1
|
Mattoli L, Fodaroni G, Proietti G, Flamini E, Paoli B, Massa L, Ferrara GC, Giovagnoni E, Gianni M. Biodegradability of dietary supplements: Advanced analytical methods to study the environmental fate of artificial sweeteners and dyes. J Pharm Biomed Anal 2025; 255:116575. [PMID: 39644680 DOI: 10.1016/j.jpba.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Artificial sweeteners (ASs) and dyes are widely used in foods, beverages and pharmaceutical and are recognized as emerging environmental contaminants due to their persistence and widespread occurrence. These substances often pass through the human body unchanged and resist wastewater treatment processes, leading to continuous introduction into aquatic environments and potential long-lasting term environmental effects. This study investigated, for the first time, the biodegradability of nine commercial dietary supplements, both natural and those containing ASs and synthetic dyes, using the Organisation for Economic Cooperation and Development (OECD) 301 F ready biodegradation test (RBT), which is a respirometry-manometric method. While the products showed good biodegradability, those containing ASs and dyes were further studied to determine their fate at the end of the RBT. The study involved developing and validating a chromatographic method to quantitatively determine the presence of Acesulfame K (1), Sucralose (2), Tartrazine (3) and Carmoisine (4) in the RBT mineral medium, using ultra-high performance liquid chromatography (UHPLC) coupled with two detectors: a high-resolution mass-spectrometer with quadrupole time-of-flight (qToF) and a UV-Vis diode array detector (DAD). Results indicated that these additives were not readily biodegraded, highlighting a potential significant environmental concern. This issue extends beyond dietary supplements to all Pharmaceutical and Personal Care Products (PPCP) including drugs and medical devices. The findings underscore the importance of raising cultural awareness about the environmental impact of persistent substances, encouraging the healthcare chain and patients to make informed choices. From a One Health perspective, reducing environmental contamination can lead to positive outcomes for human health.
Collapse
Affiliation(s)
- Luisa Mattoli
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy.
| | - Giada Fodaroni
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Giacomo Proietti
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Enrico Flamini
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Bernardino Paoli
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Luca Massa
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | | | - Emiliano Giovagnoni
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| |
Collapse
|
2
|
Chamley A, Baley C, Matabos M, Vannier P, Sarradin PM, Freyermouth F, Davies P. Polymer material biodegradation in the deep sea. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177637. [PMID: 39579889 DOI: 10.1016/j.scitotenv.2024.177637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The phenomenon of marine plastic pollution is now well-established, with documented impacts on marine biodiversity and biogeochemical cycles. In order to mitigate this environmental impact, a significant amount of research has been conducted in recent years with the objective of developing biodegradable alternatives to conventional polymers and their composites in marine environments. The findings of this research significantly enhanced our understanding of biodegradation mechanisms and identified promising candidates. However, the majority of these studies have been conducted in coastal marine environments, which represent a minor component of the marine ecosystem. Recent models on the transport of plastic debris in the oceans indicate that deep-sea environments are likely to be the ultimate sink for a significant proportion of plastics entering the oceans. The aim of this review is to provide an overview of the processes of biodegradation of polymers in these deep-sea environments. The diversity and specific characteristics of these environments with respect to degradation mechanisms are discussed. While the majority of deep-sea conditions are not conducive to biodegradation, studies on organic falls (wood and whale carcasses) and a few investigations into materials previously shown to be biodegradable in coastal marine environments demonstrate mechanisms that are similar to those observed in shallow waters. Nevertheless, further research is necessary to reach definitive conclusions. It is essential to extend these studies to a broader range of deep-sea environments. Additionally, new methodologies that integrate microbiology and polymer science are required to accurately assess the process of assimilation of these materials in these environments.
Collapse
Affiliation(s)
- Alexandre Chamley
- Université Bretagne-Sud, IRDL, CNRS UMR 6027, BP 92116, Lorient Cedex 56321, France; Thales DMS, Brest, France; Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France.
| | - Christophe Baley
- Université Bretagne-Sud, IRDL, CNRS UMR 6027, BP 92116, Lorient Cedex 56321, France
| | - Marjolaine Matabos
- University Brest, CNRS, Ifremer, UMR 6197 Biologie Et Ecologie Des Ecosystèmes Marins Profonds, Plouzané 29280, France
| | - Pauline Vannier
- Laboratoire MAPIEM, E.A.4323, Université de Toulon, CS 60584, 83041 Cedex 9 Toulon, France
| | - Pierre Marie Sarradin
- University Brest, CNRS, Ifremer, UMR 6197 Biologie Et Ecologie Des Ecosystèmes Marins Profonds, Plouzané 29280, France
| | | | - Peter Davies
- Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France
| |
Collapse
|
3
|
Körner P, Glüge J, Glüge S, Scheringer M. Critical insights into data curation and label noise for accurate prediction of aerobic biodegradability of organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1780-1795. [PMID: 39324653 DOI: 10.1039/d4em00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The focus of this work is to enhance state-of-the-art Machine Learning (ML) models that can predict the aerobic biodegradability of organic chemicals through a data-centric approach. To do that, an already existing dataset that was previously used to train ML models was analyzed for mismatching chemical identifiers and data leakage between test and training set and the detected errors were corrected. Chemicals with high variance between study results were removed and an XGBoost was trained on the dataset. Despite extensive data curation, only marginal improvement was achieved in the classification model's performance. This was attributed to three potential reasons: (1) a significant number of data labels were noisy, (2) the features could not sufficiently represent the chemicals, and/or (3) the model struggled to learn and generalize effectively. All three potential reasons were examined and point (1) seemed to be the most decisive one that prevented the model from generating more accurate results. Removing data points with possibly noisy labels by performing label noise filtering using two other predictive models increased the classification model's balanced accuracy from 80.9% to 94.2%. The new classifier is therefore better than any previously developed classification model for ready biodegradation. The examination of the key characteristics (molecular weight of the substances, proportion of halogens present and distribution of degradation labels) and the applicability domain indicate that no/not a large share of difficult-to-learn substances has been removed in the label noise filtering, meaning that the final model is still very robust.
Collapse
Affiliation(s)
- Paulina Körner
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| | - Stefan Glüge
- Institute for Computational Life Science, ZHAW, 8820 Wädenswil, Switzerland
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
4
|
Mattoli L, Fodaroni G, Burico M, Tamimi S, Quintiero CM, Gironi B, Murgia V, Giovagnoni E, Gianni M. Could natural-complex therapeutic products be useful for preserving biodiversity? UHPLC-qToF approaches to study the ready-biodegradability of a loperamide-based-drug and Lenodiar-Pediatric®. SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 41:101715. [DOI: 10.1016/j.scp.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Møller MT, Birch H, Sjøholm KK, Skjolding LM, Xie H, Papazian S, Mayer P. Determining Marine Biodegradation Kinetics of Chemicals Discharged from Offshore Oil Platforms─Whole Mixture Testing at High Dilutions Increases Environmental Relevance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17454-17463. [PMID: 39292649 DOI: 10.1021/acs.est.4c05692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Offshore oil platforms discharge enormous volumes of produced water that contain mixtures of petrochemicals and production chemicals. It is crucial to avoid the discharge of particularly those chemicals that are persistent in the marine environment. This study aims to (1) develop a biodegradation testing approach for discharged chemicals by native marine microorganism, (2) determine how dilution affects biodegradation, and (3) determine biodegradation kinetics for many discharged chemicals at low and noninhibitory concentrations. Produced water from an offshore oil platform was diluted in the ratio of 1:20, 1:60, and 1:200 in seawater from the same location and incubated for 60 days at 10 °C. Automated solid-phase microextraction GC-MS was used as a sensitive analytical technique, and chemical-specific primary degradation was determined based on peak area ratios between biotic test systems and abiotic controls. Biodegradation was inhibited at lower dilutions, consistent with ecotoxicity tests. Biodegradation kinetics were determined at the highest dilution for 139 chemicals (43 tentatively identified), and 6 chemicals were found persistent (half-life >60 days). Nontargeted analysis by liquid chromatography-high-resolution MS was demonstrated as a proof-of-principle for a comprehensive assessment. Biodegradation testing of chemicals in discharges provides the possibility to assess hundreds of chemicals at once and find the persistent ones.
Collapse
Affiliation(s)
- Mette T Møller
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Heidi Birch
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Karina K Sjøholm
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Lars M Skjolding
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Strotmann U, Durand MJ, Thouand G, Eberlein C, Heipieper HJ, Gartiser S, Pagga U. Microbiological toxicity tests using standardized ISO/OECD methods-current state and outlook. Appl Microbiol Biotechnol 2024; 108:454. [PMID: 39215841 PMCID: PMC11365844 DOI: 10.1007/s00253-024-13286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Microbial toxicity tests play an important role in various scientific and technical fields including the risk assessment of chemical compounds in the environment. There is a large battery of normalized tests available that have been standardized by ISO (International Organization for Standardization) and OECD (Organization for Economic Co-operation and Development) and which are worldwide accepted and applied. The focus of this review is to provide information on microbial toxicity tests, which are used to elucidate effects in other laboratory tests such as biodegradation tests, and for the prediction of effects in natural and technical aqueous compartments in the environment. The various standardized tests as well as not normalized methods are described and their advantages and disadvantages are discussed. In addition, the sensitivity and usefulness of such tests including a short comparison with other ecotoxicological tests is presented. Moreover, the far-reaching influence of microbial toxicity tests on biodegradation tests is also demonstrated. A new concept of the physiological potential of an inoculum (PPI) consisting of microbial toxicity tests whose results are expressed as a chemical resistance potential (CRP) and the biodegradation adaptation potential (BAP) of an inoculum is described that may be helpful to characterize inocula used for biodegradation tests. KEY POINTS: • Microbial toxicity tests standardized by ISO and OECD have large differences in sensitivity and applicability. • Standardized microbial toxicity tests in combination with biodegradability tests open a new way to characterize inocula for biodegradation tests. • Standardized microbial toxicity tests together with ecotoxicity tests can form a very effective toolbox for the characterization of toxic effects of chemicals.
Collapse
Affiliation(s)
- Uwe Strotmann
- Dept. of Chemistry, Westfälische Hochschule, Recklinghausen, Germany
| | - Marie-José Durand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Gerald Thouand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | | | - Udo Pagga
- , Rüdigerstr. 49, 67069, Ludwigshafen, Germany
| |
Collapse
|
7
|
Donley N, Cox C, Bennett K, Temkin AM, Andrews DQ, Naidenko OV. Forever Pesticides: A Growing Source of PFAS Contamination in the Environment. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75003. [PMID: 39046250 PMCID: PMC11268133 DOI: 10.1289/ehp13954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Environmental contamination by fluorinated chemicals, in particular chemicals from the per- and polyfluoroalkyl substances (PFAS) class, has raised concerns around the globe because of documented adverse impacts on human health, wildlife, and ecosystem quality. Recent studies have indicated that pesticide products may contain a variety of chemicals that meet the PFAS definition, including the active pesticide ingredients themselves. Given that pesticides are some of the most widely distributed pollutants across the world, the legacy impacts of PFAS addition into pesticide products could be widespread and have wide-ranging implications on agriculture and food and water contamination, as well as the presence of PFAS in rural environments. OBJECTIVES The purpose of this commentary is to explore different ways that PFAS can be introduced into pesticide products, the extent of PFAS contamination of pesticide products, and the implications this could have for human and environmental health. METHODS We submitted multiple public records requests to state and federal agencies in the United States and Canada and extracted relevant data from those records. We also compiled data from publicly accessible databases for our analyses. DISCUSSION We found that the biggest contributor to PFAS in pesticide products was active ingredients and their degradates. Nearly a quarter of all US conventional pesticide active ingredients were organofluorines and 14% were PFAS, and for active ingredients approved in the last 10 y, this had increased to 61% organofluorines and 30% PFAS. Another major contributing source was through PFAS leaching from fluorinated containers into pesticide products. Fluorination of adjuvant products and "inert" ingredients appeared to be limited, although this represents a major knowledge gap. We explored aspects of immunotoxicity, persistence, water contamination, and total fluorine load in the environment and conclude that the recent trend of using fluorinated active ingredients in pesticides may be having effects on chemical toxicity and persistence that are not given adequate oversight in the United States. We recommend a more stringent risk assessment approach for fluorinated pesticides, transparent disclosure of "inert" ingredients on pesticide labels, a complete phase-out of post-mold fluorination of plastic containers, and greater monitoring in the United States. https://doi.org/10.1289/EHP13954.
Collapse
Affiliation(s)
- Nathan Donley
- Center for Biological Diversity, Portland, Oregon, USA
| | - Caroline Cox
- Center for Environmental Health (retired), Oakland, California, USA
| | - Kyla Bennett
- Public Employees for Environmental Responsibility, Silver Spring, Maryland, USA
| | - Alexis M. Temkin
- Environmental Working Group, Washington, District of Columbia, USA
| | - David Q. Andrews
- Environmental Working Group, Washington, District of Columbia, USA
| | - Olga V. Naidenko
- Environmental Working Group, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Schnarr L, Olsson O, Kümmerer K. Biodegradation of flavonoids - Influences of structural features. CHEMOSPHERE 2024; 359:142234. [PMID: 38705418 DOI: 10.1016/j.chemosphere.2024.142234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Flavonoids, a class of natural products with a variety of applications in nutrition, pharmacy and as biopesticides, could substitute more harmful synthetic chemicals that persist in the environment. To gain a better understanding of the biodegradability of flavonoids and the influence of structural features, firstly, the ultimate biodegradation of 19 flavonoids was investigated with the Closed Bottle Test according to the OECD guideline 301 D. Secondly, regarding the fast abiotic degradation reported for several flavonoids with severe concentration decrease within hours and its possible impacts on the processes behind the ultimate biodegradation, primary degradation of 4 selected flavonoids was compared at conditions representing biodegradation, abiotic degradation, and mixed substrates by monitoring the flavonoids' concentrations with HPLC-UV/vis. Our results showed that 17 out of the 19 tested flavonoids were readily biodegradable. Structural features like a hydroxy group at C3, the C2-C3 bond order, a methoxy group in the B ring, and the position of the B ring in regard to the chromene core did not affect biodegradation of the tested flavonoids. Only flavone without any hydroxy groups and morin with an uncommon 2',4' pattern of hydroxy groups were non-readily biodegradable. Monitoring the concentration of 4 selected flavonoids by HPLC-UV/vis revealed that biodegradation occurred faster than abiotic degradation at CBT conditions with no other carbon sources present. The presence of an alternative carbon source tends to increase lag phases and decrease biodegradation rates. At this condition, abiotic degradation contributed to the degradation of unstable flavonoids. Overall, as a first tier to assess the environmental fate, our results indicate low risks for persistence of most flavonoids. Thus, flavonoids could represent benign substitutes for persistent synthetic chemicals.
Collapse
Affiliation(s)
- Lena Schnarr
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education, International Sustainable Chemistry Collaborative Centre (ISC3), Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
9
|
Derippe G, Philip L, Lemechko P, Eyheraguibel B, Meistertzheim AL, Pujo-Pay M, Conan P, Barbe V, Bruzaud S, Ghiglione JF. Marine biodegradation of tailor-made polyhydroxyalkanoates (PHA) influenced by the chemical structure and associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132782. [PMID: 37856958 DOI: 10.1016/j.jhazmat.2023.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Over recent years, biodegradable polymers have been proposed to reduce environmental impacts of plastics for specific applications. The production of polyhydroxyalkanoates (PHA) by using diverse carbon sources provides further benefits for the sustainable development of biodegradable plastics. Here, we present the first study evaluating the impact of physical, chemical and biological factors driving the biodegradability of various tailor-made PHAs in the marine environment. Our multidisciplinary approach demonstrated that the chemical structure of the polymer (i.e. the side chain size for short- vs. medium-chain PHA) which was intrinsically correlated to the physico-chemical properties, together with the specificity of the biofilm growing on plastic films (i.e., the associated 'plastisphere') were the main drivers of the PHA biodegradation in the marine environment.
Collapse
Affiliation(s)
- Gabrielle Derippe
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France; Université Bretagne Sud, Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, 56321 Lorient, France
| | - Léna Philip
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France; SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France
| | - Pierre Lemechko
- Institut Régional des Matériaux Avancés (IRMA), 2 all. Copernic, 56270 Ploemeur, France
| | - Boris Eyheraguibel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), Clermont- Ferrand, France
| | | | - Mireille Pujo-Pay
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France
| | - Pascal Conan
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, 56321 Lorient, France
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France.
| |
Collapse
|
10
|
Mattoli L, Proietti G, Fodaroni G, Quintiero CM, Burico M, Gianni M, Giovagnoni E, Mercati V, Santi C. Suspect screening analysis to improve untargeted and targeted UHPLC-qToF approaches: the biodegradability of a proton pump inhibitor medicine and a natural medical device. Sci Rep 2024; 14:51. [PMID: 38167521 PMCID: PMC10761695 DOI: 10.1038/s41598-023-49948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Suspect screening and untargeted analysis using UHPLC-qToF are two advanced analytical approaches now used to achieve an extensive chemical profile of samples, which are then typically confirmed through targeted analysis. These techniques can detect a large number of chemical features simultaneously and are currently being introduced into the study of contaminants of emerging concern (CECs) and into the study of the extent of human chemical exposure (the exposome). Here is described the use of these techniques to characterize chemical mixtures derived from the OECD 301F ready biodegradability test (RBT) of a chemical and natural formulation currently used to treat reflux disease and functional dyspepsia. Untargeted analysis clearly evidenced a different behavior between formulations containing only natural products with respect to that containing synthetic and non-naturally occurring substances. Suspect screening analysis improved the untargeted analysis of the omeprazole-based medicine, leading to the tentative identification of a number of omeprazole-derived transformation products, thereby enabling their preliminary quali-quantitative evaluation. Targeted analysis was then performed to confirm the preliminary data gained from the suspect screening approach. The validation of the analytical method for the quantitative determination of omeprazole and its major metabolite, omeprazole sulphide, has provided robust data to evaluate the behavior of omeprazole during the OECD 301F test. Using advanced analytical approaches, the RBT performed on the two products under investigation confirmed that omeprazole is not readily biodegradable, while the medical device made of natural substances has proven to be readily biodegradable.
Collapse
Affiliation(s)
- Luisa Mattoli
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Giacomo Proietti
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Giada Fodaroni
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | | | - Michela Burico
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | | | - Valentino Mercati
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
- Centro di Eccellenza Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
11
|
Jiang S, Liang Y, Shi S, Wu C, Shi Z. Improving predictions and understanding of primary and ultimate biodegradation rates with machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166623. [PMID: 37652371 DOI: 10.1016/j.scitotenv.2023.166623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to develop machine learning based quantitative structure biodegradability relationship (QSBR) models for predicting primary and ultimate biodegradation rates of organic chemicals, which are essential parameters for environmental risk assessment. For this purpose, experimental primary and ultimate biodegradation rates of high consistency were compiled for 173 organic compounds. A significant number of descriptors were calculated with a collection of quantum/computational chemistry software and tools to achieve comprehensive representation and interpretability. Following a pre-screening process, multiple QSBR models were developed for both primary and ultimate endpoints using three algorithms: extreme gradient boosting (XGBoost), support vector machine (SVM), and multiple linear regression (MLR). Furthermore, a unified QSBR model was constructed using the knowledge transfer technique and XGBoost. Results demonstrated that all QSBR models developed in this study had good performance. Particularly, SVM models exhibited high level of goodness of fit (coefficient of determination on the training set of 0.973 for primary and 0.980 for ultimate), robustness (leave-one-out cross-validated coefficient of 0.953 for primary and 0.967 for ultimate), and external predictive ability (external explained variance of 0.947 for primary and 0.958 for ultimate). The knowledge transfer technique enhanced model performance by learning from properties of two biodegradation endpoints. Williams plots were used to visualize the application domains of the models. Through SHapley Additive exPlanations (SHAP) analysis, this study identified key features affecting biodegradation rates. Notably, MDEO-12, APC2D1_C_O, and other features contributed to primary biodegradation, while AATS0v, AATS2v, and others inhibited it. For ultimate biodegradation, features like No. of Rotatable Bonds, APC2D1_C_O, and minHBa were contributors, while C1SP3, Halogen Ratio, GGI4, and others hindered the process. Also, the study quantified the contributions of each feature in predictions for individual chemicals. This research provides valuable tools for predicting both primary and ultimate biodegradation rates while offering insights into the mechanisms.
Collapse
Affiliation(s)
- Shan Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuzhen Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Songlin Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chunya Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
12
|
McDonough K, Battagliarin G, Menzies J, Bozich J, Bergheim M, Hidding B, Kastner C, Koyuncu B, Kreutzer G, Leijs H, Parulekar Y, Raghuram M, Vallotton N. Multi-laboratory evaluation of the reproducibility of polymer biodegradation assessments applying standardized and modified respirometry methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166339. [PMID: 37597548 DOI: 10.1016/j.scitotenv.2023.166339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
This research evaluated the intra- and interlaboratory variability when applying OECD 301F and OECD 301B Ready Biodegradation respirometric test methods to quantify polymer biodegradation as well as the impact of method modifications including test duration, inoculum level and test substance concentration on results. This assessment synthesizes results of mineralization studies on 5 polymers of varying structural components, molecular weight, charge, and solubility, evaluated at 8 different laboratories in 4 different countries, providing significant geographic variation in inoculum source as well as lab to lab variations in test setup. Across all laboratories, intralaboratory variability was low (≤18 % absolute difference) indicating the reproducibility of results between replicates and uniformity of test setup in each laboratory. Interlaboratory variation was also low for all 5 polymers with extent of mineralization being comparable in all OECD 301F and 301B studies even when test methods were modified. Across all studies mean mineralization was 89 ± 5.5 % for polyethylene glycol 35,000, 85 ± 7.4 % for polyvinyl alcohol 18-88, 44 ± 13 % for carboxymethyl cellulose (DS 0.6), 48 ± 4.1 % for a modified guar gum, and 88 ± 6.2 % for microcrystalline cellulose (MCC) at study completion. Due to the lack of polymeric reference materials, MCC was evaluated and found to be a suitable reference material for polymers that biodegrade rapidly in screening studies. An additional respirometric study was conducted quantifying mineralization of the 5 polymers in river water to evaluate the relationship with OECD 301 results using activated sludge as the inoculum. A similar extent of mineralization was observed for all 5 polymers in the OECD 301 and river water studies but time to reach the maximum extent of mineralization was longer using river water as the inoculum source likely due to the lower microbial counts (106 CFU/L) in the test system.
Collapse
Affiliation(s)
- Kathleen McDonough
- Procter and Gamble Company, 8700 S. Mason Montgomery Rd., Mason, OH 45040, USA.
| | | | - Jennifer Menzies
- Procter and Gamble Company, 8700 S. Mason Montgomery Rd., Mason, OH 45040, USA
| | - Jared Bozich
- IFF, 650 State Highway 36, Hazlet, NJ 07730, USA
| | | | - Bjorn Hidding
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | | | - Bahar Koyuncu
- AISE, Boulevard du Souverain 165, Brussels 1160, Belgium
| | - Georg Kreutzer
- Givaudan International SA, 5, chemin de la Parfumerie, 1214 Vernier, Switzerland
| | - Hans Leijs
- IFF, 650 State Highway 36, Hazlet, NJ 07730, USA
| | - Yash Parulekar
- Kuraray, 707 E 80th Place, Suite 301, Merrillville, Indiana 46410, USA
| | - Meera Raghuram
- Lubrizol Advanced Materials Inc., 9911 Brecksville Rd, Cleveland, OH 44141, USA
| | | |
Collapse
|
13
|
Gangola S, Joshi S, Bhandari G, Pant G, Sharma A, Perveen K, Bukhari NA, Rani R. Exploring microbial diversity responses in agricultural fields: a comparative analysis under pesticide stress and non-stress conditions. Front Microbiol 2023; 14:1271129. [PMID: 37928679 PMCID: PMC10623313 DOI: 10.3389/fmicb.2023.1271129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023] Open
Abstract
Exposure to pesticides changes the microbial community structure in contaminated agricultural fields. To analyze the changes in the native microbial composition qRT-PCR, a metagenomic study was conducted. The qRT-PCR results exhibited that the uncontaminated soil has a higher copy number of 16S rDNA relative to the soil contaminated with pesticide. Metagenome analysis interprets that uncontaminated soil is enriched with proteobacteria in comparison with pesticide-contaminated soil. However, the presence of Actinobacteria, Firmicutes, and Bacteroides was found to be dominant in the pesticide-spiked soil. Additionally, the presence of new phyla such as Chloroflexi, Planctomycetes, and Verrucomicrobia was noted in the pesticide-spiked soil, while Acidobacteria and Crenarchaeota were observed to be extinct. These findings highlight that exposure to pesticides on soil significantly impacts the biological composition of the soil. The abundance of microbial composition under pesticide stress could be of better use for the treatment of biodegradation and bioremediation of pesticides in contaminated environments.
Collapse
Affiliation(s)
- Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Garima Pant
- Department of PDP, Graphic Era Hill University, Bhimtal, India
| | - Anita Sharma
- Department of Microbiology, GBPUAT, Pantnagar, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ranjana Rani
- School of Agriculture and Food Science, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Çelik G, Stolte S, Müller S, Schattenberg F, Markiewicz M. Environmental persistence assessment of heterocyclic polyaromatic hydrocarbons - Ultimate and primary biodegradability using adapted and non-adapted microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132370. [PMID: 37666173 DOI: 10.1016/j.jhazmat.2023.132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023]
Abstract
Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are of increasing concern and their environmental and human health impacts should be assessed due to their widespread presence and potential persistence in the environment. This study investigated the ultimate and primary biodegradability of ten heterocyclic PAHs, nine of which were found to be non-readily biodegradable. To generate a microbial community capable of degrading such compounds, a bacterial inoculum isolated from the effluent of a wastewater treatment plant (WWTP) was adapted to a mixture of heterocyclic PAHs for one year. Throughout the adaptation process, bacterial samples were collected at different stages to conduct primary biodegradation, ultimate biodegradation, and inoculum toxicity tests. Interestingly, after one year of adaptation, the community developed the ability to mineralize carbazole, but in the same time showed an increasing sensitivity to the toxic effects of benzo[c]carbazole. In two consecutive primary biodegradation experiments, degradation of four heterocycles was observed, while no biodegradation was detected for five compounds in any of the tests. Furthermore, the findings of this work were compared with predictions from in silico models regarding biodegradation timeframe and sorption, and it was found that the models were partially successful in describing these processes. The results of study provide valuable insights into the persistence of a representative group of heterocyclic PAHs in aquatic environments, which contributes to the hazard assessment of this particular class of substances.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany.
| |
Collapse
|
15
|
Proietti G, Burico M, Quintiero CM, Giovagnoni E, Mercati V, Gianni M, Mattoli L. Ready Biodegradability study and insights with ultra-high-performance liquid chromatograph coupled to a quadrupole time of flight of a Metformin-based drug and of Metarecod, a natural substance-based medical device. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4924. [PMID: 37365837 DOI: 10.1002/jms.4924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Drugs are indispensable products with incontrovertible benefits to human health and lifestyle. However, due to their overuse and improper disposal, unwanted residues of active pharmaceutical ingredients (APIs) have been found in different compartments of the environment and now are considered as contaminants of emerging concern (CECs). Therefore, they are very likely to have a boomerang effect on human health, because they can enter into the food cycle. In the current legislation framework, one of the tests first used to evaluate biodegradation of APIs as well as chemical compounds is the ready biodegradability test (RBT). This test can be performed according to a series of protocols prepared by Organization for Economic Co-operation and Development (OECD) and usually is carried out on pure compounds. RBTs, largely used due to their relatively low cost, perceived standardization, and straightforward implementation and interpretation, are known to have a number of well-documented limitations. In this work, following a recently reported approach, we propose to improve the evaluation of the RBT results applying advanced analytical techniques based on mass spectrometry, not only to the APIs but also to complex formulated products, as the biodegradability can potentially be affected by the formulation. We evaluated the ready biodegradability of two therapeutic products, Product A-a drug based on Metformin-and Product B-Metarecod a natural substance-based medical device-through the acquisition of the fingerprint by ultra-high-performance chromatograph coupled to a quadrupole time of flight (UHPLC-qToF) of samples coming from the RBT OECD 301F. Untargeted and targeted evaluation confirmed the different behavior of the two products during the respirometry-manometric test, which showed a difficulty of the Metformin-based drug to come back in the life cycle, whereas Metarecod resulted ready biodegradable. The positive results of this research will hopefully be useful in the future for a better evaluation of the risk/benefit ratio of APIs extended to the environment.
Collapse
Affiliation(s)
- Giacomo Proietti
- Metabolomics & Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Michela Burico
- Metabolomics & Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | | | | | - Valentino Mercati
- Metabolomics & Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Metabolomics & Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Luisa Mattoli
- Metabolomics & Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| |
Collapse
|
16
|
Liu G, Frankó B, Strömberg S, Zheng D, Nistor M, Liu J, Deng L. Impact of atmospheric pressure variations on aerobic biodegradation test. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1559-1569. [PMID: 37029528 DOI: 10.1177/0734242x231164320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biodegradation rate is an important index to evaluate the environmental risk of chemicals, which is usually determined by measuring oxygen consumption through respirometer in a biodegradation test. However, atmospheric pressure variations affect reactor oxygen concentration and oxygen volume recorded by respirometer in biodegradation test, and the parameters of reactor volume and test material amount amplify its effect. Atmospheric pressure variation >1 kPa could introduce >20% underestimation in biodegradation rate when a small amount of test material (0.04-0.2 g per 100 g of inoculum) and high reactor volume (2-4 L) were used according to the international standards. A 5 kPa drop in atmospheric pressure leads to a 6% decrease in headspace oxygen concentration in the reactor, which could subsequently inhibit biodegradation microbials and decrease the biodegradation rate by 30%. Moreover, the biodegradation process (oxygen consumption rate) could be accelerated/delayed several times by atmospheric pressure variations compared to the process without variations when the oxygen consumption rate was <5 mL h-1 in a 0.5 or 1 L reactor and <10 mL h-1 in a 2-L reactor. Mitigating the effects of atmospheric pressure variations on biodegradation test includes lowering the reactor volume, increasing the test material amount and recording atmospheric pressure for further modification.
Collapse
Affiliation(s)
- Gangjin Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Balázs Frankó
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Dan Zheng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | | | - Jing Liu
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
- BPC Instruments AB, Lund, Sweden
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
17
|
White AM, Van Frost SR, Jauquet JM, Magness AM, McMahon KD, Remucal CK. Quantifying the Role of Simultaneous Transformation Pathways in the Fate of the Novel Aquatic Herbicide Florpyrauxifen-Benzyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12421-12430. [PMID: 37552855 DOI: 10.1021/acs.est.3c03343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Predicting the fate of organic compounds in the environment is challenging due to the inability of laboratory studies to replicate field conditions. We used the intentionally applied aquatic herbicide florpyrauxifen-benzyl (FPB) as a model compound to investigate the contribution of multiple transformation pathways to organic compound fate in lakes. FPB persisted in five Wisconsin lakes for 5-7 days with an in-lake half-life of <2 days. FPB formed four transformation products, with the bioactive product florpyrauxifen persisting up to 30 days post-treatment. Parallel laboratory experiments showed that FPB degrades to florpyrauxifen via base-promoted hydrolysis. Hydroxy-FPB and hydroxy-florpyrauxifen were identified as biodegradation products, while dechloro-FPB was identified as a photoproduct. Material balance calculations using both laboratory rates and field product concentrations demonstrated that hydrolysis (∼47% of loss), biodegradation (∼20%), sorption (∼13%), and photodegradation (∼4%) occurred on similar timescales. Furthermore, the combined results demonstrated that abiotic and plant-catalyzed hydrolysis of FPB to florpyrauxifen, followed by biodegradation of florpyrauxifen to hydroxy-florpyrauxifen, was the dominant transformation pathway in lakes. This study demonstrates how combined field and laboratory studies can be used to elucidate the role of simultaneous and interacting pathways in the fate of organic compounds in aquatic environments.
Collapse
Affiliation(s)
- Amber M White
- Environmental Chemistry and Technology Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Sydney R Van Frost
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Josie M Jauquet
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Angela M Magness
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Deng Z, Yu T, Li S, He C, Hu B, Zhang X. Effects of 2,6-di-tert-butyl-hydroxytotulene and mineral-lubricant base oils on microbial communities during lubricants biodegradation. ENVIRONMENTAL RESEARCH 2023; 231:116120. [PMID: 37182830 DOI: 10.1016/j.envres.2023.116120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
2,6-Di-tert-butyl-hydroxytotulene (BHT) is an additive commonly used in the manufacturing of lubricants to improve their antioxidant properties. However, in this study, we found that BHT affects the biodegradation of bio-lubricants by influencing the microbial community during the degradation of bio-lubricants. Specifically, BHT was found to reduce bacterial richness in activated sludge, but it increased the relative abundance of Actinobacteria (from 21.24% to 40.89%), Rhodococcus (from 17.15% to 31.25%), Dietzia (from 0.069% to 6.49%), and Aequorivita (from 0.90% to 1.85%). LEfSe analysis and co-occurrence network analysis suggested that Actinobacteria could be potential biomarkers and keystone taxa in microbial communities. Using the MetaCyc pathway database, the study found that BHT interfered with cellular biosynthetic processes. Additionally, the study also showed that mineral-lubricant base oils, which are difficult to degrade, significantly altered the diversity and composition of the microbiome. Overall, the findings demonstrate that BHT and mineral-lubricant base oils can substantially alter bacterial richness, structure, and function, potentially contributing to the difficulty in degrading lubricants. These findings have implications for the development of more biodegradable lubricants and the management of industrial waste containing lubricants.
Collapse
Affiliation(s)
- Zhenkun Deng
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tong Yu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuai Li
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changliu He
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Bing Hu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
19
|
Du R, Duan L, Zhang Q, Wang B, Huang J, Deng S, Yu G. Analysis on the attenuation characteristics of PPCPs in surface water and their influencing factors based on a compilation of literature data. WATER RESEARCH 2023; 242:120203. [PMID: 37336183 DOI: 10.1016/j.watres.2023.120203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The attenuation characteristics of PPCPs play an important part in predicting their environmental concentrations. However, considerable uncertainty remains in reported laboratory data on the attenuation characteristics of PPCPs. In this analysis, we compile information on laboratory-observed photodegradation half-lives (t1/2), biodegradation t1/2, the organic carbon normalized adsorption constant (KOC) and field-observed overall attenuation t1/2 for PPCPs in water bodies from more than 200 peer-reviewed studies. To mitigate the effects of such uncertainty, we derive representative values (RV) for PPCP degradability from these records to better compare the characteristics of different PPCPs. We further examine the influence of experimental conditions and environmental drivers on the determination of t1/2 using difference analysis and correlation analysis. The results indicate that for laboratory photodegradation tests, different light sources, initial concentration and volume significantly affect t1/2, whereas there is no significant difference between values obtained from tests conducted in pure water and natural water. For biodegradation, laboratory-measured t1/2 values in batch, flume and column studies gradually decrease, marking the controlling role of experimental setup. Redox condition, initial concentration and volume are also recognized as important influencing factors. For adsorption, water-sediment ratio is the primary reaction parameter. As two frequently investigated factors, however, pH and temperature are not significant factors in almost all cases. In field observations, the persistence of carbamazepine, typically used as a tracer, is in doubt. Water depth and latitude are the most correlated drivers of t1/2, indicating the predominant status of photodegradation in the overall attenuation rates. These findings call for caution when selecting experimental parameters and environmental drivers in determining PPCP's attenuation rates and establishing PPCP fate models in the field.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
20
|
Takano Y, Takekoshi S, Takano K, Matoba Y, Mukumoto M, Shirai O. Metagenomic analysis of ready biodegradability tests to ascertain the relationship between microbiota and the biodegradability of test chemicals. JOURNAL OF PESTICIDE SCIENCE 2023; 48:35-46. [PMID: 37361484 PMCID: PMC10288005 DOI: 10.1584/jpestics.d22-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
Ready biodegradability tests conducted in accordance with the Organisation for Economic Co-operation and Development guidelines (test 301C or test 301F) are performed using activated sludge (AS) prepared by the Chemicals Evaluation and Research Institute (AS-CERI) or that taken from a sewage treatment plant (AS-STP). It had been reported that AS-CERI had lower activity than AS-STP in biodegrading test chemicals, and that biodegradation was accelerated by increasing the volume of the test medium. However, these phenomena have not been clarified from the perspective of the microbiota. In this study, using metagenomic analysis, we first showed that the microbiota of AS-CERI was biased in its distribution of phyla, less diverse, and had greater lot-to-lot variability than that of AS-STP. Second, after cultivation for a long period of time, the microbiota of AS-STP and AS-CERI became more similar to each other in terms of community structure. Third, determining degraders of test substances when each substance was actively biodegraded was found to be an effective approach. Finally, we clarified experimentally that a large volume of test medium increased the number of species that could degrade test substances in the condition where the initial concentrations of each substance and AS-STP were kept constant.
Collapse
Affiliation(s)
- Yoshinari Takano
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Saki Takekoshi
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory
| | - Kotaro Takano
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory
| | - Yoshihide Matoba
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory
| | - Makiko Mukumoto
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
21
|
Southwell RV, Hilton SL, Pearson JM, Hand LH, Bending GD. Water flow plays a key role in determining chemical biodegradation in water-sediment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163282. [PMID: 37023820 DOI: 10.1016/j.scitotenv.2023.163282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Before agrochemicals can be registered and sold, the chemical industry is required to perform regulatory tests to assess their environmental persistence, using defined guidelines. Aquatic fate tests (e.g. OECD 308) lack environmental realism as they are conducted under dark conditions and in small-scale static systems, which can affect microbial diversity and functionality. In this study, water-sediment microflumes were used to investigate the impact of these deficiencies in environmental realism on the fate of the fungicide, isopyrazam. Although on a large-scale, these systems aimed to retain the key aspects of OECD 308 tests. Tests were carried out under both a non-UV light-dark cycle and continuous darkness and under both static and flowing water conditions, to investigate how light and water flow affect isopyrazam biodegradation pathways. In static systems, light treatment played a significant role, with faster dissipation in illuminated compared to dark microflumes (DT50s = 20.6 vs. 47.7 days). In flowing systems (DT50s = 16.8 and 15.3 days), light did not play a significant role in dissipation, which was comparable between the two light treatments, and faster than in dark static microflumes. Microbial phototroph biomass was significantly reduced by water flow in the illuminated systems, thereby reducing their contribution to dissipation. Comprehensive analysis of bacterial and eukaryotic community composition identified treatment specific changes following incubation, with light promoting relative abundance of Cyanobacteria and eukaryotic algae, and flow increasing relative abundance of fungi. We conclude that both water velocity and non-UV light increased isopyrazam dissipation, but the contribution of light depended on the flow conditions. These differences may have resulted from impacts on microbial communities and via mixing processes, particularly hyporheic exchange. Inclusion of both light and flow in studies could improve the extent they mimic natural environments and predict chemical environmental persistence, thus bridging the gap between laboratory and field studies.
Collapse
Affiliation(s)
- Rebecca V Southwell
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; Product Safety, Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG4 6EY, UK.
| | - Sally L Hilton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jonathan M Pearson
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Laurence H Hand
- Product Safety, Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG4 6EY, UK
| | - Gary D Bending
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Biodegradation of chemicals tested in mixtures and individually: mixture effects on biodegradation kinetics and microbial composition. Biodegradation 2023; 34:139-153. [PMID: 36595149 DOI: 10.1007/s10532-022-10009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Biodegradation in the aquatic environment occurs in the presence of many chemicals, while standard simulation biodegradation tests are conducted with single chemicals. This study aimed to investigate the effect of the presence of additional chemicals on (1) biodegradation kinetics of individual chemicals and (2) the microbial composition in test systems. Parallel mixture and single substance experiments were conducted for 9 chemicals (phenethyl benzoate, oxacycloheptadec-10-en-2-one, α-ionone, methyl 2-naphthyl ether, decan-5-olide, octan-2-one, 2'-acetonaphthanone, methyl N-methylanthranilate, (+)-menthone) using inoculum from a Danish stream. Biotic and abiotic test systems were incubated at 12 °C for 1-30 days. Primary biodegradation kinetics were then determined from biotic/abiotic peak area ratios using SPME GC/MS analysis. The effect of the mixture on biodegradation varied with test chemical and was more pronounced for chemicals with lag-phases above 14 days: two chemicals degraded in the mixture but not when tested alone (i.e., positive mixture effect), and two degraded when tested alone but not in the mixture (i.e., negative mixture effect). Microbial composition (16S rRNA gene amplicon sequencing) was highly affected by 14 days incubation and the presence of the mixture (significant carbon source), but less by single chemicals (low carbon source). Growth on chemical mixtures resulted in consistent proliferation of Pseudomonas and Malikia, while specific chemicals increased the abundance of putative degraders belonging to Novosphingobium and Zoogloea. The chemical and microbiological results support (1) that simulation biodegradation kinetics should be determined in mixtures at low environmentally relevant concentrations and (2) that degradation times beyond some weeks are associated with more uncertainty.
Collapse
|
23
|
Härrer D, Elreedy A, Ali R, Hille-Reichel A, Gescher J. Probing the robustness of Geobacter sulfurreducens against fermentation hydrolysate for uses in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2023; 369:128363. [PMID: 36423764 DOI: 10.1016/j.biortech.2022.128363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, impacts of toxic ions/acids found in real fermentation-hydrolysate on the model exoelectrogenic G. sulfurreducens were investigated. Initially, different concentrations of acetate, butyrate, propionate, Na+, and K+ were tested, individually and in combination, for effects on the planktonic growth, followed by validation with diluted-hydrolysate. Meanwhile, it could be shown that (1) excess Na+ (≥100 mM) causes inhibition that can be reduced by K+ replacement, (2) butyrate (≥10 mM) induces higher toxicity than propionate, and (3) hydrolysate induces synergistic inhibition to G. sulfurreducens where organic constituents contributed more than Na+. Afterwards, compared with impacts on planktonic cells, the pre-enriched anodic biofilm of G. sulfurreducens in BESs showed higher robustness against diluted-hydrolysate, achieving current densities of 1.4-1.7 A/m2 (at up to ∼30 mM butyrate and propionate as well as ∼240 mM Na+). As a conclusion, using G. sulfurreducens in BESs dealing with fermentation-hydrolysate can be regulated for efficacious energy recovery.
Collapse
Affiliation(s)
- Daniel Härrer
- Institute for Applied Biosciences - Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Ahmed Elreedy
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany
| | - Rowayda Ali
- Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Andrea Hille-Reichel
- Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences - Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Institute of Technical Microbiology, Hamburg University of Technology, Hamburg 21073, Germany.
| |
Collapse
|
24
|
Menzies J, Wilcox A, Casteel K, McDonough K. Water soluble polymer biodegradation evaluation using standard and experimental methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160006. [PMID: 36368394 DOI: 10.1016/j.scitotenv.2022.160006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Multiple polyethylene glycol (PEG) polymers ranging in molecular weight (MW) from 4000 to 500,000 Da, polyvinyl alcohol (PVOH) polymers with degrees of hydrolysis (DH) of 79 % and 88 % and MW 10,000 to 130,000 Da, and carboxy methyl cellulose (CMC) polymers with degrees of substitution (DS) ranging from 0.6 to 1.2 were evaluated in standard screening biodegradation tests to assess method limitations, modification potential, and reproducibility. All PEGs and PVOHs mineralized completely in OECD 301B and 302B studies reaching >80 % biodegradation with negligible dissolved organic carbon remaining at study completion. For high MW PEOs, extension of test duration was needed to reach full extent of mineralization. CMC biodegradation was directly correlated to degree of substitution with CMC 0.6 biodegrading extensively, CMC 0.79 partially biodegrading, and CMC 1.2 not biodegrading significantly in OECD 301B and 302B studies. For all materials tested in both an OECD 301B and 302B, fewer days were necessary to reach 60 % biodegradation in the OECD 302B indicating increased rates of biodegradation with higher inoculum to test chemical ratios. In a series of investigative studies using respirometry as the analytical endpoint, significant variability in the presence of competent degraders in small volume grab samples of river water was observed. Research is needed to overcome this variability and develop a standardized reproducible test method to accurately assess polymer mineralization in river water. At study completion, residual dissolved organic carbon (DOC) data confirmed respirometry data, high levels of mineralization resulted in negligible residual DOC while low levels of mineralization resulted in significant residual DOC, up to dose concentrations. DOC measurements provided confirmation of complete biodegradation when biomass incorporation and test system set up resulted in variable carbon dioxide production or oxygen demand.
Collapse
Affiliation(s)
- Jennifer Menzies
- The Procter and Gamble Company, Environmental Safety and Stewardship, Mason, OH, USA
| | - Ashley Wilcox
- The Procter and Gamble Company, Environmental Safety and Stewardship, Mason, OH, USA
| | - Kenneth Casteel
- The Procter and Gamble Company, Environmental Safety and Stewardship, Mason, OH, USA
| | - Kathleen McDonough
- The Procter and Gamble Company, Environmental Safety and Stewardship, Mason, OH, USA.
| |
Collapse
|
25
|
Meier CJ, Rouhier MF, Hillyer JF. Chemical Control of Mosquitoes and the Pesticide Treadmill: A Case for Photosensitive Insecticides as Larvicides. INSECTS 2022; 13:1093. [PMID: 36555003 PMCID: PMC9783766 DOI: 10.3390/insects13121093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Insecticides reduce the spread of mosquito-borne disease. Over the past century, mosquito control has mostly relied on neurotoxic chemicals-such as pyrethroids, neonicotinoids, chlorinated hydrocarbons, carbamates and organophosphates-that target adults. However, their persistent use has selected for insecticide resistance. This has led to the application of progressively higher amounts of insecticides-known as the pesticide treadmill-and negative consequences for ecosystems. Comparatively less attention has been paid to larvae, even though larval death eliminates a mosquito's potential to transmit disease and reproduce. Larvae have been targeted by source reduction, biological control, growth regulators and neurotoxins, but hurdles remain. Here, we review methods of mosquito control and argue that photoactive molecules that target larvae-called photosensitive insecticides or PSIs-are an environmentally friendly addition to our mosquitocidal arsenal. PSIs are ingested by larvae and produce reactive oxygen species (ROS) when activated by light. ROS then damage macromolecules resulting in larval death. PSIs are degraded by light, eliminating environmental accumulation. Moreover, PSIs only harm small translucent organisms, and their broad mechanism of action that relies on oxidative damage means that resistance is less likely to evolve. Therefore, PSIs are a promising alternative for controlling mosquitoes in an environmentally sustainable manner.
Collapse
Affiliation(s)
- Cole J. Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
26
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
27
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
28
|
Nguyen TLA, Dang HTC, Dat TTH, Brandt BW, Röling WFM, Brouwer A, van Spanning RJM. Correlating biodegradation kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the dynamics of microbial communities originating from soil in Vietnam contaminated with herbicides and dioxins. Front Microbiol 2022; 13:923432. [PMID: 36033897 PMCID: PMC9404497 DOI: 10.3389/fmicb.2022.923432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
We studied the succession of bacterial communities during the biodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). The communities originated from a mesocosm with soil from Bien Hoa airbase in Vietnam heavily contaminated with herbicides and dioxins. They were grown in defined media with different carbon and Gibbs energy sources and 2,3,7,8-TCDD. Cultures with dimethyl sulfoxide (DMSO) as the sole carbon and energy source degraded about 95% of 2,3,7,8-TCDD within 60 days of cultivation. Those with an additional 1 mM of vanillin did that in roughly 90 days. Further 16S rRNA gene amplicon sequencing showed that the increase in relative abundance of members belonging to the genera Bordetella, Sphingomonas, Proteiniphilum, and Rhizobium correlated to increased biodegradation of 2,3,7,8-TCDD in these cultures. A higher concentration of vanillin slowed down the biodegradation rate. Addition of alternative carbon and Gibbs energy sources, such as amino acids, sodium lactate and sodium acetate, even stopped the degradation of 2,3,7,8-TCDD completely. Bacteria from the genera Bordetella, Achromobacter, Sphingomonas and Pseudomonas dominated most of the cultures, but the microbial profiles also significantly differed between cultures as judged by non-metric multidimensional scaling (NMDS) analyses. Our study indicates that 2,3,7,8-TCDD degradation may be stimulated by bacterial communities preadapted to a certain degree of starvation with respect to the carbon and energy source. It also reveals the succession and abundance of defined bacterial genera in the degradation process.
Collapse
Affiliation(s)
- Thi Lan Anh Nguyen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- *Correspondence: Thi Lan Anh Nguyen,
| | - Ha Thi Cam Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Thua Thien Hue, Vietnam
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wilfred F. M. Röling
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Amsterdam, Netherlands
- Department of Ecological Science, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|
29
|
Gartiser S, Brunswik-Titze A, Flach F, Junker T, Sättler D, Jöhncke U. Enhanced ready biodegradability screening tests for the evaluation of potential PBT substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155134. [PMID: 35405244 DOI: 10.1016/j.scitotenv.2022.155134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
In persistence assessment enhanced ready biodegradation tests (eRBT) are aimed to close the gap between screening tests and complex simulation tests. However, only few data from these tests are available and neither guidance on the design and interpretation of eRBTs, nor suitable validity criteria have been established so far. In a practical testing programme 5 compounds with controversial degradation data have been tested in 4 test series including prolongation to 60 days and use of different inocula (activated sludge, final effluent from a STP), flask sizes, and endpoints (CO2, O2, DOC). The drug ibuprofen and the intermediate 4-fluorophenol were biodegraded by >60% within 28 days within a 10-day-window and therefore are considered as readily biodegradable and in conclusion fulfilling the criteria for "not persistent". The mean mineralization of the pesticide synergist piperonylbutoxide and the antioxidant octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate achieved 20%-50% (="potentially P"). The mineralization of the cosmetic ingredient cis-13-docosenonamide (Erucamide) was between 36%-64% after 60 days with activated sludge and 21% with the effluent from the STP. Diethylene glycol reached the pass level of 60% mineralization within 28 days in all test series without always meeting the 10-day window, and thus proved to be a suitable reference substance for eRBTs. Based on the results of the study several recommendations for the test design, the evaluation and the interpretation of eRBTs are made. However, a broader data set is required and further enhancements such as the quality and amount of the inoculum should also be considered in future research.
Collapse
Affiliation(s)
| | | | | | - Thomas Junker
- ECT Oekotoxikologie GmbH, Böttgerstraße 2 - 14, 65439 Flörsheim a. Main, Germany
| | - Daniel Sättler
- German Environment Agency, Division IV Chemical Safety, Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Ulrich Jöhncke
- German Environment Agency, Division IV Chemical Safety, Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| |
Collapse
|
30
|
Wennberg AC, Meland S, Grung M, Lillicrap A. Unravelling reasons for variability in the OECD 306 marine biodegradation test. CHEMOSPHERE 2022; 300:134476. [PMID: 35367489 DOI: 10.1016/j.chemosphere.2022.134476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The recommended test for assessing if a chemical can be biodegraded in the marine environment is performed according to the Organisation for Economic Cooperation and Development Marine biodegradation test guideline (OECD 306). However, this test is known to generate highly variable test results when comparing interlaboratory test results for the same compound. One reason can be the relatively low bacterial content compared to the inoculum used for OECD readily biodegradation tests (OECD 301). Some of the variability in data obtained from OECD 306 tests can also be due to the flexibility on how to store the seawater inoculum before starting a test. Another variable in the seawater inoculum is the source of seawater used by different laboratories, i.e., geographical location and anthropogenic activities at the source. In this study, the effect of aging seawater and the source of seawater (sample time and depth) were investigated to determine differences in the biodegradation of the reference compound aniline. Aging the seawater before starting the test is recommended in OECD 306 to reduce the background levels of organic carbon in the water. However, it also functions to acclimatize the bacterial community from the environmental source temperature to the test temperature (normally 20 °C). Herein, the microbial community was monitored using flowcytometer during the aging process. As expected, the microbial community changed over time. In one experiment, aging significantly improved the biodegradation of aniline, while in two experiments, there was no significant difference in biodegradation. Interestingly however, there was significant variability in the biodegradation of aniline between sampling seasons and depths, even when all experiments were performed in the same lab, by the same operator and seawater obtained from the same source. This highlights the need for a more robust and consistent microbial inoculum source to reduce variability in seawater biodegradation tests.
Collapse
Affiliation(s)
| | - Sondre Meland
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
31
|
Nolte TM, Peijnenburg WJGM, Miguel ABR, Zhang YN, Hendriks AJ. Stoichiometric ratios for biotics and xenobiotics capture effective metabolic coupling to re(de)fine biodegradation. WATER RESEARCH 2022; 217:118333. [PMID: 35421691 DOI: 10.1016/j.watres.2022.118333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Preserving human and environmental health requires anthropogenic pollutants to be biologically degradable. Depending on concentration, both nutrients and pollutants induce and activate metabolic capacity in the endemic bacterial consortium, which in turn aids their degradation. Knowledge on such 'acclimation' is rarely implemented in risk assessment cost-effectively. As a result, an accurate description of the mechanisms and kinetics of biodegradation remains problematic. In this study, we defined a yield 'effectivity', comprising the effectiveness at which a pollutant (substrate) enhances its own degradation by inducing (biomass) cofactors involved therein. Our architecture for calculation represents the interplay between concentration and metabolism via both stoichiometric and thermodynamic concepts. The calculus for yield 'effectivity' is biochemically intuitive, implicitly embeds co-metabolism and distinguishes 'endogenic' from 'exogenic' substances' reflecting various phenomena in biodegradation and bio-transformation studies. We combined data on half-lives of pollutants/nutrients in wastewater and surface water with transition-state rate theory to obtain also experimental values for effective yields. These quantify the state of acclimation: the portion of biodegradation kinetics attributable to (contributed by) 'natural metabolism', in view of similarity to natural substances. Calculated and experimental values showed statistically significant correspondence. Particularly, carbohydrate metabolism and nucleic acid metabolism appeared relevant for acclimation (R2 = 0.11-0.42), affecting rates up to 104.9(±0.7) times: under steady-state acclimation, a compound stoichiometrically identical to carbohydrates or nucleic acids, is 103.2 to 104.9 times faster aerobically degraded than a compound marginally similar. Our new method, simulating (contribution by) the state of acclimation, supplements existing structure-biodegradation and kinetic models for predicting biodegradation in wastewater and surface water. The accuracy of prediction may increase when characterizing nutrients/co-metabolites in terms of, e.g., elemental analysis. We discuss strengths and limitations of our approach by comparison to empirical and mechanism-based methods.
Collapse
Affiliation(s)
- Tom M Nolte
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500 GL Nijmegen, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Ana B Rios- Miguel
- Radboud University Nijmegen, Department of Microbiology, Institute for Water and Wetland Research, 6500 GL Nijmegen, the Netherlands
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin 130117, China
| | - A Jan Hendriks
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
32
|
Redman AD, Bietz J, Davis JW, Lyon D, Maloney E, Ott A, Otte JC, Palais F, Parsons JR, Wang N. Moving persistence assessments into the 21st century: A role for weight-of-evidence and overall persistence. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:868-887. [PMID: 34730270 PMCID: PMC9299815 DOI: 10.1002/ieam.4548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Jens Bietz
- Clariant Produkte (Deutschland) GmbHSulzbachGermany
| | - John W. Davis
- Dow, Inc.MidlandMichiganUSA
- John Davis Consulting, LLCMidlandMichiganUSA
| | | | | | - Amelie Ott
- Newcastle University, School of EngineeringNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | | | - Frédéric Palais
- SOLVAY, HSE PRA‐PS, RICL—Antenne de GenasSaint‐FonsCedexFrance
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Neil Wang
- TotalEnergies Marketing & ServicesParis la DéfenseFrance
| |
Collapse
|
33
|
O'Keeffe J, Akunna J. Assessment of leachable and persistent dissolved organic carbon in sludges and biosolids from municipal wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114565. [PMID: 35066192 DOI: 10.1016/j.jenvman.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Environmental regulation of organic pollutants has not kept pace with the growth in the number and diversity of legacy and emerging organic substances now in use. Simpler and cheaper tools and methodologies are needed to quickly assess the organic pollutant risks in waste materials applied to land such as municipal wastewater treatment sludges and biosolids. This study attempts to provide these, using an approach that consists of chemical leaching and analysis of dissolved organic carbon and determination of its biodegradability by measuring persistent dissolved organic carbon. Primary and secondary sludges, dewatered sludge cake, and anaerobically and thermally treated biosolids obtained from various types of municipal wastewater treatment plants were used in the study. The study found little variability in the levels of dissolved organic carbon leached from primary sludges obtained from different municipal wastewater treatment plants but found significant differences for secondary sludges based on levels of nitrification at the municipal wastewater treatment plants. As predicted treated biosolids leached less dissolved organic carbon than untreated dry sludges but had relatively higher proportions of persistent or poorly biodegradable dissolved organic carbon. Across all tested sludges and biosolids persistent dissolved organic carbon ranged from 14 to 39%, with biosolids that have undergone anaerobic digestion and thermal treatment more likely to contain greater relative proportion of persistent dissolved organic carbon than untreated sludges. The approach presented in this study will be useful in assessing the effectiveness of current and widely employed sludge treatment methods in reducing persistent organic pollutants in biosolids disposed on land.
Collapse
Affiliation(s)
- Juliette O'Keeffe
- School of Applied Science, Division of Engineering and Food Sciences University of Abertay, Bell Street, Dundee, Scotland, DD1 1HG, UK.
| | - Joseph Akunna
- School of Applied Science, Division of Engineering and Food Sciences University of Abertay, Bell Street, Dundee, Scotland, DD1 1HG, UK.
| |
Collapse
|
34
|
Sjøholm KK, Dechesne A, Lyon D, Saunders DMV, Birch H, Mayer P. Linking biodegradation kinetics, microbial composition and test temperature - Testing 40 petroleum hydrocarbons using inocula collected in winter and summer. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:152-160. [PMID: 34985480 DOI: 10.1039/d1em00319d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many factors affect the biodegradation kinetics of chemicals in test systems and the environment. Empirical knowledge is needed on how much test temperature, inoculum, test substances and co-substrates influence the biodegradation kinetics and microbial composition in the test. Water was sampled from the Gudenaa river in winter (2.7 °C) and summer (17 °C) (microbial inoculum) and combined with an aqueous stock solution of >40 petroleum hydrocarbons prepared by passive dosing. This resulted in low-concentration test systems that were incubated for 30 days at 2.7, 12 and 20 °C. Primary biodegradation kinetics, based on substrate depletion relative to abiotic controls, were determined with automated Solid Phase Microextraction coupled to GC/MS. Biodegradation kinetics were remarkably similar for summer and winter inocula when tested at the same temperature, except when cooling summer inoculum to 2.7 °C which delayed degradation relative to winter inoculum. Amplicon sequencing was applied to determine shifts in the microbial composition between season and during incubations: (1) the microbial composition of summer and winter inocula were remarkably similar, (2) the incubation and the incubation temperature had both a clear impact on the microbial composition and (3) the effect of adding >40 petroleum hydrocarbons at low test concentrations was limited but resulted in some proliferation of the known petroleum hydrocarbon degraders Nevskia and Sulfuritalea. Overall, biodegradation kinetics and its temperature dependency were very similar for winter and summer inoculum, whereas the microbial composition was more affected by incubation and test temperature compared to the addition of test chemicals at low concentrations.
Collapse
Affiliation(s)
- Karina Knudsmark Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - David M V Saunders
- Concawe, B-1160 Brussels, Belgium
- Shell Health, Shell International B.V., 2596 HR The Hague, The Netherlands
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Birch H, Sjøholm KK, Dechesne A, Sparham C, van Egmond R, Mayer P. Biodegradation Kinetics of Fragrances, Plasticizers, UV Filters, and PAHs in a Mixture─Changing Test Concentrations over 5 Orders of Magnitude. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:293-301. [PMID: 34936331 DOI: 10.1021/acs.est.1c05583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biodegradation of organic chemicals emitted to the environment is carried out by mixed microbial communities growing on multiple natural and xenobiotic substrates at low concentrations. This study aims to (1) perform simulation type biodegradation tests at a wide range of mixture concentrations, (2) determine the concentration effect on the biodegradation kinetics of individual chemicals, and (3) link the mixture concentration and degradation to microbial community dynamics. Two hundred ninety-four parallel test systems were prepared using wastewater treatment plant effluent as inoculum and passive dosing to add a mixture of 19 chemicals at 6 initial concentration levels (ng/L to mg/L). After 1-30 days of incubation at 12 °C, abiotic and biotic test systems were analyzed using arrow solid phase microextraction and GC-MS/MS. Biodegradation kinetics at the highest test concentrations were delayed for several test substances but enhanced for the reference chemical naphthalene. Test concentration thus shifted the order in which chemicals were degraded. 16S rRNA gene amplicon sequencing indicated that the highest test concentration (17 mg C/L added) supported the growth of the genera Acidovorax, Novosphingobium, and Hydrogenophaga, whereas no such effect was observed at lower concentrations. The chemical and microbial results confirm that too high mixture concentrations should be avoided when aiming at determining environmentally relevant biodegradation data.
Collapse
Affiliation(s)
- Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Karina Knudsmark Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Chris Sparham
- Safety & Environmental Assurance Centre, Unilever, Bedford MK44 1LQ, U.K
| | - Roger van Egmond
- Safety & Environmental Assurance Centre, Unilever, Bedford MK44 1LQ, U.K
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Whale G, Parsons J, van Ginkel K, Davenport R, Vaiopoulou E, Fenner K, Schaeffer A. Improving our understanding of the environmental persistence of chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1123-1135. [PMID: 33913596 PMCID: PMC8596663 DOI: 10.1002/ieam.4438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 05/04/2023]
Abstract
Significant progress has been made in the scientific understanding of factors that influence the outcome of biodegradation tests used to assess the persistence (P) of chemicals. This needs to be evaluated to assess whether recently acquired knowledge could enhance existing regulations and environmental risk assessments. Biodegradation tests have limitations, which are accentuated for "difficult-to-test" substances, and failure to recognize these can potentially lead to inappropriate conclusions regarding a chemical's environmental persistence. Many of these limitations have been previously recognized and discussed in a series of ECETOC reports and workshops. These were subsequently used to develop a series of research projects designed to address key issues and, where possible, propose methods to mitigate the limitations of current assessments. Here, we report on the output of a Cefic LRI-Concawe Workshop held in Helsinki on September 27, 2018. The objectives of this workshop were to disseminate key findings from recent projects and assess how new scientific knowledge can potentially support and improve assessments under existing regulatory frameworks. The workshop provided a unique opportunity to initiate a process to reexamine the fundamentals of degradation and what current assessment methods can achieve by (1) providing an overview of the key elements and messages coming from recent research initiatives and (2) stimulating discussion regarding how these interrelate and how new findings can be developed to improve persistence assessments. Opportunities to try and improve understanding of factors affecting biodegradation assessments and better understanding of the persistence of chemicals (particularly UVCBs [substances of unknown or variable composition, complex reaction products, or biological materials]) were identified, and the workshop acted as a catalyst for further multistakeholder activities and engagements to take the persistence assessment of chemicals into the 21st century. Integr Environ Assess Manag 2021;17:1123-1135. © 2021 European Petroleum Refiners Association - Concawe Division. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - John Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | | | - Kathrin Fenner
- Chemistry DepartmentUniversity of ZürichZürichSwitzerland
| | | |
Collapse
|
37
|
Albright VC, Chai Y. Knowledge Gaps in Polymer Biodegradation Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11476-11488. [PMID: 34374525 DOI: 10.1021/acs.est.1c00994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The environmental fate of polymers has attracted growing attention in the academic, industrial, and regulatory communities as well as in the general public as global production and use of polymers continue to increase. Biodegradable polymers especially have drawn significant interest. Polymer biodegradation literature published over the past decade was reviewed to compare test methods commonly used for evaluating polymer biodegradation, and to identify key areas for improvement. This paper examines key aspects of study design for polymer biodegradation such as physical form of the test material, use of appropriate reference materials, selection of test systems, and advantages and limitations of various analytical methods for determining biodegradation. Those aspects of study design are critical for determining the outcome of polymer biodegradation studies. This paper identifies several knowledge gaps for assessing polymer biodegradation and provides four key recommendations. (1) develop standardized guidelines for each specific environmental matrix (compost, activated sludge, marine environments, etc.) that can used for all polymer types, (2) develop accelerated biodegradation test methods and predictive methods for polymers, (3) develop an integrated analytical approach using multiple simple, and effective analytical methods, and (4) develop new frameworks for assessing the overall persistence of polymers and are accepted by the greater scientific community.
Collapse
Affiliation(s)
- Vurtice C Albright
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, United States
| | - Yunzhou Chai
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, United States
| |
Collapse
|
38
|
Møller MT, Birch H, Sjøholm KK, Hammershøj R, Jenner K, Mayer P. Biodegradation of an essential oil UVCB - Whole substance testing and constituent specific analytics yield biodegradation kinetics of mixture constituents. CHEMOSPHERE 2021; 278:130409. [PMID: 34126677 DOI: 10.1016/j.chemosphere.2021.130409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 05/20/2023]
Abstract
Testing and assessing the persistency, bioaccumulative and toxic properties of UVCBs (substances of Unknown or Variable composition, Complex reaction products or Biological materials) pose major technical and analytical challenges. The main aim of this study was to combine whole substance biodegradation testing with constituent specific analytics for determining primary biodegradation kinetics of the main UVCB constituents. An additional aim was to link the primary biodegradation kinetics of the main constituents to the bioaccumulation potential and baseline toxicity potential of the UVCB. Two closed biodegradation experiments were conducted using similar test systems but different analyses. The model substance, cedarwood Virginia oil, was tested at a low concentration and wastewater treatment plant effluent served as inoculum. We used microvolume solvent spiking for a quantitative mass transfer of the UVCB, while avoiding that co-solvent degradation would lead to anaerobic conditions. The biodegradation of UVCB constituents was determined with automated solid-phase microextraction coupled to GC-MS/MS using targeted analysis for main constituents and non-targeted analysis for minor constituents and non-polar degradation products. Primary biodegradation kinetics of main constituents, accounting for 73% w/w of the mixture, were successfully determined with degradation rate constants ranging from 0.09 to 0.25 d-1. Minor constituents were also degraded and non-polar degradation products were not observed. Finally, the bioaccumulation potential and baseline toxicity potential of the mixture at test start were calculated and both parameters decreased then substantially. The strength of the new approach is the possibility of biodegradation testing of a whole UVCB at low concentration while generating constituent specific biodegradation kinetics.
Collapse
Affiliation(s)
- Mette Torsbjerg Møller
- Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Heidi Birch
- Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Karina Knudsmark Sjøholm
- Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Rikke Hammershøj
- Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Kgs, Lyngby, Denmark
| | | | - Philipp Mayer
- Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
39
|
Do initial concentration and activated sludge seasonality affect pharmaceutical biotransformation rate constants? Appl Microbiol Biotechnol 2021; 105:6515-6527. [PMID: 34423412 PMCID: PMC8403117 DOI: 10.1007/s00253-021-11475-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 10/29/2022]
Abstract
Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC-MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. KEY POINTS: • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change.
Collapse
|
40
|
Takekoshi S, Takano K, Matoba Y, Sato M, Tachibana A. Investigation of OECD 301F ready biodegradability test to evaluate chemical fate in a realistic environment. JOURNAL OF PESTICIDE SCIENCE 2021; 46:143-151. [PMID: 34135676 PMCID: PMC8175226 DOI: 10.1584/jpestics.d20-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
The OECD 301F ready biodegradability test has been approved for use under the Japanese Chemical Substances Control Law since 2018. This test uses activated sludge obtained from a sewage treatment plant instead of the standard activated sludge used for the 301C test. In addition, the test is allowed to add an inert support or emulsifying agent, and/or to change the volume of the test medium. In this study, we first confirmed that the standard sludge had lower biodegradation activities than the sludge taken from a sewage treatment plant. Second, we showed that biodegradation percentages were increased by adding suitable amounts of silica gel or Tween 80. Third, we found that the biodegradations were accelerated by only increasing the medium volume under the conditions that concentrations of chemical, silica gel, and sludge were held constant. These findings are expected to contribute to the appropriate evaluation of chemical fate in a realistic environment.
Collapse
Affiliation(s)
- Saki Takekoshi
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| | - Kotaro Takano
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Yoshihide Matoba
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Masayuki Sato
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| |
Collapse
|
41
|
van Dijk J, Gustavsson M, Dekker SC, van Wezel AP. Towards 'one substance - one assessment': An analysis of EU chemical registration and aquatic risk assessment frameworks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111692. [PMID: 33293165 DOI: 10.1016/j.jenvman.2020.111692] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
With the Green Deal the EU aims to achieve a circular economy, restore biodiversity and reduce environmental pollution. As a part of the Green Deal a 'one-substance one-assessment' (OS-OA) approach for chemicals has been proposed. The registration and risk assessment of chemicals on the European market is currently fragmented across different legal frameworks, dependent on the chemical's use. In this review, we analysed the five main European chemical registration frameworks and their risk assessment procedures for the freshwater environment, covering 1) medicines for human use, 2) veterinary medicines, 3) pesticides, 4) biocides and 5) industrial chemicals. Overall, the function of the current frameworks is similar, but important differences exist between the frameworks' environmental protection goals and risk assessment strategies. These differences result in inconsistent assessment outcomes for similar chemicals. Chemicals are also registered under multiple frameworks due to their multiple uses, and chemicals which are not approved under one framework are in some instances allowed on the market under other frameworks. In contrast, an OS-OA will require a uniform hazard assessment between all different frameworks. In addition, we show that across frameworks the industrial chemicals are the least hazardous for the freshwater environment (median PNEC of 2.60E-2 mg/L), whilst biocides are the most toxic following current regulatory assessment schemes (median PNEC of 1.82E-4 mg/L). Finally, in order to facilitate a successful move towards a OS-OA approach we recommend a) harmonisation of environmental protection goals and risk assessment strategies, b) that emission, use and production data should be made publicly available and that data sharing becomes a priority, and c) an alignment of the criteria used to classify problematic substances.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, CB, Utrecht, 3584, the Netherlands.
| | - Mikael Gustavsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, CB, Utrecht, 3584, the Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, XH Amsterdam, 1098, the Netherlands
| |
Collapse
|
42
|
Özel Duygan BD, Rey S, Leocata S, Baroux L, Seyfried M, van der Meer JR. Assessing Biodegradability of Chemical Compounds from Microbial Community Growth Using Flow Cytometry. mSystems 2021; 6:e01143-20. [PMID: 33563780 PMCID: PMC7883543 DOI: 10.1128/msystems.01143-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 11/20/2022] Open
Abstract
Compound biodegradability tests with natural microbial communities form an important keystone in the ecological assessment of chemicals. However, biodegradability tests are frequently limited by a singular focus either on the chemical and potential transformation products or on the individual microbial species degrading the compound. Here, we investigated a methodology to simultaneously analyze community compositional changes and biomass growth on dosed test compound from flow cytometry (FCM) data coupled to machine-learned cell type recognition. We quantified the growth of freshwater microbial communities on a range of carbon dosages of three readily biodegradable reference compounds, phenol, 1-octanol, and benzoate, in comparison to three fragrances, methyl jasmonate, myrcene, and musk xylene (as a nonbiodegradable control). Compound mass balances with between 0.1 to 10 mg C · liter-1 phenol or 1-octanol, inferred from cell numbers, parent compound analysis, and CO2 evolution, as well as use of 14C-labeled compounds, showed between 6 and 25% mg C · mg C-1 substrate incorporation into biomass within 2 to 4 days and 25 to 45% released as CO2 In contrast, similar dosage of methyl jasmonate and myrcene supported slower (4 to 10 days) and less (2.6 to 6.6% mg C · mg C-1 with 4.9 to 22% CO2) community growth. Community compositions inferred from machine-learned cell type recognition and 16S rRNA amplicon sequencing showed substrate- and concentration-dependent changes, with visible enrichment of microbial subgroups already at 0.1 mg C · liter-1 phenol and 1-octanol. In general, community compositions were similar at the start and after the stationary phase of the microbial growth, except at the highest used substrate concentrations of 100 to 1,000 mg C · liter-1 Flow cytometry cell counting coupled to deconvolution of communities into subgroups is thus suitable to infer biodegradability of organic chemicals, permitting biomass balances and near-real-time assessment of relevant subgroup changes.IMPORTANCE The manifold effects of potentially toxic compounds on microbial communities are often difficult to discern. Some compounds may be transformed or completely degraded by few or multiple strains in the community, whereas others may present inhibitory effects. In this study, we benchmark a new method based on machine-learned microbial cell recognition to rapidly follow dynamic changes in aquatic communities. We further determine productive biodegradation upon dosing of a number of well-known readily biodegradable tester compounds at a variety of concentrations. Microbial community growth was quantified using flow cytometry, and the multiple cell parameters measured were used in parallel to deconvolute the community on the basis of similarity to previously standardized cell types. Biodegradation was further confirmed by chemical analysis, showing how distinct changes in specific populations correlate to degradation. The method holds great promise for near-real-time community composition changes and deduction of compound biodegradation in natural microbial communities.
Collapse
Affiliation(s)
- B D Özel Duygan
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - S Rey
- Biotechnology and Natural Process Development Department, Firmenich SA, Geneva, Switzerland
| | - S Leocata
- Innovation in Analytical Chemistry Department, Firmenich SA, Geneva, Switzerland
| | - L Baroux
- Innovation in Analytical Chemistry Department, Firmenich SA, Geneva, Switzerland
| | - M Seyfried
- Biotechnology and Natural Process Development Department, Firmenich SA, Geneva, Switzerland
| | - J R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Southwell RV, Hilton SL, Pearson JM, Hand LH, Bending GD. Inclusion of seasonal variation in river system microbial communities and phototroph activity increases environmental relevance of laboratory chemical persistence tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139070. [PMID: 32464572 PMCID: PMC7298614 DOI: 10.1016/j.scitotenv.2020.139070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 04/15/2023]
Abstract
Regulatory tests assess crop protection product environmental fate and toxicity before approval for commercial use. Although globally applied laboratory tests can assess biodegradation, they lack environmental complexity. Microbial communities are subject to temporal and spatial variation, but there is little consideration of these microbial dynamics in the laboratory. Here, we investigated seasonal variation in the microbial composition of water and sediment from a UK river across a two-year time course and determined its effect on the outcome of water-sediment (OECD 308) and water-only (OECD 309) biodegradation tests, using the fungicide isopyrazam. These OECD tests are performed under dark conditions, so test systems incubated under non-UV light:dark cycles were also included to determine the impact on both inoculum characteristics and biodegradation. Isopyrazam degradation was faster when incubated under non-UV light at all collection times in water-sediment microcosms, suggesting that phototrophic communities can metabolise isopyrazam throughout the year. Degradation rate varied seasonally between inoculum collection times only in microcosms incubated in the light, but isopyrazam mineralisation to 14CO2 varied seasonally under both light and dark conditions, suggesting that heterotrophic communities may also play a role in degradation. Bacterial and phototroph communities varied across time, but there was no clear link between water or sediment microbial composition and variation in degradation rate. During the test period, inoculum microbial community composition changed, particularly in non-UV light incubated microcosms. Overall, we show that regulatory test outcome is not influenced by temporal variation in microbial community structure; however, biodegradation rates from higher tier studies with improved environmental realism, e.g. through addition of non-UV light, may be more variable. These data suggest that standardised OECD tests can provide a conservative estimate of pesticide persistence end points and that additional tests including non-UV light could help bridge the gap between standard tests and field studies.
Collapse
Affiliation(s)
- Rebecca V Southwell
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; Product Safety, Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG4 6EY, UK.
| | - Sally L Hilton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jonathan M Pearson
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Laurence H Hand
- Product Safety, Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG4 6EY, UK
| | - Gary D Bending
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
44
|
Brown DM, Lyon D, Saunders DMV, Hughes CB, Wheeler JR, Shen H, Whale G. Biodegradability assessment of complex, hydrophobic substances: Insights from gas-to-liquid (GTL) fuel and solvent testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138528. [PMID: 32334217 DOI: 10.1016/j.scitotenv.2020.138528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 04/15/2023]
Abstract
The assessment of substances of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs) presents significant challenges when determining biodegradation potential and environmental persistence for regulatory purposes. An example of UVCBs is the gas-to-liquid (GTL) products, which are synthetic hydrocarbons produced from natural gas using a catalytic process known as the Fischer-Tropsch process. These synthetic hydrocarbons are fractionated into a wide array of products equivalent in function to their petroleum-derived analogues. Here we summarise the results of an extensive testing program to assess the biodegradability of several GTL products. This program highlights the challenges associated with UVCBs and provides a case study for the assessment of such substances that are also poorly soluble and volatile. When tested with the appropriate methods, all the GTL products assessed in this study were found to be readily biodegradable indicating they are not likely to be persistent in the environment.
Collapse
Affiliation(s)
| | | | | | | | - James R Wheeler
- Shell Health, Shell International B.V., The Hague, the Netherlands
| | - Hua Shen
- Shell Health Americas, Houston, USA
| | - Graham Whale
- Whale Environmental Consultancy Limited, Chester, UK
| |
Collapse
|
45
|
A Rapid Experimental Procedure to Assess Environmental Compatibility of Conditioning Mixtures Used in TBM-EPB Technology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Earth Pressure Balance (EPB) Tunnel Boring Machines (TBM) are currently the most widely used machines to perform tunnel excavation, particularly in urban areas. This technology involves the injection of chemicals as conditioning mixtures, which commonly raises concerns limiting the reuse of soils after excavation. This study deals with the prospect of a simplified, rapid and replicable methodology for the evaluation of the biodegradability of these conditioning mixtures. For this purpose, the biodegradation of three commercial conditioning mixtures was investigated in closed bottle tests by investigating the effect of different mixtures dosages and two different inocula (soil humus and Bacillus Clausii). While using soil humus as inoculum, a comparative study of biodegradation of the three investigated mixtures was successfully carried out; in the case of Bacillus Clausii, it was not possible to make a comparison between the different formulations in a short time. The adoption of soil humus satisfied only the criteria of rapid test, while the Bacillus Clausii, as specific inoculum, can meet the criteria of replicable results. For this reason, in the second part of this experimental study, a rapid and replicable procedure was proposed and validated. A kinetic study of organic carbon removal was also carried out.
Collapse
|
46
|
Adyari B, Shen D, Li S, Zhang L, Rashid A, Sun Q, Hu A, Chen N, Yu CP. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137767. [PMID: 32179350 DOI: 10.1016/j.scitotenv.2020.137767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Micropollutants have become of great concern, because of their disrupting effects on the structure and function of microbial communities. However, little is known about the relative importance of trace micropollutants on the aquatic prokaryotic communities as compared to the traditional physico-chemical characteristics, especially at different spatial dimensions. Here, we investigated free-living (FL) and particle-associated (PA) prokaryotic communities in a subtropical water reservoir, China, across seasons at horizontal (surface water) and vertical (depth-profile) scales by using 16S rRNA gene amplicon sequencing. Our results showed that the shared variances of physico-chemicals and micropollutants explained majority of the spatial variations in prokaryotic communities, suggesting a strong joint effect of the two abiotic categories on reservoir prokaryotic communities. Micropollutants appeared to exert strong independent influence on the core sub-communities (i.e., abundant and wide-spread taxa) than on the satellite (i.e., less abundant and narrow-range taxa) counterparts. The pure effect of micropollutants on both core and satellite sub-communities from FL and PA fractions was ~1.5 folds greater than that of physico-chemical factors at the horizontal scale, whereas an opposite effect was observed at the vertical scale. Moreover, eight micropollutants including anti-fungal agents, antibiotics, bisphenol analogues, stimulant and UV-filter were identified as the major disrupting compounds with strong associations with core taxa of typical freshwater prokaryotes. Altogether, we concluded that the ecological disrupting effects of micropollutants on prokaryotic communities may vary along horizontal and vertical dimensions in freshwater ecosystems.
Collapse
Affiliation(s)
- Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Dandan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde D-18119, Germany; Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
47
|
Li Z, McLachlan MS. Comparing non-targeted chemical persistence assessed using an unspiked OECD 309 test to field measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1233-1242. [PMID: 32227045 DOI: 10.1039/c9em00595a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous research has shown that unspiked OECD 309 tests can be used to quantify chemical biodegradation in surface waters, relying on chemical residues already present in the water. Here we test the hypothesis that unspiked OECD 309 tests can quantitatively predict chemical persistence in the environment by comparing chemical half-lives assessed in the laboratory against those measured in the field. The study object was a Swedish lake heavily impacted by treated municipal wastewater. Half-lives in the field were measured by mass balance over 12 weeks. In parallel, half-lives in the lab were determined with an unspiked OECD 309 test run for 60 days. Chemical analysis was conducted using a non-target screening approach. The field study yielded a half-life <100 days for 38 chemicals for which the dominant source was wastewater; 32 of these were also detected in the lab test, whereby 18 had half-lives with a well-constrained uncertainty that did not intersect infinity. For 14 of the 18 chemicals, the field and lab half-lives agreed within a factor 3. In summary, the lab test predicted chemical attenuation in the field well. Limitations of the approach include the need for measurable chemical concentrations in the water body and failure to account for some attenuation mechanisms like phototransformation.
Collapse
Affiliation(s)
- Zhe Li
- Department of Environmental Science (ACES), Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
48
|
Goss M, Li Z, McLachlan MS. A simple field-based biodegradation test shows pH to be an inadequately controlled parameter in laboratory biodegradation testing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1006-1013. [PMID: 32095797 DOI: 10.1039/c9em00491b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biodegradation tests are essential for characterizing the behavior of organic micropollutants in the environment, but they are carried out almost exclusively in the laboratory. Test parameters such as temperature and test chemical concentration are often applied in ways that affect observed biodegradation, and laboratory testing requires sophisticated temperature-controlled facilities. We developed a field-based test based on OECD 309 which minimizes the need for laboratory resources such as temperature-controlled facilities by using bottles incubated in the natural water body. The test also utilized contaminant residues present in unspiked natural water to increase the relevance of the results to the local system. A test in a local river and a matching lab-based test were conducted in parallel. We quantified 26 of 40 targeted micropollutants and observed dissipation for 13. Significant differences in half-life (up to a factor of 3.5) between lab and field bottles were observed for 7 compounds, with 6 of 7 degrading more slowly in field bottles. For 4 of these, dissipation was positively correlated to the neutral fraction of the chemical. Differences in the neutral fraction arose due to a higher pH in the lab bottles induced by outgassing of CO2 from the oversaturated river water. We conclude that pH is an important parameter to control in biodegradation testing and that field-based tests may be more environmentally relevant.
Collapse
Affiliation(s)
- Matthew Goss
- Department of Environmental Science (ACES), Stockholm University, Sweden.
| | | | | |
Collapse
|
49
|
Poursat BAJ, van Spanning RJM, Braster M, Helmus R, de Voogt P, Parsons JR. Long-term exposure of activated sludge in chemostats leads to changes in microbial communities composition and enhanced biodegradation of 4-chloroaniline and N-methylpiperazine. CHEMOSPHERE 2020; 242:125102. [PMID: 31669985 DOI: 10.1016/j.chemosphere.2019.125102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Exposure history and adaptation of the inoculum to chemicals have been shown to influence the outcome of ready biodegradability tests. However, there is a lack of information about the mechanisms involved in microbial adaptation and the implication thereof for the tests. In the present study, we investigated the impact of a long-term exposure to N-methylpiperazine (NMP) and 4-chloroaniline (4CA) of an activated sludge microbial community using chemostat systems. The objective was to characterize the influence of adaptation to the chemicals on an enhanced biodegradation testing, following the OECD 310 guideline. Cultures were used to inoculate the enhanced biodegradability tests, in batch, before and after exposure to each chemical independently in chemostat culture. Composition and diversity of the microbial communities were characterised by 16s rRNA gene amplicon sequencing. Using freshly sampled activated sludge, NMP was not degraded within the 28 d frame of the test while 4CA was completely eliminated. However, after one month of exposure, the community exposed to NMP was adapted and could completely degrade it. This result was in complete contrast with that from the culture exposed for 3 months to 4CA. Long term incubation in the chemostat system led to a progressive loss of the initial biodegradation capacity of the community, as a consequence of the loss of key degrading microorganisms. This study highlights the potential of chemostat systems to induce adaptation to a specific chemical, ultimately resulting in its biodegradation. At the same time, one should be critical of these observations as the dynamics of a microbial community are difficult to maintain in chemostat, as the loss of 4CA biodegradation capacity demonstrates.
Collapse
Affiliation(s)
- Baptiste A J Poursat
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Department of Molecular Cell Biology, Vrije Universteit, de Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universteit, de Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Martin Braster
- Department of Molecular Cell Biology, Vrije Universteit, de Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Ott A, Martin TJ, Snape JR, Davenport RJ. Increased cell numbers improve marine biodegradation tests for persistence assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135621. [PMID: 31841849 DOI: 10.1016/j.scitotenv.2019.135621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 04/15/2023]
Abstract
Currently available OECD biodegradation screening tests (BSTs) are not particularly suited for persistence screening. Their duration can be much less than international half-life thresholds for persistence and they are variable and stringent, therefore prone to false negatives. The present study extended test durations beyond 28 days and increased biomass concentrations for marine BSTs to better represent the microbial diversity inherent in the sampled environment. For this so-called environmentally relevant BST (erBST) marine cell concentrations were nominally increased 100-fold by tangential flow filtration. The marine erBST was validated against a standard BST using five 14C labeled reference compounds with a range of biodegradation potentials (aniline, 4-fluorophenol, 4-nitrophenol, 4-chloroaniline and pentachlorophenol) in a modified OECD 301B test. A full mass balance was collated to follow chemical fate in the tests. The erBST was more accurate and less variable than the comparator BST in assigning the reference compounds to their expected biodegradation classifications (non-persistent or potentially persistent). According to the REACH non-persistence criterion of ≥60% biodegradation over 60 days, the erBST correctly classified 60% of chemical replicates according to their expected biodegradation classification and had a coefficient of variation of 21% between replicates. In contrast, the BST correctly assessed 40% of reference chemicals in regards to their expected biodegradation classification with a coefficient of variation of 36%. All non-persistent chemicals showed increased degradation in the erBST, except for 4-chloroaniline, which did not degrade in either BST or erBST. Both tests showed no false positive results, correctly classifying the negative control pentachlorophenol as potentially persistent. Next, it is recommended to further validate the marine erBST in an inter-laboratory study incorporating different seawater sources to fully assess its variability and reliability.
Collapse
Affiliation(s)
- Amelie Ott
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK.
| | - Timothy J Martin
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| | - Jason R Snape
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK; AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK; University of Warwick, School of Life Sciences, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Russell J Davenport
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|