1
|
Mekersi N, Kadi K, Hackenberger DK, Casini S, Addad D, Thangaraj R, Chen Z, Zhang C, Yuvaraj A. Accumulation of heavy metals from single and combined olive mill wastewater and pomace in soil and bioaccumulation in tissues of two earthworm species: Endogeic (Aporrectodea trapezoides) and Epigeic (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45280-45294. [PMID: 38963619 DOI: 10.1007/s11356-024-34087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Soil and earthworms are threatened by anthropogenic contamination resulting from olive mill waste dumping on the soil due to their pollutant properties. While several studies have explored the effects of olive mill waste on soil properties and the accumulation of heavy metals in soil, there is currently a gap in the literature regarding the potential bioaccumulation of heavy metals from olive mill waste in earthworms. In this study, soil with earthworms from two ecological categories (endogeic: Aporrectodea trapezoides and epigeic: Eisenia fetida) was treated with increasing doses of olive mill wastewater (OMWW) and olive mill pomace (OMP), applied individually or combined, in an indoor experiment in plastic containers, under laboratory conditions. The results revealed the presence of significant concentrations of heavy metals in the two types of wastes ranging as follows: Fe˃ Zn˃ Cu˃ Cd˃ Cr for OMWW, and Fe˃ Zn˃ Cu˃ Cr for OMP (with Cd below the detection limit). The study demonstrated distinct effects of OMWW and OMP, both individually and in combination, on soil heavy metal content, ranging as follows: soil OMWW > soil Combination > soil OMP for Cd; soil Combination > soil OMWW > soil OMP for Cr and Fe; and soil Combination > soil OMP > soil OMWW for Cu and Zn. Additionally, our investigation showed that both earthworm species exhibited significant uptake of these metals into their tissues, particularly the endogeic species. Interestingly, the most significant difference between species was in the accumulation of Cu, with the epigeic species accumulating significantly lower amounts.
Collapse
Affiliation(s)
- Nawal Mekersi
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
| | - Kenza Kadi
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
| | | | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Dalila Addad
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
- Natural Resources and Management of Sensitive Environments Laboratory, Larbi Ben M'hidi University, 04000, Oum El Bouaghi, Algeria
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague-Suchdol, 16500, Czech Republic
| | - Chi Zhang
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| |
Collapse
|
2
|
Zhou H, Jiao X, Li Y. Exploring the Toxicity of Oxytetracycline in Earthworms ( Eisenia fetida) Based on the Integrated Biomarker Response Method. TOXICS 2024; 12:310. [PMID: 38787089 PMCID: PMC11125748 DOI: 10.3390/toxics12050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic contamination has become a global environmental issue of widespread concern, among which oxytetracycline contamination is very severe. In this study, earthworm (Eisenia fetida) was exposed to oxytetracycline to study its impact on the soil environment. The total protein (TP), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), glutathione S-transferase (GST), and glutathione peroxidase (GPX) oxidative stress indicators in earthworms were measured, and the integrated biomarker response (IBR) approach was used to evaluate the toxic effect of oxytetracycline on earthworms. A Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and a path analysis model were used to explore the physiological and metabolic processes of earthworms after stress occurs. The results showed that SOD, GPX, and GST play important roles in resisting oxytetracycline stress. In addition, stress injury showed a good dose-effect relationship, and long-term stress from pollutants resulted in the most serious damage to the head tissue of earthworms. These results provide a theoretical basis for understanding the toxic effect of oxytetracycline on soil animals, monitoring the pollution status of oxytetracycline in soil, and conducting ecological security risk assessment.
Collapse
Affiliation(s)
- Haoran Zhou
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
3
|
Zhu L, Liu J, Zhou J, Wu X, Yang K, Ni Z, Liu Z, Jia H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158571. [PMID: 36075414 DOI: 10.1016/j.scitotenv.2022.158571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Lang Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinyi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xintong Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
4
|
Žaltauskaitė J, Kniuipytė I, Praspaliauskas M. Earthworm Eisenia fetida potential for sewage sludge amended soil valorization by heavy metal remediation and soil quality improvement. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127316. [PMID: 34583161 DOI: 10.1016/j.jhazmat.2021.127316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Sewage sludge reuse in agriculture is increasing, however it can be an important route for contaminants to enter the environment. The aim of this study was to evaluate earthworm Eisenia fetida capability to reduce heavy metal content in the sewage sludge (SS) amended soil and increase soil fertility in terms of soil nutrients content. Adult earthworms were introduced into aged SS amended soil (0-200 Mg ha-1) and left for 65 days. Earthworms have stabilized soil pH and accelerated organic matter mineralization. The concentrations of most heavy metals during the vermiremediation sharply decreased, K and Mg decreased to a moderate extent, whereas Ca content has increased. The highest removal efficiency was detected for Ni, Co and Mn (> 80%), bioconcentration factors were as follows Zn > Co > Cu > Ni > Mn > Cr. The content of major nutrients (S, P) was substantially higher compared to the initial values. The most efficient remediation and soil quality improvement was achieved under the doses of 25-50 Mg ha-1. Higher (≥ 100 Mg ha-1) doses might restrict this technique application because of earthworm mortality and retarded growth. Overall, the study shows that vermiremediation might be a sustainable technique for ecological stabilization of SS amended soil and converting to usable for agricultural needs.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas, Lithuania; Laboratory of Heat-Equipment Research and Testing, Lithuanian Energy Institute, Breslaujos 3, Kaunas, Lithuania.
| | - Inesa Kniuipytė
- Laboratory of Heat-Equipment Research and Testing, Lithuanian Energy Institute, Breslaujos 3, Kaunas, Lithuania
| | - Marius Praspaliauskas
- Laboratory of Heat-Equipment Research and Testing, Lithuanian Energy Institute, Breslaujos 3, Kaunas, Lithuania
| |
Collapse
|
5
|
Adeel M, Shakoor N, Hussain T, Azeem I, Zhou P, Zhang P, Hao Y, Rinklebe J, Rui Y. Bio-interaction of nano and bulk lanthanum and ytterbium oxides in soil system: Biochemical, genetic, and histopathological effects on Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125574. [PMID: 33756203 DOI: 10.1016/j.jhazmat.2021.125574] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The massive application of rare earth elements (REEs) in electronic industries cause their inevitable release into the environment; however, its effects on soil biota remain largely unaddressed. We investigated the E. fetida detoxification potential of nano and bulk La2O3 and Yb2O3 and their potential impact on biochemical and genetic markers at 50, 100, 200, 500 and 1000 mg kg-1 concentration. We found that earthworms bioremediate 3-15% La2O3 and Yb2O3 contaminated soil at low and medium levels, while this potential was limited at higher levels. Nano and bulk La2O3 and Yb2O3 treatment induced neurotoxicity in earthworm by inhibiting acetylcholinesterase by 49-65% and 22-36% at 500 and 1000 mg kg-1, respectively. Nano La2O3 proved to be highly detrimental, mainly through oxidative stress and subsequent failure of antioxidant system. Nano La2O3 and Yb2O3 at 100 mg kg-1 significantly down-regulated the expression of annetocin mRNA in the parental and progeny earthworms by 50% and 20%, which is crucial for earthworm reproduction. Similarly, expression level of heat shock protein 70 (HSP70) and metallothionein was significantly upregulated in both generations at medium exposure level. Histological observations showed that nano REEs at 200 mg kg-1 induced drastic changes in the intestinal epithelium and typhlosole of E. fetida. To date, our results enhance the understanding of interaction between REEs and earthworms.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- College of Veterinary Sciences, The University Agriculture Peshawar, 25000, Pakistan
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil, and Groundwater Management, Pauluskirchstraße7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Courtois P, de Vaufleury A, Grosser A, Lors C, Vandenbulcke F. Transfer of sulfidized silver from silver nanoparticles, in sewage sludge, to plants and primary consumers in agricultural soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145900. [PMID: 33676211 DOI: 10.1016/j.scitotenv.2021.145900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Consumer products containing silver nanoparticles (AgNPs) release silver (Ag) to the environment, particularly wastewater. Sewage sludge (SS), which contains numerous contaminants including Ag, is recycled by spreading on agricultural land. Although slight impacts and bioaccumulation of Ag sulfide (Ag2S, the main species found in SS) in terrestrial organisms have been demonstrated, possible trophic transfer into plants and subsequently animal species has not been examined. Accordingly, the present study experimentally measured the transfer of Ag from AgNPs and sulfidized Ag into plants and primary consumers and compared their bioavailability. Nine plant cultivars were grown in soil mixed with SS containing Ag, which revealed that bioaccumulation of Ag by plants is species-dependent. Ryegrass (the plant species with the greatest accumulation - up to 0.2 mg kg-1) was then cultivated on a larger scale to expose snails and locusts for several weeks. While locusts did not accumulate Ag after two weeks of exposure, snails exhibited Ag bioaccumulation after 5 weeks when soil was accessible. Sulfidized Ag derived from AgNPs were less available (bioaccumulation up to 2.5 mg kg-1) than the Ag from the original AgNPs (bioaccumulation up to 15 mg kg-1). This transfer potential of Ag could have consequences for food webs due to chronic exposure linked to SS spreading practices. This study shows that transformations of AgNPs in treatment plants attenuate but do not completely eliminate the risk of Ag to plant and animal species SS.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE - Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Annette de Vaufleury
- University of Bourgogne Franche-Comté, Department Chrono-environnement, UMR UFC/CNRS 6249, 16 route de Gray, Besançon Cedex 25030, France
| | - Anna Grosser
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Częstochowa, Poland
| | - Christine Lors
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, F-59000 Lille, France
| | - Franck Vandenbulcke
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE - Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| |
Collapse
|
7
|
Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Longepierre M, Rigal F, Levard C, Chaurand P, Grosser A, Grobelak A, Kacprzak M, Lors C, Richaume A, Vandenbulcke F. Medium-term effects of Ag supplied directly or via sewage sludge to an agricultural soil on Eisenia fetida earthworm and soil microbial communities. CHEMOSPHERE 2021; 269:128761. [PMID: 33168285 DOI: 10.1016/j.chemosphere.2020.128761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) in consumer products that release Ag throughout their life cycle has raised potential environmental concerns. AgNPs primarily accumulate in soil through the spreading of sewage sludge (SS). In this study, the effects of direct exposure to AgNPs or indirect exposure via SS contaminated with AgNPs on the earthworm Eisenia fetida and soil microbial communities were compared, through 3 scenarios offering increasing exposure concentrations. The effects of Ag speciation were analyzed by spiking SS with AgNPs or AgNO3 before application to soil. SS treatment strongly impacted Ag speciation due to the formation of Ag2S species that remained sulfided after mixing in the soil. The life traits and expression of lysenin, superoxide dismutase, cd-metallothionein genes in earthworms were not impacted by Ag after 5 weeks of exposure, but direct exposure to Ag without SS led to bioaccumulation of Ag, suggesting transfer in the food chain. Ag exposure led to a decrease in potential carbon respiration only when directly added to the soil. The addition of SS had a greater effect on soil microbial diversity than the form of Ag, and the formation of Ag sulfides in SS reduced the impact of AgNPs on E. fetida and soil microorganisms compared with direct addition.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France.
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, UMR IPREM 5254, Environmental Microbiology, 64000, Pau, France
| | - Eléonore Attard
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, UMR IPREM 5254, Environmental Microbiology, 64000, Pau, France
| | - Manon Longepierre
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, UMR IPREM 5254, Environmental Microbiology, 64000, Pau, France
| | - François Rigal
- Azorean Biodiversity Group, Centre for Ecology, Evolution and Environmental Changes (CE3C), Departamento de Ciencias Agráriase Engenharia Do Ambiente, Universidade Dos Açores, PT-9700-042, Angra Do Heroísmo, Açores, Portugal
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Anna Grosser
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Anna Grobelak
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Malgorzata Kacprzak
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Christine Lors
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Agnès Richaume
- LEM, Laboratoire D'Ecologie Microbienne, UMR 5557, 69622, Villeurbanne, France
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| |
Collapse
|
8
|
Navarro Pacheco NI, Roubalova R, Semerad J, Grasserova A, Benada O, Kofronova O, Cajthaml T, Dvorak J, Bilej M, Prochazkova P. In Vitro Interactions of TiO 2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. NANOMATERIALS 2021; 11:nano11010250. [PMID: 33477826 PMCID: PMC7832855 DOI: 10.3390/nano11010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Natividad Isabel Navarro Pacheco
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague 2, Czech Republic
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Jaroslav Semerad
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Alena Grasserova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Olga Kofronova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Jiri Dvorak
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Correspondence:
| |
Collapse
|
9
|
Jaskulak M, Rorat A, Kurianska-Piatek L, Hofman S, Bigaj J, Vandenbulcke F, Plytycz B. Species-specific Cd-detoxification mechanisms in lumbricid earthworms Eisenia andrei, Eisenia fetida and their hybrids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111425. [PMID: 33068978 DOI: 10.1016/j.ecoenv.2020.111425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Hermaphroditic lumbricid Eisenia sp. earthworms are ubiquitous and highly resistant to a variety of environmental stressors, including heavy metals. Among the progeny of laboratory mated inter-specific pairs of Eisenia fetida (Ea) and Eisenia andrei (Ef) there are fertile Ha hybrids derived from Ea ova fertilized by Ef spermatozoa and very rare sterile Hf hybrids from Ef ova fertilized by Ea spermatozoa. The aim of the first part of the experiment was to compare the life traits and whole body accumulation of cadmium in adult earthworms from genetically defined Ea, Ef and their hybrids (Ha) exposed for four weeks to commercial soil either unpolluted (control) or cadmium-spiked leading to moderate (M) or high (H) soil pollution (M = 425 and H = 835 mg kg-1 dry soil weight). Such exposure impaired cocoon production but not affected earthworm viability despite the massive Cd bioaccumulation in the whole earthworm bodies reaching at M and H groups 316-454, 203-338, 114-253, and 377-309 mg kg-1 dry body weights of Ea, Ef1, Ef2, and Ha, respectively, surprisingly reaching maximum accumulation quantities in hybrids. The second part of the experiment aimed to investigate cadmium-related defense mechanisms at transcriptomic level in coelomocytes non-invasively extruded from coelomic cavities of the new sets of Ea, Ef, Ha, and Hf earthworms exposed to Cd in microcosms for 0 days (control), 2 days, and 7 days (M = 425 mg kg-1). Expression level of stress-induced Cd-metallothionein (mt) and superoxide dismutase (sod) were gradually up-regulated, while the immune-connected lysenin (lys) was rapidly down-regulated; the expression of glutathione S-transferase (gst) and phytochelatin synthase (pcs) remained unaffected. Mt and sod gene up-regulation and lys gene down-regulation were especially pronounced in Ea-derived hybrids. In sum, capacity of cadmium bioaccumulation and detoxification mechanisms is more efficient in interspecific hybrids than in the pure Ea and Ef species.
Collapse
Affiliation(s)
- Marta Jaskulak
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France; Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | | | - Sebastian Hofman
- Department of Comparative Anatomy, and Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Janusz Bigaj
- Department of Comparative Anatomy, and Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Barbara Plytycz
- Department of Comparative Anatomy, and Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Courtois P, Rorat A, Lemiere S, Levard C, Chaurand P, Grobelak A, Lors C, Vandenbulcke F. Accumulation, speciation and localization of silver nanoparticles in the earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3756-3765. [PMID: 32270459 DOI: 10.1007/s11356-020-08548-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The use of silver nanoparticles (AgNPs) in agriculture and many consumer products has led to a significant release of Ag in the environment. Although Ag toxicity in terrestrial organisms has been studied extensively, very little is known about the accumulation capacity and coping mechanisms of organisms in Ag-contaminated soil. In this context, we exposed Eisenia fetida earthworms to artificial OECD soil spiked with a range of concentrations of Ag (AgNPs or AgNO3). The main aims were to (1) identify the location and form of accumulation of Ag in the exposed earthworms and (2) better understand the physiological mechanisms involved in Ag detoxification. The results showed that similar doses of AgNPs or AgNO3 did not have the same effect on E. fetida survival. The two forms of Ag added to soil exhibited substantial differences in speciation at the end of exposure, but the Ag speciation and content of Ag in earthworms were similar, suggesting that biotransformation of Ag occurred. Finally, 3D images of intact earthworms obtained by X-ray micro-computed tomography revealed that Ag accumulated preferentially in the chloragogen tissue, coelomocytes, and nephridial epithelium. Thus, E. fetida bioaccumulates Ag, but a regulation mechanism limits its impact in a very efficient manner. The location of Ag in the organism, the competition between Ag and Cu, and the speciation of internal Ag suggest a link between Ag and the thiol-rich proteins that are widely present in these tissues, most probably metallothioneins, which are key proteins in the sequestration and detoxification of metals.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Christine Lors
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France.
| |
Collapse
|
11
|
Audusseau H, Vandenbulcke F, Dume C, Deschins V, Pauwels M, Gigon A, Bagard M, Dupont L. Impacts of metallic trace elements on an earthworm community in an urban wasteland: Emphasis on the bioaccumulation and genetic characteristics in Lumbricus castaneus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137259. [PMID: 32105923 DOI: 10.1016/j.scitotenv.2020.137259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Metallic trace elements (MTEs) soil pollution has become a worldwide concern, particularly regarding its impact on earthworms. Earthworms, which constitute the dominant taxon of soil macrofauna in temperate regions and are crucial ecosystem engineers, are in direct contact with MTEs. The impacts of MTE exposure on earthworms, however, vary by species, with some able to cope with high levels of contamination. We combined different approaches to study the effects of MTEs at different levels of biological organisation of an earthworm community, in a contaminated urban wasteland. Our work is based on field collection of soil and earthworm samples, with a total of 891 adult earthworms from 8 species collected, over 87 quadrats across the study plot. We found that MTE concentrations are highly structured at the plot scale and that some elements, such as Pb, Zn, and Cu, are highly correlated. Comparing species assemblage to MTE concentrations, we found that the juvenile and adult abundances, and community composition, were significantly affected by pollution. Along the pollution gradient, as species richness decreased, Lumbricus castaneus became more dominant. We thus investigated the physiological response of this species to a set of specific elements (Pb, Zn, Cu, and Cd) and studied the impacts of MTE concentrations at the plot scale on its population genetic. These analyses revealed that L. castaneus is able to bioaccumulate high quantities of Cd and Zn, but not of Cu and Pb. The population genetic analysis, based on the genotyping of 175 individuals using 8 microsatellite markers, provided no evidence of the role of the heterogeneity in MTE concentrations as a barrier to gene flow. The multidisciplinary approach we used enabled us to reveal the comparatively high tolerance of L. castaneus to MTE concentrations, suggesting that this is a promising model to study the molecular bases of MTE tolerance.
Collapse
Affiliation(s)
- Hélène Audusseau
- Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRA, IRD, Institut d'écologie et des sciences de l'environnement de Paris, 94010 Créteil, France; Department of Zoology, Stockholm University, Stockholm, Sweden; UK Centre for Ecology & Hydrology Maclean Building, Benson Lane, Wallingford, Oxon OX10 8BB, UK.
| | - Franck Vandenbulcke
- Université de Lille, EA 4515-LGCgE - Laboratoire Génie Civil et géo-Environnement, Cité scientifique, SN3, F-59655 Villeneuve d'Ascq, France
| | - Cassandre Dume
- Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRA, IRD, Institut d'écologie et des sciences de l'environnement de Paris, 94010 Créteil, France; Université de Lille, EA 4515-LGCgE - Laboratoire Génie Civil et géo-Environnement, Cité scientifique, SN3, F-59655 Villeneuve d'Ascq, France
| | - Valentin Deschins
- Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRA, IRD, Institut d'écologie et des sciences de l'environnement de Paris, 94010 Créteil, France
| | - Maxime Pauwels
- Université de Lille, CNRS, UMR 8198 - Unité Evolution-Ecologie-Paléontologie, F-59000 Lille, France
| | - Agnès Gigon
- Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRA, IRD, Institut d'écologie et des sciences de l'environnement de Paris, 94010 Créteil, France
| | - Matthieu Bagard
- Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRA, IRD, Institut d'écologie et des sciences de l'environnement de Paris, 94010 Créteil, France
| | - Lise Dupont
- Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRA, IRD, Institut d'écologie et des sciences de l'environnement de Paris, 94010 Créteil, France
| |
Collapse
|
12
|
Mukhtorova D, Hlava J, Száková J, Kubík Š, Vrabec V, Tlustoš P. Risk element accumulation in Coleoptera and Hymenoptera (Formicidae) living in an extremely contaminated area-a preliminary study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:432. [PMID: 31190146 DOI: 10.1007/s10661-019-7584-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The risk element accumulation ability of two groups of epigeic species, insects from families Coleoptera and Hymenoptera (namely Formicidae), was determined and related to soil risk element content and bioaccessibility. The study was conducted in the district of Příbram, Czech Republic, which was characterised by extremely high aged pollution in the soils, including risk elements, especially As, Pb, Zn and Cd, due to the former mining and smelting activity. Four sampling sites differing in their pseudo-total risk element contents were selected and composite samples of individuals representing either Coleoptera or Formicidae were sampled at the individual sampling points. The results indicate the ability of Coleoptera and Formicidae organisms to accumulate risk elements, especially at the location with extremely high soil risk element content. In soil containing up to 841 mg As kg-1, 84.6 mg Cd kg-1, 4250 mg Pb kg-1 and 8542 mg Zn kg-1, contents in insect bodies reached 239 mg As kg-1 As, 24.2 mg Cd kg-1, 70.4 mg Pb kg-1 and 335 mg Zn kg-1 in beetles and up to 20.9 mg As kg-1, 29.9 mg Cd kg-1, 111 mg Pb kg-1 and 657 mg Zn kg-1 in ants. Therefore, bioaccumulation factors (BAFs) varied between 0.02 and 0.55. Increasing Cd content in Coleoptera bodies with increasing soil pseudo-total element content was observed only among the investigated elements. However, the results indicate increasing BAF values with decreasing soil element levels, especially for Cd, Pb and Zn, indicating limited uptake of elements by the organisms living in contact with extremely contaminated soil.
Collapse
Affiliation(s)
- Dilnora Mukhtorova
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Jakub Hlava
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic.
| | - Štěpán Kubík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Vladimír Vrabec
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| |
Collapse
|
13
|
Maity S, Banerjee R, Goswami P, Chakrabarti M, Mukherjee A. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil. CHEMOSPHERE 2018; 203:307-317. [PMID: 29626808 DOI: 10.1016/j.chemosphere.2018.03.189] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to assess the biomarkers of oxidative stress [reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), aldehyde dehydrogenase (ALDH) and lipid peroxidation (LPO)] in earthworms of different ecological categories [epigeic Eisenia fetida (E. fetida) and anecic Eutyphoeus waltoni (E. waltoni)] exposed to cadmium (Cd)-polluted soil (30, 60 and 120 mg kg-1) for 28 days. Cd accumulation in earthworms increased significantly with increasing exposure dose and duration. However, E. fetida showed a relatively higher level of Cd accumulation until day 21; thereafter, depletion in the Cd level was recorded for the highest exposure dose. In E. waltoni, the detoxification enzymes and GSH level increased significantly with increasing exposure dose and Cd accumulation for 14 days (acute phase). In contrast, in E. fetida, acute exposure to Cd increased detoxification enzymes with decrease in GSH levels. For both species, sub-chronic exposures (28 days) increased lipid peroxidation with decrease in detoxification enzymes. GPx and ALDH responses of Cd-exposed earthworms showed a similar trend. Thus, these enzymes can be used as general biomarkers in these two species. The consistent variations in GST, GPx and ALDH activities suggest that E. waltoni may be used as a bioindicator species; this further signifies the use of endemic earthworms as a bioindicator to assess the risk of soil contamination. The present investigation indicates that Cd accumulation and biomarker responses in earthworms depend on dose and duration of exposure and on the concerned species.
Collapse
Affiliation(s)
- Sulata Maity
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Ritesh Banerjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Priya Goswami
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Manoswini Chakrabarti
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
14
|
Ning Y, Liu L, Rong G, Cao X, Li J, Su Y, Zhou D. Study on the influential biochemical indices of Cd(II) on Eisenia fetida in oxidative stress by principal component analysis in the natural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4268-4278. [PMID: 29178017 DOI: 10.1007/s11356-017-0807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
With the aggravation of heavy metal pollution in soil, the individual heavy metal content monitoring cannot predict the true effects of harmful substances on the ecosystems. Thus, the effective biological evaluation system should be established to assess the pollution risk caused by heavy metal. Earthworms are widely distributed in the soil, and at the bottom of the food chain, the changes of biochemical indices play an important role in the early warning for heavy metal pollution. Principal component analysis (PCA) is a statistical method that derives several independent principal components from the original variable based on retaining the information as much as possible. This paper is aimed at finding out and analyzing the key monitoring factors related to Cd2+ on the earthworm Eisenia fetida in oxidative stress. The Cd2+ stress concentrations were set at 0, 1, 10, 20, 100, 200, 400, and 800 mg kg-1, and the post-clitellum segment of earthworm was chosen to determine TP, POD, SOD, GST, GPX, CAT, MDA, VE, and AChE. The results showed that the main bioindicators associated with oxidative stress reaction were GST, POD, and MDA at the exposure time of 10 days; at 20 days GPX, MDA, and AChE; at 30 days CAT, TP, and GPX; CAT, MDA, and SOD at 40th day. These results indicated that PCA can quickly, effectively, directly, and scientifically select biomarkers of oxidative stress induced by Cd and improve the accuracy and scientificity of earthworm as a biomarker in monitoring and early warning for heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liyan Liu
- Publicity and United Front Work Department, Northeast Agricultural University, Harbin, 150030, China
| | - Guohua Rong
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Cao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150030, China
| | - Jing Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ye Su
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Uwizeyimana H, Wang M, Chen W, Khan K. Ecotoxicological effects of binary mixtures of siduron and Cd on mRNA expression in the earthworm Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:657-665. [PMID: 28822934 DOI: 10.1016/j.scitotenv.2017.07.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the eco-toxicological responses of earthworm (Eisenia fetida) exposed to combined siduron (herbicide) and cadmium (Cd). Eisenia fetida gene expressions including metallothionein (MT) and heat shock protein70 (Hsp70) were analyzed using real-time Polymerase Chain Reaction after individual and combined siduron (0.90, 1.80, 3.60 and 7.20μgcm-2) and Cd (0.225, 0.45, 0.90 and 1.80μgcm-2) sublethal exposures. Where, the nature of the toxicological interactions between siduron and Cd in inducing or suppressing MT and Hsp70 expression was determined by applying the Combination index (CI)-isobologram model. The results revealed significant variations in MT and weak changes in Hsp70 expression when the earthworms were exposed to individual Cd. The individual siduron exposure exhibited a significant down-regulation (p<0.01) in MT during all treatments and in Hsp70 expression only at 7.20μgcm-2 concentration; while the mixtures of siduron and Cd exposures resulted a significant down regulation (p<0.05) in both MT and Hsp70 expressions. Moreover, the combined siduron and Cd exposure revealed nearly additive effect (CI=1) at the lower effect levels and significant synergistic effect (CI<1) at the higher effect levels for both MT and Hsp70 expression. The synergistic effects of combined siduron and Cd suggest that there might be a potential risk connected to the co-occurrence of these chemicals in the environment.
Collapse
Affiliation(s)
- Herman Uwizeyimana
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Meie Wang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Weiping Chen
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| |
Collapse
|
16
|
Wang Y, Han W, Wang X, Chen H, Zhu F, Wang X, Lei C. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. BIORESOURCE TECHNOLOGY 2017; 245:411-418. [PMID: 28898838 DOI: 10.1016/j.biortech.2017.08.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
This work was conducted to evaluate the total concentration and speciation of heavy metals (Cd, Pb and Cr) in vermicompost product (EFCD) by Eisenia fetida (EF) with cow dung (FCD). Meanwhile, the bacterial community and diversity of the three were compared by high-throughput sequencing. Results showed that heavy metal concentrations were declined significantly in EFCD. Sequential extraction indicated that the exchangeable fraction of Cd and Pb decreased markedly and the residual fractions increased in EFCD. Though the exchangeable fraction of Cr increased, the total concentration reduced greatly. Furthermore, the speciation of Cd, Pb and Cr bioaccumulated in EF were different. Besides, the bacterial diversity was highest in EFCD, and twelve genera with species having heavy metal resistance/tolerance were found from the genus of different abundance of the three. Vermicomposting effectively reduced the total concentration and toxicity for heavy metals, and the bacterial composition and diversity were changed greatly during vermicomposting.
Collapse
Affiliation(s)
- Yong Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Han
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Chen
- College of Civil Engineering, Hubei Engineering University, Xiaogan 432000, China
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Suleiman H, Rorat A, Grobelak A, Grosser A, Milczarek M, Płytycz B, Kacprzak M, Vandenbulcke F. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. BIORESOURCE TECHNOLOGY 2017; 241:103-112. [PMID: 28550771 DOI: 10.1016/j.biortech.2017.05.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the effectiveness of vermicomposting process applied on three different sewage sludge (precomposted with grass clippings, sawdust and municipal solid wastes) using three different earthworm species. Selected immune parameters, namely biomarkers of stress and metal body burdens, have been used to biomonitor the vermicomposting process and to assess the impact of contaminants on earthworm's physiology. Biotic and abiotic parameters were also used in order to monitor the process and the quality of the final product. Dendrobaena veneta exhibited much lower resistance in all experimental conditions, as the bodyweight and the total number of circulating immune cells decreased in the most contaminated conditions. All earthworm species accumulated heavy metals as follows Cd>Co>Cu>Zn>Ni>Pb>Cr: Eisenia sp. worms exhibited the highest ability to accumulate several heavy metals. Vermicompost obtained after 45days was acceptable according to agronomic parameters and to compost quality norms in France and Poland.
Collapse
Affiliation(s)
- Hanine Suleiman
- Université de Lille, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France
| | - Agnieszka Rorat
- Université de Lille, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France; Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland.
| | - Anna Grobelak
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Anna Grosser
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Marcin Milczarek
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Barbara Płytycz
- Institute of Zoology, Jagiellonian University, Cracow, Poland
| | - Małgorzata Kacprzak
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- Université de Lille, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France
| |
Collapse
|
18
|
Bourdineaud JP, Šrut M, Štambuk A, Tkalec M, Brèthes D, Malarić K, Klobučar GI.V. Electromagnetic fields at a mobile phone frequency (900 MHz) trigger the onset of general stress response along with DNA modifications in Eisenia fetida earthworms. Arh Hig Rada Toksikol 2017; 68:142-152. [DOI: 10.1515/aiht-2017-68-2928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/01/2017] [Indexed: 01/18/2023] Open
Abstract
Abstract
Eisenia fetida earthworms were exposed to electromagnetic field (EMF) at a mobile phone frequency (900 MHz) and at field levels ranging from 10 to 120 V m-1 for a period of two hours (corresponding to specific absorption rates ranging from 0.13 to 9.33 mW kg-1). Potential effects of longer exposure (four hours), field modulation, and a recovery period of 24 h after two hours of exposure were addressed at the field level of 23 V m-1. All exposure treatments induced significant DNA modifications as assessed by a quantitative random amplified polymorphic DNA-PCR. Even after 24 h of recovery following a two hour-exposure, the number of probe hybridisation sites displayed a significant two-fold decrease as compared to untreated control earthworms, implying a loss of hybridisation sites and a persistent genotoxic effect of EMF. Expression of genes involved in the response to general stress (HSP70 encoding the 70 kDa heat shock protein, and MEKK1 involved in signal transduction), oxidative stress (CAT, encoding catalase), and chemical and immune defence (LYS, encoding lysenin, and MYD, encoding a myeloid differentiation factor) were up-regulated after exposure to 10 and modulated 23 V m-1 field levels. Western blots showing an increased quantity of HSP70 and MTCO1 proteins confirmed this stress response. HSP70 and LYS genes were up-regulated after 24 h of recovery following a two hour-exposure, meaning that the effect of EMF exposure lasted for hours.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- Fundamental Microbiology and Pathogenicity Laboratory, European Institute of Chemistry and Biology, University of Bordeaux, CNRS, UMR 5234, 2, rue Robert Escarpit, 33607 Pessac , France
| | - Maja Šrut
- University of Bordeaux, Bordeaux, France, Department of Biology, Faculty of Science, University of Zagreb, Zagreb , Croatia
| | - Anamaria Štambuk
- University of Bordeaux, Bordeaux, France, Department of Biology, Faculty of Science, University of Zagreb, Zagreb , Croatia
| | - Mirta Tkalec
- University of Bordeaux, Bordeaux, France, Department of Biology, Faculty of Science, University of Zagreb, Zagreb , Croatia
| | - Daniel Brèthes
- Institute of Cell Biochemistry and Genetics, University of Zagreb, Zagreb , Croatia
| | - Krešimir Malarić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb , Croatia
| | - Göran I .V. Klobučar
- University of Bordeaux, Bordeaux, France, Department of Biology, Faculty of Science, University of Zagreb, Zagreb , Croatia
| |
Collapse
|
19
|
Beaumelle L, Hedde M, Vandenbulcke F, Lamy I. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:185-194. [PMID: 28284548 DOI: 10.1016/j.envpol.2017.01.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The genetic lineage of the individuals, assessed by DNA barcoding with cytochrome c oxidase subunit I, did not influence mt expression.
Collapse
Affiliation(s)
- Léa Beaumelle
- UMR ECOSYS, INRA, AgroParisTech, Université Paris Saclay, 78026, Versailles, France
| | - Mickaël Hedde
- UMR ECOSYS, INRA, AgroParisTech, Université Paris Saclay, 78026, Versailles, France
| | - Franck Vandenbulcke
- LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, Université de Lille, 59650 Villeneuve d'Ascq, France
| | - Isabelle Lamy
- UMR ECOSYS, INRA, AgroParisTech, Université Paris Saclay, 78026, Versailles, France.
| |
Collapse
|
20
|
Rorat A, Wloka D, Grobelak A, Grosser A, Sosnecka A, Milczarek M, Jelonek P, Vandenbulcke F, Kacprzak M. Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:347-353. [PMID: 27836561 DOI: 10.1016/j.jenvman.2016.10.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 05/28/2023]
Abstract
The main objective of this work was to study the dynamics of the degradation of polycyclic aromatic hydrocarbons (PAHs) during sewage sludge vermicomposting. This eco-biotechnology employing earthworms as natural bioreactors for decomposing of organic matter may be used for vermiremediation of particular pollutants present in various organic matter sources. In this experiment, sewage sludge was mixed with bulking agents and precomposted. Afterward, adult Eisenia andrei specimens were introduced into the process. Total heavy metal and PAHs concentration were measured in composts and earthworms before and after the process. While heavy metal concentrations fluctuated mildly in the substratum, several metals clearly accumulated in the earthworms' bodies. Body Accumulation Factors could be ranked as follows (Cd > Cu > Zn > Ni > Cr > Pb). Interestingly, addition of earthworms into the process has led to the high percentage of PAHs removal and some of the 16 priority PAHs analyzed in this study have been accumulated in earthworms' bodies. Applied conditions did not affect worms' viability but they almost completely inhibited their reproduction.
Collapse
Affiliation(s)
- Agnieszka Rorat
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland; Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France
| | - Dariusz Wloka
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Anna Grobelak
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland.
| | - Anna Grosser
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Aleksandra Sosnecka
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Marcin Milczarek
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Paulina Jelonek
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France
| | - Malgorzata Kacprzak
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| |
Collapse
|
21
|
Beaumelle L, Vile D, Lamy I, Vandenbulcke F, Gimbert F, Hedde M. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:961-972. [PMID: 27378153 DOI: 10.1016/j.scitotenv.2016.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach.
Collapse
Affiliation(s)
- Léa Beaumelle
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026 Versailles, France.
| | - Denis Vile
- INRA, Montpellier SupAgro, UMR 759 LEPSE, 34060 Montpellier, France
| | - Isabelle Lamy
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026 Versailles, France.
| | - Franck Vandenbulcke
- LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, Université de Lille, 59650 Villeneuve d'Ascq, France
| | - Frédéric Gimbert
- Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| | - Mickaël Hedde
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
22
|
Boughattas I, Hattab S, Boussetta H, Sappin-Didier V, Viarengo A, Banni M, Sforzini S. Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:530-541. [PMID: 27453356 DOI: 10.1016/j.envpol.2016.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Eisenia andrei earthworms were exposed for 7 and 14 days to six samples of soil taken from around an abandoned lead (Pb) mine and characterized by different levels of metal contamination (S6-S1, this latter being the most contaminated soil). The organisms were analyzed for metal bioaccumulation and for biological parameters as biomarkers of stress (lysosomal membrane stability; lipofuscin lysosomal content; lysosomal/cytoplasmic volume ratio) and genotoxicity (Micronucleus frequency). Chemical analysis showed the loads of Pb, Cd, Zn, and Cu in the worms following exposure. Among the stress biomarkers, lysosomal membrane stability was significantly affected in the coelomocytes of the earthworms exposed already 7 days to different contaminated soils. Organisms exposed for 14 days to S1 showed in the cells of the chloragogenous tissue, a particularly relevant increase in lipofuscin, a biomarker of oxidative stress, and an increase in the lysosome/cytoplasm volume ratio, indicating stressful condition at the tissue level. Moreover, in the same conditions, a decrease in total body weight was observed. At the longer exposure time, the coelomocytes of worms exposed to S1, S2, and S3 (soils with higher metal concentrations) showed a significant increase in micronuclei (MNi) frequency. Expressions of the P21 and topoisomerase genes, which are involved in DNA repair, showed significant up-regulation in the cells of worms exposed to S1, S2, S3, S4 and to a less extend S6. This may indicate that the worms were only able to successfully reduce the level of DNA damage in S4 and S5 if considering MN frequency data. The biomarker data was integrated by the Earthworm Expert System, allowing an objective interpretation of the complex biological data and clearly defining the areas in which the presence of chemicals is toxic for the edaphic organisms.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Sabrine Hattab
- Laboratory of Soil Sciences, Regional Center for Research in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Valérie Sappin-Didier
- UMR 1220 TCEM, INRA Bordeaux-Aquitaine, Av. E. Bourlaux, BP 81, 33883 Villenave d'Ornon, France
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy.
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
23
|
Nirola R, Megharaj M, Venkateswarlu K, Aryal R, Correll R, Naidu R. Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:264-272. [PMID: 27057994 DOI: 10.1016/j.ecoenv.2016.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
The leaf litters of tree species, Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec), predominantly growing at an abandoned copper (Cu) mine and mine soils including controls, were assessed for determining the metal toxicity and bioavailability using earthworm species Eisenia fetida, in a microcosm. Significant reduction in body weight as well as mortality were observed when the worms were introduced into mine soil or its combination with mine Ap litter. Virtually, there were no juveniles when the worms were fed on substratum that contained mine soil or mine leaf litter. The extent of bioaccumulation was dependent on water-soluble fraction of a metal in soil. The accumulation of cadmium, lead and copper in worm tissue was significantly more in treatments that received mine soil with or without mine leaf litter. However, the tissue concentration of zinc did not differ much in earthworms irrespective of its exposure to control or contaminated samples. Mine leaf litter from Ec, a known Cu hyperaccumulator, was more hospitable to earthworm survival and juvenile than that of Ap litter. Validation of the data on bioaccumulation of metals indicated that the mine leaf litter significantly contributed to metal bioavailability. However, it was primarily the metal concentration in mine soil that was responsible for earthworm toxicity and bioavailability. Our data also indicate that detrivores like earthworm is greatly responsible for heavy metal transfer from mines into the ecosystem.
Collapse
Affiliation(s)
- Ramkrishna Nirola
- Future Industries Institute, Division of Information Technology Engineering and the Environment, University of South Australia, SA 5095 Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Research (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Professor of Microbiology & Dean, Faculty of Life Sciences, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Rupak Aryal
- School of Natural and Built Environments, Division of Information Technology Engineering and the Environment, University of South Australia, SA 5095, Australia
| | - Ray Correll
- Future Industries Institute, Division of Information Technology Engineering and the Environment, University of South Australia, SA 5095 Australia
| | - Ravi Naidu
- Global Centre for Environmental Research (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW 2308, Australia
| |
Collapse
|
24
|
Bernard F, Dumez S, Brulle F, Lemière S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3136-51. [PMID: 26514569 DOI: 10.1007/s11356-015-5636-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/18/2015] [Indexed: 05/04/2023]
Abstract
This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.
Collapse
Affiliation(s)
- F Bernard
- Université de Lille, F-59000, Lille, France
- Laboratoire de Génie Civil et géo-Environnement EA4515, Université Lille Nord de France-Lille 1, F-59655, Villeneuve d'Ascq, France
- Laboratoire des Sciences Végétales et Fongiques, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Lille, EA4483, 59006, Lille Cedex, France
| | - S Dumez
- Université de Lille, F-59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Lille, EA4483, 59006, Lille Cedex, France
| | - F Brulle
- Université de Lille, F-59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Lille, EA4483, 59006, Lille Cedex, France
| | - S Lemière
- Université de Lille, F-59000, Lille, France
- Laboratoire de Génie Civil et géo-Environnement EA4515, Université Lille Nord de France-Lille 1, F-59655, Villeneuve d'Ascq, France
| | - A Platel
- Université de Lille, F-59000, Lille, France
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, EA 4483, 59800, Lille, France
| | - F Nesslany
- Université de Lille, F-59000, Lille, France
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, EA 4483, 59800, Lille, France
| | - D Cuny
- Université de Lille, F-59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Lille, EA4483, 59006, Lille Cedex, France
| | - A Deram
- Université de Lille, F-59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Lille, EA4483, 59006, Lille Cedex, France
- Faculté de Management de la Santé (ILIS), Université de Lille, EA4483, F-59120, Loos, France
| | - F Vandenbulcke
- Université de Lille, F-59000, Lille, France.
- Laboratoire de Génie Civil et géo-Environnement EA4515, Université Lille Nord de France-Lille 1, F-59655, Villeneuve d'Ascq, France.
| |
Collapse
|
25
|
Rorat A, Suleiman H, Grobelak A, Grosser A, Kacprzak M, Płytycz B, Vandenbulcke F. Interactions between sewage sludge-amended soil and earthworms--comparison between Eisenia fetida and Eisenia andrei composting species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3026-35. [PMID: 26517992 DOI: 10.1007/s11356-015-5635-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/18/2015] [Indexed: 05/23/2023]
Abstract
Vermicomposting is an eco-friendly technology, where earthworms are introduced in the waste, inter alia sewage sludge, to cooperate with microorganisms and enhance decomposition of organic matter. The main aims of the present study was to determine the influence of two different earthworm species, Eisenia fetida and Eisenia andrei, on the changes of selected metallic trace elements content in substratum during vermicomposting process using three different sewage sludge mainly differentiated by their metal contents. Final vermicompost has shown a slight reduction in Cd, Cu, Ni, and Pb, while the Zn concentration tends to increase. Accumulation of particular heavy metals in earthworms' bodies was assessed. Both species revealed high tendency to accumulate Cd and Zn, but not Cu, Ni, and Pb, but E. andrei has higher capabilities to accumulate some metals. Riboflavin content, which content varies depending on metal pollution in several earthworms species, was measured supravitaly in extruded coelomocytes. Riboflavin content decreased slightly during the first 6 weeks of exposure and subsequently restored till the end of the 9-week experiment. Selected agronomic parameters have also been measured in the final product (vermicompost) to assess the influence of earthworms on substratum.
Collapse
Affiliation(s)
- Agnieszka Rorat
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland.
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650, Villeneuve d'Ascq, France.
| | - Hanine Suleiman
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650, Villeneuve d'Ascq, France
| | - Anna Grobelak
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland
| | - Anna Grosser
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland
| | - Małgorzata Kacprzak
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland
| | - Barbara Płytycz
- Institute of Zoology, Jagiellonian University, Cracow, Poland
| | - Franck Vandenbulcke
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650, Villeneuve d'Ascq, France
| |
Collapse
|
26
|
Beaumelle L, Gimbert F, Hedde M, Guérin A, Lamy I. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:136-45. [PMID: 25813966 DOI: 10.1016/j.scitotenv.2015.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 05/24/2023]
Abstract
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm.
Collapse
Affiliation(s)
| | - Frédéric Gimbert
- Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| | | | - Annie Guérin
- INRA, US 0010 LAS Laboratoire d'analyses des sols, 273 rue de Cambrai, 62000 Arras, France
| | - Isabelle Lamy
- INRA, UR 251 PESSAC, 78026 Versailles Cedex, France.
| |
Collapse
|
27
|
Homa J, Rorat A, Kruk J, Cocquerelle C, Plytycz B, Vandenbulcke F. Dermal exposure of Eisenia andrei earthworms: Effects of heavy metals on metallothionein and phytochelatin synthase gene expressions in coelomocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1397-1404. [PMID: 25693738 DOI: 10.1002/etc.2944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/01/2014] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Parameters such as total number of coelomocytes, riboflavin content in coelomocytes, expression of genes implied in metal homeostasis, and detoxification mechanisms can be used as biomarkers to assess the impact of metals on annelids. Defense biomarkers (detoxification gene expressions and coelomocyte parameters) were investigated in the ecotoxicologically important species Eisenia andrei following in vivo exposure to 5 different metals (zinc, copper, nickel, lead, and cadmium) at known concentrations. Coelomocyte numbers and riboflavin content were not affected by metallic exposure, but metal-specific gene expression variations were evidenced.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Rorat
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
- Environmental Axis, Lille 1 University, Villeneuve d'Ascq, France
| | - Jerzy Kruk
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Barbara Plytycz
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
28
|
Bundy JG, Kille P. Metabolites and metals in Metazoa--what role do phytochelatins play in animals? Metallomics 2015; 6:1576-82. [PMID: 24926533 DOI: 10.1039/c4mt00078a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochelatins are sulfur-rich metal-binding peptides, and phytochelatin synthesis is one of the key mechanisms by which plants protect themselves against toxic soft metal ions such as cadmium. It has been known for a while now that some invertebrates also possess functional phytochelatin synthase (PCS) enzymes, and that at least one species, the nematode Caenorhabditis elegans, produces phytochelatins to help detoxify cadmium, and probably also other metal and metalloid ions including arsenic, zinc, selenium, silver, and copper. Here, we review recent studies on the occurrence, utilization, and regulation of phytochelatin synthesis in invertebrates. The phytochelatin synthase gene has a wide phylogenetic distribution, and can be found in species that cover almost all of the animal tree of life. The evidence to date, though, suggests that the occurrence is patchy, and even though some members of particular taxonomic groups may contain PCS genes, there are also many species without these genes. For animal species that do possess PCS genes, some of them (e.g. earthworms) do synthesize phytochelatins in response to potentially toxic elements, whereas others (e.g. Schistosoma mansoni, a parasitic helminth) do not appear to do so. Just how (and if) phytochelatins in invertebrates complement the function of metallothioneins remains to be elucidated, and the temporal, spatial, and metal specificity of the two systems is still unknown.
Collapse
Affiliation(s)
- J G Bundy
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | | |
Collapse
|
29
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
30
|
Tête N, Afonso E, Crini N, Drouhot S, Prudent AS, Scheifler R. Hair as a noninvasive tool for risk assessment: do the concentrations of cadmium and lead in the hair of wood mice (Apodemus sylvaticus) reflect internal concentrations? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:233-241. [PMID: 25090089 DOI: 10.1016/j.ecoenv.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/06/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
There is an increasing need for developing noninvasive markers of accumulation when studying the transfer of pollutants in wildlife, in response to problems caused by sacrifice of animals (disturbed population dynamics, respect of ethical protocols). Thus, the aim of this work was to determine whether trace metal (TM) concentrations in hair could be used as an accurate noninvasive estimator of internal and environmental concentrations. For that purpose, on a 40km² site surrounding an ancient smelter, 321 wood mice (Apodemus sylvaticus) were sampled on seven squares (500×500m) and 4 squares in fall 2010 and spring 2011, respectively. The relationships between the cadmium (Cd) and lead (Pb) concentrations in hair and those in the liver, kidneys, and soils were described. The results indicated that hair concentration was a relatively good predictor of Pb concentrations in organs (p<0.001, 0.46<R²<0.53). In contrast, Cd concentrations in organs were only weakly predicted by hair concentrations in session 2010 (p<0.001, R²=0.10 for both organs), and no significant relationship was found in session 2011 (p=0.252 for liver and p=0.971 for kidneys). The Cd and Pb concentrations in the soil and in hair were not linearly related, but concentrations in hair increased with soil concentrations (Spearman's rank correlations). Linear relationships between internal and hair concentrations differed significantly between the sampling sessions, especially for Cd. When they were included in models analyzing the relationships between TM concentrations in organs and in hair, individual characteristics (gender and body mass as a non-lethal estimation of relative age) increased the explained variability of Cd in organs but not of Pb. In conclusion, hair should be used cautiously to predict internal Cd concentrations but can be considered as an accurate noninvasive estimator of internal Pb concentrations. Further studies should be performed to develop, generalize, and apply this useful possible tool for risk assessment in ecotoxicology.
Collapse
Affiliation(s)
- Nicolas Tête
- Chrono-Environnement, UMR 6249, University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France.
| | - Eve Afonso
- Chrono-Environnement, UMR 6249, University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| | - Nadia Crini
- Chrono-Environnement, UMR 6249, University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| | - Séverine Drouhot
- Chrono-Environnement, UMR 6249, University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| | - Anne-Sophie Prudent
- Chrono-Environnement, UMR 6249, University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| | - Renaud Scheifler
- Chrono-Environnement, UMR 6249, University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
31
|
Beaumelle L, Lamy I, Cheviron N, Hedde M. Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:182-189. [PMID: 24852409 DOI: 10.1016/j.envpol.2014.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/19/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Generic biomarkers are needed to assess environmental risks in metal polluted soils. We assessed the strength of the relationship between earthworm energy reserves and metal availability under conditions of cocktail of metals at low doses and large range of soil parameters. Aporrectodea caliginosa was exposed in laboratory to a panel of soils differing in Cd, Pb and Zn total and available (CaCl2 and EDTA-extractable) concentrations, and in soil texture, pH, CEC and organic-C. Glycogen, protein and lipid contents were recorded in exposed worms. Glycogen contents were not linked to the explaining variables considered. Variable selection identified CaCl2 extractable metals concentrations and soil texture as the main factors affecting protein and lipid contents. The results showed opposite effects of Pb and Zn, high inter-individual variability of biomarkers and weak relationships with easily extractable metals. Our results support the lack of genericity of energy reserves in earthworms exposed to field-contaminated soils.
Collapse
Affiliation(s)
| | | | | | - Mickaël Hedde
- INRA, UR 251 PESSAC, 78026 Versailles Cedex, France.
| |
Collapse
|
32
|
Franchi N, Piccinni E, Ferro D, Basso G, Spolaore B, Santovito G, Ballarin L. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:47-56. [PMID: 24727215 DOI: 10.1016/j.aquatox.2014.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 05/22/2023]
Abstract
The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy; Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo, Italy
| | - Ester Piccinni
- Department of Biology, University of Padova, Padova, Italy
| | - Diana Ferro
- Department of Biology, University of Padova, Padova, Italy; Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster, Germany
| | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
33
|
Tête N, Durfort M, Rieffel D, Scheifler R, Sánchez-Chardi A. Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:167-177. [PMID: 24594745 DOI: 10.1016/j.scitotenv.2014.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
The ceasing of industrial activities often reduces the emission of pollutants but also often leaves disturbed areas without remediation and with persistent pollutants that can still be transferred along the food chain. This study examines the potential relationships between non-essential trace metals and histopathology in target tissues of wood mice (Apodemus sylvaticus) collected along a gradient of contamination around the former smelter, Metaleurop Nord (northern France). Cadmium and lead concentrations were measured, and histological alterations attributable to chronic trace metal exposure were assessed in the liver and the kidneys of 78 individuals. Metal concentrations quantified in the present study were among the highest observed for this species. Some histological alterations significantly increased with Cd or Pb concentrations in the soil and in the organs. Sixteen mice from polluted sites were considered at risk for metal-induced stress because their Cd and/or Pb tissue concentrations exceeded the LOAELs for single exposure to these elements. These mice also exhibited a higher severity of histological alterations in their organs than individuals with lower metal burdens. These results indicate that the Metaleurop smelter, despite its closure in 2003, still represents a threat to the local ecosystem because of the high levels and high bioavailability of Cd and Pb in the soil. However, among the mice not considered at risk for metal-induced stress based on the metal levels in their tissues, a large percentage of individuals still exhibited histological alterations. Thus, the present study suggests that the evaluation of toxic effects based only on the LOAELs for single metal exposure may result in the underestimation of the real risks when specimens are exposed to multiple stressors.
Collapse
Affiliation(s)
- Nicolas Tête
- Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Mercè Durfort
- Departament de Biologia Cellular, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal-643, E-08028 Barcelona, Spain
| | - Dominique Rieffel
- Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Renaud Scheifler
- Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Alejandro Sánchez-Chardi
- Servei de Microscopia, Facultat de Ciencies, Ed. C, Universitat Autonoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain; Departament de Biologia Animal, Facultat de Biologia, Universitat Barcelona, Av. Diagonal-643, E-08028 Barcelona, Spain
| |
Collapse
|
34
|
Irizar A, Izagirre U, Diaz de Cerio O, Marigómez I, Soto M. Zonation in the digestive tract of Eisenia fetida: implications in biomarker measurements for toxicity assessment. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:42-53. [PMID: 24291736 DOI: 10.1016/j.cbpc.2013.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022]
Abstract
Eisenia fetida is a model species for soil health assessment and different biomarkers that detect either the presence of bioavailable contaminants or their biological effect have been developed. These parameters are performed in a target tissue or whole earthworm, without considering the marked zonation in histological organisation, enzyme activities and gene expression pattern existing along the body. Thus, the present work was aimed at (a) characterising the morphofunctional heterogeneity along the digestive tract of E. fetida in tissue morphology and turnover, lysosomal enzyme markers (β-glucuronidase, β-GUS; hexosaminidase, HEX), lipofuscin contents (LPF) and metallothionein (MT) and catalase (CAT) gene expression; and (b) determining whether the responsiveness to Cd exposure varies among tissues and along the digestive tract. HEX and β-GUS exhibited a heterogeneous distribution pattern along and across the digestive tract and Cd exposure caused a marked decrease of HEX and an increase of β-GUS activity. Likewise, the significant decrease of cell turnover and the induction of MT transcription were was zone-dependent. Therefore, in was concluded that the consideration of the zonation when applying biomarker for toxicity assessment would reduce the intrinsic variability that results from overlooking the marked morphofunctional heterogeneity that exists in annelids along their body axis.
Collapse
Affiliation(s)
- A Irizar
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. Box 644, E-48080 Bilbo, Basque Country, Spain
| | - U Izagirre
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. Box 644, E-48080 Bilbo, Basque Country, Spain
| | - O Diaz de Cerio
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. Box 644, E-48080 Bilbo, Basque Country, Spain
| | - I Marigómez
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. Box 644, E-48080 Bilbo, Basque Country, Spain
| | - M Soto
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. Box 644, E-48080 Bilbo, Basque Country, Spain.
| |
Collapse
|
35
|
Xiong W, Ding X, Zhang Y, Sun Y. Ecotoxicological effects of a veterinary food additive, copper sulphate, on antioxidant enzymes and mRNA expression in earthworms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:134-140. [PMID: 24322621 DOI: 10.1016/j.etap.2013.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
The present study was aimed to investigate the effect of the veterinary food additive copper sulphate (CuSO₄) on the eco-toxicological responses of earthworms Eisenia fetida (E. fetida). The following biomarkers were measured: catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities. Gene expression analyses such as metallothionein (MT) and heat shock protein 70 (Hsp70) were also examined. A time-dependent increase of CAT activity was found at 400 mg/kg and SOD activity at 200 and 400 mg/kg. The highest expression of Hsp70 (4.4-fold) was observed at day 15 at 400 mg/kg. Our results indicated that the measured antioxidant enzymes (except GST) had the ability to provide antioxidant defenses against the stressor; and compared to expression of MT, expression of Hsp70 could be more reliable molecular tools with predictive possibilities to monitor the eco-toxicity of stressors such as feed additive CuSO₄.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, People's Republic of China
| | - Xueyao Ding
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yiming Zhang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
36
|
Liebeke M, Garcia-Perez I, Anderson CJ, Lawlor AJ, Bennett MH, Morris CA, Kille P, Svendsen C, Spurgeon DJ, Bundy JG. Earthworms produce phytochelatins in response to arsenic. PLoS One 2013; 8:e81271. [PMID: 24278409 PMCID: PMC3838358 DOI: 10.1371/journal.pone.0081271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022] Open
Abstract
Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.
Collapse
Affiliation(s)
- Manuel Liebeke
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Isabel Garcia-Perez
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Craig J. Anderson
- Centre for Ecology and Hydrology, Wallingford, United Kingdom
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Alan J. Lawlor
- Centre for Ecology and Hydrology, Lancaster, United Kingdom
| | - Mark H. Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ceri A. Morris
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Peter Kille
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | | | - Jacob G. Bundy
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Lourenço J, Pereira R, Gonçalves F, Mendo S. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:16-25. [PMID: 23164450 DOI: 10.1016/j.ecoenv.2012.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 06/01/2023]
Abstract
The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers.
Collapse
Affiliation(s)
- Joana Lourenço
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
38
|
Lourenço J, Pereira R, Gonçalves F, Mendo S. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:673-680. [PMID: 23220759 DOI: 10.1016/j.scitotenv.2012.10.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause-effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas.
Collapse
Affiliation(s)
- Joana Lourenço
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
39
|
Manier N, Brulle F, Le Curieux F, Vandenbulcke F, Deram A. Biomarker measurements in Trifolium repens and Eisenia fetida to assess the toxicity of soil contaminated with landfill leachate: a microcosm study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:339-348. [PMID: 22520451 DOI: 10.1016/j.ecoenv.2012.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/29/2012] [Accepted: 04/01/2012] [Indexed: 05/31/2023]
Abstract
To assess the toxicity of a soil contaminated with landfill leachate, biomarker measurements in two species living in close contact with the soil, i.e. a plant species Trifolium repens and an animal species Eisenia fetida, were conducted. Briefly, both species were studied after simultaneous exposure conducted in microcosms. The organisms were exposed to soil supplemented with pure leachate, leachate diluted to 50%; leachate diluted to 25% and without leachate. After a 10 weeks exposure period, we observed an increase in the Olive Trail Moment in T. repens, compared to the reference, for 50% and pure leachate. The response observed appears to be dose-dependent and linear in our experimental conditions. Addition of the leachate to the reference soil induced an increase in Cd-Metallothionein-coding mRNA quantity in E. fetida. In addition, expression level of another gene implied in detoxification and coding Phytochelatin synthase was significantly induced in worms exposed to the reference soil spiked with the leachate, regardless presence of T. repens. Thus, T. repens and E. fetida can be used in a complementary manner to assess soil quality. Sensitivities of the test species yield sensitive bioassays as both species responded at low doses despite the buffering effect of the soil.
Collapse
Affiliation(s)
- N Manier
- INERIS, Parc Technologique ALATA, BP 2, 60550 Verneuil en Halatte, France
| | | | | | | | | |
Collapse
|
40
|
Rizwan-ul-Haq M, Zhenling Z, Yongxue S, Wenguang X. Evaluation of glutathione s-transferase as toxicity indicator for roxarsone and arsanilic acid in Eisenia fetida. J Appl Toxicol 2012; 32:731-8. [PMID: 22407816 DOI: 10.1002/jat.2726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022]
Abstract
Different compounds can induce stress response by targeting specific genes. Studies related to elucidating the detoxification and adaptive responses of proteins like glutathione-s-transferase (GST) can be helpful in better understanding toxicity. Roxarsone and arsanilic acid, which have been exhaustively used as animal and poultry feed additives, pose a threat to the environment and human health. GST enzyme bioassay revealed fluctuations in response to different concentrations of roxarsone and arsanilic acid at different time intervals. The highest GST enzyme activity (40.51%) was observed on day 15 of treatment with roxarsone. On the other hand, arsanilic acid caused the maximum enzyme activity (52.11%) on day 10 of treatment. During this study, the full-length gene sequence of GST, having the size 984 bp (Genbankno. HQ693699), was achieved from Eisenia fetida and established as a biomarker to assess the toxicity of roxarsone and arsanilic acid. The deduced protein has a computed molecular mass of 23.56 kDa and a predicted isoelectric point of 9.92. Quantitative real-time PCR revealed significant differential gene expression in response to roxarsone and arsanilic acid treatment as compared with control treatment. Roxarsone caused the highest gene expression of 7.0-fold increase over control on day 15 of treatment, whereas arsanilic acid resulted in the highest gene expression reaching to 14.56-fold as compared with control. This study is helpful in understanding the role of GST as a potential biomarker for chemicals like roxarsone and arsanilic acid, which can pollute the food chain.
Collapse
Affiliation(s)
- Muhammad Rizwan-ul-Haq
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | | | | | | |
Collapse
|
41
|
Xiong W, Bai L, Muhammad RUH, Zou M, Sun Y. Molecular cloning, characterization of copper/zinc superoxide dismutase and expression analysis of stress-responsive genes from Eisenia fetida against dietary zinc oxide. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:416-22. [PMID: 22137962 DOI: 10.1016/j.cbpc.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 01/24/2023]
Abstract
The full length cDNA of copper/zinc superoxide dismutase (Cu/Zn-SOD) from Eisenia fetida (E. fetida) was cloned (GenBank accession no. JN579648). Sequence characterization revealed that the cDNA contained characteristic Cu/Zn-SOD family signatures ((45)GFHVHEFGDNT(55) and (138)GNAGGRLACGVI(149)), cysteines (Cys-58 and-146) predicted to form one disulphide bond, Cu-binding (His-47, -49, -64 and -120) and Zn-binding (His-64, -72, -81 and Asp-84). They were essential for the structure and function of Cu/Zn-SOD. Differential expression of stress-responsive genes like Cu/Zn-SOD, catalase (CAT), heat shock protein 70 (Hsp70) and metallothionein (MT) was applied as potential biomarkers to assess their efficacy for the ecotoxicological effects of dietary zinc oxide (ZnO) on E. fetida. The results showed that the expression of Cu/Zn-SOD and MT increased to reach the highest levels of 6.22 and 7.68 fold in a dose-dependent manner at day 10 respectively. The highest expression of 3.03 fold of CAT was registered at day 10. The transient expression of Hsp70 without consistent time- or/and dose-dependent was observed. It implied that the transcriptional patterns of Cu/Zn-SOD, CAT and MT could serve as early warning signals in ecotoxicological assessment of dietary ZnO on earthworms while the expression of Hsp70 was not well done, which is helpful to monitoring and regulation of ZnO in veterinary application.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, PR China.
| | | | | | | | | |
Collapse
|
42
|
Mo X, Qiao Y, Sun Z, Sun X, Li Y. Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening. J Environ Sci (China) 2012; 24:1504-1510. [PMID: 23513694 DOI: 10.1016/s1001-0742(11)60957-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Earthworms (Eisenia fetida) were used to study the impact of low-dose cadmium in treated artificial soil (0, 0.6, 3, 6, 15, 30 mg/kg) and contaminated natural soil (1.46 mg/kg). The changes of earthworms' physiological related gene expressions of metallothionein (MT), annetocin, calreticulin and antimicrobial peptides were detected using real-time PCR after a 70-day incubation period. The results showed that low doses of cadmium could up regulate earthworms' MT and down regulate annetocin gene expression and show a significant positive and negative correlation respectively. The expression of two other genes, calreticulin and anti-microbial peptides, was induced at low doses of cadmium (highest gene expression at 0.6 mg/kg for calreticulin and 6 mg/kg for anti-microbial peptides) and inhibited at high doses. No significant correlation was found for these two genes. This study shows that MT and annetocin genes expression found in earthworms in contaminated soil have the potential to be developed as biomarkers of soil cadmium pollution.
Collapse
Affiliation(s)
- Xiaohui Mo
- Department of Ecology Science and Engineering, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
43
|
Brulle F, Lemière S, Waterlot C, Douay F, Vandenbulcke F. Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: a microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5470-5482. [PMID: 21937088 DOI: 10.1016/j.scitotenv.2011.08.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
Past activities of 2 smelters (Metaleurop Nord and Nyrstar) led to the accumulation of high amounts of Metal Trace Elements (TEs) in top soils of the Noyelles-Godault/Auby area, Northern France. Earthworms were exposed to polluted soils collected in this area to study and better understand the physiological changes, the mechanisms of acclimation, and detoxification resulting from TE exposure. Previously we have cloned and transcriptionally characterized potential biomarkers from immune cells of the ecotoxicologically important earthworm species Eisenia fetida exposed in vivo to TE-spiked standard soils. In the present study, analysis of expression kinetics of four candidate indicator genes (Cadmium-metallothionein, coactosin like protein, phytochelatin synthase and lysenin) was performed in E. fetida after microcosm exposures to natural soils exhibiting an environmental cadmium (Cd) gradient in a kinetic manner. TE body burdens were also measured. This microcosm study provided insights into: (1) the ability of the 4 tested genes to serve as expression biomarkers, (2) detoxification processes through the expression analysis of selected genes, and (3) influence of land uses on the response of potential biomarkers (gene expression or TE uptake).
Collapse
Affiliation(s)
- Franck Brulle
- University Lille Nord de France, F-59000 Lille, France
| | | | | | | | | |
Collapse
|
44
|
Plytycz B, Cygal M, Lis-Molenda U, Klimek M, Mazur AI, Duchnowski M, Morgan AJ. Characteristics of immune-competent amoebocytes non-invasively retrieved from populations of the sentinel earthworm Lumbricus rubellus (Annelida; Oligochaeta; Lumbricidae) inhabiting metal polluted field soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:719-726. [PMID: 21040972 DOI: 10.1016/j.ecoenv.2010.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
Lumbricus rubellus is a cosmopolitan earthworm devoid of riboflavin-storing eleocytes; its immune competent coelomocytes are predominantly amoebocytes. Our aim was to determine whether amoebocyte cytometrics in L. rubellus are robust biomarkers for innate immunological responses to environmental pollutants. Investigations were conducted on populations inhabiting three unpolluted and five metalliferous (mainly Pb+Zn+Cd) habitats in the UK and Poland. Inter-population differences in worm mass and amoebocyte numbers did not consistently reflect soil or tissue metal concentrations. Flow cytometry indicated that autofluorescence of the amoebocytes differs between cells from the unpolluted and metal-polluted worms, and pinocytosis of neutral red by amoebocytes was lower (especially at 15 versus 60 min incubation) in worms from the polluted Poland site compared with the reference population. To conclude, amoebocyte cytometrics and functionality are potentially useful for environmental diagnostics; deployment is contingent on better understanding potential confounders.
Collapse
Affiliation(s)
- Barbara Plytycz
- Institute of Zoology, Jagiellonian University, Ingardena 6, PL 30-060, Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Homa J, Klimek M, Kruk J, Cocquerelle C, Vandenbulcke F, Plytycz B. Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1937-1943. [PMID: 20696476 DOI: 10.1016/j.ecoenv.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/24/2010] [Accepted: 07/03/2010] [Indexed: 05/29/2023]
Abstract
Metal pollution affects earthworm coelomocytes, including their differential counts, riboflavin content and metallothioneins (MT) involved in metal homoeostasis and detoxification. The present work shows effects of Ni, Cu, Zn, Cd, and Pb at the same molarity (1mM) on coelomocytes of Allolobophora chlorotica after 2-day worm dermal exposure to metal chlorides. Numbers of coelomocytes/eleocytes extruded by electric shock and amounts of riboflavin in coelomocyte lysates were significantly decreased in Cu-exposed worms, less diminished in response to Ni, Zn, Cd, and unaffected by Pb. In sharp contrast, real-time PCR revealed a very strong (272 fold) MT-mRNA induction in response to Cd only. The induction was very low in response to Zn, Cu, Pb, and Ni ions (2.6, 2.1, 1.4, and 1.3-fold, respectively). In conclusion, decreased cell counts and riboflavin content are molecular biomarkers of Cu exposure while induction of MT-mRNA is a molecular biomarker of worm Cd exposure.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Krakow, Poland
| | | | | | | | | | | |
Collapse
|