1
|
Wu Q, Shan X, Li X, Guan J, Song F, Zhou X, Fan Y, Guo L. Salidroside ameliorates neuroinflammation in autistic rats by inhibiting NLRP3/Caspase-1/GSDMD signal pathway. Brain Res Bull 2025; 220:111132. [PMID: 39557220 DOI: 10.1016/j.brainresbull.2024.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder that place a huge economic and emotional burden on society. Salidroside (Sal) has been reported to have therapeutic effects in a variety of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), however no studies have been conducted to show whether salidroside is effective in ASD. Pyroptosis is involved in the pathology of a variety of neurological disorders, but has not been reported in ASD. OBJECTIVES The aim of this study was to investigate whether pyroptosis is involved in the pathological mechanisms of ASD, and whether salidroside has an impact on the pathological process of ASD by regulating pyroptosis. METHODS We obtained a rat model of offspring ASD by prenatal intraperitoneal administration of valproic acid (VPA, 500 mg/kg) to pregnant rats, and we treated seven-day-old offspring ASD with salidroside (Sal, 30 mg/kg once daily) by gavage for 28 days as the salidroside treatment group. We examined the hippocampal state of ASD rats and the effect of salidroside on the hippocampus of VPA-induced ASD rats. In addition, in BV2 cells treated with LPS/Nig, we explored the mechanisms by which salidroside regulates neuroinflammation and pyroptosis in vitro. RESULTS In vivo, we observed VPA-induced hippocampal neuronal damage and activation of the NLRP3/Caspase-1/GSDMD signalling pathway in ASD rats, while salidroside alleviated neuronal damage in ASD rats. In vitro, we found that salidroside inhibited LPS/Nig-induced neuroinflammation and activation of the NLRP3/Caspase-1/GSDMD signalling pathway. These results suggest that the therapeutic effect of salidroside on hippocampal damage in ASD rats may be related to NLRP3/Caspase-1/GSDMD-mediated pyroptosis. CONCLUSIONS Our work showed that salidroside ameliorates hippocampal neurological damage in ASD rats by targeting NLRP3/Caspase-1/GSDMD-mediated pyroptosis, providing a potential therapy drug for ASD.
Collapse
Affiliation(s)
- Qingwei Wu
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Xiaohang Shan
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Xuemei Li
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Jian Guan
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Fanxu Song
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Xinyu Zhou
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Yingying Fan
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China
| | - Lanmin Guo
- School of Rehabilitation Medicine, Jiamusi University, No.6 Qiaobei Road, Jiamusi 154002, China.
| |
Collapse
|
2
|
Liao A, Zheng W, Wang S, Wang N, Li Y, Chen D, Wang Y. Sortilin is associated with progranulin deficiency and autism-like behaviors in valproic acid-induced autism rats. CNS Neurosci Ther 2024; 30:e70015. [PMID: 39218796 PMCID: PMC11366450 DOI: 10.1111/cns.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Neuroinflammation and microglial activation-related dendritic injury contribute to the pathogenesis of Autism Spectrum Disorder (ASD). Previous studies show that Progranulin (PGRN) is a growth factor associated with inflammation and synaptic development, but the role of PGRN in autism and the mechanisms underlying changes in PGRN expression remain unclear. AIMS To investigate the impact of PGRN in autism, we stereotactically injected recombinant PGRN into the hippocampus of ASD model rats. Additionally, we explored the possibility that sortilin may be the factor behind the alterations in PGRN by utilizing SORT1 knockdown. Ultimately, we aimed to identify potential targets for the treatment of autism. RESULTS PGRN could alleviate inflammatory responses, protect neuronal dendritic spines, and ameliorate autism-like behaviors. Meanwhile, elevated expression of sortilin and decreased levels of PGRN were observed in both ASD patients and rats. Enhanced sortilin levels facilitated PGRN internalization into lysosomes. Notably, suppressing SORT1 expression amplified PGRN levels, lessened microglial activation, and mitigated inflammation, thereby alleviating autism-like behaviors. CONCLUSION Collectively, our findings highlight elevated sortilin levels in ASD rat brains, exacerbating dendrite impairment by affecting PGRN expression. PGRN supplementation and SORT1 knockdown hold potential as therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Ailing Liao
- NHC Key Laboratory of Birth Defects and Reproductive HealthChongqing Population and Family Planning Science and Technology Research InstituteChongqingChina
| | - Wenxia Zheng
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | | | - Nashi Wang
- Library/ArchiveChongqing Medical UniversityChongqingChina
| | | | - Di Chen
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Yan Wang
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Kurokawa S, Nomura K, Sanada K, Miyaho K, Ishii C, Fukuda S, Iwamoto C, Naraoka M, Yoneda S, Imafuku M, Matsuzaki J, Saito Y, Mimura M, Kishimoto T. A comparative study on dietary diversity and gut microbial diversity in children with autism spectrum disorder, attention-deficit hyperactivity disorder, their neurotypical siblings, and non-related neurotypical volunteers: a cross-sectional study. J Child Psychol Psychiatry 2024; 65:1184-1195. [PMID: 38562118 DOI: 10.1111/jcpp.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 04/04/2024]
Abstract
BACKGROUND Previous research has shown a significant link between gut microbiota in children with autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). However, much remains unknown because of the heterogeneity of disorders and the potential confounders such as dietary patterns and control group variations. METHODS Children aged 6-12 years who had been clinically diagnosed with ASD and/or ADHD, their unaffected neurotypical siblings, and non-related neurotypical volunteers were recruited cross-sectionally. The ASD diagnosis was confirmed using the Autism Diagnostic Observation Schedule-2 (ADOS-2) in all patients, including those with ADHD. Standardized DNA extraction and sequencing methods were used to compare gut microbial alpha-diversity among the groups. Dietary diversity was calculated from a standardized dietary questionnaire form. We compared the difference in gut microbiome between patients with ASD and/or ADHD with neurotypical siblings and non-related neurotypical controls. RESULTS Ninety-eight subjects were included in the study (18 with ASD, 19 with ADHD, 20 with both ASD and ADHD, 13 neurotypical siblings, and 28 non-related neurotypical controls). The alpha-diversity indices, such as Chao 1 and Shannon index, showed a significant difference between the groups in a Linear mixed-effect model (F(4, 93) = 4.539, p = .02), (F(4, 93) = 3.185, p = .017), respectively. In a post-hoc pairwise comparison, patients with ASD had lower alpha-diversity compared with non-related controls after Bonferroni correction. Dietary diversity shown in Shannon index did not differ among the groups (F(4, 84) = 1.494, p = .211). CONCLUSIONS Our study indicates disorder-specific microbiome differences in patients with ASD. In future research on gut microbiota in neurodevelopmental disorders, it is necessary to consider the impact of ASD and ADHD co-occurrence, and strictly control for background information such as diet, to elucidate the gut-microbiota interaction in ASD and ADHD for exploring the potential of therapeutic interventions.
Collapse
Affiliation(s)
- Shunya Kurokawa
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Kensuke Nomura
- Department of Child Psychiatry, Shimada Ryoiku Medical Center for Challenged Children, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Chiaki Iwamoto
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Minori Naraoka
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Shintaro Yoneda
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Kacimi FE, Didou L, Ed Day S, Azzaoui FZ, Ramchoun M, Berrougui H, Khalki H, Boulbaroud S. Gut microbiota, vitamin A deficiency and autism spectrum disorder: an interconnected trio - a systematic review. Nutr Neurosci 2024:1-11. [PMID: 39137920 DOI: 10.1080/1028415x.2024.2389498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Accumulating evidence proves that children with autism have gastrointestinal problems. However, a significant difference in gut microbiota (GM) exists between autistic and non-autistic children. These changes in the GM may stem from several factors. Recently, researchers focused on nutritional factors, especially vitamin deficiency. Thus, our systematic review investigates the connections among autism, GM alterations, and vitamin A deficiency (VAD), by analyzing studies sourced from PubMed and Embase databases spanning from 2010 to 2022. Adhering to PRISMA guidelines, we meticulously selected 19 pertinent studies that established links between autism and GM changes or between autism and VAD. Our findings uniformly point to significant alterations in the GM of individuals with autism, indicating these changes as promising biomarkers for the disorder. Despite the consistent association of GM alterations with autism, our analysis revealed no notable differences in GM composition between individuals with autism and those experiencing VAD. This suggests that VAD, especially when encountered early in life, might play a role in the onset of autism. Furthermore, our review underscores a distinct correlation between reduced levels of retinoic acid in children with autism, a disparity that could relate to the severity of autism symptoms. The implications of our findings are twofold: they not only reinforce the significance of GM alterations as potential diagnostic markers but also spotlight the critical need for further research into nutritional interventions. Specifically, vitamin A supplementation emerges as a promising avenue for alleviating autism symptoms, warranting deeper investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Fatima Ezzahra Kacimi
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Latifa Didou
- Unit of Neuroscience, Neuroimmunology and Behavior, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Soumia Ed Day
- Unit of Neuroscience, Neuroimmunology and Behavior, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima Zahra Azzaoui
- Unit of Neuroscience, Neuroimmunology and Behavior, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Mhamed Ramchoun
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hicham Berrougui
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hanane Khalki
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Samira Boulbaroud
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
5
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
6
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
7
|
Korteniemi J, Karlsson L, Aatsinki A. Systematic Review: Autism Spectrum Disorder and the Gut Microbiota. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:242-251. [PMID: 38680985 PMCID: PMC11046714 DOI: 10.1176/appi.focus.24022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Objective Autism spectrum disorders (ASD) are a varying group of disorders characterized by deficiency in social interaction and restrictive patterns of behavior and interests. While there are several studies focusing on the neuro-psychiatric pathogenesis of ASD, its etiology remains unclear. The role of gut-brain-axis in ASD has been studied increasingly and a correlation between symptoms and the composition of gut microbiota has been documented in various works. Despite this, the significance of individual microbes and their function is still widely unknown. This work aims to elucidate the current knowledge of the interrelations between ASD and the gut microbiota in children based on scientific evidence. Methods This is a systematic review done by a literature search focusing on the main findings concerning the gut microbiota composition, interventions targeting the gut microbiota, and possible mechanisms explaining the results in children aged between 2 and 18 years of age. Results Most studies in this review found significant differences between microbial communities, while there was notable variation in results regarding diversity indices or taxonomic level abundance. The most consistent results regarding taxa differences in ASD children's gut microbiota were higher levels of Proteobacteria, Actinobacteria and Sutterella compared to controls. Conclusion These results show that the gut microbiota of children with ASD is altered compared to one of neurotypically developed children. More research is needed to discover whether some of these features could be used as potential biomarkers for ASD and how the gut microbiota could be targeted in therapeutical interventions.Appeared originally in Acta Psychiatr Scand 2023;148:242-254.
Collapse
Affiliation(s)
- Jenni Korteniemi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland (Korteniemi, Karlsson, Aatsinki); Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland (Karlsson, Aatsinki); Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland (Karlsson)
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland (Korteniemi, Karlsson, Aatsinki); Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland (Karlsson, Aatsinki); Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland (Karlsson)
| | - Anna Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland (Korteniemi, Karlsson, Aatsinki); Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland (Karlsson, Aatsinki); Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland (Karlsson)
| |
Collapse
|
8
|
Li H, Guo W, Li S, Sun B, Li N, Xie D, Dong Z, Luo D, Chen W, Fu W, Zheng J, Zhu J. Alteration of the gut microbiota profile in children with autism spectrum disorder in China. Front Microbiol 2024; 14:1326870. [PMID: 38420215 PMCID: PMC10899803 DOI: 10.3389/fmicb.2023.1326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with alterations in the gut microbiome. However, there are few studies on gut microbiota of children with ASD in China, and there is a lack of consensus on the changes of bacterial species. Purpose Autism spectrum disorder (ASD) is associated with alterations in the gut microbiome. However, there are few studies on gut microbiota of children with ASD in China, and there is a lack of consensus on the changes of bacterial species. Methods We used 16S rRNA sequencing to analyze ASD children (2 to 12 years), HC (2 to 12 years). Results Our findings showed that the α-diversity, composition, and relative abundance of gut microbiota in the ASD group were significantly different from those in the HC groups. Compared with the HC group, the α-diversity in the ASD group was significantly decreased. At the genus level, the relative abundance of g_Faecalibacterium, g_Blautia, g_Eubacterium_eligens_group, g_Parasutterella, g_Lachnospiraceae_NK4A136_group and g_Veillonella in ASD group was significantly increased than that in HC groups, while the relative abundance of g_Prevotella 9 and g_Agathobacter was significantly decreased than that in HC groups. In addition, KEGG pathway analysis showed that the microbial functional abnormalities in ASD patients were mainly concentrated in metabolic pathways related to fatty acid, amino acid metabolism and aromatic compound metabolism, and were partially involved in neurotransmitter metabolism. Conclusion This study revealed the characteristics of gut microbiota of Chinese children with ASD and provided further evidence of gut microbial dysbiosis in ASD.
Collapse
Affiliation(s)
- Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Guo
- Stroke Center, Puyang People's Hospital, Puyang, China
| | - Sijie Li
- Department of Pediatrics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dongjing Xie
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zongming Dong
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dan Luo
- Department of Neurology, Yunyang People's Hospital, Yunyang, China
| | - Wei Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
10
|
Gomes de Oliveira LI, Clementino JR, Salgaço MK, de Oliveira SPA, Dos Santos Lima M, Mesa V, de Souza EL, Vinderola CG, Magnani M, Sivieri K. Revealing the beneficial effects of a dairy infant formula on the gut microbiota of early childhood children with autistic spectrum disorder using static and SHIME® fermentation models. Food Funct 2023; 14:8964-8974. [PMID: 37724612 DOI: 10.1039/d3fo01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This study evaluated the impact of the Milnutri Profutura® (MNP) dairy infant formula on the gut microbiota of early childhood children (three to five years) with Autistic Spectrum Disorder (ASD) using static fermentation (time zero, 24, and 48 h) and the Simulator of the Human Intestinal Microbiol Ecosystem (SHIME®) (time zero, 72 h, and 7 days). The relative abundance of selected intestinal bacterial groups, pH values, organic acids, and sugars were verified at time zero, 24, and 48 h using flow cytometry and measurements. In addition, the diversity and changes in the gut microbiota, and the amounts of acetic, butyric, and propionic acids and ammonium ions (NH4+) in fermentation using the SHIME® were measured at time zero, 72 h, and 7 days. MNP increased Lactobacillus/Enterococcus and Bifidobacterium populations and decreased Bacteroides/Prevotella, Clostridium histolyticum and Eubacterium rectale/Clostridium coccoides populations (p < 0.05) at 24 and 48 h of static fermentation, showing a positive prebiotic activity score (65.18 ± 0.07). The pH, fructose and glucose decreased, while lactic, butyric, and propionic acids increased (p < 0.05) at 48 h of static fermentation. MNP increased (p < 0.05) the Firmicutes phylum during the fermentation in SHIME®. MNP decreased the diversity at 72 h of fermentation, mostly by the increase (p < 0.05) in the Lactobacillus genus. Microbial groups considered harmful such as Lachnospiraceae, Negativicoccus, and Lachnoclostridium were inhibited after administration with MNP. Propionic and butyric acids increased at 72 h and NH4+ decreased (p < 0.05) at the end of fermentation with MNP. The results indicate MNP as an infant formula which may benefit the gut microbiota of children with ASD.
Collapse
Affiliation(s)
- Louise Iara Gomes de Oliveira
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Jéssika Rodrigues Clementino
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, Laboratory of Food Microbiology, School of Pharmaceutical Sciences, São Paulo State University, Brazil
| | - Sônia Paula Alexandrino de Oliveira
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Campus Petrolina, Brazil
| | - Victoria Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Evandro Leite de Souza
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Celso Gabriel Vinderola
- Department of Biotechnology and Food Technology, Faculty of Chemical Engineering, Universidad Nacional del Litoral
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Katia Sivieri
- Department of Food and Nutrition, Laboratory of Food Microbiology, School of Pharmaceutical Sciences, São Paulo State University, Brazil
| |
Collapse
|
11
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
12
|
Korteniemi J, Karlsson L, Aatsinki A. Systematic review: Autism spectrum disorder and the gut microbiota. Acta Psychiatr Scand 2023; 148:242-254. [PMID: 37395517 DOI: 10.1111/acps.13587] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Autism spectrum disorders (ASD) are a varying group of disorders characterized by deficiency in social interaction and restrictive patterns of behavior and interests. While there are several studies focusing on the neuropsychiatric pathogenesis of ASD, its etiology remains unclear. The role of gut-brain-axis in ASD has been studied increasingly and a correlation between symptoms and the composition of gut microbiota has been documented in various works. Despite this, the significance of individual microbes and their function is still widely unknown. This work aims to elucidate the current knowledge of the interrelations between ASD and the gut microbiota in children based on scientific evidence. METHODS This is a systematic review done by a literature search focusing on the main findings concerning the gut microbiota composition, interventions targeting the gut microbiota, and possible mechanisms explaining the results in children aged between 2 and 18 years of age. RESULTS Most studies in this review found significant differences between microbial communities, while there was notable variation in results regarding diversity indices or taxonomic level abundance. The most consistent results regarding taxa differences in ASD children's gut microbiota were higher levels of Proteobacteria, Actinobacteria and Sutterella compared to controls. CONCLUSION These results show that the gut microbiota of children with ASD is altered compared to one of neurotypically developed children. More research is needed to discover whether some of these features could be used as potential biomarkers for ASD and how the gut microbiota could be targeted in therapeutical interventions.
Collapse
Affiliation(s)
- Jenni Korteniemi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Anna Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Zarezadeh M, Mahmoudinezhad M, Hosseini B, Khorraminezhad L, Razaghi M, Alvandi E, Saedisomeolia A. Dietary pattern in autism increases the need for probiotic supplementation: A comprehensive narrative and systematic review on oxidative stress hypothesis. Clin Nutr 2023; 42:1330-1358. [PMID: 37418842 DOI: 10.1016/j.clnu.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorders (ASDs) are associated with specific dietary habits, including limited food selection and gastrointestinal problems, resulting in an altered gut microbiota. Autistic patients have an elevated abundance of certain gut bacteria associated with increased oxidative stress in the gastrointestinal tract. Probiotic supplementation has been shown to decrease oxidative stress in a simulated gut model, but the antioxidant effects of probiotics on the oxidative stress of the gut in autistic patients have not been directly studied. However, it is speculated that probiotic supplementation may help decrease oxidative stress in the gastrointestinal tract of autistic patients due to their specific dietary habits altering the microbiota. PubMed, Scopus and Web of Science databases and Google Scholar were searched up to May 2023. This systematic-narrative review aims to present the latest evidence regarding the changes in eating habits of autistic children which may further increase the gut microbiota induced oxidative stress. Additionally, this review will assess the available literature on the effects of probiotic supplementation on oxidative stress parameters.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafshe Hosseini
- Clinical Research and Knowledge Transfer Unit on Childhood Asthma, Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada
| | - Leila Khorraminezhad
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Maryam Razaghi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ehsan Alvandi
- School of Medicine, Western Sydney University, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada.
| |
Collapse
|
14
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
16
|
Alshehri S, Nadeem A, Ahmad SF, Alqarni SS, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alqarni SA, Bakheet SA. Disequilibrium in the Thioredoxin Reductase-1/Thioredoxin-1 Redox Couple Is Associated with Increased T-Cell Apoptosis in Children with Autism. Metabolites 2023; 13:metabo13020286. [PMID: 36837907 PMCID: PMC9964134 DOI: 10.3390/metabo13020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric childhood disorder that affects social skill and language development, and is characterized by persistent stereotypic behaviors, restricted social interests, and impaired language/social skills. ASD subjects have dysregulated immune responses due to impairment in inflammatory and antioxidant signaling in immune cells, such as T cells. Thioredoxin reductase-1 (TrxR1) and thioredoxin-1 (Trx1) play a crucial role in the maintenance of redox equilibrium in several immune cells, including T cells. T-cell apoptosis plays a crucial role in the pathogenesis of several inflammatory diseases. However, it remains to be explored how the TrxR1/Trx1 redox couple affects T-cells apoptosis in ASD and typically developing control (TDC) groups. Therefore, this single-center cross-sectional study explored the expression/activity of TrxR1/Trx1, and Bcl2, 7-AAD/annexin V immunostaining in T cells of ASD (n = 25) and TDC (n = 22) groups. Further, effects of the LPS were determined on apoptosis in TDC and ASD T cells. Our data show that T cells have increased TrxR1 expression, while having decreased Trx1 expression in the ASD group. Further, TrxR enzymatic activity was also elevated in T cells of the ASD group. Furthermore, T cells of the ASD group had a decreased Bcl2 expression and an increased % of annexin V immunostaining. Treatment of T cells with LPS caused greater apoptosis in the ASD group than the TDC group, with same treatment. These data reveal that the redox couple TrxR1/Trx1 is dysregulated in T cells of ASD subjects, which is associated with decreased Bcl2 expression and increased apoptosis. This may lead to decreased survival of T cells in ASD subjects during chronic inflammation. Future studies should investigate environmental factors, such as gut dysbiosis and pollutants, that may cause abnormal immune responses in the T cells of ASD subjects due to chronic inflammation.
Collapse
Affiliation(s)
- Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S. Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol 2022; 13:1029891. [PMID: 36388178 PMCID: PMC9659947 DOI: 10.3389/fneur.2022.1029891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein associated with early inflammatory changes upon extracellular secretion expressed in various cells, including neurons and microglia. With the progress of research, neuroinflammation is believed to be involved in the pathogenesis of neurological diseases such as Parkinson's, epilepsy, and autism. As a key promoter of neuroinflammation, HMGB1 is thought to be involved in the pathogenesis of Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis. However, in the clinic, HMGB1 has not been described as a biomarker for the above-mentioned diseases. However, the current preclinical research results show that HMGB1 antagonists have positive significance in the treatment of Parkinson's disease, stroke, traumatic brain injury, epilepsy, and other diseases. This review discusses the possible mechanisms by which HMGB1 mediates Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1 as a biomarker for these diseases. Future research needs to further explore the underlying molecular mechanisms and clinical translation.
Collapse
Affiliation(s)
- Di Mao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Han
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hongyang Zhao
| |
Collapse
|
18
|
Soltysova M, Tomova A, Ostatnikova D. Gut Microbiota Profiles in Children and Adolescents with Psychiatric Disorders. Microorganisms 2022; 10:2009. [PMID: 36296284 PMCID: PMC9608804 DOI: 10.3390/microorganisms10102009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our work is to summarize the current state of knowledge on gut microbiota differences in children and adolescents with psychiatric disorders. To find the relevant articles, the PubMed, Web of Science, and Google Scholar databases were searched. Articles in English presenting original data and comparing the composition of gut microbiota in child psychiatric patients with gut microbiota in healthy children and adolescents were selected. Finally, we identified 55 articles eligible for our purpose. The majority of patients with autism spectrum disorders (ASD) were investigated. A smaller number of studies evaluating the gut microbiota in children and adolescents with attention-deficit/hyperactivity disorder (ADHD), Rett syndrome, anorexia nervosa, depressive disorder (DD), and tic disorders were found. The main findings of this research are discussed in our review, focusing on the age-related gut microbiota specificity for psychiatric disorders and the differences between individual diagnosis. To conclude, the gut microbiota in children and adolescents with psychiatric disorders is evidently different from that in controls. The most pronounced differences are seen in children with ASD, less in ADHD. Moreover, the changes are not identical to those in adult psychiatric patients, as Ruminococcus, Turicibacter, and Bilophila were increased in adults, and decreased in children with ASD, and Parabacteroides and Alistipes were more frequently represented in adults, but less frequently represented in children with depression. The available data suggest some genera have a different abundance in individual psychiatric disorders (e.g., Bilophila, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, and Ruminococcus), suggesting their importance for the gut-brain axis. Other bacterial genera might be more important for the pathophysiology of specific disorder in children and adolescents, as Akkermansia and Desulfovibrio for ASD, or Romboutsia for DD. Based on the research findings, we assume that gut microbiota corrections have the potential to improve clinical symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Marcela Soltysova
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine in Bratislava, Comenius University, 813 72 Bratislava, Slovakia
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Aleksandra Tomova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Daniela Ostatnikova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| |
Collapse
|
19
|
Nour-Eldine W, Ltaief SM, Abdul Manaph NP, Al-Shammari AR. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol 2022; 13:950275. [PMID: 36268027 PMCID: PMC9578337 DOI: 10.3389/fimmu.2022.950275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormal cytokine levels in circulating blood have been repeatedly reported in autism; however, the underlying cause remains unclear. This systematic review aimed to investigate cytokine levels in peripheral blood compartments and identify their potential immune cellular sources in subjects with autism through comparison with controls. We conducted an electronic database search (PubMed, Scopus, ProQuest Central, Ovid, SAGE Journals, and Wiley Online Library) from inception (no time limits) to July 9, 2020, and identified 75 relevant articles. Our qualitative data synthesis focused on results consistently described in at least three independent studies, and we reported the results according to the PRISMA protocol. We found that compared with controls, in subjects with autism, cytokines IL-6, IL-17, TNF-α, and IL-1β increased in the plasma and serum. We also identified monocytes, neutrophils, and CD4+ T cells as potential sources of these elevated cytokines in autism. Cytokines IFN-γ, TGF-β, RANTES, and IL-8 were increased in the plasma/serum of subjects with autism, and IFN-γ was likely produced by CD4+ T cells and natural killer (NK) cells, although conflicting evidence is present for IFN-γ and TGF-β. Other cytokines-IL-13, IL-10, IL-5, and IL-4-were found to be unaltered in the plasma/serum and post-stimulated blood immune cells in autistic individuals as compared with controls. The frequencies of T cells, monocytes, B cells, and NK cells were unchanged in subjects with autism as opposed to controls, suggesting that abnormal cytokines were unlikely due to altered cell numbers but might be due to altered functioning of these cells in autism. Our results support existing studies of abnormal cytokines in autism and provide comprehensive evidence of potential cellular sources of these altered cytokines in the context of autism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205224, identifier [CRD42020205224].
Collapse
Affiliation(s)
| | | | | | - Abeer R. Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
20
|
Jung TH, Hwang HJ, Han KS. Correlation of attention deficit hyperactivity disorder with gut microbiota according to the dietary intake of Korean elementary school students. PLoS One 2022; 17:e0275520. [PMID: 36178961 PMCID: PMC9524712 DOI: 10.1371/journal.pone.0275520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the impact of dietary patterns on the gut microbiota and concentration of short-chain fatty acids in the feces of Korean elementary school students. The dietary intake and ADHD assessment of 40 Korean elementary school students were analyzed using a dish-based semi-quantitative food frequency questionnaire. Analysis of gut microbiota and short-chain fatty acids composition were performed using the real-time polymerase chain reaction, metagenomics, and gas chromatography methods. The dietary patterns of participants were divided into four groups: healthy, processed food, fish and shellfish, and meat. The participants were also divided into two groups according to their ADHD scores: 0–30, control group; over 30, ADHD group. The ADHD score of the processed food group was significantly higher than that of the healthy group. The processed food and ADHD groups showed significantly higher abundance of harmful bacteria, such as the Enterobacter, Escherichia coli, and Clostridium strains, and markedly lower abundance of beneficial bacteria, such as the Bifidobacterium and Ruminococcus strains, than the control group. The heat maps of metagenomics indicated that each group was separated into distinct clusters, and the processed food and ADHD groups showed significantly lower α-diversity of gut microbiota than the control group. In these groups, the concentration of acetate or butyrate in the feces was significantly lower than that in the control group. These results may indicate that imbalanced diets can disturb the colonic microbial balance and are likely to become a potential risk factor for the prevalence of ADHD.
Collapse
Affiliation(s)
- Tae-Hwan Jung
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| | - Hyo-Jeong Hwang
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| | - Kyoung-Sik Han
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
- * E-mail:
| |
Collapse
|
21
|
Alamoudi MU, Hosie S, Shindler AE, Wood JL, Franks AE, Hill-Yardin EL. Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Front Cell Infect Microbiol 2022; 12:905841. [PMID: 35846755 PMCID: PMC9286068 DOI: 10.3389/fcimb.2022.905841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.
Collapse
Affiliation(s)
- Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
| | - Anya E. Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Jennifer L. Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- *Correspondence: Elisa L. Hill-Yardin,
| |
Collapse
|
22
|
Xie X, Li L, Wu X, Hou F, Chen Y, Shi L, Liu Q, Zhu K, Jiang Q, Feng Y, Xiao P, Zhang J, Gong J, Song R. Alteration of the fecal microbiota in Chinese children with autism spectrum disorder. Autism Res 2022; 15:996-1007. [PMID: 35403356 DOI: 10.1002/aur.2718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is associated with altered gut microbiota. However, there has been little consensus on the altered bacterial species and studies have had small sample sizes. We aimed to identify the taxonomic composition and evaluate the changes in the fecal microbiota in Chinese children with ASD by using a relatively large sample size. We conducted a case-control study of 101 children with ASD and 103 healthy controls in China. Demographic information and fecal samples were collected, and the V3-V4 hypervariable regions of the bacterial 16S ribosomal RNA (rRNA) gene were sequenced. The alpha and beta diversities between the two groups were significantly different. After correcting for multiple comparisons, at the phylum level the relative abundances of Actinobacteria and Proteobacteria in the case group were significantly higher than those in the control group. The relative abundance of the Escherichia-Shigella genus in the case group was significantly higher than that of the control group, and the relative abundance of Blautia and unclassified_f__Lachnospiraceae in the control group were higher than that of the case group. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that children with ASD may have disturbed functional pathways, such as amino acid metabolism, cofactor and vitamin metabolism, and the AMP-activated protein kinase signaling pathway. This study revealed the characteristics of the intestinal flora of Chinese children with ASD and provided further evidence of gut microbial dysbiosis in ASD. LAY SUMMARY: This study characterized the gut microbiota composition of 101 children with ASD and 103 healthy controls in China. The altered gut microbiota may contribute significantly to the risk of ASD, including significant increases in the relative abundances of Actinobacteria, Proteobacteria and Escherichia-Shigella and significant decrease of Blautia and unclassified_f__Lachnospiraceae. This study provided further evidence of gut microbial dysbiosis in ASD.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Xiaoqian Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Liuwei Shi
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Bonnechère B, Amin N, van Duijn C. The Role of Gut Microbiota in Neuropsychiatric Diseases – Creation of An Atlas-Based on Quantified Evidence. Front Cell Infect Microbiol 2022; 12:831666. [PMID: 35360098 PMCID: PMC8964285 DOI: 10.3389/fcimb.2022.831666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
There is a growing body of evidence highlighting the significant role of gut microbiota in various pathologies. We performed a systematic review to review the different microbiota involved in neuropsychiatric diseases. 50 studies (23 studies for autism spectrum disorders, 18 for major depression, and 9 for schizophrenia), representing 2,137 patients and 2,844 controls. Concerning the microbiota, the genera Prevotella, Clostridium, Bacteroides, Bifidobacterium, Ruminococcus, Megamonas, and Faecalbacterium were the ones detected with the most frequent variation of their relatives abundance. We also assess the overlap between the different pathologies. This study provides new insights into the complex relationship between the brain and the gut and the implications in neuropsychiatric pathologies. The identification of unique signatures in neuropsychiatric diseases suggests new possibilities in targeted anti or probiotic treatment.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- *Correspondence: Cornelia van Duijn,
| |
Collapse
|
24
|
Levi Mortera S, Vernocchi P, Basadonne I, Zandonà A, Chierici M, Durighello M, Marzano V, Gardini S, Gasbarrini A, Urbani A, Vicari S, Roncada P, Furlanello C, Venuti P, Putignani L. A metaproteomic-based gut microbiota profiling in children affected by autism spectrum disorders. J Proteomics 2022; 251:104407. [PMID: 34763095 DOI: 10.1016/j.jprot.2021.104407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
During the last decade, the evidences on the relationship between neurodevelopmental disorders and the microbial communities of the intestinal tract have considerably grown. Particularly, the role of gut microbiota (GM) ecology and predicted functions in Autism Spectrum Disorders (ASD) has been especially investigated by 16S rRNA targeted and shotgun metagenomics, trying to assess disease signature and their correlation with cognitive impairment or gastrointestinal (GI) manifestations of the disease. Herein we present a metaproteomic approach to point out the microbial gene expression profiles, their functional annotations, and the taxonomic distribution of gut microbial communities in ASD children. We pursued a LC-MS/MS based investigation, to compare the GM profiles of patients with those of their respective relatives and aged-matched controls, providing a quantitative evaluation of bacterial metaproteins by SWATH analysis. All data were managed by a multiple step bioinformatic pipeline, including network analysis. In particular, comparing ASD subjects with CTRLs, up-regulation was found for some metaproteins associated with Clostridia and with carbohydrate metabolism (glyceraldehyde-3-phosphate and glutamate dehydrogenases), while down-regulation was observed for others associated with Bacteroidia (SusC and SusD family together with the TonB dependent receptor). Moreover, network analysis highlighted specific microbial correlations among ASD subgroups characterized by different functioning levels and GI symptoms. SIGNIFICANCE: To the best of our knowledge, this study represents the first metaproteomic investigation on the gut microbiota of ASD children compared with relatives and age-matched CTRLs. Remarkably, the applied SWATH methodology allowed the attribution of differentially regulated functions to specific microbial taxa, offering a novel and complementary point of view with respect to previous studies.
Collapse
Affiliation(s)
- Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ilaria Basadonne
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | | | | | - Martina Durighello
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valeria Marzano
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Antonio Gasbarrini
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia ed Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Urbani
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Agostino Gemelli Foundation University Hospital IRCCS, Rome, Italy; Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Stefano Vicari
- Department of Neuroscience, Unit of Head Child & Adolescent Psychiatry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Rome, Italy
| | - Paola Roncada
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, Catanzaro, Italy
| | | | - Paola Venuti
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
25
|
Chen HJ, Liu YW. The Impacts of Probiotics on Microbiota in Patients With Autism Spectrum Disorder. COMPREHENSIVE GUT MICROBIOTA 2022:296-319. [DOI: 10.1016/b978-0-12-819265-8.00101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
27
|
Chen LL, Abbaspour A, Mkoma GF, Bulik CM, Rück C, Djurfeldt D. Gut Microbiota in Psychiatric Disorders: A Systematic Review. Psychosom Med 2021; 83:679-692. [PMID: 34117156 PMCID: PMC8428865 DOI: 10.1097/psy.0000000000000959] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/04/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This systematic review sought to comprehensively summarize gut microbiota research in psychiatric disorders following PRISMA guidelines. METHODS Literature searches were performed on databases using keywords involving gut microbiota and psychiatric disorders. Articles in English with human participants up until February 13, 2020, were reviewed. Risk of bias was assessed using a modified Newcastle-Ottawa Scale for microbiota studies. RESULTS Sixty-nine of 4231 identified studies met the inclusion criteria for extraction. In most studies, gut microbiota composition differed between individuals with psychiatric disorders and healthy controls; however, limited consistency was observed in the taxonomic profiles. At the genus level, the most replicated findings were higher abundance of Bifidobacterium and lower abundance of Roseburia and Faecalibacterium among patients with psychiatric disorders. CONCLUSIONS Gut bacteria that produce short-chain fatty acids, such as Roseburia and Faecalibacterium, could be less abundant in patients with psychiatric disorders, whereas commensal genera, for example, Bifidobacterium, might be more abundant compared with healthy controls. However, most included studies were hampered by methodological shortcomings including small sample size, unclear diagnostics, failure to address confounding factors, and inadequate bioinformatic processing, which might contribute to inconsistent results. Based on our findings, we provide recommendations to improve quality and comparability of future microbiota studies in psychiatry.
Collapse
|
28
|
Davies C, Mishra D, Eshraghi RS, Mittal J, Sinha R, Bulut E, Mittal R, Eshraghi AA. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neurosci Biobehav Rev 2021; 128:549-557. [PMID: 34271306 DOI: 10.1016/j.neubiorev.2021.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/04/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
There is a potential association between gastrointestinal (GI) symptoms and the severity of autism spectrum disorder (ASD). Given this correlation, the possible impact of probiotics and prebiotics have been explored in research studies to modify the gut microbiome and ameliorate behavioral manifestations of ASD via modulating the gut-brain-microbiome axis. This systematic review focuses on the interplay between these factors in altering the behavioral manifestations of ASD. Probiotic supplementation tended to mitigate some of the behavioral manifestations of ASD, with less of a discernible trend on the microbiome level. Studies supplementing multiple probiotic species, such as microbiota transfer therapy, or including prebiotics performed better than single strain supplementation. Our analysis suggests that gut dysbiosis may increase intestinal permeability, leading to more severe GI symptoms and a systemic inflammatory response, which can alter permeability across the blood-brain barrier and synaptogenesis in the brain. Future studies are warranted to understand the precise contribution of altering gut microbiome on clinical manifestations of ASD that will open up avenues to develop preventive and treatment modalities.
Collapse
Affiliation(s)
- Camron Davies
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dibyanshi Mishra
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rebecca S Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rahul Sinha
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Erdogan Bulut
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
29
|
Jung TH, Han KS. Imbalanced dietary intake alters the colonic microbial profile in growing rats. PLoS One 2021; 16:e0253959. [PMID: 34191855 PMCID: PMC8244856 DOI: 10.1371/journal.pone.0253959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
An imbalanced dietary intake is associated with alteration of intestinal ecosystem. We investigated the impact of imbalanced diets on colonic microbiota, concentrations of short chain fatty acid in colonic digesta and serum immunoglobulins (Igs) of growing rats. Compared to the control diet, consuming diets high in fat, sucrose, or processed meat, or low in iron, increased the abundance of the pathogenic bacteria such as Clostridium, Escherichia coli, and Salmonella species, and decreased the beneficial bacteria, like Bifidobacteria, Lactobacillus, Akkermansia, Phascolarctobacterium, Alistipes, and butyrate producing species of bacteria in the colon of growing rats. The heatmap of metagenomics indicated that each group was separated into distinct clusters, and the ID group in particular, showed significantly (P < 0.01) reduced alpha diversity of colonic microbiota in comparison to the control group. All experimental groups showed significantly (P < 0.05 or P < 0.01) decreased concentration of acetate and butyrate in the colonic digesta and lower levels of serum IgG or IgA, compared to the control. These results indicated that the imbalanced dietary intake negatively altered intestinal ecosystem and immunity.
Collapse
Affiliation(s)
- Tae-Hwan Jung
- Convergence Research Center, Sahmyook University, Seoul, Korea
| | - Kyoung-Sik Han
- Convergence Research Center, Sahmyook University, Seoul, Korea
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| |
Collapse
|
30
|
Increased Serum Concentrations of High Mobility Group Box 1 (HMGB1) Protein in Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8060478. [PMID: 34198762 PMCID: PMC8228126 DOI: 10.3390/children8060478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 protein (HMGB1) has been suggested to be involved in the immune dysfunction and inflammation reported in autism spectrum disorder (ASD). We aimed to assess HMGB1 serum concentrations (SCs) in high-functioning ASD children compared to typically developing (TD) controls and to explore their associations with the autism spectrum quotient (AQ), the empathy quotient (EQ), and the systemizing quotient (SQ). The study involved 42 ASD children and 38 TD children, all-male, aged between 6.1 and 13.3 years old. HMGB1 SCs were measured by enzyme-linked immunosorbent assay (ELISA). Groups were comparable regarding age, general IQ, birth weight, and maternal age at birth. ASD children showed significantly higher HMGB1 SCs compared to TD children (1.25 ± 0.84 ng/mL versus 1.13 ± 0.79 ng/mL, respectively, p = 0.039). The Spearman’s rho revealed that HMGB1 SCs were positively correlated with the AQ attention to detail subscale (rs = 0.46, p = 0.045) and with the SQ total score (rs = 0.42, p = 0.04) in the ASD group. These results show that HMGB1 serum concentrations are altered in ASD children, and suggest that inflammatory processes mediated by HMGB1 may be associated with specific cognitive features observed in ASD.
Collapse
|
31
|
Fulci V, Stronati L, Cucchiara S, Laudadio I, Carissimi C. Emerging Roles of Gut Virome in Pediatric Diseases. Int J Mol Sci 2021; 22:4127. [PMID: 33923593 PMCID: PMC8073368 DOI: 10.3390/ijms22084127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, the widespread application of shotgun metagenomics provided extensive characterization of the bacterial "dark matter" of the gut microbiome, propelling the development of dedicated, standardized bioinformatic pipelines and the systematic collection of metagenomic data into comprehensive databases. The advent of next-generation sequencing also unravels a previously underestimated viral population (virome) present in the human gut. Despite extensive efforts to characterize the human gut virome, to date, little is known about the childhood gut virome. However, alterations of the gut virome in children have been linked to pathological conditions such as inflammatory bowel disease, type 1 diabetes, malnutrition, diarrhea and celiac disease.
Collapse
Affiliation(s)
- Valerio Fulci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Salvatore Cucchiara
- Department of Women’s and Children’s Health, Sapienza University of Rome, 00161 Rome, Italy;
| | - Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Claudia Carissimi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| |
Collapse
|
32
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
33
|
Traversi D, Pulliero A, Izzotti A, Franchitti E, Iacoviello L, Gianfagna F, Gialluisi A, Izzi B, Agodi A, Barchitta M, Calabrò GE, Hoxhaj I, Sassano M, Sbrogiò LG, Del Sole A, Marchiori F, Pitini E, Migliara G, Marzuillo C, De Vito C, Tamburro M, Sammarco ML, Ripabelli G, Villari P, Boccia S. Precision Medicine and Public Health: New Challenges for Effective and Sustainable Health. J Pers Med 2021; 11:135. [PMID: 33669364 PMCID: PMC7920275 DOI: 10.3390/jpm11020135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The development of high-throughput omics technologies represents an unmissable opportunity for evidence-based prevention of adverse effects on human health. However, the applicability and access to multi-omics tests are limited. In Italy, this is due to the rapid increase of knowledge and the high levels of skill and economic investment initially necessary. The fields of human genetics and public health have highlighted the relevance of an implementation strategy at a national level in Italy, including integration in sanitary regulations and governance instruments. In this review, the emerging field of public health genomics is discussed, including the polygenic scores approach, epigenetic modulation, nutrigenomics, and microbiomes implications. Moreover, the Italian state of implementation is presented. The omics sciences have important implications for the prevention of both communicable and noncommunicable diseases, especially because they can be used to assess the health status during the whole course of life. An effective population health gain is possible if omics tools are implemented for each person after a preliminary assessment of effectiveness in the medium to long term.
Collapse
Affiliation(s)
- Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy;
| | - Alessandra Pulliero
- Department of Health Sciences School of Medicine, University of Genoa, 16132 Genova, Italy;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 161632 Genova, Italy
| | - Elena Franchitti
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy;
| | - Licia Iacoviello
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (L.I.); (F.G.)
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (B.I.)
| | - Francesco Gianfagna
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (L.I.); (F.G.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (B.I.)
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (B.I.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.)
| | - Giovanna Elisa Calabrò
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
| | - Ilda Hoxhaj
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
| | - Michele Sassano
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
| | - Luca Gino Sbrogiò
- Dipartimento di Prevenzione, Az. ULSS3 Serenissima, 30174 Venezia, Italy;
| | | | | | - Erica Pitini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Manuela Tamburro
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.T.); (M.L.S.); (G.R.)
| | - Michela Lucia Sammarco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.T.); (M.L.S.); (G.R.)
| | - Giancarlo Ripabelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.T.); (M.L.S.); (G.R.)
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (E.P.); (G.M.); (C.M.); (C.D.V.); (P.V.)
| | - Stefania Boccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.E.C.); (I.H.); (M.S.); (S.B.)
- Department of Woman and Child Health and Public Health-Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
34
|
Chen Z, Shi K, Liu X, Dai Y, Liu Y, Zhang L, Du X, Zhu T, Yu J, Fang S, Li F. Gut Microbial Profile Is Associated With the Severity of Social Impairment and IQ Performance in Children With Autism Spectrum Disorder. Front Psychiatry 2021; 12:789864. [PMID: 34975585 PMCID: PMC8718873 DOI: 10.3389/fpsyt.2021.789864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Objective: Autism spectrum disorder (ASD) refers to a heterogeneous set of neurodevelopmental disorders with diverse symptom severity and comorbidities. Although alterations in gut microbiota have been reported in individuals with ASD, it remains unclear whether certain microbial pattern is linked to specific symptom or comorbidity in ASD. We aimed to investigate the associations between gut microbiota and the severity of social impairment and cognitive functioning in children with ASD. Methods: A total of 261 age-matched children, including 138 children diagnosed with ASD, 63 with developmental delay or intellectual disability (DD/ID), and 60 typically developing (TD) children, were enrolled from the Shanghai Xinhua Registry. The children with ASD were further classified into two subgroups: 76 children diagnosed with ASD and developmental disorder (ASD+DD) and 62 with ASD only (ASD-only). The gut microbiome of all children was profiled and evaluated by 16S ribosomal RNA sequencing. Results: The gut microbial analyses demonstrated an altered microbial community structure in children with ASD. The alpha diversity indices of the ASD+DD and ASD-only subgroups were significantly lower than the DD/ID or TD groups. At the genus level, we observed a decrease in the relative abundance of Prevotella. Simultaneously, Bacteroides and Faecalibacterium were significantly increased in ASD compared with DD/ID and TD participants. There was a clear correlation between alpha diversity and the Childhood Autism Rating Scale (CARS) total score for all participants, and this correlation was independent of IQ performance. Similar correlations with the CARS total score were observed for genera Bacteroides, Faecalibacterium, and Oscillospira. However, there was no single genus significantly associated with IQ in all participants. Conclusions: Specific alterations in bacterial taxonomic composition and associations with the severity of social impairment and IQ performance were observed in children with ASD or ASD subgroups, when compared with DD/ID or TD groups. These results illustrate that gut microbiota may serve as a promising biomarker for ASD symptoms. Nevertheless, further investigations are warranted.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Shi
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Dai
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Liu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Zhang
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tailin Zhu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juehua Yu
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuanfeng Fang
- Department of Child Health Care, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Bundgaard-Nielsen C, Knudsen J, Leutscher PDC, Lauritsen MB, Nyegaard M, Hagstrøm S, Sørensen S. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review. Gut Microbes 2020; 11:1172-1187. [PMID: 32329656 PMCID: PMC7524304 DOI: 10.1080/19490976.2020.1748258] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence has implicated an involvement of the gut-brain axis in autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD), however with highly diverse results. This systematic review aims to describe and evaluate studies investigating the gut microbiota composition in individuals with ASD or ADHD and to evaluate if variations in gut microbiota are associated with these disorders. Twenty-four articles were identified in a systematic literature search of PubMed and Embase up to July 22, 2019. They consisted of 20 studies investigating ASD and four studies investigating ADHD. For ASD, several studies agreed on an overall difference in β-diversity, although no consistent bacterial variation between all studies was reported. For ADHD, the results were more diverse, with no clear differences observed. Several common characteristics in gut microbiota function were identified for ASD compared to controls. In contrast, highly heterogeneous results were reported for ADHD, and thus the association between gut microbiota composition and ADHD remains unclear. For both disorders, methodological differences hampered the comparison of studies.
Collapse
Affiliation(s)
- Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark,CONTACT Caspar Bundgaard-Nielsen Centre for Clinical Research North Denmark Regional Hospital and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark Bispensgade 37, 9800 Hjoerring, Denmark
| | - Julie Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter D. C. Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marlene B. Lauritsen
- Research Unit for Child and Adolescent Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren Hagstrøm
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark,Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
36
|
Pellegrini C, Antonioli L, Calderone V, Colucci R, Fornai M, Blandizzi C. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog Neurobiol 2020; 191:101806. [PMID: 32473843 DOI: 10.1016/j.pneurobio.2020.101806] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence highlights the relevance of microbiota-gut-brain axis in the maintenance of brain homeostasis as well as in the pathophysiology of major neurological and psychiatric disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD) and major depressive disorder (MDD). In particular, changes in gut microbiota can promote enteric and peripheral neurogenic/inflammatory responses, which, in turn, could contribute to neuroinflammation and neurodegeneration in the central nervous system (CNS). Of note, the nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome acts as a key player in both coordinating the host physiology and shaping the peripheral and central immune/inflammatory responses in CNS diseases. In this context, there is pioneering evidence supporting the existence of a microbiota-gut-inflammasome-brain axis, in which enteric bacteria modulate, via NLRP3 signaling, inflammatory pathways that, in turn, contribute to influence brain homeostasis. The present review provides an overview of current knowledge on the role of microbiota-gut-inflammasome-brain axis in the major CNS diseases, including PD, AD, MS, ASD and MDD. In particular, though no direct and causal correlation among altered gut microbiota, NLRP3 activation and brain pathology has been demonstrated and in-depth studies are needed in this setting, our purpose was to pave the way to a novel and pioneering perspective on the pathophysiology of CNS disorders. Our intent was also to highlight and discuss whether alterations of microbiota-gut-inflammasome-brain axis support a holistic view of the pathophysiology of CNS diseases, even though each disorder displays a different clinical picture.
Collapse
Affiliation(s)
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
37
|
Lasheras I, Seral P, Latorre E, Barroso E, Gracia-García P, Santabárbara J. Microbiota and gut-brain axis dysfunction in autism spectrum disorder: Evidence for functional gastrointestinal disorders. Asian J Psychiatr 2020; 47:101874. [PMID: 31785441 DOI: 10.1016/j.ajp.2019.101874] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The high frequency of functional gastrointestinal disorders (FGIDs) in autism spectrum disorders (ASD) has drawn attention to the composition of gut microbiota as a possible factor in ASD pathogenesis. However, characterization of a distinctive ASD microbial pattern is still unclear. OBJECTIVE To conduct a narrative review on ASD microbial profile and diversity changes relative to NT children and FGID comorbidity and ASD pathogenesis. METHODOLOGY First, we searched the PubMed database in peer-reviewed journals for evidence regarding the current epidemiological evidence on FGID comorbidity. For the identification of a microbial profile in ASD children, only original studies examining gut bacterial and fungal abundances and diversity in ASD children and adolescents were included. Lastly, research on the role of microbial dysbiosis as an interface between genetic and environmental risk factors in the pathogenesis of neuropsychiatric disorders, and specifically ASD, was examined. RESULTS Prevalence and risk of FGIDs is significantly higher in ASD children and correlates with the severity of ASD. Bacterial and fungal diversity differ between ASD and NT children, indicating a difference in taxonomic abundance profiles, which have been reported at all bacterial phylogenetic levels. However, studies analyzing gut microbiota have a heterogeneous methodology and several limitations that could account for the variety of findings for each taxon. Also, covariate analysis reveals influence of demographics, diet, disease severity, GI comorbidity and allergies. Integration of these findings with changes in metabolome and genetic risk factors allowed for a better understanding of microbiota involvement in ASD pathogenesis for future research.
Collapse
Affiliation(s)
- I Lasheras
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - P Seral
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - E Latorre
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - E Barroso
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Madrid, Spain
| | - P Gracia-García
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Psychiatry Service, Hospital Clínico Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, Madrid, Spain
| | - J Santabárbara
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, Madrid, Spain
| |
Collapse
|
38
|
Lefter R, Ciobica A, Timofte D, Stanciu C, Trifan A. A Descriptive Review on the Prevalence of Gastrointestinal Disturbances and Their Multiple Associations in Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2019; 56:E11. [PMID: 31892195 PMCID: PMC7023358 DOI: 10.3390/medicina56010011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Gastrointestinal disturbances have been frequently, but not unanimously, reported in autism spectrum disorder (ASD) individuals. Thus, digestive symptoms, such as constipation, diarrhea, abdominal bloating, and pain have been reported to correlate to the various maladaptive behaviors in ASD children, such as irritability, social withdrawal, stereotypy, hyperactivity, and even language regression. In this context, the present study provides an overview on the prevalence of the gastrointestinal (GI) disorders in ASD and the correlation between these and ASD symptoms and comorbidities and subsequently discusses the metabolic and microbiome factors underlying the effects of GI disorders in ASD. Materials and Methods: For our analysis of GI symptoms in children with ASD, we have searched peer-reviewed journals from 2005 to 2017 in PubMed databases that addressed the specificity of GI symptoms in ASD and included correlations of GI and ASD symptoms. The criteria for inclusion were clear quantitative mentioning of GI modifications, GI symptoms correlation with specific ASD symptoms or comorbidities, an appropriate methodology for defining ASD, and larger size samples. For this topic, only studies on human patients and original research were considered. A subsequent search in PubMed databases in journals from 2000 to 2017 we analyzed 13 articles on the mechanisms underlying the impact of GI dysfunctions in ASD, including gut microbial dysbiosis, immune reactivity, genetics, and altered neurotransmitters on the gut-brain axis. Results: In the 18 original research studies that we selected out of an initial 327 studies, despite the different methodology, a predominant 83% highlighted the increased prevalence of GI symptoms in ASD patients. Constipation was most frequently cited, appearing in 12 of the studies (80%), followed by diarrhea reports in eight studies (53%). The association between cognitive and behavioral deficits and GI disorders was suggested in certain groups of ASD individuals. Conclusion: The evidence presented so far by numerous studies seems to indicate that GI dysfunctions are of particular relevance in ASD, underlined by various abnormalities along the nervous connections between the central nervous system and the gut, such as impaired parasympathetic activity and increased endocrine stress response. Sufficiently large size samples and standardized methodology are required for future studies to clarify the complex interactions between GI disturbances and ASD symptoms.
Collapse
Affiliation(s)
- Radu Lefter
- Center of Biomedical Research of the Romanian Academy, Iasi Branch, Romania, B dul Carol I, nr. 8, 700506 Iasi, Romania; (R.L.); (A.C.); (C.S.)
- “Alexandru Ioan Cuza” University, Bd. Carol I, nr. 11, 700506 Iasi, Romania
| | - Alin Ciobica
- Center of Biomedical Research of the Romanian Academy, Iasi Branch, Romania, B dul Carol I, nr. 8, 700506 Iasi, Romania; (R.L.); (A.C.); (C.S.)
- “Alexandru Ioan Cuza” University, Bd. Carol I, nr. 11, 700506 Iasi, Romania
| | - Daniel Timofte
- “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Carol Stanciu
- Center of Biomedical Research of the Romanian Academy, Iasi Branch, Romania, B dul Carol I, nr. 8, 700506 Iasi, Romania; (R.L.); (A.C.); (C.S.)
| | - Anca Trifan
- “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
39
|
Ahmed N, Mahmoud NF, Solyman S, Hanora A. Human Nasal Microbiome as Characterized by Metagenomics Differs Markedly Between Rural and Industrial Communities in Egypt. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:573-582. [PMID: 31651219 DOI: 10.1089/omi.2019.0144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbial communities residing in the nose play important roles in human health and disease. We report marked differences in nasal microbiota between a rural community and an industrial setting located near a major urban city. Nasal samples were collected from 19 healthy male subjects: 9 samples from persons living in a rural village, and 10 samples from ceramic factory workers in a major industrial Egyptian city. The nasal microbiota in the rural sample had higher and distinct diversity compared with industrial samples from workers exposed to pollution daily. Taxonomic analysis of the sequences revealed five major phyla; among these phyla were Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria, revealing significant abundance variation by geographical location. For example, the rural group had a significant increase in representation of Actinobacteria and Bacteroidetes (p = 0.004, p = 0.01, respectively) compared with the industrial group. However, the industrial group showed a significant increase in relative abundance of phylum Proteobacteria (p = 0.02). The most predominant genera for the rural group were Corynebacterium, Staphylococcus, Alloiococcus, and Peptoniphilus. By contrast, the industrial group was dominated by Staphylococcus, Sphingomonas, and Moraxella. Environmental pollution might alter the nasal microbiome leading to an attendant disturbance in the microbiome community structure. The clinical and public health implications of these nasal microbiome variations by rural and industrialized geography warrant further research. This study contributes to our knowledge of the bacterial composition of nasal microbiome in rural and industrialized geographies, and informs public health, respiratory medicine, and occupational health scholarship.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ministry of Health, Cairo, Egypt
| | - Nora Fahmy Mahmoud
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samar Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|