1
|
Salústio PJ, Amaral MH, Costa PC. Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39120712 DOI: 10.1089/jamp.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation. [Figure: see text].
Collapse
Affiliation(s)
- P J Salústio
- Research Institute for Medicines (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - M H Amaral
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - P C Costa
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Foley L, Ziaee A, Walker G, O’Reilly E. Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity. Pharmaceutics 2024; 16:1020. [PMID: 39204365 PMCID: PMC11359500 DOI: 10.3390/pharmaceutics16081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
The identification of spray-drying processing parameters capable of producing particles suitable for pulmonary inhalation with retained bioactivity underpins the development of inhalable biotherapeutics. Effective delivery of biopharmaceuticals via pulmonary delivery routes such as dry powder inhalation (DPI) requires developing techniques that engineer particles to well-defined target profiles while simultaneously minimising protein denaturation. This study examines the simultaneous effects of atomisation gas flow rate on particle properties and retained bioactivity for the model biopharmaceutical lysozyme. The results show that optimising the interplay between atomisation gas flow rate and excipient concentration enables the production of free-flowing powder with retained bioactivity approaching 100%, moisture content below 4%, and D50 < 4 µm, at yields exceeding 50%. The developed methodologies inform the future design of protein-specific spray-drying parameters for inhalable biotherapeutics.
Collapse
Affiliation(s)
| | | | | | - Emmet O’Reilly
- SSPC the SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (L.F.); (A.Z.); (G.W.)
| |
Collapse
|
3
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
4
|
Wang X, Wan W, Zhang J, Lu J, Liu P. Efficient pulmonary fibrosis therapy via regulating macrophage polarization using respirable cryptotanshinone-loaded liposomal microparticles. J Control Release 2024; 366:1-17. [PMID: 38154539 DOI: 10.1016/j.jconrel.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Lung inflammation and fibrogenesis are the two main characteristics during the development of pulmonary fibrosis (PF), which are particularly associated with pulmonary macrophages. In this context, whether cryptotanshinone (CTS) could alleviate PF through regulating macrophage polarization were preliminarily demonstrated in vitro. Then the time course of PF and its relationship with macrophage polarization was determined in BLM-induced mice based on cytokine levels in bronchoalveolar lavage fluid (BALF), lung histopathology, flow cytometric analysis, mRNA and protein expression. CTS was loaded into macrophage-targeted and responsively released mannose-modified liposomes (Man-lipo), and the liposomes were then embedded into mannitol microparticles (M-MPs) using spray drying to achieve efficient pulmonary delivery. Afterwards, how CTS regulates macrophage polarization in vivo during different time courses of PF was probed. Furthermore, the molecular mechanisms of CTS against PF by regulating macrophage polarization were elucidated in vivo and in vitro. The full-course therapy group could achieve comparable therapeutic effects compared with the positive control drug PFD group. CTS can alleviate PF through regulating macrophage polarization, mainly by inhibiting NLRP3/TGF-β1 pathway during the inflammation course and modulating MMP-9/TIMP-1 balance during the fibrosis development course, providing new insights into chronic PF treatment.
Collapse
Affiliation(s)
- Xiuhua Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiguo Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Jing Lu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.
| |
Collapse
|
5
|
Sarode A, Patel P, Vargas-Montoya N, Allawzi A, Zhilin-Roth A, Karmakar S, Boeglin L, Deng H, Karve S, DeRosa F. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery. Drug Deliv Transl Res 2024; 14:360-372. [PMID: 37526881 PMCID: PMC10761450 DOI: 10.1007/s13346-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pulmonary delivery of mRNA via inhalation is a very attractive approach for RNA-based therapy for treatment of lung diseases. In this work, we have demonstrated successful development of an mRNA-lipid nanoparticle (LNP) dry powder product (DPP), wherein the LNPs were spray dried using hydroalcoholic solvent along with mannitol and leucine as excipients. The desired critical attributes for the DPP were accomplished by varying the excipients, lipid composition, concentration of LNPs, and weight percentage of mRNA. Leucine alone or in combination with mannitol improved the formulation by increasing the mRNA yield as well as decreasing the particle size. Intratracheal administration of the DPP in mice resulted in luciferase expression in the trachea and lungs indicating successful delivery of functional mRNA. Our results show formulation optimization of mRNA LNPs administered in the form of DPP results in an efficacious functional delivery with great promise for future development of mRNA therapeutics for lung diseases.
Collapse
Affiliation(s)
- Ashish Sarode
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| | - Priyal Patel
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| | | | | | - Alisa Zhilin-Roth
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| | - Saswata Karmakar
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| | - Lianne Boeglin
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| | - Hongfeng Deng
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| | - Shrirang Karve
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA.
| | - Frank DeRosa
- mRNA Center of Excellence, 200 West Street, MA, 02451, Sanofi Waltham, USA
| |
Collapse
|
6
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
7
|
Karas J, Pavloková S, Hořavová H, Gajdziok J. Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design. Pharmaceutics 2023; 15:pharmaceutics15020496. [PMID: 36839819 PMCID: PMC9960250 DOI: 10.3390/pharmaceutics15020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.4 g/cm3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box-Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup.
Collapse
|
8
|
Puccetti M, Pariano M, Stincardini C, Wojtylo P, Schoubben A, Nunzi E, Ricci M, Romani L, Giovagnoli S. Pulmonary drug delivery technology enables anakinra repurposing in cystic fibrosis. J Control Release 2023; 353:1023-1036. [PMID: 36442616 DOI: 10.1016/j.jconrel.2022.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Inflammation is a key pathological driver in cystic fibrosis (CF). Current therapies are ineffective in treating and preventing the escalation of inflammatory events often exacerbated by superimposed infection. In this work, we propose a novel treatment based on the pulmonary administration of anakinra, a non-glycosylated recombinant form of IL-1Ra. An inhalable dry powder of anakinra was successfully developed to meet the specific needs of lung drug delivery. The new formulation was investigated in vitro for aerodynamic performances and activity and in vivo for its pharmacological profile, including the pharmacokinetics, treatment schedule, antimicrobial and anti-inflammatory activity and systemic toxicity. The protein was structurally preserved inside the formulation and retained its pharmacological activity in vitro immediately after preparation and over time when stored at ambient conditions. Anakinra when delivered to the lungs showed an improved and extended therapeutic efficacy in CF models in vivo as well as higher potency compared to systemic delivery. Peripheral side effects were significantly reduced and correlated with lower serum levels compared to systemic treatment. These findings provide proof-of-concept demonstration for anakinra repurposing in CF through the pulmonary route.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Paulina Wojtylo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
9
|
Zhang Y, Hubert P, Hubert C. Investigation of potential substandard dry powder inhalers on EU and North African markets – evaluation of the delivered and fine particle doses. J Drug Assess 2022; 11:20-25. [PMID: 36213210 PMCID: PMC9543106 DOI: 10.1080/21556660.2022.2125727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose Discovery of falsified Symbicort 320/9 Turbohaler identified in the UK in 2013 demonstrated that falsified dry powder inhalers were also present in the European market. This work aimed to investigate the current situation of formoterol-containing dry powder inhalers in Europe and North Africa by assessing their aerodynamic performance profile. Methods A total of eight registered formoterol-based dry powder inhalers over the European and North African markets were involved in this study, including the reference drug Foradil. Samples were prepared using a multistage liquid impinger (MsLI) and further analyzed by a validated HPLC-UV method to determine the delivered and the fine particle doses (FPDs). This study also examined the impact of freezing-thawing cycles on sample stability in terms of analytical purpose handling. Results No substandard dry powder inhalers were identified among the medicinal products involved in this work. The delivered dose (DD) of assessed drugs varied from 8.33 to 9.69 µg, while the FPD was between 1.86 and 3.35 µg. As expected, this work confirmed that the capsule composition and the barrier properties of the primary packaging can affect the FPD of dry powder for inhalation use. Conclusions The FPD of products C and B was, respectively, 17.4 and 14.2% superior to Foradil, products D and H had the closest values compared to the original drug, and product F was 34.5% inferior. Additionally, this work showed that a high FPD can be achieved using HPMC capsules and moisture-impermeable primary packaging.
Collapse
Affiliation(s)
- Yue Zhang
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege (ULiege), Liege, Belgium
| | - Philippe Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege (ULiege), Liege, Belgium
| | - Cédric Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege (ULiege), Liege, Belgium
| |
Collapse
|
10
|
Valentin M, Coibion D, Vertruyen B, Malherbe C, Cloots R, Boschini F. Macroporous Mannitol Granules Produced by Spray Drying and Sacrificial Templating. MATERIALS (BASEL, SWITZERLAND) 2022; 16:25. [PMID: 36614363 PMCID: PMC9821148 DOI: 10.3390/ma16010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In pharmaceutical applications, the porous particles of organic compounds can improve the efficiency of drug delivery, for example into the pulmonary system. We report on the successful preparation of macroporous spherical granules of mannitol using a spray-drying process using polystyrene (PS) beads of ~340 nm diameter as a sacrificial templating agent. An FDA-approved solvent (ethyl acetate) was used to dissolve the PS beads. A combination of infrared spectroscopy and thermogravimetry analysis proved the efficiency of the etching process, provided that enough PS beads were exposed at the granule surface and formed an interconnected network. Using a lab-scale spray dryer and a constant concentration of PS beads, we observed similar granule sizes (~1-3 microns) and different porosity distributions for the mannitol/PS mass ratio ranging from 10:1 to 1:2. When transferred to a pilot-scale spray dryer, the 1:1 mannitol/PS composition resulted in different distributions of granule size and porosity depending on the atomization configuration (two-fluid or rotary nozzle). In all cases, the presence of PS beads in the spray-drying feedstock was found to favor the formation of the α mannitol polymorph and to lead to a small decrease in the mannitol decomposition temperature when heating in an inert atmosphere.
Collapse
Affiliation(s)
- Morgane Valentin
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| | - Damien Coibion
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Cédric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Rudi Cloots
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| | - Frédéric Boschini
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
11
|
Hamedani S, Yaqoubi S, Safdari R, Hamishehkar H, Nokhodchi A. A novel particle engineering method for the production of inhalable cromolyn sodium powders by a combination of spray drier and nebulizer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Mahar R, Chakraborty A, Nainwal N. The influence of carrier type, physical characteristics, and blending techniques on the performance of dry powder inhalers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Hebbink GA, Jaspers M, Peters HJW, Dickhoff BHJ. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev 2022; 189:114527. [PMID: 36070848 DOI: 10.1016/j.addr.2022.114527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.
Collapse
|
14
|
Albariqi AH, Ke WR, Khanal D, Kalfas S, Tang P, Britton WJ, Drago J, Chan HK. Preparation and Characterization of Inhalable Ivermectin Powders as a Potential COVID-19 Therapy. J Aerosol Med Pulm Drug Deliv 2022; 35:239-251. [PMID: 35275749 DOI: 10.1089/jamp.2021.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Ivermectin has received worldwide attention as a potential COVID-19 treatment after showing antiviral activity against SARS-CoV-2 in vitro. However, the pharmacokinetic limitations associated with oral administration have been postulated as limiting factors to its bioavailability and efficacy. These limitations can be overcome by targeted delivery to the lungs. In this study, inhalable dry powders of ivermectin and lactose crystals were prepared and characterized for the potential treatment of COVID-19. Methods: Ivermectin was co-spray dried with lactose monohydrate crystals and conditioned by storage at two different relative humidity points (43% and 58% RH) for a week. The in vitro dispersion performance of the stored powders was examined using a medium-high resistance Osmohaler connecting to a next-generation impactor at 60 L/min flow rate. The solid-state characteristics including particle size distribution and morphology, crystallinity, and moisture sorption profiles of raw and spray-dried ivermectin samples were assessed by laser diffraction, scanning electron microscopy, Raman spectroscopy, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption. Results: All the freshly spray-dried formulation (T0) and the conditioned samples could achieve the anticipated therapeutic dose with fine particle dose of 300 μg, FPFrecovered of 70%, and FPFemitted of 83%. In addition, the formulations showed a similar volume median diameter of 4.3 μm and span of 1.9. The spray-dried formulations were stable even after conditioning and exposing to different RH points as ivermectin remained amorphous with predominantly crystalline lactose. Conclusion: An inhalable and stable dry powder of ivermectin and lactose crystals was successfully formulated. This powder inhaler ivermectin candidate therapy appears to be able to deliver doses that could be safe and effective to treat the SARS-COV-2 infection. Further development of this therapy is warranted.
Collapse
Affiliation(s)
- Ahmed H Albariqi
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,The Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Wei-Ren Ke
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,School of Pharmacy, Collage of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Stefanie Kalfas
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Babenko M, Alany RG, Calabrese G, Kaialy W, ElShaer A. Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations. Int J Pharm 2022; 617:121601. [PMID: 35181460 DOI: 10.1016/j.ijpharm.2022.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
The study aimed to develop two types of dry powder inhaler (DPI) formulations containing glucagon-like peptide-1(7-36) amide (GLP-1): carrier-free (drug alone, no excipients) and carrier-based DPI formulations for pulmonary delivery of GLP-1. This is the first study focusing on the development of excipient free GLP-1 DPI formulations for inhaled therapy in Type 2 diabetes. The aerosolisation performance of both DPI formulations was studied using a next generation impactor and a DPI device (Handihaler®) at flow rate of 30 L min-1. Carriers employed were either a 10% w/w glycine-mannitol prepared by spray freeze drying or commercial mannitol. Spray freeze dried (SFD) carrier was spherical and porous whereas commercial mannitol carrier exhibited elongated particles (non-porous). GLP-1 powder without excipients for inhalation was prepared using spray drying and characterised for morphology including size, thermal behaviour, and moisture content. Spray dried (SD) GLP-1 powders showed indented/dimpled particles in the particle size range of 1 to 5 µm (also mass median aerodynamic diameter, MMAD: <5 µm) suitable for pulmonary delivery. Across formulations investigated, carrier-free DPI formulation showed the highest fine particle fraction (FPF: 90.73% ± 1.76%, mean ± standard deviation) and the smallest MMAD (1.96 µm ± 0.07 µm), however, low GLP-1 delivered dose (32.88% ± 7.00%, total GLP-1 deposition on throat and all impactor stages). GLP-1 delivered dose was improved by the addition of SFD 10% glycine-mannitol carrier to the DPI formulation (32.88% ± 7.00% -> 45.92% ± 5.84%). The results suggest that engineered carrier-based DPI formulations could be a feasible approach to enhance the delivery efficiency of GLP-1. The feasibility of systemic pulmonary delivery of SD GLP-1 for Type 2 diabetes therapy can be further investigated in animal models.
Collapse
Affiliation(s)
- Mai Babenko
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE; School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Gianpiero Calabrese
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE
| | - Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, Universiy of Wolverhampton, Wolverhampton, WV1 1LY
| | - Amr ElShaer
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE.
| |
Collapse
|
16
|
Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or Discouraging for systemic disorders? Int J Pharm 2022; 614:121457. [PMID: 35026316 PMCID: PMC8744475 DOI: 10.1016/j.ijpharm.2022.121457] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Dry powder inhalation therapy has been shown to be an effective method for treating respiratory diseases like asthma, Chronic Obstructive Pulmonary Diseases and Cystic Fibrosis. It has also been widely accepted and used in clinical practices. Such success has led to great interest in inhaled therapy on treating systemic diseases in the past two decades. The current coronavirus (COVID-19) pandemic also has increased such interest and is triggering more potential applications of dry powder inhalation therapy in vaccines and antivirus drugs. Would the inhaled dry powder therapy on systemic disorders be as encouraging as expected? This paper reviews the marketed and in-development dry powder inhaler (DPI) products on the treatment of systemic diseases, their status in clinical trials, as well as the potential for COVID-19 treatment. The advancements and unmet problems on DPI systems are also summarized. With countless attempts behind and more challenges ahead, it is believed that the dry powder inhaled therapy for the treatment of systemic disorders still holds great potential and promise.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
17
|
Spray freeze drying to solidify Nanosuspension of Cefixime into inhalable microparticles. Daru 2022; 30:17-27. [PMID: 34997567 PMCID: PMC9114214 DOI: 10.1007/s40199-021-00426-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/07/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Spray-freeze drying (SFD) incorporating diverse carbohydrates and leucine was employed to obtain dried nanosuspension of cefixime with improved dissolution profile, good dispersibility, and excellent inhalation performance. METHODS Nanoprecipitation was utilized to prepare nanoparticles (NPs). Nanosuspensions of cefixime were solidified via SFD to access inhalable microparticles. The aerosolization efficiencies were evaluated through twin stage impinger (TSI). Laser light scattering and scanning electron microscopy (SEM) provided assistance to determine the particle size/size distribution and morphology, respectively. Amorphous/ crystalline states of materials were examined via differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Release profiles of candidate preparations were evaluated. RESULTS The fine particle fraction (FPF) ranged from 18.96 ± 0.76 to 79.28 ± 0.45%. The highest value resulted from trehalose with NP/carrier ratio of 1:1 and leucine 20%. The particle size varied from 5.24 ± 0.97 to 10.17 ± 1.01 μm. The most and the least size distribution were achieved in mannitol and trehalose containing formulations, respectively. The majority of samples demonstrated ideally spherical morphology with diverse degrees of porosity and without needle-shaped structure. Percentages of release in F7 and F8 were 89.33 ± 0.88% and 93.54 ± 1.02%, respectively, via first 10 min. CONCLUSION SFD of nanosuspensions can be established as a platform for the pulmonary delivery of poorly water-soluble molecules of cefixime. Trehalose and raffinose with a lower ratio of NP to the carrier and higher level of leucine could be introduced as favorable formulations for further respiratory delivery of cefixime.
Collapse
|
18
|
Pasqua E, Hamblin N, Edwards C, Baker-Glenn C, Hurley C. Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov Today 2021; 27:134-150. [PMID: 34547449 DOI: 10.1016/j.drudis.2021.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/11/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.
Collapse
Affiliation(s)
- Elisa Pasqua
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK.
| | - Nicole Hamblin
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK; Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Christine Edwards
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| | - Charles Baker-Glenn
- Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Chris Hurley
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| |
Collapse
|
19
|
Sarangi S, Thalberg K, Frenning G. Effect of carrier size and mechanical properties on adhesive unit stability for inhalation: A numerical study. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.05.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Roflumilast Powders for Chronic Obstructive Pulmonary Disease: Formulation Design and the Influence of Device, Inhalation Flow Rate, and Storage Relative Humidity on Aerosolization. Pharmaceutics 2021; 13:pharmaceutics13081254. [PMID: 34452215 PMCID: PMC8400286 DOI: 10.3390/pharmaceutics13081254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and potentially circumvent the associated toxicity. Roflumilast was cospray-dried with trehalose and L-leucine with varied feed concentrations and spray-gas flow rates to produce the desired dry powder. A Next-Generation Impactor (NGI) was used to assess the aerosolization efficiency. In addition, different devices (Aerolizer, Rotahaler, and Handihaler) and flow rates were used to investigate their effects on the aerosolization efficiency. A cytotoxicity assay was also performed. The powders produced under optimized conditions were partially amorphous and had low moisture content. The powders showed good dispersibility, as evident by the high emitted dose (>88%) and fine particle fraction (>52%). At all flow rates (≥30 L/min), the Aerolizer offered the best aerosolization. The formulation exhibited stable aerosolization after storage at 25 °C/15% Relative Humidity (RH) for one month. Moreover, the formulation was non-toxic to alveolar basal epithelial cells. A potential inhalable roflumilast formulation including L-leucine and trehalose has been developed for the treatment of COPD. This study also suggests that the choice of device is crucial to achieve the desired aerosol performance.
Collapse
|
21
|
Ke WR, Kwok PCL, Khanal D, Chang RYK, Chan HK. Co-spray dried hydrophobic drug formulations with crystalline lactose for inhalation aerosol delivery. Int J Pharm 2021; 602:120608. [PMID: 33862136 DOI: 10.1016/j.ijpharm.2021.120608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/15/2023]
Abstract
Spray drying is a rapid method for converting a liquid feed into dried particles for inhalation aerosols. Lactose is a major inhalation excipient used in spray-dried (SD) formulations. However, SD powders produced from solutions are usually amorphous hence unstable to moisture. This problem can potentially be minimized by spray drying a suspension (instead of solution) containing crystalline lactose particles and dissolved drugs. In the present study, the suspension formulation containing dissolved budesonide (BUD) or rifampicin (RIF) and suspended lactose crystals in isopropanol alcohol (IPA) were produced. For comparison, powders were also produced from solution formulations containing the same proportions of drug and lactose dissolved in 50:50 IPA/water as controls. These SD powders were stored at 25 °C/60% RH and 40 °C/75% RH for six months. The particulate properties and in vitro dispersion performance were examined at various storage time points. All powders obtained from spray drying of solutions recrystallized after one week of storage at 25 °C/60% RH. In contrast, SD BUD-lactose obtained from suspension did not change until after three-months of storage when the particle size increased gradually with morphology change and yet the crystallinity remained the same as determined by X-ray powder diffraction. For the SD RIF-lactose obtained from suspension, both particulate properties and in vitro powder dispersion performance showed no significant difference before and after storage at both storage conditions. To conclude, this is the first study to show that SD powder formulations obtained from suspensions containing lactose crystals demonstrated superior storage stability performance, which is desirable for inhaled powders.
Collapse
Affiliation(s)
- Wei-Ren Ke
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Alhajj N, O'Reilly NJ, Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov Today 2021; 26:2384-2396. [PMID: 33872799 DOI: 10.1016/j.drudis.2021.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
23
|
Athamneh T, Amin A, Benke E, Ambrus R, Gurikov P, Smirnova I, Leopold CS. Pulmonary drug delivery with aerogels: engineering of alginate and alginate-hyaluronic acid microspheres. Pharm Dev Technol 2021; 26:509-521. [PMID: 33593203 DOI: 10.1080/10837450.2021.1888979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, the aerogel technology was used to prepare pulmonary drug carriers consisting of alginate and alginate-hyaluronic acid by an emulsion gelation technique and supercritical CO2 drying. During the preparation process, the emulsification rate and inner phase viscosity were varied to control the diameter of aerogel microspheres. Results showed that the aerogel microspheres were highly porous (porosity > 98%) with low densities in the range between 0.0087 and 0.0634 g/cm3 as well as high surface areas between 354 and 759 m2/g. The obtained microspheres showed aerodynamic diameter below 5 µm making them suitable for pulmonary drug delivery. An in vitro drug release study with the model drug sodium naproxen was conducted and a non-Fickian drug release mechanism was observed, with no significant difference between the release profiles of alginate and alginate-hyaluronic acid microspheres. During the emulsion gelation step, the feasibility of using the capillary number to estimate the largest stable droplet size in the emulsions was also studied and it was found that using this number, the droplet size in the emulsions may well be predicted.
Collapse
Affiliation(s)
- Tamara Athamneh
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany.,Institute of Pharmacy, Division of Pharmaceutical Technology, University of Hamburg, Hamburg, Germany
| | - Adil Amin
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg, Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Claudia S Leopold
- Institute of Pharmacy, Division of Pharmaceutical Technology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Wang B, Liu F, Xiang J, He Y, Zhang Z, Cheng Z, Liu W, Tan S. A critical review of spray-dried amorphous pharmaceuticals: Synthesis, analysis and application. Int J Pharm 2020; 594:120165. [PMID: 33309835 DOI: 10.1016/j.ijpharm.2020.120165] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
New drugs are frequently found with poor water-solubility in recent pharmaceutical projects, which brings difficulties of bioavailability for the clinical development of new drugs. When these drug compounds in a crystalline state are absorbed by gastrointestinal tract, their dissolution rates and absorption rates are very limited. Nowadays, various methods have been developed to improve the solubility, dissolution and bioavailability of drugs. According to the characteristics of drugs, this work suggests the use of spray drying technology to amorphize APIs (active pharmaceutical ingredients) to improve their bioavailability. This work reviews the properties of the spray-dried amorphous drugs, the progress made in drug synthesis and application, and the existing problems.
Collapse
Affiliation(s)
- Bo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jia Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Zhibin Zhang
- Research and Development Department, Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213162, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
25
|
Aziz S, Scherlieβ R, Steckel H. Development of High Dose Oseltamivir Phosphate Dry Powder for Inhalation Therapy in Viral Pneumonia. Pharmaceutics 2020; 12:E1154. [PMID: 33261071 PMCID: PMC7760073 DOI: 10.3390/pharmaceutics12121154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Oseltamivir phosphate (OP) is an antiviral drug available only as oral therapy for the treatment of influenza and as a potential treatment option when in combination with other medication in the fight against the corona virus disease (COVID-19) pneumonia. In this study, OP was formulated as a dry powder for inhalation, which allows drug targeting to the site of action and potentially reduces the dose, aiming a more efficient therapy. Binary formulations were based on micronized excipient particles acting like diluents, which were blended with the drug OP. Different excipient types, excipient ratios, and excipient size distributions were prepared and examined. To investigate the feasibility of delivering high doses of OP in a single dose, 1:1, 1:3, and 3:1 drug/diluent blending ratios have been prepared. Subsequently, the aerosolization performance was evaluated for all prepared formulations by cascade impaction using a novel medium-resistance capsule-based inhaler (UNI-Haler). Formulations with micronized trehalose showed relatively excellent aerosolization performance with highest fine-particle doses in comparison to examined lactose, mannitol, and glucose under similar conditions. Focusing on the trehalose-based dry-powder inhalers' (DPIs) formulations, a physicochemical characterization of extra micronized grade trehalose in relation to the achieved performance in dispersing OP was performed. Additionally, an early indication of inhaled OP safety on lung cells was noted by the viability MTT assay utilizing Calu-3 cells.
Collapse
Affiliation(s)
- Shahir Aziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, German University in Cairo, Cairo 11835, Egypt
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, D-24118 Kiel, Germany;
| | - Regina Scherlieβ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, D-24118 Kiel, Germany;
| | | |
Collapse
|
26
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
27
|
Maruyama S, Ando S, Yonemochi E. Application of void forming index (VFI): Detection of the effect of physical properties of dry powder inhaler formulations on powder cohesion. Int J Pharm 2020; 588:119766. [PMID: 32800937 DOI: 10.1016/j.ijpharm.2020.119766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Dry powder inhaler (DPI) is an attractive alternative for non-invasive drug administration and can make the use of critical biopharmaceutical formulations more convenient for patients. Inhalation of biopharmaceutical formulations can provide targeted delivery to the lungs as well as systemic delivery. Generally, biopharmaceutical DPI formulations consist of highly cohesive powders that tend to agglomerate. For successful delivery to the lungs, the detection of powder cohesiveness and its effect on the performance of the formulations is mandatory. Herein, the effects of the physical properties of mannitol on the cohesiveness of DPI formulations were investigated. The powder cohesion was detected using the void forming index (VFI) measured by inverse gas chromatography (iGC) at 4 h (VFI4h), which was defined as the pressure drop ratio of 4 h purged sample to that of the initial sample. VFI4h was found to correlate well with the cohesiveness of DPI formulations. The amount of investigated samples required for VFI measurement was less than that required for conventional measurements. VFI showed a good relationship between the cohesiveness of DPI formulations and the physical properties of mannitol. Thus, VFI can be a reliable standard index to evaluate the cohesiveness of DPI formulations.
Collapse
Affiliation(s)
- Sunao Maruyama
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Shuichi Ando
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
28
|
Jiang L, Li Y, Yu J, Wang J, Ju J, Dai J. A dry powder inhalable formulation of salvianolic acids for the treatment of pulmonary fibrosis: safety, lung deposition, and pharmacokinetic study. Drug Deliv Transl Res 2020; 11:1958-1968. [PMID: 33009655 DOI: 10.1007/s13346-020-00857-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Salvianolic acids (SAL), the main bioactive component extracted from Salvia miltiorrhiza, is a natural product with a reported anti-pulmonary fibrosis (PF) effect. SAL is commonly administrated orally; however, it has a low oral bioavailability (less than 5%). The objective of this work was to develop a new dry powder inhalable formulation intended to facilitate the access of SAL to the target place. We prepared the new SAL powder formulation containing L-arginine and 2% of lecithin using the ball milling technique. L-arginine was used to regulate the strong acidity of the SAL solution, and lecithin was added to disperse the powder and improve the flowability. The resulting powder had a content in salvianolic acid B (SALB, the main active principle of SAL) of 66.67%, a particle size of less than 5 μm and a good flowability. In vivo fluorescence imaging showed that the powder could be successfully aerosolized and delivered to the lung. The acute lung irritation study proved that the presence of L-arginine improved the biocompatibility of the powder. Finally, according to the pharmacokinetic study, the new SAL powder formulation was found to significantly increase drug concentration in the lung and the bioavailability. In conclusion, the new dry powder inhalable formulation of SAL developed in this study could be a strategy to enhance the performance of SAL at the lung level. Graphical abstract.
Collapse
Affiliation(s)
- Linxia Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Yijun Li
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jiaqi Yu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jianhong Wang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jiarui Ju
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
29
|
Development and characterization of meropenem dry powder inhaler formulation for pulmonary drug delivery. Int J Pharm 2020; 587:119684. [DOI: 10.1016/j.ijpharm.2020.119684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
|
30
|
Zhao K, Guo T, Wang C, Zhou Y, Xiong T, Wu L, Li X, Mittal P, Shi S, Gref R, Zhang J. Glycoside scutellarin enhanced CD-MOF anchoring for laryngeal delivery. Acta Pharm Sin B 2020; 10:1709-1718. [PMID: 33088690 PMCID: PMC7564328 DOI: 10.1016/j.apsb.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
It is essential to develop new carriers for laryngeal drug delivery in light of the lack of therapy in laryngeal related diseases. When the inhalable micron-sized crystals of γ-cyclodextrin metal-organic framework (CD-MOF) was utilized as dry powder inhalers (DPIs) carrier with high fine particle fraction (FPF), it was found in this research that the encapsulation of a glycoside compound, namely, scutellarin (SCU) in CD-MOF could significantly enhance its laryngeal deposition. Firstly, SCU loading into CD-MOF was optimized by incubation. Then, a series of characterizations were carried out to elucidate the mechanisms of drug loading. Finally, the laryngeal deposition rate of CD-MOF was 57.72 ± 2.19% improved by SCU, about two times higher than that of CD-MOF, when it was determined by Next Generation Impactor (NGI) at 65 L/min. As a proof of concept, pharyngolaryngitis therapeutic agent dexamethasone (DEX) had improved laryngeal deposition after being co-encapsulated with SCU in CD-MOF. The molecular simulation demonstrated the configuration of SCU in CD-MOF and its contribution to the free energy of the SCU@CD-MOF, which defined the enhanced laryngeal anchoring. In conclusion, the glycosides-like SCU could effectively enhance the anchoring of CD-MOF particles to the larynx to facilitate the treatment of laryngeal diseases.
Collapse
Affiliation(s)
- Kena Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Zhou
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ting Xiong
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Université Paris-Saclay, CNRS 8214, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
| | - Priyanka Mittal
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Corresponding authors. Tel./fax: +86 571 86613524 (Senlin Shi); +86 21 50805901 (Jiwen Zhang).
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS 8214, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
- Corresponding authors. Tel./fax: +86 571 86613524 (Senlin Shi); +86 21 50805901 (Jiwen Zhang).
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 571 86613524 (Senlin Shi); +86 21 50805901 (Jiwen Zhang).
| |
Collapse
|
31
|
Zhu C, Chen J, Yu S, Que C, Taylor LS, Tan W, Wu C, Zhou QT. Inhalable Nanocomposite Microparticles with Enhanced Dissolution and Superior Aerosol Performance. Mol Pharm 2020; 17:3270-3280. [PMID: 32643939 DOI: 10.1021/acs.molpharmaceut.0c00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that combining colistin (Col), a cationic polypeptide antibiotic, with ivacaftor (Iva), a cystic fibrosis (CF) drug, could achieve synergistic antibacterial effects against Pseudomonas aeruginosa. The purpose of this study was to develop dry powder inhaler formulations for co-delivery of Col and Iva, aiming to treat CF and lung infection simultaneously. In order to improve solubility and dissolution for the water-insoluble Iva, Iva was encapsulated into bovine serum albumin (BSA) nanoparticles (Iva-BSA-NPs). Inhalable composite microparticles of Iva-BSA-NPs were produced by spray-freeze-drying using water-soluble Col as the matrix material and l-leucine as an aerosol enhancer. The optimal formulation showed an irregularly shaped morphology with fine particle fraction (FPF) values of 73.8 ± 5.2% for Col and 80.9 ± 4.1% for Iva. Correlations between "D×ρtapped" and FPF were established for both Iva and Col. The amorphous solubility of Iva is 66 times higher than the crystalline solubility in the buffer. Iva-BSA-NPs were amorphous and remained in the amorphous state after spray-freeze-drying, as examined by powder X-ray diffraction. In vitro dissolution profiles of the selected DPI formulation indicated that Col and Iva were almost completely released within 3 h, which was substantially faster regarding Iva release than the jet-milled physical mixture of the two drugs. In summary, this study developed a novel inhalable nanocomposite microparticle using a synergistic water-soluble drug as the matrix material, which achieved reduced use of excipients for high-dose medications, improved dissolution rate for the water-insoluble drug, and superior aerosol performance.
Collapse
Affiliation(s)
- Chune Zhu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jianting Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chailu Que
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Wen Tan
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuan West Road, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou 510006, China
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020; 325:276-292. [PMID: 32652109 DOI: 10.1016/j.jconrel.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
The rise of antimicrobial resistance has created an urgent need for the development of new methods for antibiotics delivery to patients with pulmonary infections in order to mainly increase the effectiveness of the drugs administration, to minimize the risk of emergence of resistant strains, and to prevent patients reinfection. Since bacterial resistance is often related to antibiotic concentration, their pulmonary administration could eradicate strains resistant to the same drug at the concentration achieved through the systemic circulation. Pulmonary administration offers several advantages; it directly targets the site of the infection which allows the inhaled dose of the drug to be reduced compared to that administered orally or parenterally while keeping the same local effect. The review article is made with an objective to compile information about various existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drugs. In conclusion, aerosol antibiotic delivery appears as one of the best technologies for the treatment of pulmonary infectious diseases and able to limit the systemic adverse effects related to the high drug dose and to make life easier for the patients.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | | |
Collapse
|
33
|
Hertel N, Birk G, Scherließ R. Performance tuning of particle engineered mannitol in dry powder inhalation formulations. Int J Pharm 2020; 586:119592. [PMID: 32622814 DOI: 10.1016/j.ijpharm.2020.119592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
Typically, smooth lactose particles are used as carrier in dry powder formulations for inhalation. Two classical approaches to improve their aerodynamic behaviour are the addition of fines (milled lactose) or magnesium stearate (MgSt). Mannitol (Parteck® M DPI) as an alternative carrier was used in this study. It has an irregular particle size distribution and a large and rough surface. This could be challenging for the detachment of micronised drug upon inhalation and it is unclear whether classic strategies for the optimisation of aerodynamic performance can be applied. In contrast, its rough surface could be an advantage in terms of drug load. To address these questions, the mannitol carrier was blended with two different drugs using various concentrations up to 50%. Self-produced mannitol fines and MgSt in different amounts and in combination were added. Blends were investigated regarding their in vitro aerodynamic performance, dosing behaviour and powder rheology. An addition of up to 30% drug load was possible while retaining good flowability and constant dosing behaviour. Despite the rough and indented carrier surface of the mannitol carrier, the addition of fines or MgSt increased the inhalable fraction, but higher concentrations of fines, as used for lactose blends, were necessary.
Collapse
Affiliation(s)
- Nancy Hertel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Gudrun Birk
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany.
| |
Collapse
|
34
|
Hertel N, Birk G, Scherließ R. Particle engineered mannitol for carrier-based inhalation – A serious alternative? Int J Pharm 2020; 577:118901. [DOI: 10.1016/j.ijpharm.2019.118901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
35
|
Zhang X, Yue X, Cui Y, Zhao Z, Huang Y, Cai S, Wang G, Wang W, Hugh S, Pan X, Wu C, Tan W. A Systematic Safety Evaluation of Nanoporous Mannitol Material as a Dry-Powder Inhalation Carrier System. J Pharm Sci 2020; 109:1692-1702. [PMID: 31987851 DOI: 10.1016/j.xphs.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
For carrier-based dry-powder inhaler (DPI) formulations, the adhesion between carrier particles and active pharmaceutical ingredients (API) particles have a significant influence on the aerosolization performance of the API-carrier complexes and the desired detachment of the API for efficient pulmonary delivery. In our previous study, nanoporous mannitol material was successfully fabricated as carriers by a one-step nonorganic solvent spray drying method with the thermal degradation of ammonium carbonate. These carriers were shown to achieve excellent aerosolization performance. In addition, no residue of ammonium carbonate was detected on the powder surface. However, the safety of nanoporous mannitol carriers (Nano-PMCs) during pulmonary administration/delivery was still unknown because the lung is vulnerable to the inhaled particles. To address this question, the present study was conducted to construct a systematic safety evaluation for DPIs carriers to investigate the safety of Nano-PMCs in the whole inhalation, which would make up for the lack of detailed and standardized method in this field. In vitro safety evaluation was carried out using respiratory and pulmonary cytotoxicity tests, hemolysis assay, and ciliotoxicity test. In vivo safety evaluation was studied by measuring inflammatory indicators in the bronchoalveolar lavage fluid, assessing the pulmonary function and observing pulmonary pathological changes. Nano-PMCs showed satisfactory biocompatibility on respiratory tracts and lungs in vitro and in vivo. It was suggested that Nano-PMCs were safe for intrapulmonary delivery and potential as DPI carriers.
Collapse
Affiliation(s)
- Xuejuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Xiao Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China.
| | - Shihao Cai
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Smyth Hugh
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China
| |
Collapse
|
36
|
Zhang X, Zhao Z, Cui Y, Liu F, Huang Z, Huang Y, Zhang R, Freeman T, Lu X, Pan X, Tan W, Wu C. Effect of powder properties on the aerosolization performance of nanoporous mannitol particles as dry powder inhalation carriers. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Zhao Z, Zhang X, Cui Y, Huang Y, Huang Z, Wang G, Liang R, Pan X, Tao L, Wu C. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent inamorphous lactose carriers for dry powder inhalers. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Yang Y, Huang Z, Li J, Mo Z, Huang Y, Ma C, Wang W, Pan X, Wu C. PLGA Porous Microspheres Dry Powders for Codelivery of Afatinib-Loaded Solid Lipid Nanoparticles and Paclitaxel: Novel Therapy for EGFR Tyrosine Kinase Inhibitors Resistant Nonsmall Cell Lung Cancer. Adv Healthc Mater 2019; 8:e1900965. [PMID: 31664795 DOI: 10.1002/adhm.201900965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/21/2019] [Indexed: 12/21/2022]
Abstract
Combination therapy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR TKIs) with other chemotherapeutic agents is a feasible strategy to overcome resistance that often occurs after 9-13 months of EGFR TKIs administration in nonsmall cell lung cancer (NSCLC). In this study, a pulmonary microspheres system that codelivers afatinib and paclitaxel (PTX) is developed for treatment of EGFR TKIs resistant NSCLC. In this system, afatinib is loaded in stearic acid-based solid lipid nanoparticles, then these nanoparticles and PTX are loaded in poly-lactide-co-glycolide-based porous microspheres. These inhaled microspheres systems are characterized including geometric particle size, drug encapsulation efficiency, morphology by scanning electron microscopy, specific surface area, in vitro drug release, and aerodynamic particle size. Cell experiments indicate that afatinib and PTX have a synergistic effect and the codelivery system shows a superior treatment effect in drug-resistant NSCLC cells. The biocompatibility, pharmacokinetic, and tissue distribution experiments in Sprague-Dawley rats show that afatinib and PTX in the system can maintain 96 h of high lung concentration but low concentration in other tissues, with acceptable safety. These results demonstrate that this system may be a prospective delivery strategy for drug combination treatment in cancers developing resistance, especially drug-resistant lung cancer.
Collapse
Affiliation(s)
- Yao Yang
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Zhengwei Huang
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Jinyuan Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer Center Guangzhou 510060 P. R. China
| | - Ziran Mo
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Ying Huang
- School of PharmacyJinan University Guangzhou 510632 P. R. China
| | - Cheng Ma
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Wenhao Wang
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical SciencesSun Yat‐Sen University Guangzhou 510006 P. R. China
- School of PharmacyJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
39
|
Micron-size lactose manufactured under high shear and its dispersion efficiency as carrier for Salbutamol Sulphate. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Microstructural characterization of carrier-based dry powder inhalation excipients: Insights and guidance. Int J Pharm 2019; 568:118482. [PMID: 31260786 DOI: 10.1016/j.ijpharm.2019.118482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/21/2023]
Abstract
The growing interest in development of dry powder inhalation (DPI) products raises a need for development of standard testing methods and specifications for DPI excipients. The pharmaceutical industry, meanwhile, yet lacks compendial guidance on this topic. Despite of the complexity of interactions taking place in DPI systems and the large number and variety of interplaying factors, understanding of key determinants of performance (critical quality attributes) of DPI excipients have considerably developed over the past years. In light of the current knowledge in this area, this article provides technical guidance and insights on testing and quality control of carrier-based-DPI excipients. These excipients are, typically, blends of coarse, carrier particles and fine, performance-modulating particles. The article explores techniques used for measurement of key microstructural attributes, namely the particle size distribution, the porosity and the particle surface roughness, the particle shape, rheological properties, and the permeability, of these excipients. The technical relevance of each measurement to the functionality of the excipients is critically discussed. In this regard, caveats concerning use of some measurements and data analysis procedures are raised. The guidance lends itself for compendial adoption.
Collapse
|
41
|
Molina C, Kaialy W, Chen Q, Commandeur D, Nokhodchi A. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations. Drug Deliv Transl Res 2019; 8:1769-1780. [PMID: 29260462 PMCID: PMC6280810 DOI: 10.1007/s13346-017-0462-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L-leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate’s aerosolization performance was, in part, due to the introduction of L-leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.
Collapse
Affiliation(s)
- Carlos Molina
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Qiao Chen
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Daniel Commandeur
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK. .,Drug Applied Research Center and Faculty of Pharmacy, Tabriz Medical Sciences University, Tabriz, Iran.
| |
Collapse
|
42
|
1H NMR quantification of spray dried and spray freeze-dried saccharide carriers in dry powder inhaler formulations. Int J Pharm 2019; 564:318-328. [DOI: 10.1016/j.ijpharm.2019.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
|
43
|
Focaroli S, Mah PT, Hastedt JE, Gitlin I, Oscarson S, Fahy JV, Healy AM. A Design of Experiment (DoE) approach to optimise spray drying process conditions for the production of trehalose/leucine formulations with application in pulmonary delivery. Int J Pharm 2019; 562:228-240. [PMID: 30849470 DOI: 10.1016/j.ijpharm.2019.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 11/26/2022]
Abstract
The present study evaluates the effect of L-leucine concentration and operating parameters of a laboratory spray dryer on characteristics of trehalose dry powders, with the goal of optimizing production of these powders for inhaled drug delivery. Trehalose/L-leucine mixtures were spray dried from aqueous solution using a laboratory spray dryer. A factorial design of experiment (DoE) was undertaken and process parameters adjusted were: inlet temperature, gas flow rate, feed solution flow rate (pump setting), aspiration setting and L-leucine concentration. Resulting powders were characterised in terms of particle size, yield, residual moisture content, and glass transition temperature. Particle size was mainly influenced by gas flow rate, whereas product yield and residual moisture content were found to be primarily affected by inlet temperature and spray solution feed rate respectively. Interactions between a number of different process parameters were elucidated, as were relationships between different responses. The leucine mass ratio influenced the physical stability of powders against environmental humidity, and a high leucine concentration (30% w/w) protected amorphous trehalose from moisture induced crystallization. High weight ratio of leucine in the formulation, however, negatively impacted the aerosol performance. Thus, in terms of L-leucine inclusion in a formulation designed for pulmonary delivery, a balance needs to be found between physical stability and deposition characteristics.
Collapse
Affiliation(s)
- S Focaroli
- School of Pharmacy and Pharmaceutical Sciences, Panoz Insitute, Trinity College Dublin, Dublin 2, Ireland
| | - P T Mah
- School of Pharmacy and Pharmaceutical Sciences, Panoz Insitute, Trinity College Dublin, Dublin 2, Ireland
| | - J E Hastedt
- JDP Pharma Consulting, LLC, PO Box 1127, San Carlos, CA, United States
| | - I Gitlin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, Health Sciences East, UCSF, 513 Parnassus Avenue, San Francisco, CA, United States
| | - S Oscarson
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - J V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, Health Sciences East, UCSF, 513 Parnassus Avenue, San Francisco, CA, United States
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Insitute, Trinity College Dublin, Dublin 2, Ireland; Synthesis and Solid State Pharmaceutical Centre, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
44
|
Schoubben A, Vivani R, Paolantoni M, Perinelli DR, Gioiello A, Macchiarulo A, Ricci M. D-leucine microparticles as an excipient to improve the aerosolization performances of dry powders for inhalation. Eur J Pharm Sci 2019; 130:54-64. [DOI: 10.1016/j.ejps.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 11/25/2022]
|
45
|
Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci 2019; 132:63-71. [PMID: 30797026 DOI: 10.1016/j.ejps.2019.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is amongst the most rapidly developing therapeutic strategies against cancer. However, most photosensitizers are administered intravenously with very few reports about pulmonary applications. To address this issue, an inhalable formulation consisting of nanoparticles loaded with photosensitizer (i.e. curcumin) was developed. The nanoparticles were prepared using nanoprecipitation method. Dynamic light scattering measurements of the curcumin loaded nanoparticles revealed a hydrodynamic diameter of 181.20 ± 11.52 nm. In vitro irradiation experiments with human lung epithelial carcinoma cells (A549) showed a selective cellular toxicity of the nanoparticles upon activation using LED irradiating device. Moreover, curcumin nanoparticles exhibited a dose-dependent photocytotoxicity and the IC50 values of curcumin were directly dependent on the radiation fluence used. The nanoparticles were subsequently spray dried using mannitol as a stabilizer to produce Nano-in-Microparticles with appropriate aerodynamic properties for a sufficient deposition in the lungs. This was confirmed using the next generation impactor, which revealed a large fine particle fraction (64.94 ± 3.47%) and a mass median aerodynamic diameter of 3.02 ± 0.07 μm. Nano-in-Microparticles exhibited a good redispersibility and disintegrated into the original nanoparticles upon redispersion in aqueous medium. The Langmuir monolayer experiments revealed an excellent compatibility of the nanoparticles with the lung surfactant. Results from this study showed that the Nano-in-Microparticles are promising drug carriers for the photodynamic therapy of lung cancer.
Collapse
|
46
|
Development of porous spray-dried inhalable particles using an organic solvent-free technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Kadota K, Yanagawa Y, Tachikawa T, Deki Y, Uchiyama H, Shirakawa Y, Tozuka Y. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int J Pharm 2019; 555:280-290. [DOI: 10.1016/j.ijpharm.2018.11.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
48
|
Tse JY, Kadota K, Hirata Y, Taniguchi M, Uchiyama H, Tozuka Y. Characterization of matrix embedded formulations for combination spray-dried particles comprising pyrazinamide and rifampicin. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Intratracheal Administration of siRNA Dry Powder Targeting Vascular Endothelial Growth Factor Inhibits Lung Tumor Growth in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:698-706. [PMID: 30092405 PMCID: PMC6083018 DOI: 10.1016/j.omtn.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/22/2022]
Abstract
Inhalation therapy using small-interfering RNA (siRNA) is a potentially effective therapeutic strategy for lung cancer because of its high gene-silencing effects and sequence specificity. Previous studies reported that intratracheal administration of siRNA using pressurized metered dose inhalers or nebulizers could suppress tumor growth in murine lung metastatic models. Although dry powder inhalers are promising devices due to their low cost, good portability, and preservability, the anti-tumor effects of siRNA dry powder have not been elucidated. To evaluate the gene-silencing and anti-tumor effects of intratracheally delivered siRNA dry powder, vascular endothelial growth factor-specific siRNA (VEGF-siRNA) dry powder was administered intratracheally to mice with metastatic lung tumors consisting of B16F10 melanoma cells or Lewis lung carcinoma cells. A single intratracheal administration of VEGF-siRNA dry powder reduced VEGF levels in both bronchoalveolar lavage fluid and lung tumor tissue. Furthermore, repeated intratracheal administration of VEGF-siRNA dry powder suppressed the number of visible metastatic foci on the lung surface and tumor area in lung tissues. Taken together, intratracheal administration of siRNA dry powder could be a novel therapeutic strategy for lung cancer through the suppression of specific genes expressed in lung tumor tissue.
Collapse
|
50
|
Pinto JT, Zellnitz S, Guidi T, Roblegg E, Paudel A. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose. Mol Pharm 2018; 15:2827-2839. [DOI: 10.1021/acs.molpharmaceut.8b00333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Joana T. Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Sarah Zellnitz
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Tomaso Guidi
- R&D Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|