1
|
Ott BD, Hulse-Kemp AM, Duke MV, Griffin MJ, Peterson BC, Scheffler BE, Torrans EL, Allen PJ. Hypothalamic transcriptome response to simulated diel earthen pond hypoxia cycles in channel catfish ( Ictalurus punctatus). Physiol Genomics 2024; 56:519-530. [PMID: 38808773 DOI: 10.1152/physiolgenomics.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Commercial culture of channel catfish (Ictalurus punctatus) occurs in earthen ponds that are characterized by diel swings in dissolved oxygen concentration that can fall to severe levels of hypoxia, which can suppress appetite and lead to suboptimal growth. Given the significance of the hypothalamus in regulating these processes in other fishes, an investigation into the hypothalamus transcriptome was conducted to identify specific genes and expression patterns responding to hypoxia. Channel catfish in normoxic water were compared with catfish subjected to 12 h of hypoxia (20% oxygen saturation; 1.8 mg O2/L; 27°C) followed by 12 h of recovery in normoxia to mimic 24 h in a catfish aquaculture pond. Fish were sampled at 0-, 6-, 12-, 18-, and 24-h timepoints, with the 6- and 12-h samplings occurring during hypoxia. A total of 190 genes were differentially expressed during the experiment, with most occurring during hypoxia and returning to baseline values within 6 h of normoxia. Differentially expressed genes were sorted by function into Gene Ontology biological processes and revealed that most were categorized as "response to hypoxia," "sprouting angiogenesis," and "cellular response to xenobiotic stimulus." The patterns of gene expression reported here suggest that transcriptome responses to hypoxia are broad and quickly reversibly with the onset of normoxia. Although no genes commonly reported to modulate appetite were found to be differentially expressed in this experiment, several candidates were identified for future studies investigating the interplay between hypoxia and appetite in channel catfish, including adm, igfbp1a, igfbp7, and stc2b.NEW & NOTEWORTHY Channel catfish are an economically important species that experience diel episodic periods of hypoxia that can reduce appetite. This is the first study to investigate their transcriptome from the hypothalamus in a simulated 24-h span in a commercial catfish pond, with 12 h of hypoxia and 12 h of normoxia. The research revealed functional groups of genes relating to hypoxia, angiogenesis, and glycolysis as well as individual target genes possibly involved in appetite regulation.
Collapse
Affiliation(s)
- Brian D Ott
- Warmwater Aquaculture Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Mary V Duke
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Matt J Griffin
- Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, United States
| | - Brian C Peterson
- National Cold Water Marine Aquaculture Center, Agricultural Research Service, United States Department of Agriculture, Franklin, Maine, United States
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Eugene L Torrans
- Warmwater Aquaculture Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States
| |
Collapse
|
2
|
Azpeleta C, Delgado MJ, Metz JR, Flik G, de Pedro N. Melatonin as an anti-stress signal: effects on an acute stress model and direct actions on interrenal tissue in goldfish. Front Endocrinol (Lausanne) 2024; 14:1291153. [PMID: 38260137 PMCID: PMC10800973 DOI: 10.3389/fendo.2023.1291153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Melatonin is a key hormone in regulation of circadian rhythms, and involved in many rhythmic functions, such as feeding and locomotor activity. Melatonin reportedly counteracts stress responses in many vertebrates, including fish. However, targets for this action of melatonin and underlying mechanisms remain unknown. Results This study reports potential anti-stress properties of melatonin in goldfish (Carassius auratus), with a focus on its effect on plasma cortisol, food intake, and locomotor activity, all of them involved in the responses to stress exposure. Indeed, acute injection of melatonin counteracted stress-induced hypercortisolinemia and reduced food intake. The reduced locomotor activity following melatonin treatment suggests a possible sedative role in fish. To assess whether this anti-stress effects of melatonin involve direct actions on interrenal tissue, in vitro cultures of head kidney (containing the interrenal cortisol-producing tissue) were carried out in presence of ACTH, melatonin, and luzindole, an antagonist of melatonin receptors. Melatonin in vitro reduced ACTH-stimulated cortisol release, an effect attenuated by luzindole; this suggests the presence of specific melatonin receptors in interrenal tissue. Conclusions Our data support a role for melatonin as an anti-stress signal in goldfish, and suggest that the interrenal tissue of teleosts may be a plausible target for melatonin action decreasing cortisol production.
Collapse
Affiliation(s)
- Clara Azpeleta
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Mª Jesús Delgado
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Nuria de Pedro
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Jenkins LE, Medeiros LR, Graham ND, Hoffman BM, Cervantes DL, Hatch DR, Nagler JJ, Pierce AL. Feeding after spawning and energy balance at spawning are associated with repeat spawning interval in steelhead trout. Gen Comp Endocrinol 2023; 332:114181. [PMID: 36455641 DOI: 10.1016/j.ygcen.2022.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Consecutive and skip repeat spawning (1- or ≥2-year spawning interval) life histories commonly occur in seasonally breeding iteroparous fishes. Spawning interval variation is driven by energetic status and impacts fisheries management. In salmonids, energetic status (either absolute level of energy reserves or the rate of change of energy reserves, i.e., energy balance) is thought to determine reproductive trajectory during a critical period ∼1 year prior to initial spawning. However, information on repeat spawners is lacking. To examine the timing and the aspects of energetic status that regulate repeat spawning interval, female steelhead trout (Oncorhynchus mykiss) were fasted for 10 weeks after spawning and then fed ad libitum and compared to ad libitum fed controls. Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels were measured to assess long-term energy balance. Plasma estradiol levels showed that some fish in both groups initiated a consecutive spawning cycle. In fasted fish, GH was lower at spawning in consecutive versus skip spawners. In consecutive spawners, GH was higher at spawning in fed versus fasted fish. These results suggest that fish with a less negative energy balance at spawning initiated reproductive development in the absence of feeding, but that feeding during the post-spawning period enabled initiation of reproduction in some fish with a more negative energy balance at spawning. Thus, both energy balance at spawning and feeding after spawning regulated reproductive schedules. These results show that the critical period model of salmonid maturation applies to regulation of repeat spawning, and that the reproductive decision window extends into the first 10 weeks after spawning.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Neil D Graham
- Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| | - Brian M Hoffman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Diana L Cervantes
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Douglas R Hatch
- Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA; Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| |
Collapse
|
4
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
5
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
6
|
Best C, Jennings K, Culbert BM, Flear K, Volkoff H, Gilmour KM. Too stressed to eat: Investigating factors associated with appetite loss in subordinate rainbow trout. Mol Cell Endocrinol 2023; 559:111798. [PMID: 36243201 DOI: 10.1016/j.mce.2022.111798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) form dominance hierarchies in which subordinates experience chronic social stress and suppression of food intake. Here we tested the hypothesis that inhibition of food intake reflects increased expression of anorexigenic (appetite inhibiting) signals and decreased expression of orexigenic (appetite stimulating) signals. Trout were confined in pairs for 1 or 4 days, or were confined in pairs for 4 days and then allowed to recover from social interactions for 2 or 4 days; sham fish were handled identically but held alone. Subordinates did not feed during social interaction and had lower food intake than dominants or shams during recovery. In parallel, plasma cortisol (∼18-26x) and liver leptin (lep-a1) transcript abundance (∼10-14x) were elevated in subordinates during social interaction but not recovery, suggesting that these factors contributed to the suppression of food intake. Fish deemed likely to become subordinate based on inhibition of food intake in response to a mild stressor also showed elevated liver lep-a1 transcript abundance (∼5x). The moderate response in these fish coupled with a correlation between liver lep-a1 and cortisol suggest that stress-induced elevation of cortisol increased liver lep-a1 transcript abundance in subordinate trout, contributing to stress-induced suppression of food intake.
Collapse
Affiliation(s)
- C Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Jennings
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - B M Culbert
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Flear
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - H Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Jiang H, Sun M, Zhao Y, Liu G, Zhong L, Xue H, Chen X, Zheng Y, Wang M. The early function of cortisol in liver during Aeromonas hydrophila infection: Dynamics of the transcriptome and accessible chromatin landscapes. Front Immunol 2022; 13:989075. [PMID: 36532002 PMCID: PMC9751032 DOI: 10.3389/fimmu.2022.989075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
In China, channel catfish (Ictalurus punctatus) is an important aquaculture species; however, haemorrhagic disease (Aeromonas hydrophila induced disease) in these fish has caused tremendous economic loss due to high morbidity and mass mortality in the breeding industry. The role of cortisol in bacterial diseases, particularly in the acute phase, remains unclear. In this study, liver transcriptome (RNA-seq) and chromatin accessibility (ATAC-seq) analyses were employed to investigate the early functional role of cortisol in Aeromonas hydrophila-stimulated responses. Our experiments confirmed that A. hydrophila infection can initially significantly increase serum cortisol levels at 1 h after infection. At this time point, the increased serum cortisol levels can significantly regulate A. hydrophila-regulated genes by affecting both transcriptome and chromatin accessibility. Cross-analysis of RNA-seq and ATAC-seq revealed that a certain gene group (92 target_DEGs) was regulated at an early time point by cortisol. KEGG enrichment analysis revealed that the top three pathways according to target_DEGs were cancer, glutathione metabolism, and the Notch signalling pathway. The protein-protein interaction analysis of target_DEGs revealed that they may be primarily involved in cell proliferation, CD8+ T cell function, glutathione synthesis, and activation of the NF-κB signalling pathway. This suggests that after the emergence of immune stress, the early regulation of cortisol is positive against the immune response. It is possible that in this situation, the animal is attempting to avoid dangerous situations and risks and then cope with the imbalance produced by the stressor to ultimately restore homeostasis. Our results will contribute to future research on fish and provide valuable insight regarding the mechanism of immune regulation by cortisol and the study of bacterial haemorrhagic disease in channel catfish.
Collapse
|
8
|
Exploring the Multimodal Role of Yucca schidigera Extract in Protection against Chronic Ammonia Exposure Targeting: Growth, Metabolic, Stress and Inflammatory Responses in Nile Tilapia ( Oreochromis niloticus L.). Animals (Basel) 2021; 11:ani11072072. [PMID: 34359200 PMCID: PMC8300167 DOI: 10.3390/ani11072072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ammonia is a problematic environmental toxicant for aquatic species. The current study aimed to declare the modulatory effect(s) of YSE against chronic ammonia intoxication in Nile tilapia through its effects on growth performance, haemato-biochemical and antioxidant-related parameters, and histopathological changes, as well as the molecular gene expression of some genes related to appetite and growth, glucose and lipid metabolism and some inflammatory cytokines. Our results indicated that Yucca schidigera extract alleviated the adverse impacts induced by ammonia intoxication. YSE could be used as a functional water supplement in aquaculture. Abstract Ammonia is a critical hazardous nitrogen metabolic product in aquaculture. Despite trials for its control, ammonia intoxication remains one of the most critical issues to overcome. In this study, we explored the modulatory effect and potential mechanism by which Yucca schidigera extract (YSE) can ameliorate ammonia intoxication-induced adverse effects on tilapia health and metabolism. A total number of 120 Nile tilapia were evenly assigned into four groups with three replicates each. The first group served as normal control group; the second group was exposed to ammonia alone from the beginning of the experiment and for four weeks. The third group was supplied with YSE in water at a dose of 8 mg/L and exposed to ammonia. The fourth group was supplied with YSE only in water at a dose of 8 mg/L. YSE supplementation succeeded in improving water quality by reducing pH and ammonia levels. Moreover, YSE supplementation markedly alleviated chronic ammonia-induced adverse impacts on fish growth by increasing the final body weight (FBW), specific growth rate (SGR), feed intake and protein efficiency ratio (PER) while reducing the feed conversion ratio (FCR) via improvements in food intake, elevation of hepatic insulin-like growth factor (ILGF-1) and suppression of myostatin (MSTN) expression levels with the restoration of lipid reserves and the activation of lipogenic potential in adipose tissue as demonstrated by changes in the circulating metabolite levels. In addition, the levels of hepato-renal injury biomarkers were restored, hepatic lipid peroxidation was inhibited and the levels of hepatic antioxidant biomarkers were enhanced. Therefore, the current study suggests that YSE supplementation exerted an ameliorative role against chronic ammonia-induced oxidative stress and toxic effects due to its free radical-scavenging potential, potent antioxidant activities and anti-inflammatory effects.
Collapse
|
9
|
Vargas-Chacoff L, Regish AM, Weinstock A, Björnsson BT, McCormick SD. Effects of long-term cortisol treatment on growth and osmoregulation of Atlantic salmon and brook trout. Gen Comp Endocrinol 2021; 308:113769. [PMID: 33794274 DOI: 10.1016/j.ygcen.2021.113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Cortisol is the final product of the hypothalamic-pituitary-interrenal (HPI) axis and acts as a gluco- and mineralo-corticoid in fish. Long-term elevations of cortisol have been linked to reduced growth in fishes, but the mechanism(s) and relative sensitivities of species are still unclear. We carried out experiments to examine the relative effects of cortisol on growth and gill NKA activity in two salmonids: Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). Treatment with intraperitoneal cortisol implants for 30 days resulted in reduced growth in both species, but with greater sensitivity to cortisol in brook trout. Gill NKA activity was strongly upregulated by cortisol in Atlantic salmon, and weakly upregulated in brook trout but with no statistically significant effect. Cortisol treatment resulted in reduced plasma levels of insulin-like growth factor I and increased plasma growth hormone levels in Atlantic salmon. Our results demonstrate that there are species differences in the sensitivity of growth and osmoregulation to cortisol, even among species in the same family (Salmonidae).
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA; Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - A M Regish
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA
| | - A Weinstock
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Vágási CI, Tóth Z, Pénzes J, Pap PL, Ouyang JQ, Lendvai ÁZ. The Relationship between Hormones, Glucose, and Oxidative Damage Is Condition and Stress Dependent in a Free-Living Passerine Bird. Physiol Biochem Zool 2021; 93:466-476. [PMID: 33164671 PMCID: PMC7982133 DOI: 10.1086/711957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractPhysiological state is an emergent property of the interactions among physiological systems within an intricate network. Understanding the connections within this network is one of the goals in physiological ecology. Here, we studied the relationship between body condition, two neuroendocrine hormones (corticosterone and insulin-like growth factor 1 [IGF-1]) as physiological regulators, and two physiological systems related to resource metabolism (glucose) and oxidative balance (malondialdehyde). We measured these traits under baseline and stress-induced conditions in free-living house sparrows (Passer domesticus). We used path analysis to analyze different scenarios about the structure of the physiological network. Our data were most consistent with a model in which corticosterone was the major regulator under baseline conditions. This model shows that individuals in better condition have lower corticosterone levels; corticosterone and IGF-1 levels are positively associated; and oxidative damage is higher when levels of corticosterone, IGF-1, and glucose are elevated. After exposure to acute stress, these relationships were considerably reorganized. In response to acute stress, birds increased their corticosterone and glucose levels and decreased their IGF-1 levels. However, individuals in better condition increased their corticosterone levels more and better maintained their IGF-1 levels in response to acute stress. The acute stress-induced changes in corticosterone and IGF-1 levels were associated with an increase in glucose levels, which in turn was associated with a decrease in oxidative damage. We urge ecophysiologists to focus more on physiological networks, as the relationships between physiological traits are complex and dynamic during the organismal stress response.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Péter L. Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | | | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Zarantoniello M, Bortoletti M, Olivotto I, Ratti S, Poltronieri C, Negrato E, Caberlotto S, Radaelli G, Bertotto D. Salinity, Temperature and Ammonia Acute Stress Response in Seabream ( Sparus aurata) Juveniles: A Multidisciplinary Study. Animals (Basel) 2021; 11:E97. [PMID: 33419050 PMCID: PMC7825456 DOI: 10.3390/ani11010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the acute response of gilthead seabream (Sparus aurata) juveniles exposed to temperature, salinity and ammonia stress. Radioimmunoassay was used to evaluate cortisol levels, whereas insulin-like growth factors (igf1 and igf2), myostatin (mstn), heat-shock protein 70 (hsp70) and glucocorticoid receptor (gr) gene expression was assessed trough Real-Time PCR. The presence and localization of IGF-I and HSP70 were investigated by immunohistochemistry. In all the stress conditions, a significant increase in cortisol levels was observed reaching higher values in the thermic and chemical stress groups. Regarding fish growth markers, igf1 gene expression was significantly higher only in fish subjected to heat shock stress while, at 60 min, igf2 gene expression was significantly lower in all the stressed groups. Temperature and ammonia changes resulted in a higher mstn gene expression. Molecular analyses on stress response evidenced a time dependent increase in hsp70 gene expression, that was significantly higher at 60 min in fish exposed to heat shock and chemical stress. Furthermore, the same experimental groups were characterized by a significantly higher gr gene expression respect to the control one. Immunostaining for IGF-I and HSP70 antibodies was observed in skin, gills, liver, and digestive system of gilthead seabream juveniles.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Stefano Ratti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Carlo Poltronieri
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Elena Negrato
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Stefano Caberlotto
- Valle Ca’ Zuliani Società Agricola Srl, I-34074 Monfalcone, Gorizia, Italy;
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| |
Collapse
|
12
|
Breves JP, Springer-Miller RH, Chenoweth DA, Paskavitz AL, Chang AYH, Regish AM, Einarsdottir IE, Björnsson BT, McCormick SD. Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr. Mol Cell Endocrinol 2020; 518:110989. [PMID: 32835784 DOI: 10.1016/j.mce.2020.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.
Collapse
Affiliation(s)
- J P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - R H Springer-Miller
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - D A Chenoweth
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A L Paskavitz
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A Y H Chang
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - I E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
13
|
Hu Y, Xiao K, Yang J, Liu X, Wang B, Zeng Q, Du H. Effects of feeding frequency on juvenile Chinese sturgeon Acipenser sinensis. Sci Rep 2020; 10:17399. [PMID: 33060650 PMCID: PMC7566834 DOI: 10.1038/s41598-020-74120-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
In this study, the effects of different feeding frequencies on the growth and the expression of genes in the GH/IGF axis were assessed in juvenile Chinese sturgeon. The newly hatched Chinese sturgeons were bred for 38 days at three different feeding frequencies groups (feeding frequency of two times a day, TWD; three times a day, THD; and four times a day, FOD), and the expression levels of the GH/IGF axis responses to feeding frequency were determined by quantitative real-time PCR. In addition, the full-length of the Coding Sequences of IGF I and IGF II genes (489-bp and 660-bp, respectively), were cloned and analyzed from Chinese sturgeon the first time. Multiple sequence alignments of IGFs revealed that Chinese sturgeon are high sequence identity to IGFs from other species. The phylogenetic relationships based on the IGF I and IGF II amino acid sequences were consistent with the traditional classification. After 38 days of growth, the three different feeding frequencies groups of Chinese sturgeon had no significant difference of body length, body weight, specific growth rate, the survival rate, the rate of weight gain and the condition factor. However, the relative expression of Chinese sturgeon GH in the pituitary decreased with increasing feeding frequency. The relative expression of Chinese sturgeon GHR in liver and skeletal muscle was deceased with increasing feeding frequency, while the relative expression of GHR in stomach and intestines at THD group was significantly higher than that of at TWD group and FOD group (p < 0.05). The relative expression of Chinese sturgeon IGF I in liver increased significantly with increasing feeding frequency (p < 0.05). The relative expression of IGF I in stomach and skeletal muscle was similar at the three groups. The relative expression of IGF I in intestines was significantly higher at FOD group than at TWD group and THD group (p < 0.05). The relative expression of Chinese sturgeon IGF II in liver at TWD group was significantly higher than that at THD group and FOD group (p < 0.05). However, the relative expression of IGF II in stomach, intestines and skeletal muscle at THD group was higher than that at TWD group and FOD group. Based on these previous studies that liver IGF I is regarded as a biomarker of growth performance, this result suggested that the juvenile Chinese sturgeon is better for growth when feeding four times daily compared to twice and thrice daily.
Collapse
Affiliation(s)
- Yacheng Hu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Kan Xiao
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Jing Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Xueqing Liu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Binzhong Wang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Qingkai Zeng
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Hejun Du
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China.
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China.
| |
Collapse
|
14
|
Yamaguchi G, Habara S, Suzuki S, Ugachi Y, Kawai H, Nakajima T, Shimizu M. Effects of growth hormone and cortisol administration on plasma insulin-like growth factor binding proteins in juveniles of three subspecies of masu salmon (Oncorhynchus masou). Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110821. [PMID: 33053436 DOI: 10.1016/j.cbpa.2020.110821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022]
Abstract
In this study, we examined the effects of porcine growth hormone (GH) and cortisol on plasma insulin-like growth factor binding proteins (IGFBPs) in juveniles of three subspecies of Oncorhynchus masou (masu, amago, and Biwa salmon). Ligand blotting using digoxigenin-labeled human IGF-I was used to detect and semi-quantify three major circulating IGFBP bands at 41, 28, and 22 kDa, corresponding to IGFBP-2b, -1a, and -1b, respectively. GH increased plasma IGFBP-2b concentration in masu and Biwa salmon but suppressed it in amago salmon. Plasma IGFBP-2b levels were increased by cortisol in the three subspecies. Cortisol induced plasma IGFBP-1a in the three subspecies, whereas GH had a suppressive effect in masu and Biwa salmon. Sham and cortisol injections increased plasma IGFBP-1b levels after 1 day in masu and amago salmon, suggesting that IGFBP-1b is induced following exposure to stressors via cortisol. Increased IGFBP-1b levels were restored to basal levels when co-injected with GH in Biwa salmon, and the same trend was seen in masu and amago salmon. However, the suppressive effect of GH disappeared 2 days after injection in the three subspecies. Despite some differences among subspecies, the findings suggest that cortisol is a primary inducer of plasma IGFBP-1b; however, GH counteracts it in the short term. Therefore, GH has the potential to modulate the degree of increase in circulating IGFBP-1b levels during acute stress.
Collapse
Affiliation(s)
- Ginnosuke Yamaguchi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shotaro Suzuki
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hisashi Kawai
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takuro Nakajima
- Department of Fisheries, Shiga Prefecture, 4-1-1 Kyomachi, Otsu, Shiga 520-8577, Japan
| | - Munetaka Shimizu
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan; Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
15
|
Jiang H, Wang M, Fu L, Zhong L, Liu G, Zheng Y, Chen X, Bian W. Liver transcriptome analysis and cortisol immune-response modulation in lipopolysaccharide-stimulated in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2020; 101:19-50. [PMID: 32184191 DOI: 10.1016/j.fsi.2020.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Channel catfish (Ictalurus punctatus) is an important aquaculture species in China. In channel catfish, diseases such as haemorrhagic, sepsis and tail-rot disease are all caused by bacteria as general in China. Most of the pathogenic bacteria are Gram-negative bacteria. Liver transcriptome analysis of the co-injection of cortisol and lipopolysaccharide (LPS) was performed in this study. Preliminary evidence from the results suggest that after the emergence of immune stress, cortisol will up-regulate the complement cascade pathway, down-regulate the coagulation cascade pathway, down-regulate the platelet activation pathway, down-regulate antigen presentation pathway, and show complex regulation relationship to inflammatory factors. At 12 h, the number of differential genes regulated by cortisol was about half less than the number of differential genes regulated by LPS. At 24 h, there was no significant difference between the number of differential genes regulated by cortisol and LPS, but the types of differential genes vary widely. KEGG enrichment analysis found that cortisol regulated LPS-stimulated immune responses mainly focus on cytokines, complement and coagulation cascades pathways, antigen presentation pathways, haematopoiesis, and inflammation. It is suggested that there may be some strategic choice in the regulation of immune response by cortisol. These results will help understand the pathogenesis and host defence system in bacterial disease caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Longlong Fu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - You Zheng
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Xiaohui Chen
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Wenji Bian
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| |
Collapse
|
16
|
Wang Y, Zhang Y, Li W, Yang L, Guo B. Distribution, metabolism and hepatotoxicity of neonicotinoids in small farmland lizard and their effects on GH/IGF axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:834-841. [PMID: 30795479 DOI: 10.1016/j.scitotenv.2019.01.277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The potential endocrine disruption of neonicotinoids poses a significant threat to the survival of small farmland lizards. We systematically evaluated the distribution, metabolism, and toxicity of three neonicotinoids (dinotefuran, thiamethoxam, and imidacloprid) in the Eremias argus during a 35-day oral administration exposure. Lizards could quickly transfer and store neonicotinoids into the scale and eliminated through molting. Dinotefuran was most prone to accumulation in lizard tissues, followed by thiamethoxam, and imidacloprid was generally present in the form of its terminal metabolite 6-chloropyridinyl acid. Exposure to dinotefuran resulted in hepatic oxidative stress damage, decreased plasma growth hormone concentration, and down-regulation of ghr, igf1 and igfbp2 gene expression. These indicated that dinotefuran might have potential growth inhibition toxicity to lizards. Although imidacloprid caused severe liver oxidative stress damage, the effect of imidacloprid on GH/IGF axis was not obvious. Compared to dinotefuran and imidacloprid, thiamethoxam had the least damage to liver and minimal impact on GH/IGF axis. This study verified the possible damage of neonicotinoids to lizard liver and the interference of GH/IGF axis for the first time.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yang Zhang
- Benxi Institute for Drug Control, No.31 Shengli Road, Mingshan District, Benxi 117000, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| |
Collapse
|
17
|
Tóth Z, Ouyang JQ, Lendvai ÁZ. Exploring the mechanistic link between corticosterone and insulin-like growth factor-1 in a wild passerine bird. PeerJ 2018; 6:e5936. [PMID: 30581657 PMCID: PMC6296332 DOI: 10.7717/peerj.5936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Background Physiological regulators of life history trade-offs need to be responsive to sudden changes of resource availability. When homeostasis is challenged by unpredictable stressors, vertebrates respond through a set of physiological reactions, which can promote organismal survival. Glucocorticoids have been traditionally recognized as one of the main regulators of the physiological stress response, but the role of an evolutionarily more conserved pathway, the hypothalamic-pituitary-somatotropic (HPS) axis producing insulin-like growth factor-1 (IGF-1) has received much less attention. Although IGF-1 is known to affect several life history traits, little is known about its role in the physiological stress response and it has never been studied directly in adult wild animals. Methods In this study, we combined field observations with a controlled experiment to investigate how circulating levels of IGF-1 change in response to stress and whether this change is due to concomitant change in glucocorticoids in a free-living songbird, the bearded reedling Panurus biarmicus. We used a standard capture-restraint protocol in field observation, in which we took first and second (stress induced: 15 minutes later) samples. In a follow-up experiment, we used a minimally invasive oral corticosterone manipulation. Results We showed that corticosterone levels significantly increased while IGF-1 levels significantly decreased during capture and handling stress. However, change in corticosterone levels were not related to change in IGF-1 levels. We found that experimentally elevated corticosterone levels did not affect IGF-1 levels. Discussion Our results are the first to highlight that circulating IGF-1 levels are responsive to stress independently from glucocorticoids and suggest that the HPS axis is an autonomous physiological pathway that may play an important role as regulator of life-history decisions.
Collapse
Affiliation(s)
- Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, NV, United States of America
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.,Department of Geology, University of Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Breves JP, Duffy TA, Einarsdottir IE, Björnsson BT, McCormick SD. In vivo effects of 17α-ethinylestradiol, 17β-estradiol and 4-nonylphenol on insulin-like growth-factor binding proteins (igfbps) in Atlantic salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:28-39. [PMID: 30075440 DOI: 10.1016/j.aquatox.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Feminizing endocrine disrupting compounds (EDCs) affect the growth and development of teleost fishes. The major regulator of growth performance, the growth hormone (Gh)/insulin-like growth-factor (Igf) system, is sensitive to estrogenic compounds and mediates certain physiological and potentially behavioral consequences of EDC exposure. Igf binding proteins (Igfbps) are key modulators of Igf activity, but their alteration by EDCs has not been examined. We investigated two life-stages (fry and smolts) of Atlantic salmon (Salmo salar), and characterized how the Gh/Igf/Igfbp system responded to waterborne 17α-ethinylestradiol (EE2), 17β-estradiol (E2) and 4-nonylphenol (NP). Fry exposed to EE2 and NP for 21 days had increased hepatic vitellogenin (vtg) mRNA levels while hepatic estrogen receptor α (erα), gh receptor (ghr), igf1 and igf2 mRNA levels were decreased. NP-exposed fry had reduced body mass and total length compared to controls. EE2 and NP reduced hepatic igfbp1b1, -2a, -2b1, -4, -5b2 and -6b1, and stimulated igfbp5a. In smolts, hepatic vtg mRNA levels were induced following 4-day exposures to all three EDCs, while erα only responded to EE2 and E2. EDC exposures did not affect body mass or fork length; however, EE2 diminished plasma Gh and Igf1 levels in parallel with reductions in hepatic ghr and igf1. In smolts, EE2 and E2 diminished hepatic igfbp1b1, -4 and -6b1, and stimulated igfbp5a. There were no signs of compromised ionoregulation in smolts, as indicated by unchanged branchial ion pump/transporter mRNA levels. We conclude that hepatic igfbps respond (directly and/or indirectly) to environmental estrogens during two key life-stages of Atlantic salmon, and thus may modulate the growth and development of exposed individuals.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Tara A Duffy
- Department of Marine and Environmental Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S. O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA.
| |
Collapse
|
19
|
Garcia de la Serrana D, Macqueen DJ. Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Front Endocrinol (Lausanne) 2018; 9:80. [PMID: 29593649 PMCID: PMC5857546 DOI: 10.3389/fendo.2018.00080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of physiological functions and a fascinating evolutionary history. This review focuses on the Igfbps of teleost fishes, where genome duplication events have diversified gene repertoire, function, and physiological regulation-with six core Igfbps expanded into a family of over twenty genes in some lineages. In addition to briefly summarizing the current state of knowledge on teleost Igfbp evolution, function, and expression-level regulation, we highlight gaps in our understanding and promising areas for future work.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Daniel Garcia de la Serrana,
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
20
|
Chadwick JG, McCormick SD. Upper thermal limits of growth in brook trout and their relationship to stress physiology. J Exp Biol 2017; 220:3976-3987. [DOI: 10.1242/jeb.161224] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the threat of climate change, the physiological mechanisms responsible for reduced performance at high temperatures remain unclear for most species. Elevated but sublethal temperatures may act via endocrine and cellular stress responses to limit performance in important life-history traits such as growth. Here, brook trout (Salvelinus fontinalis) subjected to chronically elevated or daily oscillating temperatures were monitored for growth and physiological stress responses. Growth rate decreased at temperatures above 16°C and was negative at 24°C, with an estimated upper limit for positive growth of 23.4°C. Plasma cortisol increased with temperature and was 12- and 18-fold higher at 22 and 24°C, respectively, than at 16°C, whereas plasma glucose was unaffected by temperature. Abundance of heat shock protein 70 (HSP70) in the gill increased with temperature and was 11- and 56-fold higher at 22°C and 24°C, respectively, than at 16°C. There was no relationship between temperature and plasma Cl−, but there was a 53% and 80% decrease in gill Na+/K+-ATPase activity and abundance at 24°C in comparison with 16°C. Daily temperature oscillations of 4°C or 8°C (19–23°C or 17–25°C) were compared with 21°C controls. Growth rate decreased with temperature and was 43% and 35% lower by length and mass, respectively, in the 8°C daily oscillation treatment than in the controls. There was no effect of temperature oscillation on plasma cortisol or glucose levels. In contrast, gill HSP70 abundance increased with increasing daily oscillation and was 40- and 700-fold greater at 4°C and 8°C daily oscillation, respectively, than in the constant temperature controls. In individuals exposed to 17–25°C diel oscillations for 4 days and then allowed to recover at 21°C, gill HSP70 abundance was still elevated after 4 days recovery, but not after 10 days. Our results demonstrate that elevated temperatures induce cellular and endocrine stress responses and provide a possible mechanism by which growth is limited at elevated temperatures. Temperature limitations on growth may play a role in driving brook trout distributions in the wild.
Collapse
Affiliation(s)
- Joseph G. Chadwick
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Stephen D. McCormick
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA
| |
Collapse
|
21
|
Shimizu M, Dickhoff WW. Circulating insulin-like growth factor binding proteins in fish: Their identities and physiological regulation. Gen Comp Endocrinol 2017; 252:150-161. [PMID: 28782538 DOI: 10.1016/j.ygcen.2017.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) play crucial roles in regulating the availability of IGFs to receptors and prolong the half-lives of IGFs. There are six IGFBPs present in the mammalian circulation with IGFBP-3 being most abundant. In mammals IGFBP-3 is the major carrier of circulating IGFs, facilitated by forming a ternary complex with IGF and an acid-labile subunit (ALS). IGFBP-1 is generally inhibitory to IGF action by preventing it from interacting with its receptors. In teleosts, the third-round of vertebrate whole genome duplication created paralogs of each IGFBP, except IGFBP-4. In the fish circulation, three major IGFBPs are typically detected at molecular ranges of 20-25, 28-32 and 40-50kDa. However, their identities are not well established. Three major circulating IGFBPs in Chinook salmon have been identified through protein purification and cDNA cloning. Salmon 28- and 22-kDa IGFBPs are co-orthologs of IGFBP-1, termed IGFBP-1a and -1b, respectively. They are induced under catabolic conditions such as stress and fasting but their responses are somewhat different, with IGFBP-1b being the most sensitive of the two. Cortisol stimulates production and secretion of these IGFBP-1 subtypes while, unlike in mammals, insulin may not be a primary suppressor. Salmon 41-kDa IGFBP, a major carrier of IGF-I, is not IGFBP-3, as might be expected extrapolating from mammals, but is in fact IGFBP-2b. Salmon IGFBP-2b levels in plasma are high when fish are fed, and GH treatment increases its circulating levels similar to mammalian IGFBP-3. These findings suggest that salmon IGFBP-2b acquired the role and regulation similar to mammalian IGFBP-3. Multiple replications of fish IGFBPs offer a unique opportunity to investigate molecular evolution of IGFBPs.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Walton W Dickhoff
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
22
|
Galt NJ, McCormick SD, Froehlich JM, Biga PR. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids. Gen Comp Endocrinol 2016; 237:19-26. [PMID: 27444129 DOI: 10.1016/j.ygcen.2016.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/05/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation. Therefore, the aim of this study was to evaluate the conserved actions of cortisol on myostatin and hsp90 expression to determine if variations in cortisol interactions have emerged in salmonid species. Representative salmonids; Chinook salmon (Oncorhynchus tshawytscha), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar); were injected intraperitoneally with a cortisol implant (50μg/g body weight) and muscle gene expression was quantified after 48h. Plasma glucose and cortisol levels were significantly elevated by cortisol in all species, demonstrating physiological effectiveness of the treatment. HSP90 mRNA levels were elevated by cortisol in brook trout, Chinook salmon, and Atlantic salmon, but were decreased in cutthroat trout. Myostatin mRNA levels were affected in a species, tissue (muscle type), and paralog specific manner. Cortisol treatment increased myostatin expression in brook trout (Salvelinus) and Atlantic salmon (Salmo), but not in Chinook salmon (Oncorhynchus) or cutthroat trout (Oncorhynchus). Interestingly, the VC alone increased myostatin mRNA expression in Chinook and Atlantic salmon, while the addition of cortisol blocked the response. Taken together, these results suggest that cortisol affects muscle-specific gene expression in species-specific manners, with unique Oncorhynchus-specific divergence observed, that are not predictive solely based upon mammalian stress responses.
Collapse
Affiliation(s)
- Nicholas J Galt
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen D McCormick
- USGS, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
23
|
Breves JP, Phipps-Costin SK, Fujimoto CK, Einarsdottir IE, Regish AM, Björnsson BT, McCormick SD. Hepatic insulin-like growth-factor binding protein (igfbp) responses to food restriction in Atlantic salmon smolts. Gen Comp Endocrinol 2016; 233:79-87. [PMID: 27210270 DOI: 10.1016/j.ygcen.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon (Salmo salar). Fish were fasted for 3 or 10days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3days and condition factor by 10days. Plasma Gh, cortisol, and thyroxine (T4) were not altered in response to fasting, whereas Igf1 and 3,5,3'-triiodo-l-thyronine (T3) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1, -1b2, -2a, -2b1 and -2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10days of fasting. Fasting did not alter hepatic igf1 or igf2; however, muscle igf1 was diminished by 10days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na(+)/K(+)-ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Silas K Phipps-Costin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Chelsea K Fujimoto
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530 Göteborg, Sweden
| | - Amy M Regish
- USGS, Conte Anadromous Fish Research Center, P.O. Box 796, One Migratory Way, Turners Falls, MA 01376, USA
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530 Göteborg, Sweden
| | - Stephen D McCormick
- USGS, Conte Anadromous Fish Research Center, P.O. Box 796, One Migratory Way, Turners Falls, MA 01376, USA
| |
Collapse
|
24
|
Won ET, Douros JD, Hurt DA, Borski RJ. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass. Gen Comp Endocrinol 2016; 229:84-91. [PMID: 26853487 DOI: 10.1016/j.ygcen.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/13/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory effect on GHRs may be limited to enhancing transcription or mRNA stability rather than inducing full translation of functional receptors, at least within a 24-h time frame. Finally, leptin was injected IP (100ng/g and 1μg/gBW) to test the in vivo regulation of hepatic IGF-1 and GHR1 gene expression. The 100ng/g BW leptin dose significantly upregulated in vivo IGF-1 mRNA levels relative to controls after 24h of fasting, but neither dosage was effective at regulating GHR1 gene expression. These studies suggest that stimulation of growth axis component transcripts by leptin may be an important mechanism for coordinating somatic growth with nutritional state in these and perhaps other fish or vertebrates, and represent the first evidence of leptin regulating GHRs in vertebrates.
Collapse
Affiliation(s)
- Eugene T Won
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jonathan D Douros
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David A Hurt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
25
|
Costa LS, Rosa PV, Fortes-Silva R, Sánchez-Vázquez FJ, López-Olmeda JF. Daily rhythms of the expression of genes from the somatotropic axis: The influence on tilapia (Oreochromis niloticus) of feeding and growth hormone administration at different times. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:27-34. [PMID: 26743958 DOI: 10.1016/j.cbpc.2015.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/23/2022]
Abstract
The aim of this research was to investigate the presence of daily rhythms in the somatotropic axis of tilapia fed at two times (mid-light, ML or mid-dark, MD) and the influence of the time of day of growth hormone (GH) administration on the response of this axis. Two different GH injection times were tested: ZT 3 (3h after lights on) and ZT 15 (3h after lights off). In both experiments, the mRNA expression levels of hypothalamic pituitary adenylate cyclase-activating polypeptide (pacap), pituitary growth hormone (gh), liver insulin-like growth factors (igf1 and igf2a), and liver and muscle growth hormone receptors (ghr1 and ghr2) and IGF receptors (igf1ra and igf2r) were evaluated by means of qPCR. Daily rhythms were observed in the liver for ghr1, ghr2 and igf2r but only in fish fed at ML, with the acrophases located in the light phase (ZT 3:30, 3:31 and 7:38 h, respectively). In the muscle, ghr1 displayed a significant rhythm in both groups and ghr2 in ML fed fish (acrophases at ZT 5:29, 7:14 and 9:23h). The time of both GH administration and feeding influenced the response to GH injection: ML fed fish injected with GH at ZT 15 h showed a significant increase in liver igf1, igf2a and ghr2; and muscle ghr2 expression. This is the first report that describes the existence of daily rhythms in the somatotropic axis of tilapia and its time-dependent responses of GH administration. Our results should be considered when investigating the elements of the somatotropic axis in tilapia and GH administration.
Collapse
Affiliation(s)
- Leandro S Costa
- Department of Animal Science, Federal University of Lavras, Minas Gerais, 37200-000, Brazil; Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Priscila V Rosa
- Department of Animal Science, Federal University of Lavras, Minas Gerais, 37200-000, Brazil
| | - Rodrigo Fortes-Silva
- Agricultural Science, Biological and Environmental Center, University of Bahia, 44380-000, Cruz das Almas, Bahia, Brazil
| | - F Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - Jose F López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
26
|
Fukuda M, Kaneko N, Kawaguchi K, Hevrøy EM, Hara A, Shimizu M. Development of a time-resolved fluoroimmunoassay for salmon insulin-like growth factor binding protein-1b. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:66-73. [DOI: 10.1016/j.cbpa.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
|
27
|
Madison BN, Tavakoli S, Kramer S, Bernier NJ. Chronic cortisol and the regulation of food intake and the endocrine growth axis in rainbow trout. J Endocrinol 2015; 226:103-19. [PMID: 26101374 DOI: 10.1530/joe-15-0186] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 12/15/2022]
Abstract
To gain a better understanding of the mechanisms by which cortisol suppresses growth during chronic stress in fish, we characterized the effects of chronic cortisol on food intake, mass gain, the expression of appetite-regulating factors, and the activity of the GH/IGF axis. Fish given osmotic pumps that maintained plasma cortisol levels at ∼70 or 116 ng/ml for 34 days were sampled 14, 28 and 42 days post-implantation. Relative to shams, the cortisol treatments reduced food intake by 40-60% and elicited marked increases in liver leptin (lep-a1) and brain preoptic area (POA) corticotropin-releasing factor (crf) mRNA levels. The cortisol treatments also elicited 40-80% reductions in mass gain associated with increases in pituitary gh, liver gh receptor (ghr), liver igfI and igf binding protein (igfbp)-1 and -2 mRNA levels, reduced plasma GH and no change in plasma IGF1. During recovery, while plasma GH and pituitary gh, liver ghr and igfI gene expression did not differ between treatments, the high cortisol-treated fish had lower plasma IGF1 and elevated liver igfbp1 mRNA levels. Finally, the cortisol-treated fish had higher plasma glucose levels, reduced liver glycogen and lipid reserves, and muscle lipid content. Thus, our findings suggest that the growth-suppressing effects of chronic cortisol in rainbow trout result from reduced food intake mediated at least in part by increases in liver lep-a1 and POA crf mRNA, from sustained increases in hepatic igfbp1 expression that reduce the growth-promoting actions of the GH/IGF axis, and from a mobilization of energy reserves.
Collapse
Affiliation(s)
- Barry N Madison
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sara Tavakoli
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah Kramer
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
28
|
Chadwick JG, Nislow KH, McCormick SD. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish. CONSERVATION PHYSIOLOGY 2015; 3:cov017. [PMID: 27293702 PMCID: PMC4778472 DOI: 10.1093/conphys/cov017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Climate change is predicted to change the distribution and abundance of species, yet underlying physiological mechanisms are complex and methods for detecting populations at risk from rising temperature are poorly developed. There is increasing interest in using physiological mediators of the stress response as indicators of individual and population-level response to environmental stressors. Here, we use laboratory experiments to show that the temperature thresholds in brook trout (Salvelinus fontinalis) for increased gill heat shock protein-70 (20.7°C) and plasma glucose (21.2°C) are similar to their proposed thermal ecological limit of 21.0°C. Field assays demonstrated increased plasma glucose, cortisol and heat shock protein-70 concentrations at field sites where mean daily temperature exceeded 21.0°C. Furthermore, population densities of brook trout were lowest at field sites where temperatures were warm enough to induce a stress response, and a co-occurring species with a higher thermal tolerance showed no evidence of physiological stress at a warm site. The congruence of stress responses and proposed thermal limits supports the use of these thresholds in models of changes in trout distribution under climate change scenarios and suggests that the induction of the stress response by elevated temperature may play a key role in driving the distribution of species.
Collapse
Affiliation(s)
- Joseph G. Chadwick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Conte Anadromous Fish Research Center, USGS, One Migratory Way, Turners Falls, MA 01376, USA
| | - Keith H. Nislow
- Northern Research Station, US Forest Service, University of Massachusetts, Amherst, MA 01003, USA
| | - Stephen D. McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Conte Anadromous Fish Research Center, USGS, One Migratory Way, Turners Falls, MA 01376, USA
| |
Collapse
|
29
|
Choi YH, Kim KW, Han HS, Nam TJ, Lee BJ. Dietary Hizikia fusiformis glycoprotein-induced IGF-I and IGFBP-3 associated to somatic growth, polyunsaturated fatty acid metabolism, and immunity in juvenile olive flounder Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2014; 167:1-6. [DOI: 10.1016/j.cbpa.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/05/2023]
|
30
|
Pohlenz C, Buentello A, Miller T, Small BC, MacKenzie DS, Gatlin DM. Effects of dietary arginine on endocrine growth factors of channel catfish, Ictalurus punctatus. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:215-21. [DOI: 10.1016/j.cbpa.2013.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
31
|
Nakano T, Afonso LOB, Beckman BR, Iwama GK, Devlin RH. Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon. PLoS One 2013; 8:e71421. [PMID: 23990952 PMCID: PMC3747168 DOI: 10.1371/journal.pone.0071421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.
Collapse
Affiliation(s)
- Toshiki Nakano
- Marine Biochemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| | - Luis O. B. Afonso
- Institute for Marine Biosciences (IMB/NRC), National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Brian R. Beckman
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington, United States of America
| | - George K. Iwama
- The University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Robert H. Devlin
- West Vancouver Laboratory, Center for Aquaculture and Environment Research (CAER- DFO/UBC), Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Upton KR, Riley LG. Acute stress inhibits food intake and alters ghrelin signaling in the brain of tilapia (Oreochromis mossambicus). Domest Anim Endocrinol 2013; 44:157-64. [PMID: 23291012 DOI: 10.1016/j.domaniend.2012.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
This study investigated the effect of an acute stress on food intake and on the expression of neuropeptide Y (NPY), corticotropin-releasing hormone (CRH), and ghrelin and its receptors, growth hormone secretagogue receptors (GHSRs) in the tilapia (Oreochromis mossambicus). Food intake was significantly (P < 0.01) reduced in fish after a 30-min crowding and handling stress. In a second group of animals exposed to the same 30-min stressor, tissue samples were collected immediately after the stressor to determine changes in the neuroendocrine regulators of food intake. Although CRH and NPY are considered the major mediators of appetite during stress, both mRNA levels were unaltered in the telencephalon/pre-optic area and in the hypothalamic/optic tectum. Interestingly, there was an elevation in the ghrelin transcript (P < 0.05) in the telencephalon/pre-optic area and elevation of its functional receptor (GHSR1a-LR) (P < 0.001) in the hypothalamic/optic tectum. Elevation of GHSR-LR heteronuclear RNA (P < 0.01) in the telencephalon/pre-optic area and suppression in the hypothalamic/optic tectum (P < 0.001) suggest rapid control of the ghrelin regulatory system in response to acute stress. These results suggest that ghrelin signaling is altered during acute stress. It is not clear if these changes result in altered feeding behavior because no changes in CRH or NPY mRNA expression were observed or if ghrelin is playing a role in regulating overall metabolic changes after acute stress.
Collapse
Affiliation(s)
- K R Upton
- Department of Biology, California State University at Fresno, Fresno, CA 93740, USA
| | | |
Collapse
|
33
|
Reindl KM, Sheridan MA. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:231-45. [DOI: 10.1016/j.cbpa.2012.08.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
|
34
|
Janzen WJ, Duncan CA, Riley LG. Cortisol treatment reduces ghrelin signaling and food intake in tilapia, Oreochromis mossambicus. Domest Anim Endocrinol 2012; 43:251-9. [PMID: 22657576 DOI: 10.1016/j.domaniend.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
It is well known that after a stressor, levels of plasma cortisol rise, inducing physiological changes within the animal that are directed toward maintaining homeostasis. Less well understood is the role of cortisol in regulating food intake in teleosts. This study investigated the effect of cortisol on food intake and regulation of the neuroendocrine appetite-stimulating hormones, neuropeptide Y (NPY) and ghrelin, in tilapia (Oreochromis mossambicus). Male and female tilapia were randomly assigned to one of the following treatments: unhandled control, vehicle-injected control, or cortisol (2 μg/g BW). Food intake was determined 24 h after injection during a 1-h feeding trial. Cortisol reduced food intake (P<0.001). An identical study was conducted to measure the effects of 24-h cortisol treatment on the endocrine regulators of food intake. Cortisol reduced stomach expression of ghrelin mRNA (P<0.05) and plasma concentrations of ghrelin (P<0.05). In the hypothalamus/optic tectum cortisol reduced levels of GHSR1a-LR (biologically active ghrelin receptor) mRNA. In the telencephalon/preoptic area cortisol significantly reduced levels of NPY and GHSR1b-LR (biologically inactive ghrelin receptor) mRNA. These findings suggest that anorexigenic actions of cortisol may be mediated via two separate pathways: (1) reducing circulating ghrelin levels as well as GHSR1a-LR expression in the hypothalamus/optic tectum and/or (2) suppressing NPY expression in the telencephalon/preoptic area.
Collapse
Affiliation(s)
- W J Janzen
- Department of Biology, California State University at Fresno, Fresno, CA 93740, USA
| | | | | |
Collapse
|
35
|
Salas-Leiton E, Coste O, Asensio E, Infante C, Cañavate JP, Manchado M. Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress and increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup, 1858). FISH & SHELLFISH IMMUNOLOGY 2012; 32:769-778. [PMID: 22326938 DOI: 10.1016/j.fsi.2012.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 01/17/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
Cortisol, the main glucocorticoid in fish, undertakes pleiotropic biological effects in response to stressors to maintain homeostasis. It can exert several actions on the immune system, growth and cellular metabolism, establishing a fine-tune regulation stress response and cross-talk interactions with other regulatory pathways. In this study, we investigated a causal relationship between high levels of glucocorticoids and susceptibility to pathogens and modification of gene expression profiles in Senegalese sole. For this purpose, we carried out two experiments using post-metamorphic individuals (21 days after hatching) that were exposed to dexamethasone (DXM), a potent glucocorticoid, in order to mimic cortisol effects. We quantified transcript levels of a wide set of genes involved in innate immune system (g-type lysozyme and hepcidin (hamp1)), HPI axis (crf, crfbp, pomcα, pomcβ, gr1 and gr2), HPT axis (tgb), cellular stress defense system (hsp70 and hsp90aa), GH/IGF axis (igf-I and igf-Ir) and the neuropeptide trh. Short-term exposure to 0.1, 1 and 10 ppm DXM provoked a reduction of pomcβ transcripts and an increase of crfbp mRNAs in a dose-dependent manner at 48 and 72 h after treatment. Moreover, g-type lysozyme transcript levels decreased significantly at 72 h whereas hamp1 mRNA levels increased at 48 h after exposure. Long-term DXM treatment (10 ppm DXM) affected negatively weight of soles (~20% lower than controls). Moreover, reduced mRNA levels were observed for pomcβ after 1 week and igf-I and hamp1 after 2 weeks. In contrast, crfbp and crf increased mRNA levels after 2 weeks. hsp70 exhibited a dual response increasing transcript levels at 1 week after treatment and reducing thereafter. No significant changes in gene expression were observed at any time during this study for tgb, trh, hsp90aa, pomcα, gr1 and gr2. Finally, a challenge experiment using the pathogen Photobacterium damselae subsp piscicida confirmed earlier and higher mortalities in DXM-treated animals. Taken together, these data indicate that a prolonged exposure to DXM increases the susceptibility to pathogens and reduces growth. Moreover, DXM can trigger a wide cellular response modulating the expression of genes involved in the innate immune system, HPI and GH/IGF axes as well as cellular stress defense. These results are highly valuable to evaluate responses associated to aquaculture stressful conditions and discriminate specific glucocorticoid-mediated effects.
Collapse
Affiliation(s)
- E Salas-Leiton
- IFAPA Centro El Toruño, Junta de Andalucía, Molecular Biology Laboratory, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Zhai W, Zhang J, Shi Z, Fu Y. Identification and expression analysis of IGFBP-1 gene from Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 161:413-20. [PMID: 22290028 DOI: 10.1016/j.cbpb.2012.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 01/03/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1) plays an important role in IGF regulating vertebrate growth and development. In this study, we cloned IGFBP-1 cDNA from Japanese flounder (Paralichthys olivaceus) liver. The full-length cDNA is 1070 bp, including a 5'-untranslated region (UTR) of 69 bp, a 3'-UTR of 272 bp, and an open reading frame (ORF) of 729 bp encoding a polypeptide of 242 amino acids. Real-time quantitative PCR revealed that IGFBP-1 mRNA is mainly expressed in the liver, and a small amount of mRNAs was also found in other adult tissues. There are maternal transcripts of IGFBP-1 gene, and relatively low mRNA levels were observed in different embryonic stages. A higher level of IGFBP-1 mRNA was detected at 3 days post hatching (dph), and it got to the highest level at 29 dph (metamorphic climax), and finally brought back to a lower level at the end of metamorphosis. The expression of IGFBP-1 mRNA was greatly up-regulated in thyroid hormone (TH)-treated larvae, and declined after thiourea (TU) treatment. These results provide basic information for further studies on the role of IGF system in the P. olivaceus development and metamorphosis.
Collapse
Affiliation(s)
- Wanying Zhai
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, PR China
| | | | | | | |
Collapse
|
37
|
Lennquist A, Asker N, Kristiansson E, Brenthel A, Björnsson BT, Kling P, Hultman M, Larsson DGJ, Förlin L. Physiology and mRNA expression in rainbow trout (Oncorhynchus mykiss) after long-term exposure to the new antifoulant medetomidine. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:234-41. [PMID: 21703361 DOI: 10.1016/j.cbpc.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 02/04/2023]
Abstract
Medetomidine is under evaluation for use as an antifouling agent, and its effects on non-target aquatic organisms are therefore of interest. In this study, rainbow trout was exposed to low (0.5 and 5.0nM) concentrations of medetomidine for up to 54 days. Recently we have reported on effects on paleness and melanophore aggregation of medetomidine in these fish. Here, specific growth rates were investigated together with a broad set of physiological parameters including plasma levels of growth hormone (GH), insulin-like growth factor-I (IGF-I) and leptin, glucose and haemoglobin (Hb), hematocrit (Ht), condition factor, liver and heart somatic indexes (LSI, HSI). Hepatic enzyme activities of CYP1A (EROD activity), glutathione S-transferases (GST) and glutathione reductase (GR) were also measured. Additionally, hepatic mRNA expression was analysed through microarray and quantitative PCR in fish sampled after 31 days of exposure. Medetomidine at both concentrations significantly lowered blood glucose levels and the higher concentration significantly reduced the LSI. The mRNA expression analysis revealed few differentially expressed genes in the liver and the false discovery rate was high. Taken together, the results suggest that medetomidine at investigated concentrations could interfere with carbohydrate metabolism of exposed fish but without any clear consequences for growth.
Collapse
Affiliation(s)
- Anna Lennquist
- Department of Zoology/Zoophysiology, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shepherd BS, Aluru N, Vijayan MM. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss). Domest Anim Endocrinol 2011; 40:129-38. [PMID: 21185680 DOI: 10.1016/j.domaniend.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 12/30/2022]
Abstract
The effects of acute stressor exposure on proximal (growth hormone [GH]) and distal (insulin-like growth factor-I [IFG-I] and insulin-like growth factor-binding proteins [IFGBPs]) components of the somatotropic axis are poorly understood in finfish. Rainbow trout (Oncorhynchus mykiss) were exposed to a 5-min handling disturbance to mimic an acute stressor episode, and levels of plasma GH, IGF-I, and IGFBPs at 0, 1, 4, and 24 h post-stressor exposure were measured. An unstressed group was also sampled at the same clock times (09:00, 10:00, 13:00, and 08:00 [the following day]) as acute stress sampling to determine temporal changes in the above somatotropic axis components. The acute stressor transiently elevated plasma cortisol and glucose levels at 1 and 4 h post-stressor exposure, whereas no changes were seen in the unstressed group. Plasma GH levels were not affected by handling stress or sampling time in the unstressed animals. Plasma IGF-I levels were significantly depressed at 1 and 4 h post-stressor exposure, but no discernible temporal pattern was seen in the unstressed animals. Using a western ligand blotting technique, we detected plasma IGFBPs of 21, 32, 42, and 50 kDa in size. The plasma levels of the lower-molecular-weight IGFBPs (21 and 32 kDa) were unaffected by handling stressor, nor were there any discernible temporal patterns in the unstressed animals. By contrast, the higher-molecular-weight IGFBPs (42 and 50 kDa) were affected by stress or time of sampling. Levels of the 42-kDa IGFBP levels significantly decreased over the sampling period in unstressed control animals, but this temporal drop was eliminated in stressed animals. Levels of the 50-kDa IGFBPs also decreased significantly over the sampling time in unstressed trout, whereas handling disturbance transiently increased levels of this IGFBP at 1 h but not at 4 and 24 h post-stressor exposure compared with the control group. Overall, our results suggest that acute stress adaptation involves modulation of plasma IGF-1 and high-molecular-mass IGFBP levels (42 and 50 kDa) in rainbow trout.
Collapse
Affiliation(s)
- B S Shepherd
- USDA/ARS/Great Lakes WATER Institute, Milwaukee, WI 53204, USA.
| | | | | |
Collapse
|
39
|
Beckman BR. Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen Comp Endocrinol 2011; 170:233-52. [PMID: 20800595 DOI: 10.1016/j.ygcen.2010.08.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Many physiological processes are modulated by the endocrine system, including growth. Insulin-like growth factor 1 is one of the primary hormones involved in growth regulation in vertebrates, including fishes. Current work on IGF1 in fishes is driven both by a desire to better understand mechanisms of growth as well as to develop a reliable index of growth rate. A review of studies relating IGF1 to growth broadly reveals positive and significant relations between IGF1 and growth; however, relations found in individual studies range from no correlation to highly significant correlations. Potential sources for this variation include both biological and methodological issues and range from differences in how growth is defined (changes in length or weight), the duration of growth assessed (weeks to months) and how growth is calculated (total change, rate, percent change); yet, these methodological concerns cannot account for all the variation found. A further review of the literature reveals a number of physiological conditions and environmental factors that might influence IGF1 level and the subsequent relation of that IGF1 level to growth rate. The term concordance is introduced to categorize factors that influence IGF1 and growth in a similar fashion, such that positive and significant relations between IGF1 and growth are maintained even though the factor stimulates changes in IGF1 level. Conversely, the term discordance is introduced to categorize factors that stimulate changes in the relations between IGF1 and growth, such that IGF1 is not an efficacious index of growth for both pre and post-stimulus fish combined. IGF1 and growth relations generally remain concordant after changes in nutrition (consumption rate or diet). Differences in IGF1 level of juvenile, maturing male and maturing female fish are common and IGF1-growth relations appear discordant between these groups. Acute changes in temperature and salinity induce discordant relations between IGF1 and growth but acclimation to persistent differences in environmental condition generally result in concordant relations. Overall, by discriminating between fish of differing physiological status and discerning and categorizing differences among environments one may effectively use IGF1 as a growth index for fishes.
Collapse
Affiliation(s)
- Brian R Beckman
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA.
| |
Collapse
|
40
|
Salas-Leiton E, Anguis V, Martín-Antonio B, Crespo D, Planas JV, Infante C, Cañavate JP, Manchado M. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. FISH & SHELLFISH IMMUNOLOGY 2010; 28:296-302. [PMID: 19909816 DOI: 10.1016/j.fsi.2009.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/19/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Stocking density and ration size are two major factors influencing aquaculture production. To evaluate their effects on growth and immune system in Senegalese sole (Solea senegalensis) juveniles, a 2 x 2 experimental design using two rations (1.0% and 0.25% of the total fish biomass) and two different initial stocking densities (7 and 30 kg m(-2)) was performed throughout a 60 days culture period. Soles fed 1.0% showed a higher specific growth rate (SGR) than those fed 0.25% (3.3-fold). No differences in SGR at 60 days were found between densities in spite of reduced values were detected at high density after 20 days (soles fed 0.25%) and 40 days (soles fed 1%) suggesting a compensatory growth. Physiologically, plasma cortisol levels were elevated in soles at high density (45-fold higher than at 7 kg m(-2)) whereas no differences associated to the feeding ration were observed. To assess the effects at a molecular level, the mRNA levels of genes involved in cellular stress (heat shock proteins HSP70 and HSP90), growth (insulin-like growth factors IGF-I, the spliced variants IGF-Ia and IGFI-b, and IGF-II) and innate immune system (g-type lysozyme and hepcidin (HAMP1)) were quantified. No differences in HSP90 expression were detected between densities or rations. In contrast, IGF-I, IGF-Ia and IGF-II showed reduced transcript levels in liver and HSP70 in liver and kidney at high density. Finally, g-type lysozyme and HAMP1 expression was greatly affected by both factors exhibiting an important reduction in the transcript levels at high density and low ration. Overall, our results show that S. senegalensis juveniles might exhibit satisfactory SGR at high density although the high plasma cortisol levels indicate a crowding stress that could negatively affect the expression levels of some of the genes studied.
Collapse
Affiliation(s)
- Emilio Salas-Leiton
- IFAPA Centro El Toruño, Consejería de Agricultura y Pesca, Junta de Andalucía. Apartado 16, 11500 El Puerto de Santa María, Cádiz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Breves JP, Hirano T, Grau EG. Ionoregulatory and endocrine responses to disturbed salt and water balance in Mozambique tilapia exposed to confinement and handling stress. Comp Biochem Physiol A Mol Integr Physiol 2009; 155:294-300. [PMID: 19879953 DOI: 10.1016/j.cbpa.2009.10.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 11/16/2022]
Abstract
This study assessed the endocrine and ionoregulatory responses by tilapia (Oreochromis mossambicus) to disturbances of hydromineral balance during confinement and handling. In fresh water (FW), confinement and handling for 0.5, 1, 2 and 6h produced elevations in plasma cortisol and glucose; a reduction in plasma osmolality was observed at 6h. Elevations in plasma prolactins (PRL(177) and PRL(188)) accompanied this fall in osmolality while no effect upon growth hormone (GH) was evident; an increase in insulin-like growth-factor I (IGF-I) occurred at 0.5h. In seawater (SW), confinement and handling increased plasma osmolality and glucose between 0.5 and 6h; no effect on plasma cortisol was seen due to variable control levels. Concurrently, both PRLs were reduced in stressed fish with only transient changes in the GH/IGF-I axis. Next, the branchial expression of Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and Na(+)/Cl(-) cotransporter (NCC) was characterized following confinement and handling for 6h. In SW, NKCC mRNA levels increased in stressed fish concurrently with elevated plasma osmolality and diminished gill Na(+), K(+)-ATPase activity; NCC was unchanged in stressed fish irrespective of salinity. Taken together, PRL and NKCC participate in restoring osmotic balance during acute stress while the GH/IGF-I axis displays only modest responses.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | |
Collapse
|
42
|
Peterson BC, Waldbieser GC. Effects of fasting on IGF-I, IGF-II, and IGF-binding protein mRNA concentrations in channel catfish (Ictalurus punctatus). Domest Anim Endocrinol 2009; 37:74-83. [PMID: 19446983 DOI: 10.1016/j.domaniend.2009.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 11/27/2022]
Abstract
The effects of fasting on insulin-like growth factor (IGF)-I, IGF-II, and IGF-binding protein (IGFBPs) mRNA in channel catfish were examined. Fed control fish (Fed) were compared to fish that had been fasted for 30 d followed by 15 d of additional feeding (Restricted). Sequence alignment and similarity to orthologous proteins in other vertebrates provided structural evidence that the 3 catfish sequences identified in the present research were IGFBP-1, -2, and -3. Prolonged fasting (30 d) reduced body weight approximately 60% (P<0.001) and decreased IGF-I mRNA in the liver and muscle (P<0.01). Fifteen days of re-feeding restored concentrations of hepatic and muscle IGF-I mRNA. Liver IGF-II mRNA was not affected by fasting but was increased 2.2-fold after 15 d of re-feeding (P<0.05). Abundance of muscle IGF-II mRNA was similar between the fed control group and the restricted group throughout the experimental period. Fasting also increased liver IGFBP-1 mRNA (P<0.05) and decreased IGFBP-3 mRNA (P<0.01), whereas abundance of IGFBP-2 mRNA was not significantly affected. Interestingly, re-feeding for 15 d did not restore concentrations of IGFBP-1 and IGFBP-3 mRNA relative to fed control concentrations. The IGF results suggest that IGF-I and IGF-II are differently regulated by nutritional status and probably have a differential effect in promoting muscle growth during recovery from fasting. Similar to mammals, IGFBP-1 mRNA in catfish is increased during catabolism, whereas IGFBP-3 mRNA is decreased during inhibited somatic growth. The IGFBP results provide additional evidence of the conserved nature of the IGF-IGFBP-growth axis in catfish.
Collapse
Affiliation(s)
- B C Peterson
- USDA/ARS Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS 38776, USA.
| | | |
Collapse
|
43
|
|
44
|
Chapter 6 Regulation And Contribution Of The Corticotropic, Melanotropic And Thyrotropic Axes To The Stress Response In Fishes. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
|
46
|
Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC. Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:296-304. [DOI: 10.1016/j.cbpb.2008.07.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 01/15/2023]
|
47
|
Direct actions of cortisol, thyroxine and growth hormone on IGF-I mRNA expression in sea bream hepatocytes. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:705-10. [PMID: 18790068 DOI: 10.1016/j.cbpa.2008.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/23/2022]
Abstract
The present study aims to investigate potential regulatory effect of different growth-related hormones including growth hormone (GH), human insulin-like growth factor-I (hIGF-I), thyroxine (T(4)), triiodothyronine (T(3)) and cortisol, on insulin-like growth factor-I (IGF-I) mRNA expression of hepatocytes isolated from silver sea bream. By using real-time PCR, IGF-I mRNA expression profiles of hepatocytes in response to individual hormones were determined in vitro. Hepatocytes incubated with GH at concentrations of 10-1000 ng/mL showed significantly higher IGF-I expression, but the elevation was attenuated at high concentration of GH (1000 ng/mL). IGF-I expression remained unchanged in hepatocytes after incubation with hIGF-I. Hepatocytes incubated with T(4) at concentration of 1000 ng/mL exhibited a significant elevation in IGF-I expression, whereas no difference in IGF-I expression was demonstrated in hepatocytes after incubation with T(3). Upon incubation with cortisol (1-1000 ng/mL), IGF-I expression was significantly decreased in hepatocytes in a dose-dependent manner. Our study demonstrated that GH, T(4), and cortisol had direct modulatory effects on IGF-I expression in fish hepatocytes in vitro.
Collapse
|
48
|
Small BC, Murdock CA, Waldbieser GC, Peterson BC. Reduction in channel catfish hepatic growth hormone receptor expression in response to food deprivation and exogenous cortisol. Domest Anim Endocrinol 2006; 31:340-56. [PMID: 16423501 DOI: 10.1016/j.domaniend.2005.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/22/2022]
Abstract
The objective of this study was to assess the effects of food deprivation and exogenous cortisol administration on somatic growth of channel catfish, Ictalurus punctatus, and examine the resultant changes in circulating insulin-like growth factor-I (IGF-I) concentrations and growth hormone receptor (GHR) gene expression. Integral to this objective, we report the isolation, sequence, and characterization of channel catfish GHR. Sequence analysis and characterization results indicate sequence identity and tissue distribution similar to GHRs in other teleost fish and several functional characteristics conserved in known vertebrate GHRs. The effects of food deprivation and dietary exogenous cortisol administration were assessed as part of a 4-week study. Growth was significantly reduced after 4 weeks in cortisol-fed fish compared to fed-control fish, and fasting resulted in weight loss. At the end of the 4-week study, both IGF-I plasma concentrations and hepatic GHR mRNA abundance were significantly reduced in fasted and cortisol-fed catfish. Levels of hepatic GHR mRNA were positively correlated to circulating IGF-I levels. These results suggest that a reduction in hepatic GHR gene expression might serve as a mechanism for the reduction of circulating IGF-I and growth in channel catfish during periods of food deprivation and stress.
Collapse
Affiliation(s)
- Brian C Small
- USDA/ARS, Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, P.O. Box 38, Stoneville, MS 38776, USA.
| | | | | | | |
Collapse
|
49
|
Wong AOL, Zhou H, Jiang Y, Ko WKW. Feedback regulation of growth hormone synthesis and secretion in fish and the emerging concept of intrapituitary feedback loop. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:284-305. [PMID: 16406825 DOI: 10.1016/j.cbpa.2005.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/21/2005] [Accepted: 11/21/2005] [Indexed: 11/21/2022]
Abstract
Growth hormone (GH) is known to play a key role in the regulation of body growth and metabolism. Similar to mammals, GH secretion in fish is under the control of hypothalamic factors. Besides, signals generated within the pituitary and/or from peripheral tissues/organs can also exert a feedback control on GH release by effects acting on both the hypothalamus and/or anterior pituitary. Among these feedback signals, the functional role of IGF is well conserved from fish to mammals. In contrast, the effects of steroids and thyroid hormones are more variable and appear to be species-specific. Recently, a novel intrapituitary feedback loop regulating GH release and GH gene expression has been identified in fish. This feedback loop has three functional components: (i) LH induction of GH release from somatotrophs, (ii) amplification of GH secretion by GH autoregulation in somatotrophs, and (iii) GH feedback inhibition of LH release from neighboring gonadotrophs. In this article, the mechanisms for feedback control of GH synthesis and secretion are reviewed and functional implications of this local feedback loop are discussed. This intrapituitary feedback loop may represent a new facet of pituitary research with potential applications in aquaculture and clinical studies.
Collapse
Affiliation(s)
- Anderson O L Wong
- Department of Zoology, University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| | | | | | | |
Collapse
|
50
|
Bernier NJ. The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 2006; 146:45-55. [PMID: 16410007 DOI: 10.1016/j.ygcen.2005.11.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/26/2005] [Indexed: 11/16/2022]
Abstract
A characteristic feature of the behavioural response to intensely acute or chronic stressors is a reduction in appetite. In fish, as in other vertebrates, the corticotropin-releasing factor (CRF) system plays a key role in coordinating the neuroendocrine, autonomic, and behavioural responses to stress. The following review documents the evidence implicating the CRF system as a mediator of the appetite-suppressing effects of stress in fish. Central injections of CRF or the related peptide, urotensin I (UI), or pharmacological treatments or stressors that result in an increase in forebrain CRF and UI gene expression, can elicit dose-dependent reductions in food intake that are at least partially reversed by pre-treatment with a CRF receptor antagonist. In addition, the appetite suppressing effects of various environmental, pathological, physical, and social stressors are associated with elevated levels of forebrain CRF and UI gene expression and with an activation of the hypothalamic-pituitary-interrenal (HPI) stress axis. In contrast, although stressors can also be associated with an increase in caudal neurosecretory system CRF and UI gene expression and an endocrine role for CRF-related peptides has been suggested, the physiological effects of peripheral CRF-related peptides on the gastrointestinal system and in the regulation of appetite have not been investigated. Overall, while CRF and UI appear to participate in the stress-induced changes in feeding behaviour in fish, the role of other know components of the CRF system is not known. Moreover, the extent to which the anorexigenic effects of CRF-related peptides are mediated through the hypothalamic feeding center, the HPI axis and cortisol, or via actions on descending autonomic pathways remains to be investigated.
Collapse
Affiliation(s)
- Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Ont., Canada N1G 2W1.
| |
Collapse
|