1
|
Wang HW, Shi XZ, Zhong XY, Ai G, Wang YH, Zhou ZZ, Lu D, Liu XL, Chen ZJ. Identification, characterization, and expression of Oryza sativa tryptophan decarboxylase genes associated with fluroxypyr-meptyl metabolism. THE PLANT GENOME 2025; 18:e20547. [PMID: 39757135 DOI: 10.1002/tpg2.20547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear. Three TDC differentially expressed genes (DEGs) and six TDC-coding genes were found to be expressed in fluroxypyr-meptyl (FLUME)-treated rice transcriptome datasets, which allowed researchers to explore the properties and roles of rice TDC family genes under pesticide-induced stress. By applying sequence alignment and phylogenetic analysis, two subfamilies of the TDC gene family-DUF674 and AAT_I-were found in rice, Glycine max, Zea mays, Hordeum vulgare, and Solanum lycopersicum. According to chromosomal location studies, segmental duplication aided in the expansion of the OsTDC gene family, and the three TDC DEGs in rice were irregularly distributed on two of its 12 chromosomes. In addition, nine rice TDC genes displayed a collinear relationship with those of soybean, maize, barley, and tomato. Rice TDC genes can encode a variety of biotic and abiotic stress responses because of their diverse gene architectures, cis-elements, motif compositions, and conserved domains. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis confirmed that a proportion of TDC genes (Os08g0140300, Os08g0140500, and Os10g0380800) were preferably expressed under 0.08 mg L-1 FLUME stress, with a 5.2-, 3.2-, and 3.9-fold increase in roots and a 2.1-, 2.4-, and 2.6-fold increase in shoots, respectively. MT treatment further increased the expression of these genes, with a 2.1-fold, 3.1-fold, and fivefold increase in roots and a 1.5-, 1.1-, and 1.1-fold increase in shoots than that treated with 0.08 mg L-1 FLUME only, respectively. When rice seedling roots and shoots were subjected to 0.08 mg L-1 FLUME stress, TDC activity was increased by 2.7 and 1.6 times higher than in the control, respectively. MT application also further promoted TDC activity in rice tissues; TDC activity in rice roots and shoots was twofold and 1.4-fold higher, respectively, than that under 0.08 mg L-1 FLUME alone. These findings indicate that TDC genes respond effectively to FLUME stress, and the application of MT could enhance the expression of these TDC genes, which comprise a set of candidate genes that regulate pesticide metabolism and degradation with the application of MT.
Collapse
Affiliation(s)
- Hao Wen Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xu Zhen Shi
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Yu Zhong
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Hui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhi Zhong Zhou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Dan Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Liang Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zhao Jie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Akpinar A, Cansev A. Choline supplementation reduces cadmium uptake and alleviates cadmium toxicity in Solanum lycopersicum seedlings. BMC PLANT BIOLOGY 2024; 24:977. [PMID: 39420267 PMCID: PMC11484230 DOI: 10.1186/s12870-024-05653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Sustainable plant production in soil polluted with heavy metals requires that novel strategies are developed for the benefit of humans and other living things. Cadmium (Cd) is a common heavy metal pollutant for plants, and there is limited information on the use of exogenous bio-regulators to reduce the accumulation and toxic effects of Cd pollution in plants. Choline is an endogenous quertarnary amine that is known to improve stress tolerance in plants, while its mechanism of action in certain conditions is yet to be determined. This study investigated the effects of foliar choline supplementation (10 mM) on Solanum lycopersicum seedlings exposed to Cd application (50 mg/L in soil). The seedlings were randomized to five groups: Control (E1), Cd stress (E2), Choline supplementation after Cd stress (E3), Choline (E4), and Choline supplementation before Cd stress (E5). Following the applications, the Cd content, growth and development parameters (chlorophyll content, fresh and dry weight), oxidative stress parameters (H2O2 and MDA contents), as well as antioxidative defense system (SOD, GSH, AsA, and TPC contents) were analyzed. Choline supplementation after Cd stress reduced the enhanced Cd content in roots by 38% but did not alter it in leaves (p > 0.05) compared to the Cd group. Choline supplementation before Cd stress decreased Cd content both in roots by 87.5% and in leaves by 50%. Choline supplementation after and before Cd stress increased fresh and dry weights in both roots and leaves. While the Cd group (E2) increased the H2O2 level and SOD activity, no remarkable change was observed in H2O2 levels in all choline supplementations (E3, E4, E5). Therefore, lipid peroxidation (MDA) was not observed in choline supplementation before Cd stress (E5), however, when the choline was applied after Cd stress (E3) MDA content was reduced by 40% compared with the Cd stress group (E2). Choline supplementations after and before Cd stress (E3, E5) increased AsA content by 30%, while the Cd group (E2) decreased it by 60% compared with the control group (E1). Choline supplementations before Cd stress (E5) increased TPC by 33%, while the Cd group (E2) decreased it by 18%, moreover, when choline was applied after Cd stress (E3), no change was observed compared to the control group. These data suggest that choline prevents inhibition of plant growth due to Cd toxicity by reducing Cd uptake. The results provided in the present study are likely to enhance the quality and efficiency of crop production in heavy metal-polluted areas.
Collapse
Affiliation(s)
- Ayşegül Akpinar
- Department of Park and Horticulture, Vocational School of Technical Sciences, Bursa Uludag University, Bursa, 16059, Turkey.
| | - Asuman Cansev
- Faculty of Agriculture, Horticulture Department, Bursa Uludag University, Bursa, 16059, Turkey
| |
Collapse
|
3
|
Khurshid A, Inayat R, Basit A, Mobarak SH, Gui SH, Liu TX. Effects of thiamethoxam on physiological and molecular responses to potato plant (Solanum tuberosum), green peach aphid (Myzus persicae), and parasitoid (Aphidius gifuensis). PEST MANAGEMENT SCIENCE 2024; 80:3000-3009. [PMID: 38312101 DOI: 10.1002/ps.8006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 μm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 μm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rehan Inayat
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | | | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
5
|
Qiao Y, Zhang N, Liu J, Yang H. Interpretation of ametryn biodegradation in rice based on joint analyses of transcriptome, metabolome and chemo-characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130526. [PMID: 36463741 DOI: 10.1016/j.jhazmat.2022.130526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Agrochemicals such as pesticide residues become environmental contaminants due to their ecotoxic risks to plant, animal and human health. Ametryn (AME) is a widely used farmland pesticide and its residues are widespread in soils, surface stream and groundwater. However, its toxicological and degradative mechanisms in plants and food crops are largely unknown. This study comprehensively investigated AME toxicology and degradation mechanisms in a paddy crop. AME was freely absorbed by rice roots, translocated to the above-ground and thus repressed plant elongation, and reduced dry weight and chlorophyll concentration, but increased oxidative injury and subcellular electrolyte permeability. Analysis of the transcriptome and metabolome revealed that exposure to AME evoked global AME-responsive genes and step-wise catabolism of AME. We detected 995 (roots) and 136 (shoots) upregulated and differentially expressed genes (DEGs) in response to AME. Metabolomic profiling revealed that many basal metabolites such as carbohydrates, amino acids, glutathione, hormones and phenylpropanoids involved in AME catabolism were accordingly accumulated in rice. Eight metabolites and twelve conjugates of AME were characterized by HPLC-Q-TOF-HRMS/MS. These AME metabolites and conjugates are closely related to DEGs, differentially accumulated metabolites (DAMs) and activities of antioxidative enzymes. Collectively, our work highlights the specific mechanisms for AME degradative metabolism through Phase I and II reactive pathways (e.g. hydroxylation and dealkylation), with will help develop genetically engineered rice used to bioremediate AME-contaminated paddy soils and minimize AME accumulation rice crops.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Kumar V, Khan A, Srivastava A, Saxena G. Toxicity assessment of metribuzin and its amelioration through plant growth regulators in Vigna radiata (L.) R. Wilczek. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33307-33321. [PMID: 36478549 DOI: 10.1007/s11356-022-24534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The present experiment was conducted to evaluate the metribuzin-induced stress response in Vigna radiata and to explore the ameliorative role of exogenous application of plant growth regulators (PGRs) against metribuzin toxicity by assessing important biochemical and yield parameters. Prior to the field experiment, dose standardization experiments were performed, and EC50 was calculated for metribuzin. On day 21, field grown V. radiata plants were treated with graded concentrations of metribuzin (0-1000 mg [Formula: see text]). Plants treated with 600 mg [Formula: see text] (EC50) and 1000 mg [Formula: see text] (highest dose) of metribuzin were co-treated individually and simultaneously with gibberellic acid-3 (GA), indole-3 acetic acid (IAA), and salicylic acid (SA). After 7 days of treatment, leaf tissues were analyzed for biochemical parameters, whereas those related to yield were recorded during harvest. The result of this study indicated that metribuzin treatment to V. radiata resulted in increase in lipid peroxidation and reduce chlorophyll and carotenoid contents as well as yield parameters. However, metribuzin-treated plants induced proline accumulation and activity of antioxidant enzymes. Exogenous application of GA, IAA, and SA significantly reduced lipid peroxidation and increased contents of photosynthetic pigments, proline, and antioxidant enzymes thereby increasing yield parameters. It was observed that during metribuzin stress, SA exhibited a better ameliorative response out of the three exogenously applied PGRs, while the combined use of all PGRs exhibited much improved ameliorative response on biochemical and yield parameters of plants.
Collapse
Affiliation(s)
- Vaibhav Kumar
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Adiba Khan
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Gauri Saxena
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
7
|
Demiralay M. Exogenous acetone O-(4-chlorophenylsulfonyl) oxime alleviates Cd stress-induced photosynthetic damage and oxidative stress by regulating the antioxidant defense mechanism in Zea mays. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2069-2083. [PMID: 36573151 PMCID: PMC9789276 DOI: 10.1007/s12298-022-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) toxicity in leaves decreases their photosynthetic efficiency by degrading photosynthetic pigments, reducing the activity of gas exchange parameters and photosystem II (PSII), and producing reactive oxygen species. Although acetone O-(4-chlorophenylsulfonyl) oxime (AO) alleviates stress due to heavy metals in plants, its effects on the photosynthetic apparatus and redox balance under Cd stress are not clear. Herein, the role of AO in modulating the relationship between the antioxidant defense system and photosynthetic performance including chlorophyll fluorescence and gas exchange in mitigating the stress damage caused by Cd in maize seedlings was investigated. Three-week-old maize seedlings were pre-treated with AO (0.66 mM) and exposed to 100 µM Cd stress. Our findings indicated that AO application increased Cd accumulation, thiobarbituric acid-reactive substances (TBARS), photosynthetic rate, hydrogen peroxide (H2O2), total chlorophyll and carotenoid, transpiration, stomatal conductance, maximum photochemical efficiency of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), intercellular CO2 concentration, photochemical quenching (qP), superoxide dismutase, electron transport rate, proline, ascorbate peroxidase, catalase, guaiacol peroxidase, 4-hydroxybenzoic acid, catechol, and cinnamic acid in maize seedling under Cd stress. Conversely, AO significantly reduced oxidative damage levels (H2O2, TBARS). It was concluded that exogenous AO can overcome Cd-mediated oxidative damage and hence protect the photosynthetic machinery by providing stress tolerance and regulating the antioxidant defense mechanism, which includes proline, phenolic compounds, and antioxidant enzyme activities. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01258-5.
Collapse
Affiliation(s)
- Mehmet Demiralay
- Department of Forestry Engineering, Faculty of Forestry, Artvin Coruh University, 0800 Artvin, Turkey
| |
Collapse
|
8
|
Effects of Combined Application of Salicylic Acid and Proline on the Defense Response of Potato Tubers to Newly Emerging Soft Rot Bacteria (Lelliottia amnigena) Infection. SUSTAINABILITY 2022. [DOI: 10.3390/su14148870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potato soft rot, caused by the pathogenic bacterium Lelliottia amnigena (Enterobacter amnigenus), is a serious and widespread disease affecting global potato production. Both salicylic acid (SA) and proline (Pro) play important roles in enhancing potato tuber resistance to soft rot. However, the combined effects of SA and Pro on defense responses of potato tubers to L. amnigena infection remain unknown. Hence, the combined effects of SA and Pro in controlling newly emerging potato soft rot bacteria were investigated. Sterilized healthy potato tubers were pretreated with 1.5 mM SA and 2.0 mM Pro 24 h before an inoculation of 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL−1). Rotting was noticed on the surfaces of the hole where the L. amnigena suspension was inoculated. Application of SA and Pro with L. amnigena lowered the activity of pectinase, protease, pectin lyase, and cellulase by 64.3, 77.8, 66.4 and 84.1%, and decreased malondialdehyde and hydrogen peroxide contents by 77.2% and 83.8%, respectively, compared to the control. The activities of NADPH oxidase, superoxide dismutase, peroxide, catalase, polyphenol oxidase, phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-coumaryl-CoA ligase and cinnamate-4-hydroxylase were increased in the potato tubers with combined treatments by 91.4, 92.4, 91.8, 93.5, 94.9, 91.3, 96.2, 94.7 and 97.7%, respectively, compared to untreated stressed tubers. Six defense-related genes, pathogenesis-related protein, tyrosine-protein kinase, Chitinase-like protein, phenylalanine ammonia-lyase, pathogenesis-related homeodomain protein, and serine protease inhibitor, were induced in SA + Pro treatment when compared with individual application of SA or Pro. This study indicates that the combined treatment of 1.5 mM SA and 2.0 mM Pro had a synergistic effect in controlling potato soft rot caused by a newly emerging bacterium.
Collapse
|
9
|
Li X, Riaz M, Song B, Liang X, Liu H. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113587. [PMID: 35512468 DOI: 10.1016/j.ecoenv.2022.113587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Fomesafen herbicide application has become major pollution in the growth and production of crops. Spraying fomesafen on the target crops may drift out to non-target crops. In northeast China, sugar beets are always planted adjacent to soybeans. Salicylic acid (SA) plays an important role in crop growth and alleviating abiotic stress, however, the role of SA in relieving fomesafen stress in sugar beet growth has rarely been investigated. Therefore, a pot study was conducted to elucidate the effects of different concentrations (0.025, 0.25, 0.5, 1, 5, and 10 mM) of SA on morphological parameters, photosynthetic performance, and antioxidant defense system in sugar beet seedlings under fomesafen (22.5 g a.i. ha-1) stress. The results showed that fomesafen stress inhibited the growth of sugar beet seedlings, and photosynthetic performance, while increased membrane lipid peroxidation and oxidative stress. However, exogenous SA alleviated the fomesafen stress and increased plant height, biomass, photosynthetic pigment contents, net photosynthetic rate (Pn), and photochemical efficiency of PSⅡ (Fv/Fm) in sugar beet leaves. Meanwhile, exogenous SA maintained the cell membrane integrity by reducing the content of malondialdehyde (MDA) and electrolyte permeability and regulating the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol (PPO). Therefore, it is concluded that exogenous SA ameliorated the adverse effects of fomesafen on the growth of sugar beet seedlings, with a pronounced effect at 1 mM SA. The present study results may have useful implications in managing other plants that are poisoned by herbicides.
Collapse
Affiliation(s)
- Xingfan Li
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baiquan Song
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Xilong Liang
- Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huajun Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| |
Collapse
|
10
|
Ma LY, Zhang AP, Liu J, Zhang N, Chen M, Yang H. Minimized Atrazine Risks to Crop Security and Its Residue in the Environment by a Rice Methyltransferase as a Regulation Factor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:87-98. [PMID: 34936355 DOI: 10.1021/acs.jafc.1c04172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is an agricultural pesticide for controlling field weeds. ATZ accumulates in many crops, posing high risks to crop production and food safety. Characterizing one of the novel rice MT genes named Oryza sativa atrazine-responsive methyltransferase (OsARM) showed that the expression of OsARM was associated with DNA demethylation (hypomethylation) in its promoter region. The enhancement of OsARM expression was manifested by the attenuated symptoms of ATZ toxicity including better growth and lower ATZ accumulation in plants. The promoted capacity of detoxification was confirmed by transgenic rice overexpression OsARM lines and also functionally proved by CRISPR-Cas9 knockout mutants. The transgenic lines accumulate more ATZ metabolites in rice and lower concentrations in the growth environment, pointing out that ATZ metabolism or degradation can be intensified. The ATZ-induced DNA demethylation is an important hallmark representing the epigenetic mechanism, which is required for the extra OsARM expression to facilitate ATZ disappearance in rice and the environment.
Collapse
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ai Ping Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Yu QQ, Lu FF, Ma LY, Yang H, Song NH. Residues of Reduced Herbicides Terbuthylazine, Ametryn, and Atrazine and Toxicology to Maize and the Environment through Salicylic Acid. ACS OMEGA 2021; 6:27396-27404. [PMID: 34693160 PMCID: PMC8529679 DOI: 10.1021/acsomega.1c04315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Terbuthylazine (TBA), ametryn (AME), and atrazine (ATZ) are triazine family herbicides. They are dominantly used in the field of cereal crops like wheat and maize for prevention of upland from annual gramineous and broad-leaved weeds, with attributes of weed efficiency broad spectrum and good market performance. Salicylic acid (SA) is a kind of natural plant growth regulator existing widely in the plant kingdom and participating in many physiological and defense processes. In this study, the effects of SA on the detoxification and degradation of herbicides TBA, AME, and ATZ in maize were investigated. When maize plants were exposed to 6 mg kg-1 of the triazine herbicides, the growth and chlorophyll concentration were reduced, while the membrane permeability increased. After maize was sprayed with 5 mg kg-1 SA, the herbicide-induced phytotoxicity was significantly assuaged, with the increased content of chlorophyll and decreased cellular damage in plants. Activities of several biomarker enzymes such as SOD, POD, and GST were repressed in the presence of SA. The concentration of the triazine herbicides in maize and the soil determined by high-performance liquid chromatography was drastically reduced by spraying SA. Using LC/Q-TOF-MS/MS, six metabolites and nine conjugates of AME in maize and soil were characterized. The relative contents of AME metabolites and conjugates in maize with SA were higher than those without SA. These results suggest that SA is able to promote the detoxification and decay of these triazine herbicides in maize and soil.
Collapse
Affiliation(s)
- Qian Qian Yu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Chongqing
Industry Polytechnic College, Chongqing 401120, China
| | - Li Ya Ma
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Hui Song
- Nanjing
Institute of Environmental Sciences, MEE, Nanjing 210042, China
| |
Collapse
|
12
|
Zhang JJ, Yang H. Metabolism and detoxification of pesticides in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148034. [PMID: 34111793 DOI: 10.1016/j.scitotenv.2021.148034] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Pesticides make indispensable contributions to agricultural productivity. However, the residues after their excessive use may be harmful to crop production, food safety and human health. Although the ability of plants (especially crops) to accumulate and metabolize pesticides has been intensively investigated, data describing the chemical and metabolic processes in plants are limited. Understanding how pesticides are metabolized is a key step toward developing cleaner crops with minimal pesticides in crops, creating new green pesticides (or safeners), and building up the engineered plants for environmental remediation. In this review, we describe the recently discovered mechanistic insights into pesticide metabolic pathways, and development of improved plant genotypes that break down pesticides more effectively. We highlight the identification of biological features and functions of major pesticide-metabolized enzymes such as laccases, glycosyltransferases, methyltransferases and ATP binding cassette (ABC) transporters, and discuss their chemical reactions involved in diverse pathways including the formation of pesticide S-conjugates. The recent findings for some signal molecules (phytohomormes) like salicylic acid, jasmonic acid and brassinosteroids involved in metabolism and detoxification of pesticides are summarized. In particular, the emerging research on the epigenetic mechanisms such DNA methylation and histone modification for pesticide metabolism is emphasized. The review would broaden our understanding of the regulatory networks of the pesticide metabolic pathways in higher plants.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Peng D, Liu A, Wang W, Zhang Y, Han Z, Li X, Wang G, Guan C, Ji J. Mechanism of growth amelioration of triclosan-stressed tobacco (Nicotiana tabacum) by endogenous salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117032. [PMID: 33831628 DOI: 10.1016/j.envpol.2021.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Among emerging organic contaminants (EOCs), triclosan (TCS) is an antibacterial agent and frequently detected in sludge. In this study, RNA sequencing (RNA-seq) was used to obtain the first transcriptomic profile of tobacco with TCS treatment in comparison with control. The results of transcriptome profiling indicated that salicylic acid (SA) signalling pathway actively participated in the tobacco's response to TCS treatment. The accumulation of endogenous SA in transgene tobacco lines transformed with a homologous gene of SA binding protein (LcSABP) was significantly enhanced. The resistance of transgenic tobacco lines to TCS was markedly enhanced revealed by morphological and physiological indexes while the total Chl level and Pn of transgenic individuals showed about 180% and 250% higher than that of WT on average, and the accumulation of H2O2 and O2- induced by TCS in SABP overexpressing tobacco was 35.3%-37.3% and 53.0%-56.0% lower than that of WT. In order to further explore the mechanism of TCS tolerance in transgenic plants, RNA-seq was then performed to obtain the second transcriptomic profile between wild type and transgenic samples with TCS exposure. The results indicated that differentially expressed genes (DEGs) were most highly enriched in MAPK signalling pathway, amino acid synthesis pathway and plant hormone transduction pathway. Especially, genes encoding key proteins such as cytochrome P450, laccase, peroxidase, glycosyl transferase, glutathione S-transferase and ATP-binding cassette were considered to be related to the increased tolerance ability of transgenic tobacco to the treatment of TCS stress. This research will likely provide novel insights into the molecular mechanism of SA-mediated amelioration of TCS stress on tobacco.
Collapse
Affiliation(s)
- Danliu Peng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zichen Han
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300070, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
14
|
Peng D, Wang W, Liu A, Zhang Y, Li X, Wang G, Jin C, Guan C, Ji J. Comparative transcriptome combined with transgenic analysis reveal the involvement of salicylic acid pathway in the response of Nicotiana tabacum to triclosan stress. CHEMOSPHERE 2021; 270:129456. [PMID: 33418217 DOI: 10.1016/j.chemosphere.2020.129456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is a highly effective antibacterial agent, which is widely distributed in wastewater and sludge. The application of sludge containing high concentration TCS in agriculture will cause physiological damage to plants. Nevertheless, little is known about the physiological and molecular mechanism of TCS to plants. So firstly the physiological and biochemical indexes of tobacco with treatment of different concentrations of TCS were evaluated in this study. The results showed that tobacco plants with TCS treatment exhibited lower germination rate, root development, photosynthesis efficiency, and higher ROS accumulation in comparison with control group. The transcriptome analysis of tobacco plants was then performed to reveal the molecular mechanism in the response of tobacco to TCS. There were 3, 819 differentially expressed genes (DEGs) were identified between groups with or without TCS treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these DEGs were mainly enriched in groups of the plant hormone signal transduction pathway. To further investigate the role of plant hormone, transgenic tobacco overexpressing a homologous of salicylic acid (SA) binding protein gene was used to assess the SA-mediate TCS tolerance in plant. The results showed that transgenic plants exhibited enhanced activities of antioxidant enzymes and stronger TCS resistance than wild-type ones, which verify the important role of SA signal pathway in TCS response of tobacco plants. This study could be used to better understand the key roles of plant hormones in the TCS stress response of higher plants, and find key pathways and candidate genes for phytoremediation.
Collapse
Affiliation(s)
- Danliu Peng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300070, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
15
|
Ma LY, Zhai XY, Qiao YX, Zhang AP, Zhang N, Liu J, Yang H. Identification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115802. [PMID: 33143979 DOI: 10.1016/j.envpol.2020.115802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Developing a biotechnical system with rapid degradation of pesticide is critical for reducing environmental, food security and health risks. Here, we investigated a novel epigenetic mechanism responsible for the degradation of the pesticide atrazine (ATZ) in rice crops mediated by the key component CORONATINE INSENSITIVE 1a (OsCOI1a) in the jasmonate-signaling pathway. OsCOI1a protein was localized to the nucleus and strongly induced by ATZ exposure. Overexpression of OsCOI1a (OE) significantly conferred resistance to ATZ toxicity, leading to the improved growth and reduced ATZ accumulation (particularly in grains) in rice crops. HPLC/Q-TOF-MS/MS analysis revealed increased ATZ-degraded products in the OE plants, suggesting the occurrence of vigorous ATZ catabolism. Bisulfite-sequencing and chromatin immunoprecipitation assays showed that ATZ exposure drastically reduced DNA methylation at CpG context and histone H3K9me2 marks in the upstream of OsCOI1a. The causal relationships between the DNA demethylation (hypomethylatioin), OsCOI1a expression and subsequent detoxification and degradation of ATZ in rice and environment were well established by several lines of biological, genetic and chemical evidence. Our work uncovered a novel regulatory mechanism implicated in the defense linked to the epigenetic modification and jasmonate signaling pathway. It also provided a modus operandi that can be used for metabolic engineering of rice to minimize amounts of ATZ in the crop and environment.
Collapse
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Xin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai Ping Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Liu T, Yuan C, Gao Y, Luo J, Yang S, Liu S, Zhang R, Zou N. Exogenous salicylic acid mitigates the accumulation of some pesticides in cucumber seedlings under different cultivation methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110680. [PMID: 32361497 DOI: 10.1016/j.ecoenv.2020.110680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Salicylic acid (SA) is a crucial signal molecule and phytohormone, regulating the biotic and abiotic stress responses as well as plant development. In this research, we comparatively examined the effects of exogenous SA on the behaviors of thiamethoxam (THIM), hymexazol (HMI) and chlorantraniliprole (CAP) in cucumber planting systems under soil pot and hydroponic cultivation. The cucumber seedlings were transplanted into soil or nutrient solution containing a target pesticide (1 mg/kg) or a target pesticide with SA (1 mg/kg) after the fourth leaf emerged. We examined the behaviors of pesticides both the SA treated and nontreated plants by analyzing cucumber root, stem and leaf samples taken on the 0-21 days following the root treatment. The root concentration factor (RCF), bioconcentration factor (BCF) and translocation factors (TFstem and TFleaf) were calculated for the comparison of the differences in the behaviors of pesticides. We found that the accumulation behaviors of pesticides in planting systems were related to the physicochemical properties of pesticides, exogenous SA and cultivation methods. Exogenous SA had a certain promoting effect on the degradation of pesticides in soil and nutrient solution, resulting in reduced half-lives. SA was able to block the accumulation of pesticides in roots and leaves and alleviated the accumulation ability of roots, the bioconcentration ability of plants, and the translocation ability from roots to leaves. Interestingly, SA had more distinct effects on the behaviors of pesticides under hydroponic experiments than under soil pot experiments. Furthermore, the behaviors of clothianidin (CLO), the main metabolite of THIM, were also assessed, indicating that THIM was mainly metabolized to CLO in leaves and stems, and SA facilitated this process. Our findings suggest that SA has a certain regulatory effect on the accumulation of pesticides in plants, and SA-blocked pesticide accumulation is practically rewarding for improving food safety.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
| | - Yue Gao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian Luo
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Song Yang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Shangke Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Ruchang Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Nan Zou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
17
|
Guan C, Wang C, Wu H, Li Q, Zhang Y, Wang G, Ji J, Jin C. Salicylic acid application alleviates the adverse effects of triclosan stress in tobacco plants through the improvement of plant photosynthesis and enhancing antioxidant system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1359-1372. [PMID: 31749001 DOI: 10.1007/s11356-019-06863-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is a chlorophenol which is highly bacteriostatic and used in a wide array of consumer products. TCS is now one of the most commonly detected organic pollutants in the sewage sludges. The sludge utilization for fertilizers on agricultural land would pose the risk of causing adverse effects on plant growth and yield by TCS. However, the toxicity of TCS toward plants is comparatively less understood. In this study, we assessed the effects of TCS on tobacco plants which were grown in MS medium or soils containing various concentrations of TCS. Our results indicated that TCS at the concentration of 2 mg/L could strongly inhibit the tobacco seed germination. TCS could suppress tobacco plant growth in soil with different concentrations (10, 20, and 50 mg/kg) of TCS through the downregulation of chlorophyll contents, restricting photosynthesis and increasing generation of reactive oxygen species (ROS). Salicylic acid (SA) plays important roles in the stress response of plants. The role of exogenous SA application in protecting tobacco plants from TCS stress was also investigated in this study. SA application could significantly increase net photosynthesis, enhance antioxidant enzyme activity, and thereby enhancing tobacco plant tolerance to TCS. Moreover, the activation of MPK3 and MPK6 induced by TCS was downregulated in plants with the treatment of SA. It was thus referred that mitogen-activated protein kinases (MAPKs) might play a key role in the signal transduction of TCS stress, and this process might be regulated by SA signaling. Overall, our results demonstrated that TCS had negative impacts on tobacco plants and SA played a protective role on tobacco plants against TCS stress.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Chang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hao Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Qian Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
18
|
Safari F, Akramian M, Salehi-Arjmand H, Khadivi A. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109542. [PMID: 31401333 DOI: 10.1016/j.ecoenv.2019.109542] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals with strong negative effects on the plant growth and functions. Salicylic acid (SA) is an important signaling molecule which confers tolerance to metal toxicities but little is known about the mechanisms of SA-mediated alleviation of Hg stress. Here, physiochemical and molecular responses of Hg-stressed lemon balm (Melissa officinalis L.) to exogenous SA were investigated to reveal SA-induced tolerance mechanisms. The CHLG gene of lemon balm which encodes chlorophyll synthase was also partly isolated and sequenced for the first time. Hg stress markedly decreased growth, relative water content (RWC) and photosynthetic pigments of the plant. However, exogenous SA significantly mitigated the toxic effects of mercury on the growth and RWC and enabled plant to maintain chlorophylls to the similar levels of unstressed plants. Hg-induced oxidative damage was also reduced following treatment with SA and treated plants showed the lower extent of lipid peroxidation which was accompanied with the higher free proline and phenolics contents and elevation of the antioxidant capacity as evidenced by DPPH radical scavenging and FRAP assays. Moreover, SA treatment resulted in up-regulation of CHLG and phenylalanine ammonia-lyase (PAL) genes as key components of chlorophyll and phenylpropanoid routes, respectively. Our results collectively indicate the ameliorative effects of exogenous SA in mercury toxicity through coordinated alternations in plant metabolic processes which provide insights to better understand mechanisms of Hg tolerance in lemon balm plant.
Collapse
Affiliation(s)
- Fateme Safari
- Department of Medicinal and Aromatic Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran
| | - Morteza Akramian
- Department of Medicinal and Aromatic Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran.
| | - Hossein Salehi-Arjmand
- Department of Medicinal and Aromatic Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran
| | - Ali Khadivi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran
| |
Collapse
|
19
|
Guan C, Wang C, Li Q, Ji J, Wang G, Jin C, Tong Y. LcSABP2, a salicylic acid binding protein 2 gene from Lycium chinense, confers resistance to triclosan stress in Nicotiana tabacum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109516. [PMID: 31394375 DOI: 10.1016/j.ecoenv.2019.109516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The triclosan (TCS) is one of the most commonly detected organic pollutants in the sewage sludge. TCS could induce phytotoxicity in plants. Salicylic acid (SA) is a phenolic compound capable of enhancing plant growth and development. It is well documented that abiotic stress tolerance could be enhanced by exogenous application of SA. However, the regulatory mechanisms for functions of endogenous SA in plants' responses to xenobiotics stress remains unclear. Our results indicated that TCS suppressed plant growth by restricting photosynthesis, decreasing chlorophyll contents and inducing over production of reactive oxygen species (ROS). Interestingly, SA or glutathione (GSH) application could significantly improve plant tolerance to TCS. Moreover, endogenous SA and the expression of a SA binding protein 2 (SABP2) gene were found to be elevated in tobacco under TCS treatment. The overexpression of LcSABP, a SABP2-like gene cloned from the leaves of Lycium chinense, markedly enhanced the SA content in the transgenic plants under TCS stress. The LcSABP-overexpressing plants presented higher photosynthesis rate, chlorophyll content, glutathione reductase (GR) and glutathione-S-transferase (GST) enzymes activities, GSH content and lower O2-•, H2O2 and malondialdehyde (MDA) content in comparison with WT tobacco with TCS treatment. One of the GSH synthesis-related gene, NtGSHS, also showed higher expression level in the transgenic tobacco in comparison with control plants with TCS stress treatment. These results indicated that SABP2 played a positive regulatory role in plant response to TCS stress via increasing the endogenous SA levels. The increased SA content might then increase the GSH content, probably through an increase in GR activity and GSHS gene expression, thus inducing the antioxidant and xenobiotics detoxification systems, which promoted TCS stress tolerance in tobacco plants.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Qian Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Ma LY, Zhang N, Liu JT, Zhai XY, Lv Y, Lu FF, Yang H. Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. ENVIRONMENT INTERNATIONAL 2019; 131:105014. [PMID: 31351384 DOI: 10.1016/j.envint.2019.105014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
There is a rising public concern on accumulation of harmful pesticides in environment and crops. Epigenetic alteration caused by environmental contaminants is one of the key factors in the etiology of environmentally-associated diseases. Growing evidence shows that harmful pesticide atrazine (ATZ) has a profound effect on DNA methylation in human genome, however, little is known about the epigenetic mechanism underlying ATZ accumulation and degradation in plants, particularly in edible plants growing in the ATZ-contaminated areas. This study investigated the atrazine elimination that was mediated by DNA methylation and histone modification in the food crop rice. Studies with two mutant Osmet1-1/2 defective in the genomic CG DNA methylation show significantly lower accumulation of atrazine than its wild-types. Profiling methylome and transcriptome of ATZ-exposed Osmet1 and wild-type identified many differentially methylated loci (≥2 fold change, p < 0.05), which were associated with activation of genes responsible for atrazine degradation in plants. Three demethylated loci OsGTF, OsHPL1 and OsGLH were expressed in eukaryotic yeast cells and found to eliminate a marked proportion of ATZ in growth environments by 48%, 43% and 32%, respectively, whereas the increased ATZ-degraded products were characterized using UPLC/Q-TOF-MS/MS. These results suggest that activation of the loci mediated by ATZ-induced hypomethylation could be responsible for the removal of ATZ in rice. Our work helps understand a new regulatory mechanism underlying the atrazine degradation in crops which may potentially reduce the environmental risks to human health through food chain.
Collapse
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Tong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lv
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Protective Responses Induced by Chiral 3-Dichloroacetyl Oxazolidine Safeners in Maize ( Zea mays L.) and the Detoxification Mechanism. Molecules 2019; 24:molecules24173060. [PMID: 31443550 PMCID: PMC6749458 DOI: 10.3390/molecules24173060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/16/2023] Open
Abstract
Herbicide safeners selectively protect crops from herbicide injury while maintaining the herbicidal effect on the target weed. To some extent, the detoxification of herbicides is related to the effect of herbicide safeners on the level and activity of herbicide target enzymes. In this work, the expression of the detoxifying enzyme glutathione S-transferase (GST) and antioxidant enzyme activities in maize seedlings were studied in the presence of three potential herbicide safeners: 3-dichloroacetyl oxazolidine and its two optical isomers. Further, the protective effect of chiral herbicide safeners on detoxifying chlorsulfuron in maize was evaluated. All safeners increased the expression levels of herbicide detoxifying enzymes, including GST, catalase (CAT), and peroxidase (POD) to reduce sulfonylurea herbicide phytotoxicity in maize seedlings. Our results indicate that the R-isomer of 3-(dichloroacetyl)-2,2,5-trimethyl-1,3-oxazolidine can induce glutathione (GSH) production, GST activity, and the ability of GST to react with the substrate 1-chloro-2,4-dinitrobenzene (CDNB) in maize, meaning that the R-isomer can protect maize from damage by chlorsulfuron. Information about antioxidative enzyme activity was obtained to determine the role of chiral safeners in overcoming the oxidative stress in maize attributed to herbicides. The interaction of safeners and active target sites of acetolactate synthase (ALS) was demonstrated by molecular docking modeling, which indicated that both isomers could form a good interaction with ALS. Our findings suggest that the detoxification mechanism of chiral safeners might involve the induction of the activity of herbicide detoxifying enzymes as well as the completion of the target active site between the safener and chlorsulfuron.
Collapse
|
22
|
Zhang K, Wang G, Bao M, Wang L, Xie X. Exogenous application of ascorbic acid mitigates cadmium toxicity and uptake in Maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19261-19271. [PMID: 31065988 DOI: 10.1007/s11356-019-05265-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) contamination in agricultural soils is a prevalent environmental issue and poses potential threats to food security. Foliar ascorbic acid might prove a potent tool to alleviate toxicity of Cd toxicity in maize. An experiment was conducted with objectives to study exogenous ascorbic acid-modulated improvements in physiochemical attributes of maize under Cd toxicity. The experiment was conducted under completely randomized design. Treatments were comprised of varying concentrations of foliar ascorbic acid viz. 0.0, 0.1, 0.3, and 0.5 mM of AsA. Toxicity of Cd decreased the maize growth, increased lipid peroxidation, disturbed protein metabolism, and reduced the antioxidant defense capabilities compared with the control. However, foliar AsA significantly improved maize growth and development, photosynthetic capabilities, and protein concentrations in Cd-stressed maize plants. Meanwhile, the malondialdehyde contents and hydrogen peroxide accumulation levels in Cd-stressed maize plants decreased remarkably with increasing AsA concentrations. Furthermore, the combined treatments conspicuously boosted activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase under the Cd stress alone. In addition, the application of AsA reduced the Cd uptake by 10.3-12.3% in grains. Conclusively, foliar ascorbic acid alleviated the negative effects of Cd stress in maize and improved photosynthetic processes, osmolytes, and antioxidant defense systems.
Collapse
Affiliation(s)
- Kangping Zhang
- College of Agronomy and Biotechnology, Ministry of Education, Southwest University/Engineering Research Center of South Upland Agriculture, Chongqing, 400716, China
| | - Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Mingchen Bao
- College of Agronomy and Biotechnology, Ministry of Education, Southwest University/Engineering Research Center of South Upland Agriculture, Chongqing, 400716, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Ministry of Education, Southwest University/Engineering Research Center of South Upland Agriculture, Chongqing, 400716, China.
| | - Xiaoyu Xie
- College of Agronomy and Biotechnology, Ministry of Education, Southwest University/Engineering Research Center of South Upland Agriculture, Chongqing, 400716, China.
| |
Collapse
|
23
|
Yüzbaşıoğlu E, Dalyan E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:322-330. [PMID: 30599309 DOI: 10.1016/j.plaphy.2018.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
In this study, we investigated how 6.6 mM thiram induces to stress response in tomato and evaluated the possible protective role of different concentration of salicylic acid (0.01, 0.1 and 1 mM SA) against thiram toxicity by analyzing tomato leaf samples taken on the 1st, 5th, 11th day of the treatment. The thiram treatment resulted in oxidative stress through an increase in hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in a time-dependent manner and led to a decline in the total chlorophyll and carotenoid levels. However, thiram-treated plants induced antioxidant enzyme activities, including catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2), and ascorbate peroxidase (APX; EC 1.11.1.11), as well as pesticide detoxification enzymes such as peroxidase (POX; EC 1.11.1.7) and glutathione S-transferase (GST; EC.2.5.1.18). In addition, three genes (GST1, GST2, GST3) that encode for glutathione S-transferase and one gene (P450) that encodes for cytochrome P-450 monooxygenases were upregulated. SA showed a positive effect on the plants treated with thiram thanks to the decrease in the H2O2 and MDA levels, the enhancement of photosynthetic pigments, and the regulation in antioxidant enzyme activities in the tomato leaves. In addition, the SA-pretreatment triggered the activity and expression of pesticide detoxification enzymes in the thiram-treated leaves. Particularly the pretreatment with 1 mM SA significantly improved the activity of GST and led to the upregulation of GST1, GST2, GST3, and P450 expression levels. These results indicate that the application of thiram fungicide causes toxicity; however, the damaging effect could be mitigated through pretreatment with SA.
Collapse
Affiliation(s)
- Elif Yüzbaşıoğlu
- Department of Botany, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| | - Eda Dalyan
- Department of Botany, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
24
|
Lu FF, Xu JY, Ma LY, Su XN, Wang XQ, Yang H. Isoproturon-Induced Salicylic Acid Confers Arabidopsis Resistance to Isoproturon Phytotoxicity and Degradation in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13073-13083. [PMID: 30403864 DOI: 10.1021/acs.jafc.8b04281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study identified the effect of salicylic acid on degradation of isoproturon in Arabidopsis. Three T-DNA insertion mutant lines pal1- 1, pal1- 2, and eps1- 1 defective in salicylic acid synthesis were tested, which showed higher isoproturon accumulation and a toxic symptom in the mutants. When treated with 5 mg/L salicylic acid, these lines displayed a lower level of isoproturon and showed an attenuated toxic symptom. An RNA-sequencing study identified 2651 (1421 up and 1230 down) differentially expressed genes (DEGs) in eps1- 1 and 2211 (1556 up and 655 down) in pal1- 2 mutant plants (>2.0 fold change, p < 0.05). Some of the DEGs covered Phase I-III reaction components, like glycosyltransferases (GTs) and ATP-binding cassette transporters (ABCs). Using ultra performance liquid chromatography-time-of-flight-tandem-mass spectrometer/mass spectrometer (UPLC/Q-TOF-MS/MS), 13 Phase I and four Phase II metabolites were characterized. Of these, two metabolites 1-OH-isopropyl-benzene-O-glucoside and 4-isopropylphenol-S-2-methylbutanoyl-serine, have been identified and reported for the first time.
Collapse
Affiliation(s)
- Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Jiang Yan Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xiang Ning Su
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xin Qiang Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
25
|
Ma LY, Zhang SH, Zhang JJ, Zhang AP, Li N, Wang XQ, Yu QQ, Yang H. Jasmonic Acids Facilitate the Degradation and Detoxification of Herbicide Isoproturon Residues in Wheat Crops (Triticum aestivum). Chem Res Toxicol 2018; 31:752-761. [DOI: 10.1021/acs.chemrestox.8b00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Hao Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Jing Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ai Ping Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiang Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Qian Yu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|