mechanosensing of myosin II.
Collapse
Affiliation(s)
- Rinku Kumar
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sajjita Saha
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Bidisha Sinha
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
30
|
Naganathan SR, Fürthauer S, Rodriguez J, Fievet BT, Jülicher F, Ahringer J, Cannistraci CV, Grill SW. Morphogenetic degeneracies in the actomyosin cortex. eLife 2018; 7:37677. [PMID: 30346273 PMCID: PMC6226289 DOI: 10.7554/elife.37677] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/16/2018] [Indexed: 01/07/2023] Open
Abstract
One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a ‘morphogenetic degeneracy’ where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.
Collapse
Affiliation(s)
| | - Sebastian Fürthauer
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Computational Biology, Flatiron Institute, New York, United States
| | - Josana Rodriguez
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom.,Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Bruno Thomas Fievet
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Carlo Vittorio Cannistraci
- BIOTEC, Technische Universität Dresden, Dresden, Germany.,Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,BIOTEC, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Brown JM, García-García MJ. Secretory pathway calcium ATPase 1 (SPCA1) controls mouse neural tube closure by regulating cytoskeletal dynamics. Development 2018; 145:dev.170019. [PMID: 30228103 DOI: 10.1242/dev.170019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
Neural tube closure relies on the apical constriction of neuroepithelial cells. Research in frog and fly embryos has found links between the levels of intracellular calcium, actomyosin dynamics and apical constriction. However, genetic evidence for a role of calcium in apical constriction during mammalian neurulation is still lacking. Secretory pathway calcium ATPase (SPCA1) regulates calcium homeostasis by pumping cytosolic calcium into the Golgi apparatus. Loss of function in Spca1 causes cranial exencephaly and spinal cord defects in mice, phenotypes previously ascribed to apoptosis. However, our characterization of a novel allele of Spca1 revealed that neurulation defects in Spca1 mutants are not due to cell death, but rather to a failure of neuroepithelial cells to apically constrict. We show that SPCA1 influences cell contractility by regulating myosin II localization. Furthermore, we found that loss of Spca1 disrupts actin dynamics and the localization of the actin remodeling protein cofilin 1. Taken together, our results provide evidence that SPCA1 promotes neurulation by regulating the cytoskeletal dynamics that promote apical constriction and identify cofilin 1 as a downstream effector of SPCA1 function.
Collapse
Affiliation(s)
- Joel M Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Abstract
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis. Summary: A summary of the composition, architecture, mechanics and function of the cellular actin cortex, which determines the shape of animal cells, and, thus, provides the foundation for cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
33
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 542] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Lee SJ, Park JW, Kang BS, Lee DS, Lee HS, Choi S, Kwon OS. Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration. BMB Rep 2018; 50:335-340. [PMID: 28502289 PMCID: PMC5498145 DOI: 10.5483/bmbrep.2017.50.6.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 01/25/2023] Open
Abstract
Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and 14-3-3ζ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to 14-3-3ζ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling. [BMB Reports 2017; 50(6): 335-340].
Collapse
Affiliation(s)
- Su Jin Lee
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu 41566, Korea
| | - Jeen Woo Park
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu 41566, Korea
| | - Beom Sik Kang
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu 41566, Korea
| | - Dong-Seok Lee
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu 41566, Korea
| | - Sooyoung Choi
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Oh-Shin Kwon
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
35
|
Dimri M, Bilogan C, Pierce LX, Naegele G, Vasanji A, Gibson I, McClendon A, Tae K, Sakaguchi TF. Three-dimensional structural analysis reveals a Cdk5-mediated kinase cascade regulating hepatic biliary network branching in zebrafish. Development 2017; 144:2595-2605. [PMID: 28720653 DOI: 10.1242/dev.147397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish. Further, we identified a previously unappreciated downstream kinase cascade regulated by Cdk5. Pharmacological manipulations of this downstream kinase cascade produced a crowded branching defect in the intrahepatic biliary network and influenced actin dynamics in biliary epithelial cells. We generated larvae carrying a mutation in cdk5 regulatory subunit 1a (cdk5r1a), an essential activator of Cdk5. cdk5r1a mutant larvae show similar branching defects as those observed in Cdk5 inhibitor-treated larvae. A small-molecule compound that interferes with the downstream kinase cascade rescued the mutant phenotype. These results provide new insights into branching morphogenesis of the intrahepatic biliary network.
Collapse
Affiliation(s)
- Manali Dimri
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cassandra Bilogan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lain X Pierce
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gregory Naegele
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Isabel Gibson
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Allyson McClendon
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin Tae
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takuya F Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
36
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
37
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
38
|
Hu S, Dasbiswas K, Guo Z, Tee YH, Thiagarajan V, Hersen P, Chew TL, Safran SA, Zaidel-Bar R, Bershadsky AD. Long-range self-organization of cytoskeletal myosin II filament stacks. Nat Cell Biol 2017; 19:133-141. [PMID: 28114270 DOI: 10.1038/ncb3466] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.
Collapse
Affiliation(s)
- Shiqiong Hu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kinjal Dasbiswas
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhenhuan Guo
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yee-Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | - Pascal Hersen
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Laboratoire Matire et Systèmes Complexes, UMR 7057 CNRS &Université Paris Diderot, Paris 75013, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, Virginia 20147, USA
| | - Samuel A Safran
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Cofilin Regulates Nuclear Architecture through a Myosin-II Dependent Mechanotransduction Module. Sci Rep 2017; 7:40953. [PMID: 28102353 PMCID: PMC5244421 DOI: 10.1038/srep40953] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
Structural features of the nucleus including shape, size and deformability impact its function affecting normal cellular processes such as cell differentiation and pathological conditions such as tumor cell migration. Despite the fact that abnormal nuclear morphology has long been a defining characteristic for diseases such as cancer relatively little is known about the mechanisms that control normal nuclear architecture. Mounting evidence suggests close coupling between F-actin cytoskeletal organization and nuclear morphology however, mechanisms regulating this coupling are lacking. Here we identify that Cofilin/ADF-family F-actin remodeling proteins are essential for normal nuclear structure in different cell types. siRNA mediated silencing of Cofilin/ADF provokes striking nuclear defects including aberrant shapes, nuclear lamina disruption and reductions to peripheral heterochromatin. We provide evidence that these anomalies are primarily due to Rho kinase (ROCK) controlled excessive contractile myosin-II activity and not to elevated F-actin polymerization. Furthermore, we demonstrate a requirement for nuclear envelope LINC (linker of nucleoskeleton and cytoskeleton) complex proteins together with lamin A/C for nuclear aberrations induced by Cofilin/ADF loss. Our study elucidates a pivotal regulatory mechanism responsible for normal nuclear structure and which is expected to fundamentally influence nuclear function.
Collapse
|
40
|
Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci Rep 2016; 6:35449. [PMID: 27762277 PMCID: PMC5071871 DOI: 10.1038/srep35449] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 01/25/2023] Open
Abstract
Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.
Collapse
|
41
|
Abstract
The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
42
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
43
|
De La Cruz EM, Martiel JL, Blanchoin L. Mechanical heterogeneity favors fragmentation of strained actin filaments. Biophys J 2016; 108:2270-81. [PMID: 25954884 DOI: 10.1016/j.bpj.2015.03.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022] Open
Abstract
We present a general model of actin filament deformation and fragmentation in response to compressive forces. The elastic free energy density along filaments is determined by their shape and mechanical properties, which were modeled in terms of bending, twisting, and twist-bend coupling elasticities. The elastic energy stored in filament deformation (i.e., strain) tilts the fragmentation-annealing reaction free-energy profile to favor fragmentation. The energy gradient introduces a local shear force that accelerates filament intersubunit bond rupture. The severing protein, cofilin, renders filaments more compliant in bending and twisting. As a result, filaments that are partially decorated with cofilin are mechanically heterogeneous (i.e., nonuniform) and display asymmetric shape deformations and energy profiles distinct from mechanically homogenous (i.e., uniform), bare actin, or saturated cofilactin filaments. The local buckling strain depends on the relative size of the compliant segment as well as the bending and twisting rigidities of flanking regions. Filaments with a single bare/cofilin-decorated boundary localize energy and force adjacent to the boundary, within the compliant cofilactin segment. Filaments with small cofilin clusters were predicted to fragment within the compliant cofilactin rather than at boundaries. Neglecting contributions from twist-bend coupling elasticity underestimates the energy density and gradients along filaments, and thus the net effects of filament strain to fragmentation. Spatial confinement causes compliant cofilactin segments and filaments to adopt higher deformation modes and store more elastic energy, thereby promoting fragmentation. The theory and simulations presented here establish a quantitative relationship between actin filament fragmentation thermodynamics and elasticity, and reveal how local discontinuities in filament mechanical properties introduced by regulatory proteins can modulate both the severing efficiency and location along filaments. The emergent behavior of mechanically heterogeneous filaments, particularly under confinement, emphasizes that severing in cells is likely to be influenced by multiple physical and chemical factors.
Collapse
Affiliation(s)
- Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Jean-Louis Martiel
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier, Grenoble, France.
| | - Laurent Blanchoin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier, Grenoble, France
| |
Collapse
|
44
|
Wang D, Naydenov NG, Feygin A, Baranwal S, Kuemmerle JF, Ivanov AI. Actin-Depolymerizing Factor and Cofilin-1 Have Unique and Overlapping Functions in Regulating Intestinal Epithelial Junctions and Mucosal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:844-58. [PMID: 26878213 DOI: 10.1016/j.ajpath.2015.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is a crucial regulator of the intestinal mucosal barrier, controlling the assembly and function of epithelial adherens and tight junctions (AJs and TJs). Junction-associated actin filaments are dynamic structures that undergo constant turnover. Members of the actin-depolymerizing factor (ADF) and cofilin protein family play key roles in actin dynamics by mediating filament severing and polymerization. We examined the roles of ADF and cofilin-1 in regulating the structure and functions of AJs and TJs in the intestinal epithelium. Knockdown of either ADF or cofilin-1 by RNA interference increased the paracellular permeability of human colonic epithelial cell monolayers to small ions. Additionally, cofilin-1, but not ADF, depletion increased epithelial permeability to large molecules. Loss of either ADF or cofilin-1 did not affect the steady-state morphology of AJs and TJs but attenuated de novo junctional assembly. The observed defects in AJ and TJ formation were accompanied by delayed assembly of the perijunctional filamentous actin belt. A total loss of ADF expression in mice did not result in a defective mucosal barrier or in spontaneous gut inflammation. However, ADF-null mice demonstrated increased intestinal permeability and exaggerated inflammation during dextran sodium sulfate-induced colitis. Our findings demonstrate novel roles for ADF and cofilin-1 in regulating the remodeling and permeability of epithelial junctions, as well as the role of ADF in limiting the severity of intestinal inflammation.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
45
|
Zhang C, Zhang W, Lu Y, Yan X, Yan X, Zhu X, Liu W, Yang Y, Zhou T. NudC regulates actin dynamics and ciliogenesis by stabilizing cofilin 1. Cell Res 2015; 26:239-53. [PMID: 26704451 DOI: 10.1038/cr.2015.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 01/09/2023] Open
Abstract
Emerging data indicate that actin dynamics is associated with ciliogenesis. However, the underlying mechanism remains unclear. Here we find that nuclear distribution gene C (NudC), an Hsp90 co-chaperone, is required for actin organization and dynamics. Depletion of NudC promotes cilia elongation and increases the percentage of ciliated cells. Further results show that NudC binds to and stabilizes cofilin 1, a key regulator of actin dynamics. Knockdown of cofilin 1 also facilitates ciliogenesis. Moreover, depletion of either NudC or cofilin 1 causes similar ciliary defects in zebrafish, including curved body, pericardial edema and defective left-right asymmetry. Ectopic expression of cofilin 1 significantly reverses the phenotypes induced by NudC depletion in both cultured cells and zebrafish. Thus, our data suggest that NudC regulates actin cytoskeleton and ciliogenesis by stabilizing cofilin 1.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen Zhang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi Lu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wei Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
46
|
Sari-Hassoun M, Clement MJ, Hamdi I, Bollot G, Bauvais C, Joshi V, Toma F, Burgo A, Cailleret M, Rosales-Hernández MC, Macias Pérez ME, Chabane-Sari D, Curmi PA. Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase. Biochem Pharmacol 2015; 102:45-63. [PMID: 26707799 DOI: 10.1016/j.bcp.2015.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research.
Collapse
Affiliation(s)
- Meryem Sari-Hassoun
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France; Laboratoire des Produits Naturels, LAPRONA, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria
| | - Marie-Jeanne Clement
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Imane Hamdi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | | | | | - Vandana Joshi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Flavio Toma
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Andrea Burgo
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Michel Cailleret
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatalisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México D.F. 11340, México
| | - Martha Edith Macias Pérez
- Laboratorio de Biofísica y Biocatalisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México D.F. 11340, México
| | - Daoudi Chabane-Sari
- Laboratoire des Produits Naturels, LAPRONA, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria
| | - Patrick A Curmi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France.
| |
Collapse
|
47
|
Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. eLife 2015; 4:e06126. [PMID: 26652273 PMCID: PMC4714978 DOI: 10.7554/elife.06126] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. DOI:http://dx.doi.org/10.7554/eLife.06126.001 Muscle cells are the best-known example of a cell in the human body that can contract. These cells contain bundles of filaments made of proteins called actin and myosin, which can generate pulling forces. However, many other cells in the human body also rely on similar “contractile actomyosin bundles” to help them stick to each other, to maintain the correct shape or to migrate from one location to another. These bundles in the non-muscle cells are often called “ventral stress fibers”. Ventral stress fibers develop from structures commonly referred to as “arcs”. Previous work has clearly established that ventral stress fibers are sensitive to mechanical forces. However, the underlying mechanism behind this process was not known, and it remained unclear how external forces could promote these actomyosin bundles to assemble, align and mature. Tojkander et al. documented the formation of ventral stress fibers in migrating human cells grown in the laboratory. This revealed that pre-existing arcs fuse with each other to form thicker and more contractile actomyosin bundles. The formation of these bundles then pulls on the two ends of the stress fibers that are attached to sites on the edges of the cell. Tojkander et al. also showed that this tension inactivates a protein called VASP, which is also found at these sites. Inactivating VASP inhibits the construction of actin filaments, which in turn stops the stress fibers from elongating and allows them to contract. Further experiments then revealed that ventral stress fibers are maintained and can even become thicker under a sustained pulling force. Conversely, stress fibers that were not under tension were decorated by proteins that promote the disassembly of actin filaments. This subsequently led to the disappearance of these fibers. Future studies could now examine whether the newly identified pathway, which allows mechanical forces to control the assembly and alignment of stress fibers, is conserved in other cell-types. Furthermore, and because the assembly of such mechanosensitive actomyosin bundles is often defective in cancer cells, it will also be important to study this pathway’s significance in the context of cancer progression. DOI:http://dx.doi.org/10.7554/eLife.06126.002
Collapse
Affiliation(s)
- Sari Tojkander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gergana Gateva
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Amjad Husain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Kanellos G, Zhou J, Patel H, Ridgway RA, Huels D, Gurniak CB, Sandilands E, Carragher NO, Sansom OJ, Witke W, Brunton VG, Frame MC. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity, and Cell Survival. Cell Rep 2015; 13:1949-64. [PMID: 26655907 PMCID: PMC4678118 DOI: 10.1016/j.celrep.2015.10.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Genetic co-depletion of the actin-severing proteins ADF and CFL1 triggers catastrophic loss of adult homeostasis in multiple tissues. There is impaired cell-cell adhesion in skin keratinocytes with dysregulation of E-cadherin, hyperproliferation of differentiated cells, and ultimately apoptosis. Mechanistically, the primary consequence of depleting both ADF and CFL1 is uncontrolled accumulation of contractile actin stress fibers associated with enlarged focal adhesions at the plasma membrane, as well as reduced rates of membrane protrusions. This generates increased intracellular acto-myosin tension that promotes nuclear deformation and physical disruption of the nuclear lamina via the LINC complex that normally connects regulated actin filaments to the nuclear envelope. We therefore describe a pathway involving the actin-severing proteins ADF and CFL1 in regulating the dynamic turnover of contractile actin stress fibers, and this is vital to prevent the nucleus from being damaged by actin contractility, in turn preserving cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jing Zhou
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Hitesh Patel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Christine B Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
49
|
Chronophin is a glial tumor modifier involved in the regulation of glioblastoma growth and invasiveness. Oncogene 2015; 35:3163-77. [DOI: 10.1038/onc.2015.376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 02/02/2023]
|
50
|
Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 2015; 17:1435-45. [PMID: 26414403 PMCID: PMC4628555 DOI: 10.1038/ncb3246] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient.
Collapse
|