1
|
Singh KD, Karnik SS. Implications of β-Arrestin biased signaling by angiotensin II type 1 receptor for cardiovascular drug discovery and therapeutics. Cell Signal 2024; 124:111410. [PMID: 39270918 DOI: 10.1016/j.cellsig.2024.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that β-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the β-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current β-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, β-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule β-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, USA.
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, USA.
| |
Collapse
|
2
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
5
|
Shafer BM, West CR, Foster GE. Advancements in the neurocirculatory reflex response to hypoxia. Am J Physiol Regul Integr Comp Physiol 2024; 327:R1-R13. [PMID: 38738293 PMCID: PMC11380992 DOI: 10.1152/ajpregu.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Hypoxia is a pivotal factor in the pathophysiology of various clinical conditions, including obstructive sleep apnea, which has a strong association with cardiovascular diseases like hypertension, posing significant health risks. Although the precise mechanisms linking hypoxemia-associated clinical conditions with hypertension remains incompletely understood, compelling evidence suggests that hypoxia induces plasticity of the neurocirculatory control system. Despite variations in experimental designs and the severity, frequency, and duration of hypoxia exposure, evidence from animal and human models consistently demonstrates the robust effects of hypoxemia in triggering reflex-mediated sympathetic activation. Both acute and chronic hypoxia alters neurocirculatory regulation and, in some circumstances, leads to sympathetic outflow and elevated blood pressures that persist beyond the hypoxic stimulus. Dysregulation of autonomic control could lead to adverse cardiovascular outcomes and increase the risk of developing hypertension.
Collapse
Affiliation(s)
- Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
6
|
Shen T, Li Y, Liu T, Lian Y, Kong L. Association between Mycoplasma pneumoniae infection, high‑density lipoprotein metabolism and cardiovascular health (Review). Biomed Rep 2024; 20:39. [PMID: 38357242 PMCID: PMC10865299 DOI: 10.3892/br.2024.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The association between Mycoplasma pneumoniae (M. pneumoniae) infection, high-density lipoprotein metabolism and cardiovascular disease is an emerging research area. The present review summarizes the basic characteristics of M. pneumoniae infection and its association with high-density lipoprotein and cardiovascular health. M. pneumoniae primarily invades the respiratory tract and damages the cardiovascular system through various mechanisms including adhesion, invasion, secretion of metabolites, production of autoantibodies and stimulation of cytokine production. Additionally, the present review highlights the potential role of high-density lipoprotein for the development of prevention and intervention of M. pneumoniae infection and cardiovascular disease, and provides suggestions for future research directions and clinical practice. It is urgent to explore the specific mechanisms underlying the association between M. pneumoniae infection, high-density lipoprotein metabolism, and cardiovascular disease and analyze the roles of the immune system and inflammatory response.
Collapse
Affiliation(s)
- Tao Shen
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yanfang Li
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Tingting Liu
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yunzhi Lian
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Luke Kong
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| |
Collapse
|
7
|
Bhullar SK, Dhalla NS. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can J Physiol Pharmacol 2024; 102:86-104. [PMID: 37748204 DOI: 10.1139/cjpp-2023-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Cumhur Cure M, Cure E. Why have SGLT2 Inhibitors Failed to Achieve the Desired Success in COVID-19? Curr Pharm Des 2024; 30:1149-1156. [PMID: 38566383 DOI: 10.2174/0113816128300162240322075423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The SARS-CoV-2 virus emerged towards the end of 2019 and caused a major worldwide pandemic lasting at least 2 years, causing a disease called COVID-19. SARS-CoV-2 caused a severe infection with direct cellular toxicity, stimulation of cytokine release, increased oxidative stress, disruption of endothelial structure, and thromboinflammation, as well as angiotensin-converting enzyme 2 (ACE2) down-regulation-mediated renin-angiotensin system (RAS) activation. In addition to glucosuria and natriuresis, sodium-glucose transport protein 2 (SGLT2) inhibitors (SGLT2i) cause weight loss, a decrease in glucose levels with an insulin-independent mechanism, an increase in erythropoietin levels and erythropoiesis, an increase in autophagy and lysosomal degradation, Na+/H+-changer inhibition, prevention of ischemia/reperfusion injury, oxidative stress and they have many positive effects such as reducing inflammation and improving vascular function. There was great anticipation for SGLT2i in treating patients with diabetes with COVID-19, but current data suggest they are not very effective. Moreover, there has been great confusion in the literature about the effects of SGLT2i on COVID-19 patients with diabetes . Various factors, including increased SGLT1 activity, lack of angiotensin receptor blocker co-administration, the potential for ketoacidosis, kidney injury, and disruptions in fluid and electrolyte levels, may have hindered SGLT2i's effectiveness against COVID-19. In addition, the duration of use of SGLT2i and their impact on erythropoiesis, blood viscosity, cholesterol levels, and vitamin D levels may also have played a role in their failure to treat the virus. This article aims to uncover the reasons for the confusion in the literature and to unravel why SGLT2i failed to succeed in COVID-19 based on some solid evidence as well as speculative and personal perspectives.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Medilab Laboratory and Imaging Center, Department of Biochemistry, Sisli, Istanbul, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Beylikdüzü Medilife Hospital, Yakuplu Mh, Beylikduzu, Istanbul, Turkey
| |
Collapse
|
9
|
Lee J, Hong SW, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Glucagon-Like Peptide Receptor Agonist Inhibits Angiotensin II-Induced Proliferation and Migration in Vascular Smooth Muscle Cells and Ameliorates Phosphate-Induced Vascular Smooth Muscle Cells Calcification. Diabetes Metab J 2024; 48:83-96. [PMID: 38173373 PMCID: PMC10850275 DOI: 10.4093/dmj.2022.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Glucagon-like peptide-1 receptor agonist (GLP-1RA), which is a therapeutic agent for the treatment of type 2 diabetes mellitus, has a beneficial effect on the cardiovascular system. METHODS To examine the protective effects of GLP-1RAs on proliferation and migration of vascular smooth muscle cells (VSMCs), A-10 cells exposed to angiotensin II (Ang II) were treated with either exendin-4, liraglutide, or dulaglutide. To examine the effects of GLP-1RAs on vascular calcification, cells exposed to high concentration of inorganic phosphate (Pi) were treated with exendin-4, liraglutide, or dulaglutide. RESULTS Ang II increased proliferation and migration of VSMCs, gene expression levels of Ang II receptors AT1 and AT2, proliferation marker of proliferation Ki-67 (Mki-67), proliferating cell nuclear antigen (Pcna), and cyclin D1 (Ccnd1), and the protein expression levels of phospho-extracellular signal-regulated kinase (p-Erk), phospho-c-JUN N-terminal kinase (p-JNK), and phospho-phosphatidylinositol 3-kinase (p-Pi3k). Exendin-4, liraglutide, and dulaglutide significantly decreased the proliferation and migration of VSMCs, the gene expression levels of Pcna, and the protein expression levels of p-Erk and p-JNK in the Ang II-treated VSMCs. Erk inhibitor PD98059 and JNK inhibitor SP600125 decreased the protein expression levels of Pcna and Ccnd1 and proliferation of VSMCs. Inhibition of GLP-1R by siRNA reversed the reduction of the protein expression levels of p-Erk and p-JNK by exendin-4, liraglutide, and dulaglutide in the Ang II-treated VSMCs. Moreover, GLP-1 (9-36) amide also decreased the proliferation and migration of the Ang II-treated VSMCs. In addition, these GLP-1RAs decreased calcium deposition by inhibiting activating transcription factor 4 (Atf4) in Pi-treated VSMCs. CONCLUSION These data show that GLP-1RAs ameliorate aberrant proliferation and migration in VSMCs through both GLP-1Rdependent and independent pathways and inhibit Pi-induced vascular calcification.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Gadanec LK, Swiderski J, Apostolopoulos V, Kelaidonis K, Vidali VP, Canko A, Moore GJ, Matsoukas JM, Zulli A. Existence of Quantum Pharmacology in Sartans: Evidence in Isolated Rabbit Iliac Arteries. Int J Mol Sci 2023; 24:17559. [PMID: 38139391 PMCID: PMC10744031 DOI: 10.3390/ijms242417559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Quantum pharmacology introduces theoretical models to describe the possibility of ultra-high dilutions to produce biological effects, which may help to explain the placebo effect observed in hypertensive clinical trials. To determine this within physiology and to evaluate novel ARBs, we tested the ability of known angiotensin II receptor blockers (ARBs) (candesartan and telmisartan) used to treat hypertension and other cardiovascular diseases, as well as novel ARBs (benzimidazole-N-biphenyl tetrazole (ACC519T), benzimidazole-bis-N,N'-biphenyl tetrazole (ACC519T(2)) and 4-butyl-N,N0-bis[[20-2Htetrazol-5-yl)biphenyl-4-yl]methyl)imidazolium bromide (BV6(K+)2), and nirmatrelvir (the active ingredient in Paxlovid) to modulate vascular contraction in iliac rings from healthy male New Zealand White rabbits in responses to various vasopressors (angiotensin A, angiotensin II and phenylephrine). Additionally, the hemodynamic effect of ACC519T and telmisartan on mean arterial pressure in conscious rabbits was determined, while the ex vivo ability of BV6(K+)2 to activate angiotensin-converting enzyme-2 (ACE2) was also investigated. We show that commercially available and novel ARBs can modulate contraction responses at ultra-high dilutions to different vasopressors. ACC519T produced a dose-dependent reduction in rabbit mean arterial pressure while BV6(K+)2 significantly increased ACE2 metabolism. The ability of ARBs to inhibit contraction responses even at ultra-low concentrations provides evidence of the existence of quantum pharmacology. Furthermore, the ability of ACC519T and BV6(K+)2 to modulate blood pressure and ACE2 activity, respectively, indicates their therapeutic potential against hypertension.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| | - Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | | | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 153 41 Athens, Greece; (V.P.V.); (A.C.)
| | - Aleksander Canko
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 153 41 Athens, Greece; (V.P.V.); (A.C.)
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
- NewDrug PC, Patras Science Park, 26 504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Chemistry, University of Patras, 265 04 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| |
Collapse
|
11
|
Kianfar T, Kadkhodaee M, Seifi B, Abdi A, Adelipour M, Pishkenari BH, Malboosi N, Ranjbaran M. The effect of tannic acid on renal renin-angiotensin signaling pathway in a model of unilateral ureteral obstruction in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3569-3579. [PMID: 37249615 DOI: 10.1007/s00210-023-02548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The purpose of current study was to elucidate polyphenol tannic acid effect on renal function and activity of the renin-angiotensin system after unilateral ureteral obstruction (UUO). Male Wistar rats were divided into three groups of six randomly: 1) Sham, 2) UUO, and 3) UUO + Tannic acid. Rats in the UUO and UUO + Tannic acid groups experienced unilateral ureteral obstruction. In the Sham group, the abdominal cavity was exposed without UUO induction. In the UUO + Tannic acid group, animals received tannic acid (20 mg/kg) intraperitoneally, 6 and 12 h after clamping the left ureter and 6 and 12 h after the right nephrectomy. Blood samples were taken to measure blood urea nitrogen (BUN) and creatinine levels. Kidney tissue samples were obtained for assessment of oxidative stress, inflammatory indices and the levels of renin-angiotensin system components. Tannic acid administration significantly improved UUO-induced kidney dysfunction (serum BUN: 66.42 ± 14.414 mg/dl, p < 0.05; serum creatinine: 1.67 ± 0.258 mg/dl, p < 0.05), oxidative stress (MDA level: 95.29 ± 37.35 µmol/g tissue, p < 0.05; SOD activity: 59.82 ± 13.41 U/g protein, p < 0.01) and inflammation (renal TNF-α: 57.05 ± 15.653 pg/g tissue, p < 0.05; renal IL-6: 117.015 ± 24.076 pg/g tissue, p < 0.001). The treatment caused a reduction in the amount of renal angiotensinogen, renin and ACE genes expression compared to the UUO group (Angiotensinogen: 8.9 ± onefold, p < 0.05, Renin: 6.5 ± 1.14 fold, p < 0.05, ACE: 4.9 ± 0.64 fold, p < 0.05). Angiotensin II type 1 receptor protein levels decreased in the tannic acid-treated rats in comparison with the UUO group (0.61 ± 0.136, p < 0.05). According to the result of the current study, tannic acid considerably attenuated the complications of unilateral ureteral obstruction through renin-angiotensin system modulation. Trial registration: IR.TUMS.MEDICINE.REC.1400.802.
Collapse
Affiliation(s)
- Tina Kianfar
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Arash Abdi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Maryam Adelipour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahar Hejazi Pishkenari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Nasrin Malboosi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.
| |
Collapse
|
12
|
Cecchini AL, Biscetti F, Manzato M, Lo Sasso L, Rando MM, Nicolazzi MA, Rossini E, Eraso LH, Dimuzio PJ, Massetti M, Gasbarrini A, Flex A. Current Medical Therapy and Revascularization in Peripheral Artery Disease of the Lower Limbs: Impacts on Subclinical Chronic Inflammation. Int J Mol Sci 2023; 24:16099. [PMID: 38003290 PMCID: PMC10671371 DOI: 10.3390/ijms242216099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CeVD) are characterized by atherosclerosis and inflammation as their underlying mechanisms. This paper aims to conduct a literature review on pharmacotherapy for PAD, specifically focusing on how different drug classes target pro-inflammatory pathways. The goal is to enhance the choice of therapeutic plans by considering their impact on the chronic subclinical inflammation that is associated with PAD development and progression. We conducted a comprehensive review of currently published original articles, narratives, systematic reviews, and meta-analyses. The aim was to explore the relationship between PAD and inflammation and evaluate the influence of current pharmacological and nonpharmacological interventions on the underlying chronic subclinical inflammation. Our findings indicate that the existing treatments have added anti-inflammatory properties that can potentially delay or prevent PAD progression and improve outcomes, independent of their effects on traditional risk factors. Although inflammation-targeted therapy in PAD shows promising potential, its benefits have not been definitively proven yet. However, it is crucial not to overlook the pleiotropic properties of the currently available treatments, as they may provide valuable insights for therapeutic strategies. Further studies focusing on the anti-inflammatory and immunomodulatory effects of these treatments could enhance our understanding of the mechanisms contributing to the residual risk in PAD and pave the way for the development of novel therapies.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Manzato
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Lo Sasso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrica Rossini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Massetti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
13
|
Zeghal M, Matte K, Venes A, Patel S, Laroche G, Sarvan S, Joshi M, Rain JC, Couture JF, Giguère PM. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. J Biol Chem 2023; 299:105107. [PMID: 37517699 PMCID: PMC10470007 DOI: 10.1016/j.jbc.2023.105107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelica Venes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shivani Patel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabina Sarvan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Monika Joshi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Mohammed SAD, Liu H, Baldi S, Wang Y, Chen P, Lu F, Liu S. Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats. Sci Rep 2023; 13:10944. [PMID: 37414816 PMCID: PMC10326066 DOI: 10.1038/s41598-023-38020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.
Collapse
Affiliation(s)
- Shadi A D Mohammed
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana'a, Yemen
| | - Hanxing Liu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
15
|
Karimi F, Nematbakhsh M. Renal vascular responses to angiotensin II infusion in two kidneys-one clip hypertensive rats under partial ischemia/reperfusion with and without ischemia preconditioning: the roles of AT1R blockade and co-blockades of AT1R and MasR. Res Pharm Sci 2023; 18:392-403. [PMID: 37614612 PMCID: PMC10443668 DOI: 10.4103/1735-5362.378086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The renin-angiotensin system activation, partial ischemia/reperfusion (IR) injury, and hypertension contribute to the development of acute kidney injury. The study aims to look at the vascular responses of angiotensin II (Ang II) during Ang II type 1 receptor (AT1R) blockade (losartan) or co-blockades of AT1R and Mas receptor (A779) in two kidneys one clip (2K1C) hypertensive rats which subjected to partial IR injury with and without ischemia preconditioning (IPC). Experimental approach Thirty-three 2K1C male Wistar rats with systolic blood pressure ≥ 150 mmHg were divided into three groups of sham, IR, and IPC + IR divided into two sub-groups receiving losartan or losartan + A779. The IR group had 45 min partial kidney ischemia, while the IPC + IR group had two 5 min cycles of partial ischemia followed by 10 min of reperfusion and then 45 min of partial kidney ischemia followed by reperfusion. The sham group was subjected to similar surgical procedures except for IR or IPC. Findings/Results Ang II increased mean arterial pressure in all the groups, but there were no significant differences between the sub-groups. A significant difference was observed in the renal blood flow response to Ang II between two sub-groups of sham and IR groups treated with AT1R blockade alone or co-blockades of AT1R + A779. Conclusion and implications These findings demonstrated the significance of AT1R and Mas receptor following partial renal IR in the renal blood flow responses to Ang II in 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mehdi Nematbakhsh
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Swiderski J, Gadanec LK, Apostolopoulos V, Moore GJ, Kelaidonis K, Matsoukas JM, Zulli A. Role of Angiotensin II in Cardiovascular Diseases: Introducing Bisartans as a Novel Therapy for Coronavirus 2019. Biomolecules 2023; 13:787. [PMID: 37238657 PMCID: PMC10216788 DOI: 10.3390/biom13050787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the main contributors to global morbidity and mortality. Major pathogenic phenotypes of CVDs include the development of endothelial dysfunction, oxidative stress, and hyper-inflammatory responses. These phenotypes have been found to overlap with the pathophysiological complications of coronavirus disease 2019 (COVID-19). CVDs have been identified as major risk factors for severe and fatal COVID-19 states. The renin-angiotensin system (RAS) is an important regulatory system in cardiovascular homeostasis. However, its dysregulation is observed in CVDs, where upregulation of angiotensin type 1 receptor (AT1R) signaling via angiotensin II (AngII) leads to the AngII-dependent pathogenic development of CVDs. Additionally, the interaction between the spike protein of severe acute respiratory syndrome coronavirus 2 with angiotensin-converting enzyme 2 leads to the downregulation of the latter, resulting in the dysregulation of the RAS. This dysregulation favors AngII/AT1R toxic signaling pathways, providing a mechanical link between cardiovascular pathology and COVID-19. Therefore, inhibiting AngII/AT1R signaling through angiotensin receptor blockers (ARBs) has been indicated as a promising therapeutic approach to the treatment of COVID-19. Herein, we review the role of AngII in CVDs and its upregulation in COVID-19. We also provide a future direction for the potential implication of a novel class of ARBs called bisartans, which are speculated to contain multifunctional targeting towards COVID-19.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Graham J. Moore
- Pepmetics Incorporated, 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| |
Collapse
|
17
|
Shan M, Li S, Zhang Y, Chen Y, Zhou Y, Shi L. Maternal exercise upregulates the DNA methylation of Agtr1a to enhance vascular function in offspring of hypertensive rats. Hypertens Res 2023; 46:654-666. [PMID: 36539461 DOI: 10.1038/s41440-022-01124-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022]
Abstract
The angiotensin II signaling system regulates vascular dysfunction and is involved in the programming of hypertension. Maternal exercise has been linked to both short-term and long-term benefits for the mother and fetus. However, the impacts of maternal exercise on the intravascular renin-angiotensin system (RAS) in hypertensive offspring remain unexamined. This study examined whether maternal exercise has an epigenetic effect in repressing angiotensin II type 1 receptor (AT1R) expression, which leads to favorable alterations in the mesenteric artery (MA) function of spontaneously hypertensive offspring. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) pregnant rats were randomly divided into an exercise group and a control group. Blood pressure, vascular tone, AT1R protein and mRNA expression, and AT1R gene (Agtr1a) promoter methylation status were examined in the MAs of 3-month-old male offspring. Maternal exercise significantly reduced the resting blood pressure and cardiovascular reactivity of offspring from SHRs. Furthermore, Ang II-AT1R activity in regulating vascular tone and AT1R expression was decreased in the MAs of the SHR offspring from the exercise groups. Importantly, exercise during gestation suppressed AT1R expression via hypermethylation of the Agtr1a promoter region and upregulated DNA methyltransferase (DNMT) expression in MAs of SHR offspring. These results suggest that maternal exercise upregulates DNMT expression, resulting in hypermethylation and repression of the Agtr1a gene, which may prevent MA dysfunction in the offspring of SHRs. A mechanistic model on the epigenetics of exercise during pregnancy. Maternal exercise during pregnancy triggers hypermethylation and transcriptional suppression of the Agtr1a gene via increased DNMT1 and DNMT3B expression in MAs of SHR offspring. Downregulation of AT1R expression reduces the contribution of Ang II to vascular tone, ultimately improving vascular structure and function. VSMC vascular smooth muscle cell; Ang II angiotensin II; AT1aR angiotensin type 1 receptor (AT1R) alpha subtypes; Agtr1a AT1R alpha isoform gene; MAs mesenteric arteries; BP blood pressure.
Collapse
Affiliation(s)
- Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China.,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yang Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China. .,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
18
|
Pratamawati TM, Alwi I. Summary of Known Genetic and Epigenetic Modification Contributed to Hypertension. Int J Hypertens 2023; 2023:5872362. [PMID: 37201134 PMCID: PMC10188269 DOI: 10.1155/2023/5872362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Hypertension is a multifactorial disease due to a complex interaction among genetic, epigenetic, and environmental factors. Characterized by raised blood pressure (BP), it is responsible for more than 7 million deaths per annum by acting as a leading preventable risk factor for cardiovascular disease. Reports suggest that genetic factors are estimated to be involved in approximately 30 to 50% of BP variation, and epigenetic marks are known to contribute to the initiation of the disease by influencing gene expression. Consequently, elucidating the genetic and epigenetic mediators associated with hypertension is essential for better discernment of its pathophysiology. By deciphering the unprecedented molecular hypertension basis, it could help to unravel an individual's inclination towards hypertension which eventually could result in an arrangement of potential strategies for prevention and therapy. In the present review, we discuss known genetic and epigenetic drivers that contributed to the hypertension development and summarize the novel variants that have currently been identified. The effect of these molecular alterations on endothelial function was also presented.
Collapse
Affiliation(s)
- Tiar Masykuroh Pratamawati
- Program Doctoral Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
19
|
Alterations in Renin-Angiotensin System (RAS) Peptide Levels in Patients with HIV. Metabolites 2022; 13:metabo13010061. [PMID: 36676986 PMCID: PMC9860813 DOI: 10.3390/metabo13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic HIV infection has long been associated with an increased risk for cardiovascular diseases. The metabolites of the renin−angiotensin system (RAS) such as angiotensin II (AngII) play an important role in regulating blood pressure and fluid dynamics. Cross-sectional analysis of HIV-positive individuals (n = 71, age > 40 years, stable ART > 3 months with HIV viral load < 50 copies/mL) were compared to a similar HIV seronegative group (n = 72). High-resolution B-mode ultrasound images of the right carotid bifurcation (RBIF) and right common carotid artery (RCCA) were conducted to measure the extent of carotid atherosclerotic vascular disease. Plasma RAS peptide levels were quantified using a liquid chromatography-mass spectrometry-based metabolomics assay. RAS peptide concentrations were compared between persons with HIV and persons without HIV, correlating their association with clinical and cardiac measures. Median precursor peptides (Ang(1-12) and AngI) were significantly higher in the HIV-positive group compared to the HIV-negative. Analyses of the patient subgroup not on antihypertensive medication revealed circulating levels of AngII to be four-fold higher in the HIV-positive subgroup. AngII and TNF-alpha levels were found to have a positive association with RCCA, and AngI/Ang(1-12) ratio and TNF-alpha levels were found to have a positive association with RBIF. In both predictive models, AngIII had a negative association with either RCCA or RBIF, which may be attributed to its ability to bind onto AT2R and thus oppose pro-inflammatory events. These results reveal systemic alterations in RAS as a result of chronic HIV infection, which may lead to the activation of inflammatory pathways associated with carotid thickening. RAS peptide levels and cytokine markers were associated with RCCA and RBIF measurements.
Collapse
|
20
|
Tsiailanis AD, Vrettos EI, Choleva M, Kiriakidi S, Ganai AM, Patha TK, Karpoormath R, Mavromoustakos T, Fragopoulou E, Tzakos AG. Development of a DHA-Losartan hybrid as a potent inhibitor of multiple pathway-induced platelet aggregation. J Biomol Struct Dyn 2022; 40:13889-13900. [PMID: 34791990 DOI: 10.1080/07391102.2021.1996461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the scientific progression in the prevention and treatment of cardiovascular diseases (CVDs) they remain the leading cause of mortality and disability worldwide. The classic treatment involves the simultaneous dosing of two antiplatelet drugs, aspirin and clopidogrel/prasugrel. However, besides drug resistance, severe side effects have been also manifested including acute bleeding and toxicity. Thus, new therapeutic agents with enhanced efficacy and diminished side effects are of importance. Towards this end, omega-3 (ω-3) fatty acids have demonstrated potent efficacy against CVDs through inhibiting platelet aggregation that bears a pivotal role in atherothrombosis. Another factor that displays a critical role in the pathogenesis of cardiovascular diseases is the renin-angiotensin system (RAS), and especially the AT1R blocker losartan that has been reported to exert antiplatelet activity mediated by this receptor. Along these lines, we envisaged developing a molecular hybrid consisted of docosahexaenoic acid (ω-3 fatty acid) and losartan, that could exert a notable antiplatelet effect against CVDs. The design and synthesis of the new DHA-losartan hybrid, designated DHA-L, bestowed with the additive properties of the parent compounds, is reported. In silico studies were first exploited to validate the potential of DHA-L to retain losartan's ability to bind AT1R. The antiplatelet activity of DHA-L was evaluated against in vitro platelet aggregation induced by several platelet agonists. Notably, the hybrid illustrated a pleiotropic antiplatelet profile inhibiting platelet aggregation through multiple platelet activation pathways including P2Y12, PAR-1 (Protease-Activated Receptor-1), PAF (Platelet Activating Factor), COX-1 (cyclooxygenase-1) and collagen receptors. The stability of DHA-L in human plasma and in a wide range of pH values was also evaluated over time using an HPLC protocol. The hybridization approach described herein could pave the way for the development of novel potent multitargeted therapeutics with enhanced antiplatelet profile.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Antonis D Tsiailanis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Eirinaios I Vrettos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Maria Choleva
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Sofia Kiriakidi
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Tabasum Khan Patha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Andreas G Tzakos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
| |
Collapse
|
21
|
Bhullar SK, Dhalla NS. Angiotensin II-Induced Signal Transduction Mechanisms for Cardiac Hypertrophy. Cells 2022; 11:cells11213336. [PMID: 36359731 PMCID: PMC9657342 DOI: 10.3390/cells11213336] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although acute exposure of the heart to angiotensin (Ang II) produces physiological cardiac hypertrophy and chronic exposure results in pathological hypertrophy, the signal transduction mechanisms for these effects are of complex nature. It is now evident that the hypertrophic response is mediated by the activation of Ang type 1 receptors (AT1R), whereas the activation of Ang type 2 receptors (AT2R) by Ang II and Mas receptors by Ang-(1-7) exerts antihypertrophic effects. Furthermore, AT1R-induced activation of phospholipase C for stimulating protein kinase C, influx of Ca2+ through sarcolemmal Ca2+- channels, release of Ca2+ from the sarcoplasmic reticulum, and activation of sarcolemmal NADPH oxidase 2 for altering cardiomyocytes redox status may be involved in physiological hypertrophy. On the other hand, reduction in the expression of AT2R and Mas receptors, the release of growth factors from fibroblasts for the occurrence of fibrosis, and the development of oxidative stress due to activation of mitochondria NADPH oxidase 4 as well as the depression of nuclear factor erythroid-2 activity for the occurrence of Ca2+-overload and activation of calcineurin may be involved in inducing pathological cardiac hypertrophy. These observations support the view that inhibition of AT1R or activation of AT2R and Mas receptors as well as depression of oxidative stress may prevent or reverse the Ang II-induced cardiac hypertrophy.
Collapse
|
22
|
Zhang H, Ren L, Shivnaraine RV. Targeting GPCRs to treat cardiac fibrosis. Front Cardiovasc Med 2022; 9:1011176. [PMID: 36277752 PMCID: PMC9582444 DOI: 10.3389/fcvm.2022.1011176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis occurs ubiquitously in ischemic heart failure, genetic cardiomyopathies, diabetes mellitus, and aging. It triggers myocardial stiffness, which impairs cardiac function, ultimately progressing to end-stage heart failure and increased mortality. Although several targets for anti-fibrotic therapies have been identified, including TGF-β and receptor tyrosine kinase, there is currently no FDA-approved drug specifically targeting cardiac fibrosis. G protein-coupled receptors (GPCRs) are integral, multipass membrane-bound receptors that exhibit diverse and cell-specific expression, offering novel and unrealized therapeutic targets for cardiac fibrosis. This review highlights the emerging roles of several GPCRs and briefly explores their downstream pathways that are crucial in cardiac fibrosis. We will not only provide an overview of the GPCRs expressed on cardiac fibroblasts that are directly involved in myofibroblast activation but also describe those GPCRs which contribute to cardiac fibrosis via indirect crosstalk mechanisms. We also discuss the challenges of identifying novel effective therapies for cardiac fibrosis and offer strategies to circumvent these challenges.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Hao Zhang
| | - Lu Ren
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
23
|
Singh KD, Karnik SS. Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric modulation in angiotensin receptors: IUPHAR Review 34. Br J Pharmacol 2022; 179:4461-4472. [PMID: 35318654 PMCID: PMC9398925 DOI: 10.1111/bph.15840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Functional advances have guided our knowledge of physiological and fatal pathological mechanisms of the hormone angiotensin II (AngII) and its antagonists. Such studies revealed that tissue response to a given dose of the hormone or its antagonist depends on receptors that engage the ligand. Thus, we need to know much more about the structures of receptor-ligand complexes at high resolution. Recently, X-ray structures of both AngII receptors (AT1 and AT2 receptors) bound to peptide and non-peptide ligands have been elucidated, providing new opportunities to examine the dynamic fluxes in the 3D architecture of the receptors, as the basis of ligand selectivity, efficacy, and regulation of the molecular functions of the receptors. Constituent structural motifs cooperatively transform ligand selectivity into specific functions, thus conceptualizing the primacy of the 3D structure over individual motifs of receptors. This review covers the new data elucidating the structural dynamics of AngII receptors and how structural knowledge can be transformative in understanding the mechanisms underlying the physiology of AngII.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Sadashiva S. Karnik
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Angiotensin II type 1 receptor blockade attenuates gefitinib-induced cardiac hypertrophy via adjusting angiotensin II-mediated oxidative stress and JNK/P38 MAPK pathway in a rat model. Saudi Pharm J 2022; 30:1159-1169. [PMID: 36164571 PMCID: PMC9508643 DOI: 10.1016/j.jsps.2022.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Gefitinib is a tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR), used for the treatment of advanced or metastatic non-small cell lung cancer. Recently, studies proved that Gefitinib-induced cardiotoxicity through induction of oxidative stress leads to cardiac hypertrophy. The current study was conducted to understand the mechanisms underlying gefitinib-induced cardiac hypertrophy through studying the roles of angiotensin II (AngII), oxidative stress, and mitogen-activated protein kinase (MAPK) pathway. Male Wistar albino rats were treated with valsartan, gefitinib, or both for four weeks. Blood samples were collected for AngII and cardiac markers measurement, and hearts were harvested for histological study and biochemical analysis. Gefitinib caused histological changes in the cardiac tissues and increased levels of cardiac hypertrophy markers, AngII and its receptors. Blocking of AngII type 1 receptor (AT1R) via valsartan protected hearts and normalized cardiac markers, AngII levels, and the expression of its receptors during gefitinib treatment. valsartan attenuated gefitinib-induced NADPH oxidase and oxidative stress leading to down-regulation of JNK/p38-MAPK pathway. Collectively, AT1R blockade adjusted AngII-induced NADPH oxidase and JNK/p38-MAPK leading to attenuation of gefitinib-induced cardiac hypertrophy. This study found a pivotal role of AngII/AT1R signaling in gefitinib-induced cardiac hypertrophy, which may provide novel approaches in the management of EGFRIs-induced cardiotoxicity.
Collapse
|
25
|
Huynh DTN, Jin Y, Van Nguyen D, Myung CS, Heo KS. Ginsenoside Rh1 Inhibits Angiotensin II-Induced Vascular Smooth Muscle Cell Migration and Proliferation through Suppression of the ROS-Mediated ERK1/2/p90RSK/KLF4 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11040643. [PMID: 35453328 PMCID: PMC9030830 DOI: 10.3390/antiox11040643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play key roles in the progression of atherosclerosis and restenosis. A variety of ginsenosides exert various cardiovascular benefits. However, whether and how ginsenoside Rh1 (Rh1) inhibits VSMC dysfunction remain unclear. Here, we investigated the inhibitory effects of Rh1 on rat aortic smooth muscle cell (RASMC) migration and proliferation induced by angiotensin II (Ang II) and the underlying mechanisms. Cell proliferation and migration were evaluated using sulforhodamine B and wound-healing assay. The molecular mechanisms were investigated using Western blotting, quantitative reverse-transcription polymerase chain reaction analysis, immunofluorescence staining, and luciferase assay. Reactive oxygen species (ROS) production was measured using dihydroethidium and MitoSOX staining. We found that Rh1 dose-dependently suppressed Ang II-induced cell proliferation and migration. Concomitantly, Ang II increased protein levels of osteopontin, vimentin, MMP2, MMP9, PCNA, and cyclin D1, while these were reduced by Rh1 pretreatment. Notably, Ang II enhanced both the protein expression and promoter activity of KLF4, a key regulator of phenotypic switching, whereas pretreatment with Rh1 reversed these effects. Mechanistically, the effects of Rh1 on VSMC proliferation and migration were found to be associated with inhibition of ERK1/2/p90RSK signaling. Furthermore, the inhibitory effects of Rh1 were accompanied by inhibition of ROS production. In conclusion, Rh1 inhibited the Ang II-induced migration and proliferation of RASMCs by suppressing the ROS-mediated ERK1/2/p90RSK signaling pathway.
Collapse
Affiliation(s)
- Diem Thi Ngoc Huynh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
- Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Da Nang 550000, Vietnam
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
| | - Dung Van Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
| | - Chang-Seon Myung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
- Correspondence: ; Tel.: +82-42-821-5927
| |
Collapse
|
26
|
Pryymachuk G, El-Awaad E, Piekarek N, Drebber U, Maul AC, Hescheler J, Wodarz A, Pfitzer G, Neiss WF, Pietsch M, Schroeter MM. Angiotensin II type 1 receptor localizes at the blood-bile barrier in humans and pigs. Histochem Cell Biol 2022; 157:513-524. [PMID: 35229169 PMCID: PMC9114028 DOI: 10.1007/s00418-022-02087-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Animal models and clinical studies suggest an influence of angiotensin II (AngII) on the pathogenesis of liver diseases via the renin–angiotensin system. AngII application increases portal blood pressure, reduces bile flow, and increases permeability of liver tight junctions. Establishing the subcellular localization of angiotensin II receptor type 1 (AT1R), the main AngII receptor, helps to understand the effects of AngII on the liver. We localized AT1R in situ in human and porcine liver and porcine gallbladder by immunohistochemistry. In order to do so, we characterized commercial anti-AT1R antibodies regarding their capability to recognize heterologous human AT1R in immunocytochemistry and on western blots, and to detect AT1R using overlap studies and AT1R-specific blocking peptides. In hepatocytes and canals of Hering, AT1R displayed a tram-track-like distribution, while in cholangiocytes AT1R appeared in a honeycomb-like pattern; i.e., in liver epithelia, AT1R showed an equivalent distribution to that in the apical junctional network, which seals bile canaliculi and bile ducts along the blood–bile barrier. In intrahepatic blood vessels, AT1R was most prominent in the tunica media. We confirmed AT1R localization in situ to the plasma membrane domain, particularly between tight and adherens junctions in both human and porcine hepatocytes, cholangiocytes, and gallbladder epithelial cells using different anti-AT1R antibodies. Localization of AT1R at the junctional complex could explain previously reported AngII effects and predestines AT1R as a transmitter of tight junction permeability.
Collapse
Affiliation(s)
- Galyna Pryymachuk
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Ehab El-Awaad
- Institute II of Pharmacology, Center of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Str. 24, 50931, Cologne, Germany
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Nadin Piekarek
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Uta Drebber
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexandra C Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Ostmerheimer Str. 200, 51109, Cologne, Germany
| | - Juergen Hescheler
- Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Andreas Wodarz
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| | - Mechthild M Schroeter
- Institute for Neurophysiology, Center for Physiology and Pathophysiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
27
|
Santos SS, Gonzaga RV, Scarim CB, Giarolla J, Primi MC, Chin CM, Ferreira EI. Drug/Lead Compound Hydroxymethylation as a Simple Approach to Enhance Pharmacodynamic and Pharmacokinetic Properties. Front Chem 2022; 9:734983. [PMID: 35237565 PMCID: PMC8883432 DOI: 10.3389/fchem.2021.734983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxymethylation is a simple chemical reaction, in which the introduction of the hydroxymethyl group can lead to physical–chemical property changes and offer several therapeutic advantages, contributing to the improved biological activity of drugs. There are many examples in the literature of the pharmaceutical, pharmacokinetic, and pharmacodynamic benefits, which the hydroxymethyl group can confer to drugs, prodrugs, drug metabolites, and other therapeutic compounds. It is worth noting that this group can enhance the drug’s interaction with the active site, and it can be employed as an intermediary in synthesizing other therapeutic agents. In addition, the hydroxymethyl derivative can result in more active compounds than the parent drug as well as increase the water solubility of poorly soluble drugs. Taking this into consideration, this review aims to discuss different applications of hydroxymethyl derived from biological agents and its influence on the pharmacological effects of drugs, prodrugs, active metabolites, and compounds of natural origin. Finally, we report a successful compound synthesized by our research group and used for the treatment of neglected diseases, which is created from the hydroxymethylation of its parent drug.
Collapse
Affiliation(s)
- Soraya S. Santos
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Rodrigo V. Gonzaga
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Cauê B. Scarim
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
| | - Jeanine Giarolla
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | | | - Chung M. Chin
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), Faculdade de Medicina, União Das Faculdades Dos Grande Lagos (UNILAGO), São José Do Rio Preto, Brazil
| | - Elizabeth I. Ferreira
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
- *Correspondence: Elizabeth I. Ferreira,
| |
Collapse
|
28
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
29
|
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, Quistián-Galván J, Muñoz-Pérez A, Bernal-Dolores V, del Ángel RM, Reyes-Ruiz JM. Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 2021; 12:796855. [PMID: 34975904 PMCID: PMC8719300 DOI: 10.3389/fimmu.2021.796855] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Judith Quistián-Galván
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Armando Muñoz-Pérez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| |
Collapse
|
30
|
Elshafei A, Khidr EG, El-Husseiny AA, Gomaa MH. RAAS, ACE2 and COVID-19; a mechanistic review. Saudi J Biol Sci 2021; 28:6465-6470. [PMID: 34305426 PMCID: PMC8270731 DOI: 10.1016/j.sjbs.2021.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in coronavirus disease 2019 (COVID-19) patients has been claimed as associated with the risk of COVID-19 infection and its subsequent morbidities and mortalities. These claims were resulting from the possibility of upregulating the expression of angiotensin-converting enzyme 2 (ACE2), facilitation of SARS-CoV-2 entry, and increasing the susceptibility of infection in such treated cardiovascular patients. ACE2 and renin-angiotensin-aldosterone system (RAAS) products have a critical function in controlling the severity of lung injury, fibrosis, and failure following the initiation of the disease. This review is to clarify the mechanisms beyond the possible deleterious effects of angiotensin II (Ang II), and the potential protective role of angiotensin 1-7 (Ang 1-7) against pulmonary fibrosis, with a subsequent discussion of the latest updates on ACEIs/ARBs use and COVID-19 susceptibility in the light of these mechanisms and biochemical explanation.
Collapse
Key Words
- ACE1, angiotensin-converting enzyme 1
- ACE2
- ACE2, angiotensin-converting enzyme 2
- ACEIs
- ACEIs, angiotensin-converting enzyme inhibitors
- AEC-II, alveolar epithelial type II cells
- ARBs
- ARBs, angiotensin receptor blockers
- AT1R, angiotensin type 1 receptor
- AT2R, angiotensin type 2 receptor
- Ang 1-7, angiotensin 1-7
- Ang 1-9, angiotensin 1-9
- AngI, angiotensin I
- AngII, angiotensin II
- Angiotensin 1–7
- Angiotensin II
- COVID-19
- COVID-19, coronavirus disease 2019
- CVD, cardiovascular disease
- ERK, extracellular signal-regulated kinase
- ICU, intensive care unit
- MAPK, mitogen-activated protein kinase
- NLRP3, (NOD, LRR, and pyrin domain-containing protein 3)
- RAAS, renin-angiotensin-aldosterone system
- TGF-β, transforming growth factor-beta
- miR-21, microRNA-21
Collapse
Affiliation(s)
- Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maher H. Gomaa
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
31
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Jing W, Procko E. ACE2-based decoy receptors for SARS coronavirus 2. Proteins 2021; 89:1065-1078. [PMID: 33973262 PMCID: PMC8242511 DOI: 10.1002/prot.26140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
SARS coronavirus 2 is neutralized by proteins that block receptor-binding sites on spikes that project from the viral envelope. In particular, substantial research investment has advanced monoclonal antibody therapies to the clinic where they have shown partial efficacy in reducing viral burden and hospitalization. An alternative is to use the host entry receptor, angiotensin-converting enzyme 2 (ACE2), as a soluble decoy that broadly blocks SARS-associated coronaviruses with limited potential for viral escape. Here, we summarize efforts to engineer higher affinity variants of soluble ACE2 that rival the potency of affinity-matured antibodies. Strategies have also been used to increase the valency of ACE2 decoys for avid spike interactions and to improve pharmacokinetics via IgG fusions. Finally, the intrinsic catalytic activity of ACE2 for the turnover of the vasoconstrictor angiotensin II may directly address COVID-19 symptoms and protect against lung and cardiovascular injury, conferring dual mechanisms of action unachievable by monoclonal antibodies. Soluble ACE2 derivatives therefore have the potential to be next generation therapeutics for addressing the immediate needs of the current pandemic and possible future outbreaks.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Erik Procko
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
- Department of Biochemistry and Cancer Center at IllinoisUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
33
|
Bhullar SK, Shah AK, Dhalla NS. Role of angiotensin II in the development of subcellular remodeling
in heart failure. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of heart failure under various pathological conditions such as myocardial infarction (MI), hypertension and diabetes are accompanied by adverse cardiac remodeling and cardiac dysfunction. Since heart function is mainly determined by coordinated activities of different subcellular organelles including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils for regulating the intracellular concentration of Ca2+, it has been suggested that the occurrence of heart failure is a consequence of subcellular remodeling, metabolic alterations and Ca2+-handling abnormalities in cardiomyocytes. Because of the elevated plasma levels of angiotensin II (ANG II) due to activation of the renin-angiotensin system (RAS) in heart failure, we have evaluated the effectiveness of treatments with angiotensin converting enzyme (ACE) inhibitors and ANG II type 1 receptor (AT1R) antagonists in different experimental models of heart failure. Attenuation of marked alterations in subcellular activities, protein content and gene expression were associated with improvement in cardiac function in MI-induced heart failure by treatment with enalapril (an ACE inhibitor) or losartan (an AT1R antagonist). Similar beneficial effects of ANG II blockade on subcellular remodeling and cardiac performance were also observed in failing hearts due to pressure overload, volume overload or chronic diabetes. Treatments with enalapril and losartan were seen to reduce the degree of RAS activation as well as the level of oxidative stress in failing hearts. These observations provide evidence which further substantiate to support the view that activation of RAS and high level of plasma ANG II play a critical role in inducing subcellular defects and cardiac dys-function during the progression of heart failure.
Collapse
Affiliation(s)
- Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Anureet K. Shah
- School of Kinesiology, Nutrition and Food Science, California State University, Los Angeles, CA 90032, USA
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada
| |
Collapse
|
34
|
Zhang J, Zhang Y, Xiao C, Liu Y. Effects of Angiotensin II type I receptor shRNA on blood pressure and left ventricular remodeling in spontaneously hypertensive rats. Exp Anim 2021; 70:293-301. [PMID: 33583872 PMCID: PMC8390303 DOI: 10.1538/expanim.20-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 10/31/2022] Open
Abstract
This study was designed to investigate the effects of the Angiotensin II type I receptor (AT1R) shRNA on blood pressure and left ventricular remodeling in spontaneously hypertensive rats. Ten Wistar Kyoto (WKY) rats were used as a normal blood pressure control group, and 20 spontaneously hypertensive rats (SHR) were randomly divided into the experimental and hypertension control groups. The rats in the experimental group were injected with AT1R shRNA recombinant adenovirus (Ad5-AT1R-shRNA) via a tail vein, and the rats in the other two groups were injected with recombinant adenovirus (Ad5-EGFP). The systolic blood pressure (SBP) at rat arteria caudalis was measured before and after the injection, and the heart, kidney, aorta, and adrenal tissues were obtained two days after repeated injection to observe the distribution of Ad5-AT1R-shRNA under a fluorescence microscope. Before the injection of Ad5-AT1R-shRNA, the blood pressure of the experimental group and the hypertension control group was significantly higher than that of the normal blood pressure control group (P<0.01). After two injections, the blood pressure in the experimental group decreased significantly, and the duration of blood pressure reduction reached 19 days. In the experimental group, the kidney, heart, aorta, and adrenal gland tissues showed vigorous fluorescence expression under the fluorescence microscope. Repeated administration of Ad5-AT1R-shRNA has a long-lasting hypotensive effect on SHR and can significantly improve ventricular remodeling.
Collapse
Affiliation(s)
- Jinlian Zhang
- Department of Cardiology, Tian Jin Chest Hospital, No. 261 of Taierzhuangnan Road, Jinnan District, Tianjin 300222, P.R. China
| | - Ying Zhang
- Department of Cardiology, Tian Jin Chest Hospital, No. 261 of Taierzhuangnan Road, Jinnan District, Tianjin 300222, P.R. China
| | - ChuanShi Xiao
- Department of Cardiology, Second Hospital of Shan Xi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan 030001, P.R. China
| | - YuJie Liu
- Department of Cardiology, Tian Jin Chest Hospital, No. 261 of Taierzhuangnan Road, Jinnan District, Tianjin 300222, P.R. China
| |
Collapse
|
35
|
Mirzahosseini G, Ismael S, Ahmed HA, Ishrat T. Manifestation of renin angiotensin system modulation in traumatic brain injury. Metab Brain Dis 2021; 36:1079-1086. [PMID: 33835385 PMCID: PMC8273091 DOI: 10.1007/s11011-021-00728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) alters brain function and is a crucial public health concern worldwide. TBI triggers the release of inflammatory mediators (cytokines) that aggravate cerebral damage, thereby affecting clinical prognosis. The renin angiotensin system (RAS) plays a critical role in TBI pathophysiology. RAS is widely expressed in many organs including the brain. Modulation of the RAS in the brain via angiotensin type 1 (AT1) and type 2 (AT2) receptor signaling affects many pathophysiological processes, including TBI. AT1R is highly expressed in neurons and astrocytes. The upregulation of AT1R mediates the effects of angiotensin II (ANG II) including release of proinflammatory cytokines, cell death, oxidative stress, and vasoconstriction. The AT2R, mainly expressed in the fetal brain during development, is also related to cognitive function. Activation of this receptor pathway decreases neuroinflammation and oxidative stress and improves overall cell survival. Numerous studies have illustrated the therapeutic potential of inhibiting AT1R and activating AT2R for treatment of TBI with variable outcomes. In this review, we summarize studies that describe the role of brain RAS signaling, through AT1R and AT2R in TBI, and its modulation with pharmacological approaches.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
36
|
Zhirnov VV, Velihina YS, Mitiukhin OP, Brovarets VS. Intrinsic drug potential of oxazolo[5,4-d]pyrimidines and oxazolo[4,5-d]pyrimidines. Chem Biol Drug Des 2021; 98:561-581. [PMID: 34148293 DOI: 10.1111/cbdd.13911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The oxazole and pyrimidine rings are widely displayed in natural products and synthetic molecules. They are known as the prime skeletons for drug discovery. On the account of structural and chemical diversity, oxazole and pyrimidine-based molecules, as central scaffolds, not only provide different types of interactions with various receptors and enzymes, showing broad biological activities, but also occupy a core position in medicinal chemistry, showing their importance for development and discovery of newer potential therapeutic agents (Curr Top Med Chem, 16, 2016, 3133; Int J Pharm Pharm Sci, 8, 2016, 8; BMC Chem, 13, 2019, 44). For a long time, relatively little attention has been paid to their fused rings that are oxazolopyrimidines, whose chemical structure is similar to that of natural purines because probably none of these compounds were found in natural products or their biological activities turned out to be unexpressed (Bull Chem Soc Jpn, 43, 1970, 187). Recently, however, a significant number of studies have been published on the biological properties of oxazolo[5,4-d]pyrimidines, showing their significant activity as agonists and antagonists of signaling pathways involved in the regulation of the cell life cycle, whereas oxazolo[4,5-d]pyrimidines, on the contrary, represent a poorly studied class of compounds. Limited access to this scaffold has resulted in a corresponding lack of biological research (Eur J Organ Chem, 18, 2018, 2148). Actually, oxazolo[5,4-d]pyrimidine is a versatile scaffold used for the design of bioactive ligands against enzymes and receptors. This review focuses on biological targets and associated pathogenetic mechanisms, as well as pathological disorders that can be modified by well-known oxazolopyrimidines that have been proven to date. Many molecular details of these processes are omitted here, which the interested reader will find in the cited literature. This work also does not cover the methods for the synthesis of the oxazolopyrimidines, which are exhaustively described by De Coen et al. (Eur J Organ Chem, 18, 2018, 2148). The review as well does not discuss the structure-activity relationship, which is described in detail in the original works and deliberately, whenever possible, cites not primary sources, but mostly relevant review articles, so that the reader who wants to delve into a particular problem will immediately receive more complete information. It is expected that the information presented in this review will help readers better understand the purpose of the development of oxazolopyrimidines and the possibility of their development as drugs for the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Victor V Zhirnov
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Yevheniia S Velihina
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Oleg P Mitiukhin
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Volodymyr S Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
37
|
Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021; 137:111363. [PMID: 33582450 PMCID: PMC7862910 DOI: 10.1016/j.biopha.2021.111363] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, is reported to increase the rate of mortality worldwide. COVID-19 is associated with acute respiratory symptoms as well as blood coagulation in the vessels (thrombosis), heart attack and stroke. Given the requirement of angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 entry into host cells, here we discuss how the downregulation of ACE2 in the COVID-19 patients and virus-induced shift in ACE2 catalytic equilibrium, change the concentrations of substrates such as angiotensin II, apelin-13, dynorphin-13, and products such as angiotensin (1-7), angiotensin (1-9), apelin-12, dynorphin-12 in the human body. Substrates accumulation ultimately induces inflammation, angiogenesis, thrombosis, neuronal and tissue damage while diminished products lead to the loss of the anti-inflammatory, anti-thrombotic and anti-angiogenic responses. In this review, we focus on the viral-induced imbalance between ACE2 substrates and products which exacerbates the severity of COVID-19. Considering the roadmap, we propose multiple therapeutic strategies aiming to rebalance the products of ACE2 and to ameliorate the symptoms of the disease.
Collapse
Affiliation(s)
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran; COVID-19 research group, Faculty of Basic Sciences, Shahrekord Univesity, Shahrekord, Iran.
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Karim Hemati
- Department of Anesthesiology and Pain, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Su C, Xue J, Ye C, Chen A. Role of the central renin‑angiotensin system in hypertension (Review). Int J Mol Med 2021; 47:95. [PMID: 33846799 PMCID: PMC8041481 DOI: 10.3892/ijmm.2021.4928] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Present in more than one billion adults, hypertension is the most significant modifiable risk factor for mortality resulting from cardiovascular disease. Although its pathogenesis is not yet fully understood, the disruption of the renin-angiotensin system (RAS), consisting of the systemic and brain RAS, has been recognized as one of the primary reasons for several types of hypertension. Therefore, acquiring sound knowledge of the basic science of RAS and the under- lying mechanisms of the signaling pathways associated with RAS may facilitate the discovery of novel therapeutic targets with which to promote the management of patients with cardiovascular and kidney disease. In total, 4 types of angiotensin II receptors have been identified (AT1R-AT4R), of which AT1R plays the most important role in vasoconstriction and has been most extensively studied. It has been found in several regions of the brain, and its distribution is highly associated with that of angiotensin-like immunoreactivity in nerve terminals. The effect of AT1R involves the activation of multiple media and signaling pathways, among which the most important signaling pathways are considered to be AT1R/JAK/STAT and Ras/Raf/MAPK pathways. In addition, the regulation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and cyclic AMP response element-binding (CREB) pathways is also closely related to the effect of ATR1. Their mechanisms of action are related to pro-inflammatory and sympathetic excitatory effects. Central AT1R is involved in almost all types of hypertension, including spontaneous hypertension, salt-sensitive hypertension, obesity-induced hypertension, renovascular hypertension, diabetic hypertension, L-NAME-induced hypertension, stress-induced hypertension, angiotensin II-induced hyper- tension and aldosterone-induced hypertension. There are 2 types of central AT1R blockade, acute blockade and chronic blockade. The latter can be achieved by chemical blockade or genetic engineering. The present review article aimed to high- light the prevalence, functions, interactions and modulation means of central AT-1R in an effort to assist in the treatment of several pathological conditions. The identification of angiotensin-derived peptides and the development of AT-2R agonists may provide a wider perspective on RAS, as well as novel therapeutic strategies.
Collapse
Affiliation(s)
- Chuanxin Su
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jinhua Xue
- Research Center for Cardiovascular and Cerebrovascular Diseases, The University of Duisburg‑Essen, Duisburg‑Essen University, D-45122 Essen, Germany
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
39
|
Price S, Targoński R, Sadowski J, Targoński R. To Curb the Progression of Fatal COVID-19 Course-Dream or Reality. Curr Hypertens Rep 2021; 23:12. [PMID: 33638064 PMCID: PMC7910199 DOI: 10.1007/s11906-021-01130-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To analyze the impact of sodium retention states on the course of COVID-19 and propose possible interventions to curb disease progression. RECENT FINDINGS Numerous data confirm a positive association of non-communicable diseases, aging, and other sodium-retaining states, including iatrogenic ones, with more severe sometimes fatal clinical course of COVID-19. Reasons for this effect could include increased angiotensin signaling via the AT1R receptor. The endothelial glycocalyx also plays an important role in infection, leading to a vicious cycle of inflammation and tissue sodium retention when damaged. RAS inhibitors may help restore glycocalyx function and prevent severe organ damage. Anticoagulants, especially heparin, may also have therapeutic applications due to antithrombotic, anti-inflammatory, glycocalyx-repairing, and antialdosteronic properties. The ambiguous influence of some diuretics on sodium balance was also discussed. Abnormal sodium storage and increased angiotensin-converting enzyme activity are related to the severity of COVID-19. Inducing sodium removal and reducing intake might improve outcomes.
Collapse
Affiliation(s)
- Szymon Price
- Miejski Szpital Zespolony w Olsztynie, Klinika Kardiologii i Chorób Wewnętrznych, Clinic of Cardiology and Internal Medicine, Metropolitan Hospital of Nicolaus Copernicus, University of Warmia and Mazury, Niepodległości 44, 10-045 Olsztyn, Poland
| | - Radosław Targoński
- Department of Cardiac & Vascular Surgery, University Hospital of Gdańsk, M. Skłodowskiej-Curie 3a street, 80-210 Gdańsk, Poland
| | - Janusz Sadowski
- Miejski Szpital Zespolony w Olsztynie, Klinika Kardiologii i Chorób Wewnętrznych, Clinic of Cardiology and Internal Medicine, Metropolitan Hospital of Nicolaus Copernicus, University of Warmia and Mazury, Niepodległości 44, 10-045 Olsztyn, Poland
| | - Ryszard Targoński
- Department of Cardiac & Vascular Surgery, University Hospital of Gdańsk, M. Skłodowskiej-Curie 3a street, 80-210 Gdańsk, Poland
| |
Collapse
|
40
|
Xiao T, Lu J, Zhang J, Johnson RI, McKay LGA, Storm N, Lavine CL, Peng H, Cai Y, Rits-Volloch S, Lu S, Quinlan BD, Farzan M, Seaman MS, Griffiths A, Chen B. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat Struct Mol Biol 2021; 28:202-209. [PMID: 33432247 PMCID: PMC7895301 DOI: 10.1038/s41594-020-00549-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS‑CoV‑2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS‑CoV‑2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.
Collapse
Affiliation(s)
- Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Gaithersburg, MD, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rebecca I Johnson
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Lindsay G A McKay
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Nadia Storm
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Shen Lu
- Codex BioSolutions, Inc., Gaithersburg, MD, USA
| | - Brian D Quinlan
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, FL, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anthony Griffiths
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Anderson SD, Tabassum A, Yeon JK, Sharma G, Santos P, Soong TH, Thu YW, Nies I, Kurita T, Chandler A, Alsamarah A, Kanassatega RS, Luo YL, Botello-Smith WM, Andresen BT. In silico prediction of ARB resistance: A first step in creating personalized ARB therapy. PLoS Comput Biol 2020; 16:e1007719. [PMID: 33237899 PMCID: PMC7725353 DOI: 10.1371/journal.pcbi.1007719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/09/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022] Open
Abstract
Angiotensin II type 1 receptor (AT1R) blockers (ARBs) are among the most prescribed drugs. However, ARB effectiveness varies widely, which may be due to non-synonymous single nucleotide polymorphisms (nsSNPs) within the AT1R gene. The AT1R coding sequence contains over 100 nsSNPs; therefore, this study embarked on determining which nsSNPs may abrogate the binding of selective ARBs. The crystal structure of olmesartan-bound human AT1R (PDB:4ZUD) served as a template to create an inactive apo-AT1R via molecular dynamics simulation (n = 3). All simulations resulted in a water accessible ligand-binding pocket that lacked sodium ions. The model remained inactive displaying little movement in the receptor core; however, helix 8 showed considerable flexibility. A single frame representing the average stable AT1R was used as a template to dock Olmesartan via AutoDock 4.2, MOE, and AutoDock Vina to obtain predicted binding poses and mean Boltzmann weighted average affinity. The docking results did not match the known pose and affinity of Olmesartan. Thus, an optimization protocol was initiated using AutoDock 4.2 that provided more accurate poses and affinity for Olmesartan (n = 6). Atomic models of 103 of the known human AT1R polymorphisms were constructed using the molecular dynamics equilibrated apo-AT1R. Each of the eight ARBs was then docked, using ARB-optimized parameters, to each polymorphic AT1R (n = 6). Although each nsSNP has a negligible effect on the global AT1R structure, most nsSNPs drastically alter a sub-set of ARBs affinity to the AT1R. Alterations within N298 –L314 strongly effected predicted ARB affinity, which aligns with early mutagenesis studies. The current study demonstrates the potential of utilizing in silico approaches towards personalized ARB therapy. The results presented here will guide further biochemical studies and refinement of the model to increase the accuracy of the prediction of ARB resistance in order to increase overall ARB effectiveness. The term "personalized medicine" was coined at the turn of the century, but most medicines currently prescribed are based on disease categories and occasionally racial demographics, not personalized attributes. In cardiovascular medicine, the personalization of medication is minimal, despite the fact that not all patients respond equally to common cardiovascular medications. Here we chose one prominent cardiovascular drug target, the angiotensin receptor, and, using computer modeling, created preliminary models of over 100 known alterations to the angiotensin receptor to determine if the alterations changed the ability of clinically used drugs to interact with the angiotensin receptor. The strength of interaction was compared to the wild-type angiotensin receptor, generating a map predicting which alteration affected which drug(s). It is expected that in the future, sequencing of drug targets can be used to compare a patient’s result to a map similar to what is provided in this manuscript to choose the optimal medication based on the patient’s genetics. Such a process has the potential to facilitate the personalization of current medication therapy.
Collapse
Affiliation(s)
- Shane D. Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Asna Tabassum
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Jae Kyung Yeon
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Garima Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Priscilla Santos
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Tik Hang Soong
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Yin Win Thu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Isaac Nies
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Tomomi Kurita
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Andrew Chandler
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Abdelaziz Alsamarah
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Rhye-Samuel Kanassatega
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Yun L. Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YLL); (WMB-S); (BTA)
| | - Wesley M. Botello-Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YLL); (WMB-S); (BTA)
| | - Bradley T. Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YLL); (WMB-S); (BTA)
| |
Collapse
|
42
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
43
|
Abstract
Heart failure is a major source of morbidity and mortality, driven, in part, by maladaptive sympathetic hyperactivity in response to poor cardiac output. Current therapies target β-adrenergic and angiotensin II G protein-coupled receptors to reduce adverse cardiac remodeling and improve clinical outcomes; however, there is a pressing need for new therapeutic approaches to preserve cardiac function. β-arrestin is a multifunctional protein which has come under analysis in recent years as a key player in G protein-coupled receptor signal transduction and a potential therapeutic target in heart failure. β-arrestin attenuates β-adrenergic and angiotensin II receptor signaling to limit the deleterious response to excessive sympathetic stimulation while simultaneously transactivating cardioprotective signaling cascades that preserve cardiac structure and function in response to injury. β-arrestin signaling may provide unique advantages compared to classic heart failure treatment approaches, but a number of challenges currently limit clinical applications. In this review, we discuss the role and functions of β-arrestin and the current attempts to develop G protein-coupled receptor agonists biased towards β-arrestin activation. Furthermore, we examine the functional diversity of cardiac β-arrestin isotypes to explore key considerations in the promise of β-arrestin as a pharmacotherapeutic target in heart failure.
Collapse
|
44
|
Kimura T, Pydi SP, Pham J, Tanaka N. Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes-Potential Applications for Diabetes and NAFLD. Biomolecules 2020; 10:biom10101445. [PMID: 33076386 PMCID: PMC7602561 DOI: 10.3390/biom10101445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30–40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes.
Collapse
Affiliation(s)
- Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Correspondence: or ; Tel.: +1-301-594-6980
| | - Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
45
|
Dastgheib SA, Asadian F, Farbod M, Karimi-Zarchi M, Meibodi B, Akbarian E, Neamatzadeh H. Association of ACE I/D, -240A > T and AT1R A1166C polymorphisms with susceptibility to breast cancer: a systematic review and meta-analysis based on 35 case-control studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:117-135. [PMID: 33025841 DOI: 10.1080/15257770.2020.1826515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of this meta-analysis was to estimate the association of ACE I/D, -240 A > T and AT1R 1166 A > C polymorphisms with breast cancer (BC) risk. A comprehensive search on databases was conducted to identify all eligible case-control studies. Finally, 35 case-control studies, including 20 studies for ACE I/D, seven studies for ACE 240 A > T, and eight studies for AT1R 1166 A > C were included. The pooled analysis showed a significant association between ACE I/D polymorphism and BC risk under three genetic models, i.e., heterozygote (ID vs. DD: OR = 0.707, 95% CI 0.528-0.946, p = 0.020), homozygote (II vs. DD: OR = 0.662, 95% CI 0.462-0.947, p = 0.024), and dominant (II + ID vs. DD: OR = 0.691, 95% CI 0.507-0.941, p = 0.019). A significant association was also observed in ACE I/D polymorphism with BC risk among Asians and Caucasians. However, ACE -240 A > T and AT1R 1166 A > C polymorphisms were not associated with BC. Stratified analyses by ethnicity showed a significant association of ACE -240 A > T and AT1R 1166 A > C polymorphisms with BC risk in Latinos populations, but not in Asians. This meta-analysis inconsistence with all previous meta-analyses suggests that the ACE I/D might be associated with BC in overall and by ethnicity. However, the ACE -240 A > T and AT1R 1166 A > C were associated with BC risk only among Latinos populations.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Meraj Farbod
- Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Karimi-Zarchi
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran.,Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Meibodi
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Akbarian
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
46
|
Xiao T, Lu J, Zhang J, Johnson RI, McKay LGA, Storm N, Lavine CL, Peng H, Cai Y, Rits-Volloch S, Lu S, Quinlan BD, Farzan M, Seaman MS, Griffiths A, Chen B. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32995768 DOI: 10.1101/2020.09.18.301952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase that forms a dimer and serves as the cellular receptor for SARS-CoV-2. It is also a key negative regulator of the renin-angiotensin system (RAS), conserved in mammals, which modulates vascular functions. We report here the properties of a trimeric ACE2 variant, created by a structure-based approach, with binding affinity of ~60 pM for the spike (S) protein of SARS-CoV-2, while preserving the wildtype peptidase activity as well as the ability to block activation of angiotensin II receptor type 1 in the RAS. Moreover, the engineered ACE2 potently inhibits infection of SARS-CoV-2 in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.
Collapse
|
47
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
48
|
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020; 12:E2186. [PMID: 32764454 PMCID: PMC7464614 DOI: 10.3390/cancers12082186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute & 4Hamad Bin Khalifa University, 34110 Doha, Qatar;
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
49
|
Chen P, Yang F, Wang W, Li X, Liu D, Zhang Y, Yin G, Lv F, Guo Z, Mehta JL, Wang X. Liraglutide Attenuates Myocardial Fibrosis via Inhibition of AT1R-Mediated ROS Production in Hypertensive Mice. J Cardiovasc Pharmacol Ther 2020; 26:179-188. [PMID: 32686479 DOI: 10.1177/1074248420942007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Glucagon-like peptide-1 receptor agonist liraglutide has been reported to exert cardioprotective effects, but its effect on cardiac fibrosis remains controversial. The aim of this study was to investigate the effects of liraglutide on cardiac fibrosis and potential mechanisms. METHODS C57BL/6 mice (3-month old) were randomly divided into control, hypertension, and hypertension + liraglutide groups. The hypertensive state was created by infusion of Ang II (100 ng/kg·min) for 4 weeks through subcutaneously implanted osmotic pumps. The control mice were infused with saline. Mice were also given vehicle or liraglutide (400 μg/kg·day). Blood pressure (BP), blood sugar, myocardial fibrosis, AT1R expression, and reactive oxygen species (ROS) levels were measured. To further elucidate the mechanisms of fibrosis, mouse cardiac fibroblasts were isolated and treated with liraglutide (300 nM/L) or losartan (10 μM) for 3 hours, followed by Ang II (10-7 M) for additional 12 hours. Reactive oxygen species production and expressions of collagen-1 and -3 were measured. RESULTS Liraglutide reduced BP and blood sugar but did not affect the body weight of the hypertensive mice. Liraglutide also inhibited collagen accumulation, AT1R expression, and ROS generation in the hearts of the hypertensive mice. In in vitro studies, pretreatment with liraglutide and losartan (as control) markedly inhibited Ang II-induced ROS production and collagen expression in the cultured cardiac fibroblasts. CONCLUSION Liraglutide reduces myocardial fibrosis in the hypertensive mice, which appears to be dependent on at least in part inhibition of ROS production.
Collapse
Affiliation(s)
- Peng Chen
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China.,Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Fen Yang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Wenya Wang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Yongxi Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Guotian Yin
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Fenghua Lv
- Department of Cardiology, The First Affiliated Hospital 91593Xinxiang Medical University, Weihui, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, 91593Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
50
|
Annweiler C, Bourgeais A, Faucon E, Cao Z, Wu Y, Sabatier JM. Neurological, Cognitive, and Behavioral Disorders during COVID-19: The Nitric Oxide Track. J Am Geriatr Soc 2020; 68:1922-1923. [PMID: 32583434 PMCID: PMC7361837 DOI: 10.1111/jgs.16671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/04/2022]
Abstract
See the Reply by Alkeridy et al.
Collapse
Affiliation(s)
- Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.,UPRES EA 4638, University of Angers, Angers, France.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Alexis Bourgeais
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France
| | | | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, China
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Aix-Marseille University, Marseille, France
| |
Collapse
|