1
|
Li Y, Wang X, Yu W, Cen X, Li Y, Zhang X, Xu M, Zhang D, Lu P, Bai H. Predicting bioavailable barium transfer in soil-bok choy systems: A study induced by shale gas extraction in Chongqing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177196. [PMID: 39490393 DOI: 10.1016/j.scitotenv.2024.177196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Barium (Ba) is a significant contaminant from shale gas extraction and is also used in various other industries. However, there has been very limited attention paid to Ba. Elucidating the Ba in soil-crop system are of great significance for both human health risk assessment and pollution control. In this study, the bioavailability of Ba in soils was studied by using various characterization methods. Then the major factors dominating the transfer of Ba in soil-bok choy system and a suitable predicted model was derived. The results showed that Ba was mainly accumulated in the roots (transfer factor < 0.3). The relationships between Ba in shoots and the bioavailability of Ba characterizing with different methods increased in the order of CH3COOH (R2 = 0.81) < ethylenediamine tetraacetic acid (R2 = 0.87) < pore water (R2 = 0.89) < diffusive gradients in thin film (R2 = 0.90) < CaCl2 (R2 = 0.91). The major soil properties affecting Ba in shoots were pH (r = -0.32, P > 0.05), cation exchange capacity (r = -0.43, P < 0.01) and labile Al (r = 0.38, P < 0.05). Bioavailability of Ba can preferably model the Ba transfer in soil-bok choy system. The best reliable model was LogBa[shoot] = 0.591LogBa[soil-Pore water] + 1.749 (R2 = 0.963, P < 0.001). This model without measuring soil physicochemical properties, making it easier and more convenient to use in practice. Overall, these results highlight the role of metal bioavailability in predicting their transfer in soil-plant systems.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiaoyu Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weihan Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingmin Cen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yutong Li
- Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| |
Collapse
|
2
|
Cui C, Yan D, Chen C, Liu M, Li L, Wang J. Investigation of the emission and leaching behavior of characteristic heavy metals in sintered bricks prepared from oil-based drill cutting residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:217-226. [PMID: 39357302 DOI: 10.1016/j.wasman.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Oil-based drill cutting residues (OBDCR) are hazardous waste generated by the thermal desorption of oil-based drill cuttings. Recently, the utilization of OBDCR as building materials has attracted extensive attention, but the environmental risks during preparation and long-term usage remained unclear. In this study, OBDCR with a 40 % (wt./wt.) mixing ratio was used to prepare sintered bricks, and the emission and leaching behaviors of Ba, Mn, Zn, Ni, Cr, and Pb were investigated. The results indicated that the addition of OBDCR in bricks showed insignificant increase in the emission of Ba, Mn, Zn, Ni, and Cr, whereas the emission of Pb slight decreased from 10.5 to 8.6 μg/m3. The volatilization rates of these heavy metals were considerably low, with Ni showed the highest volatilization rate of only 1.45 % in OBDCR bricks. Moreover, the leaching behavior of Ba, Mn, Zn, Ni, Cr, and Pb in bricks were studied. The results indicated that surface wash-off was the main controlling leaching mechanism of Ba and Cr, whereas the leaching of Mn, Zn, Ni, and Pb was controlled by diffusion. The Elovich and second-order kinetic equation were identified as the leaching models for Mn, Zn, Pb, and Ni. The life-time leaching predictions of OBDCR bricks indicated that the leaching of Ni and Mn after 10 and 20 years of leaching were 0.1529, 0.257, 0.1530, and 0.274 mg/L, respectively, exceeding the relevant standards. Therefore, the leaching risks of Ni and Mn should be emphasized when using OBDCR bricks with a 40 % OBDCR mixing ratio.
Collapse
Affiliation(s)
- Changhao Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Meijia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Puchkov A, Yakovlev E, Druzhinina A, Druzhinin S. Distribution of 137Cs specific activity in river sediments of the Barents Sea basin (Nenets Autonomous Okrug, Russian Arctic). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:709. [PMID: 38970718 DOI: 10.1007/s10661-024-12851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/22/2024] [Indexed: 07/08/2024]
Abstract
This article focuses on the study of the distribution of 137Cs in the bottom sediments of Arctic rivers of the Barents Sea basin (using the example of the Nenets Autonomous Okrug, Russian Arctic). This research is relevant due to the poorly studied region and the significant number of radiation-hazardous facilities in the Arctic zone of Russia, both those currently in operation and those that are "nuclear heritage sites". The study of 137Cs specific activity in bottom sediments was carried out in the period from 2020 to 2023 in the rivers Chizha, Nes, Vizhas, Oma, Pechora (river delta), as well as the rivers Kolva and Usa (first and second order tributaries, respectively, of the Pechora River). A total of 199 samples were collected. In addition to 137Cs specific activity, the samples were analysed for sediment particle size distribution, organic matter content, carbonate content and ash content. The 137Cs specific activity mainly ranged from the minimum detectable specific activity to 5.4 ± 0.8 Bq·kg-1. In the Nes River basin (Kaninskaya tundra), the 137Cs content in bottom sediments reached 36.0 ± 3.2 Bq·kg-1 (in the case of lake sediments) and 22.9 ± 3.7 Bq·kg-1 (in the case of river sediments), values that are higher than those of the North-West of Russia. Considering the large area of the study area (Kaninskaya tundra, Pechora river delta, southern part of Bolshezemelskaya tundra) and the similarity of physical and chemical parameters of the studied rivers, it is possible to assume the existence of a zone of increased radionuclide content in the Nes river basin. This may be due to the runoff from the Nes River catchment area, its hydrological features, and the accumulation of 137Cs in the small fractions of bottom sediments. The results confirm the conclusions of previous soil studies in the Nes river basin. The main sources of elevated 137Cs content are global atmospheric deposition and the Chernobyl Nuclear Power Plant accident.
Collapse
Affiliation(s)
- Andrey Puchkov
- N. Laverov Federal Center for Integrated Arctic Research of Ural Branch of the Russian Academy of Sciences, 109 Severnoj Dviny Emb., Arkhangelsk, 163000, Russia
| | - Evgeny Yakovlev
- N. Laverov Federal Center for Integrated Arctic Research of Ural Branch of the Russian Academy of Sciences, 109 Severnoj Dviny Emb., Arkhangelsk, 163000, Russia.
| | - Anna Druzhinina
- N. Laverov Federal Center for Integrated Arctic Research of Ural Branch of the Russian Academy of Sciences, 109 Severnoj Dviny Emb., Arkhangelsk, 163000, Russia
| | - Sergey Druzhinin
- N. Laverov Federal Center for Integrated Arctic Research of Ural Branch of the Russian Academy of Sciences, 109 Severnoj Dviny Emb., Arkhangelsk, 163000, Russia
| |
Collapse
|
4
|
Oyeyemi A, Owonikoko W, Okoro T, Adagbonyi O, Ajeigbe K. Water contamination: A culprit of serum heavy metals concentration, oxidative stress and health risk among residents of a Nigerian crude oil-producing community. Toxicol Rep 2024; 12:375-388. [PMID: 38584719 PMCID: PMC10995875 DOI: 10.1016/j.toxrep.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.
Collapse
Affiliation(s)
- A.W. Oyeyemi
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Osun State University, Osogbo, Nigeria
| | - W.M. Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - T.D. Okoro
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - O. Adagbonyi
- Department of Anatomy, Igbinedion University, Okada, Nigeria
| | - K.O. Ajeigbe
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Federal University, Oye-Ekiti, Nigeria
| |
Collapse
|
5
|
Bai H, Li Y, Lu P, Li Y, Zhang L, Zhang D, Wang X, Zhou Y. Effect of environmental factors on accumulation of trace metals in a typical shale gas exploitation area: A comprehensive investigation by machine learning and geodetector models. CHEMOSPHERE 2024; 347:140724. [PMID: 37972868 DOI: 10.1016/j.chemosphere.2023.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Whether a certain relationship is exist between shale gas exploitation and accumulation of trace metals in soil is a controversial issue in recent years. To date, few study clearly reveal the intrinsic contributions of natural and anthropogenic factors to accumulation of trace metals in soil. In this study, machine learning and geodetector models were integrated to investigate to contribution of environmental factors to variations of trace metals concentration. Before modeling, there are 10.33%-25.87% of soil considered as metal pollution, and the value of Pn further suggest that the Ba contribute the most to the comprehensive pollution index of trace metals in soil. The initial prediction of trace metals concentration by machine learning models is less effectively indicating the need for alternative approaches. To address this problem, post-constraints approach was used, and the post-constraint MSLR model demonstrates superior performance (R2 = 0.81) Additionally, through the utilization of geodetector model, the explanatory power (q) of CEC and SOM were identified as dominant natural factors with value of 0.055 and 0.089. respectively. Moreover, distance from working sites and working status were identified as the dominant anthropogenic factors associating to the spatial heterogeneity of trace metals in soil. The interaction between natural and anthropogenic factors showed a siginifacnt nonlinear enhancement effect on accumulation of Cr, Ba and Sr, and the highest value of q was 0.38 for SOM and distance. This study indicated that the potential metal contamination was related to shale gas exploitation and provide reference for controlling soil pollution in shale gas exploitation area and making management strategy.
Collapse
Affiliation(s)
- Hongcheng Bai
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, 610106, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, China.
| | - Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China.
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Xing Wang
- College of International Studies, Yibin University, Yibin, Sichuan, 644000, China
| | - Yuxiao Zhou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
6
|
Li Y, Bai H, Li Y, Zhang X, Zhang L, Zhang D, Xu M, Zhang H, Lu P. An integrated approach to identify the source apportionment of potentially toxic metals in shale gas exploitation area soil, and the associated ecological and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132006. [PMID: 37453347 DOI: 10.1016/j.jhazmat.2023.132006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Public awareness of the potential environmental risks of shale gas extraction has increased in recent years. However, the status and environmental risks of potentially toxic metals (PTMs) in shale gas field soil remain unclear. A total of 96 topsoil samples were collected from the first shale gas exploitation area in China. The sources of nine PTMs in the soils were identified using positive matrix factorization and correlation analysis, and the ecological and human health risks of toxic metals from different sources under the two land use types were calculated. The results showed that mean pollution load index (PLI) values for farmland (1.18) and woodland (1.40) indicated moderate pollution, As, Cd and Ni were the most serious contaminants among all nine PTMs. The following four sources were identified: shale gas extraction activities (43.90%), nature sources (31.90%), agricultural and traffic activities (17.55%) and industrial activities (6.55%). For ecological risk, the mean ecological risk index (RI) values for farmlands (161.95) and woodlands (185.27) reaching considerable risk. The contribution ratio of shale gas extraction activities for farmlands and woodlands were 5.70% and 8.90%, respectively. Regarding human health risk, noncarcinogenic risks for adults in farmlands and woodlands were negligible. Industrial activities, agricultural and traffic activities were estimated to be the important sources of health risks. Overall, shale gas extraction activities had little impact on the ecological and human health risk. This study provides scientific evidence regarding the soil contamination potential of shale gas development activities.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Costa LC, Carvalho CF, Soares ASF, Souza ACP, Bastos EFT, Guimarães ECBT, Santos JC, Carvalho T, Calderari VH, Marinho LS, Marques MRC. Physical and chemical characterization of drill cuttings: A review. MARINE POLLUTION BULLETIN 2023; 194:115342. [PMID: 37634349 DOI: 10.1016/j.marpolbul.2023.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Drill cuttings comprise a mixture of rocks generated during drilling activities of exploration and production of oil and gas. These residues' properties are variable, depending on several drilling parameters and drilled rock composition. Many scientific studies have been published regarding the characterization of these residues. Articles summarizing these residues' characteristics and toxicity data are poorly explored in the literature. This work reviews the principal methods used to characterize drill cuttings and data about these residues' properties. Some authors have reported the large content of Zn in drill cuttings. These cuttings can be associated with base fluids (as olefins, varying from C11 to C18), and some time crude oil (high range of TPH, unresolved complex mixtures, and PAH compounds). Acute and chronic toxicity tests have shown negative impacts of different types of fluids, the components of these fluids, and cuttings on other marine organisms.
Collapse
Affiliation(s)
- L C Costa
- Pharmacy Department, Faculty of Biological Sciences and Health, State University of Rio de Janeiro (UERJ), Rio de Janeiro 23070-200, RJ, Brazil.
| | - C F Carvalho
- Pharmacy Department, Faculty of Biological Sciences and Health, State University of Rio de Janeiro (UERJ), Rio de Janeiro 23070-200, RJ, Brazil
| | - A S F Soares
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - A C P Souza
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - E F T Bastos
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - E C B T Guimarães
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - J C Santos
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - T Carvalho
- Pharmacy Department, Faculty of Biological Sciences and Health, State University of Rio de Janeiro (UERJ), Rio de Janeiro 23070-200, RJ, Brazil; Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - V H Calderari
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - L S Marinho
- Environmental Engineering Program, Polytechnic School, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - M R C Marques
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| |
Collapse
|
8
|
Lozano-Bilbao E, Hernández JC, Paz S, Hardisson A, Rubio C, González-Weller D, Gutiérrez ÁJ. Structuring algae as buffers for heavy metals and trace elements in the Canary Islands intertidal habitat. MARINE POLLUTION BULLETIN 2023; 190:114890. [PMID: 37002966 DOI: 10.1016/j.marpolbul.2023.114890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Coastal marine pollution from sewage pipes, waste discharges, can seriously affect intertidal organisms. Therefore, the aim of this study is to know if the structuring algae in the Canary intertidal can act as buffers against pollution. Samples were taken in the island of Tenerife (Canary Islands, Spain) from the intertidal water of Anemonia sulcata (anemone), Palaemon elegans (shrimp), Gongolaria abies-marina and Jania virgata (both structuring algae). Each sample was analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) obtaining values for metals and trace elements (Al, Cd, Pb, Ca, K, Mg, Na, B, Ba, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Sr, V and Zn). Higher concentrations were obtained in the two structuring algal species, with J. vigata having higher concentrations than G. abies-marina. Specimens of A. sulcata showed higher concentrations of trace elements and heavy metals than P. elegans. P. elegans y A. sulcata showed higher heavy metal concentrations and trace elements when algae were not present in the pool. Algae have a great buffering role in the intertidal of the Canary Islands.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain.
| | - José Carlos Hernández
- Grupo de investigación de Ecología de Comunidades Marinas y Conservación, Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Servicio Público Canario de Salud, Laboratorio Central, 38006 Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| |
Collapse
|
9
|
Zhou J, Zhai Z, Wu J, Yang W, Liu J. Thermal plasma vitrification treatment of oil-based drill cuttings: Product characterization and harmless transformation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117285. [PMID: 36642047 DOI: 10.1016/j.jenvman.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Oil-based drill cuttings (OBDCs) are hazardous wastes associated with the process of oil and gas extraction. In this paper, OBDCs were treated using a self-designed plasma vitrification system. The basic physicochemical properties of the OBDCs were analyzed, followed by a plasma vitrification mechanism investigation of the OBDCs. The environmental pollution risk of the vitreous slags obtained from thermal plasma treatment was also evaluated with the heavy metal extraction toxicity procedure. The batch of vitreous slags with an average glass phase content of 98.60% had a dense and smooth surface and an oxygen-to-silicon (O/Si) ratio ranging from 3.68 to 4.32, according to the findings. The melting temperature and treatment duration have a great effect on the loss ratio on acid dissolution. The leaching concentrations of Pb and Zn were 0.0004 mg/L and 0.068 mg/L, respectively, consistent with the chlorination reaction promoted by thermal plasma. Fourier transform infrared spectroscopy analysis showed that there was no organic matter in the vitreous slag, achieving the goal of harmless transition. The specific energy consumption of vitreous slags was predicted and verified by response surface methodology (RSM). This study describes the vitrification process and harmless treatment of OBDCs by thermal plasma technology, and vitreous slags have great potential for resource utilization.
Collapse
Affiliation(s)
- Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Zhuofan Zhai
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jinlong Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianzhong Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
10
|
Xiong D, Han X. Particular pollutants, human health risk and ecological risk of oil-based drilling fluid: a case study of Fuling shale gas field. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:981-995. [PMID: 35389166 DOI: 10.1007/s10653-022-01259-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Samples of new oil-based drilling fluid (NOBDF) and circulating oil-based drilling fluid (COBDF) in Chongqing were tested and analyzed to evaluate the possible impact of oil-based drilling fluid (OBDF) on human health and ecological environment. Organic matter, metals, and naturally occurring radionuclide materials (NORMs) in OBDF samples were analyzed and determined by gas chromatography-mass spectrometry, high-performance liquid chromatography, PANalytical Axios Fast XRF spectrometer, and gamma ray spectrometer. The results revealed that the contents of trace metals and NORMs in OBDF were less, which would not cause local ecological risk or health risk to the drilling crew. However, the concentrations of various aromatics analyzed in OBDF were very high, which was easy to pose serious environmental and health hazards. There were 8 aromatic hydrocarbons (AHs) in NOBDF and 15 AHs in COBDF. And the total carcinogenic risk value of each aromatic hydrocarbon was far greater than 10-4, which belonged to an unacceptable level. In addition, the inhalation pathway seemed to be the most significant source of carcinogenic risk, accounting for 99% of the total carcinogenic risk. Meanwhile, it is recommended to equip drilling workers with gas masks and develop all-oil biodiesel drilling fluid.
Collapse
Affiliation(s)
- Deming Xiong
- School of Electronics and Internet of Things, Chongqing College of Electronic Engineering, Shapingba, Chongqing, 400000, China.
| | - Xu Han
- School of Rail Transit and Aviation Service, Chongqing Industry Polytechnic College, Chongqing, 400074, China
| |
Collapse
|
11
|
Soares ASF, da Costa Marques MR, da Cunha Costa L. Physical-chemical characterization and leaching studies involving drill cuttings generated in oil and gas pre-salt drilling activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17899-17914. [PMID: 36205869 DOI: 10.1007/s11356-022-23398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
This work describes characterization and leaching studies of pre-salt drill cuttings from offshore oil and gas exploration in ultradeep waters. The metals Fe, Al, and Ba were present in the highest concentrations in drill cuttings (30000 mg kg-1, 32600 mg kg-1, and 33000 mg kg-1 respectively). The most significant contents of Ba, Al, Fe, Cu, Pb, Mn, Si, and Zn were found in cuttings containing non-aqueous fluids (NADF), but the highest concentrations of Ni and Cr were found in samples containing aqueous fluids (WBDF). The content of total petroleum hydrocarbons (TPHs) in the samples with WBDF fluids ranged from < 5.58 to 15.76 mg Kg-1 while the TPH content of the samples with NADF ranged from 28.46 to 47.16 mg Kg-1. Data on the content of unresolved complex mixtures (UCMs) and sheen tests indicated probable contamination of some cutting samples with oil. Most samples showed some degree of contamination by polycyclic aromatic hydrocarbons (PAHs). The metals present in the highest concentrations in saline and aqueous leachates were Si and Ba. The metals Cd, Cu, Ni, and Zn were present in varied concentrations in the saline leachates, and the metals Si, Ba, Cu, and Zn were found in the aqueous leachates.
Collapse
Affiliation(s)
- Andreia Silveira Freire Soares
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-900, Brazil.
| | - Mônica Regina da Costa Marques
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-900, Brazil
| | - Luciana da Cunha Costa
- Faculty of Biological Sciences and Health, West Zone Campus, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 23070-200, Brazil
| |
Collapse
|
12
|
Hu Y, Mu S, Zhang J, Li Q. Regional distribution, properties, treatment technologies, and resource utilization of oil-based drilling cuttings: A review. CHEMOSPHERE 2022; 308:136145. [PMID: 36029858 DOI: 10.1016/j.chemosphere.2022.136145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Oil-based drilling cuttings (OBDC) are hazardous wastes produced during the extensive use of oil-based drilling mud in oil and gas exploration and development. They have strong mutagenic, carcinogenic, and teratogenic effects and need to be properly disposed of to avoid damaging the natural environment. This paper reviews the recent research progress on the regional distribution, properties, treatment technologies, and resource utilization of OBDC. The advantages and disadvantages of different technologies for removing petroleum pollutants from OBDC were comprehensively analyzed, and required future developments in treatment technologies were proposed.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jingjing Zhang
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610036, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
13
|
Xu T, Wang L, Zhang H, Zhan X, Wang Y. Pyrolysis kinetics and environmental risks of oil-based drill cuttings at China's largest shale gas exploitation site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114189. [PMID: 36265404 DOI: 10.1016/j.ecoenv.2022.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Chongqing Fuling shale gas field, the largest shale gas exploration site in China, produces a large amount of oil-based drill cuttings (OBDC) every year, which is a hazardous waste. Traditional treatment methods such as solidification/stabilization did not recycle the valuable components such as petroleum hydrocarbons. Pyrolysis is proven to be an efficient method that can recover those components. This study firstly investigated the pyrolysis kinetics by two different methods on the basis of detailed material characterization, and then taking the workers and the surrounding ecological environment as the analysis object, the human health risk assessment (HHRA) and ecological risk assessment were evaluated respectively before and after pyrolysis. The results showed that the pyrolysis of OBDC was divided into three stages, and the cracking of light hydrocarbons stage was the key control step for pyrolysis process. The activation energy E increased gradually during the pyrolysis progress. The HHRA results showed that pyrolysis could greatly reduce the non-carcinogenic risk, carcinogenic risk and ecological risk by 59.6 %, 62.8 % and 75 % respectively. However, the carcinogenic risk after pyrolysis was still higher than the critical value 10-6.
Collapse
Affiliation(s)
- Tengtun Xu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Li'ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Huijun Zhang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xinyuan Zhan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yimei Wang
- Chongqing Ecological Environment Monitoring Center, Chongqing 401147, China
| |
Collapse
|
14
|
Gan L, Wang J, Xie M, Yang B. Ecological risk and health risk analysis of soil potentially toxic elements from oil production plants in central China. Sci Rep 2022; 12:17077. [PMID: 36224271 PMCID: PMC9556517 DOI: 10.1038/s41598-022-21629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, the enrichment factor (EF) and pollution load index (PLI) were used to evaluate the pollution of potential toxic elements (PTEs) in the soil near the oil production plants in central China, and the potential ecological risk (PER) and human health risk (HHR) assessment model were used to evaluate the PER and HHR caused by the soil PTEs in the study area. The mean EFs of all PTEs were greater than 1, PTEs have accumulated to varying degrees, especially Cr, Ni and Pb were the most serious. The average value of PLI was 2.62, indicating that the soil PTEs were seriously polluted. The average [Formula: see text] values of PTEs were Cr > Pb > Cd > Ni > As > Cu > Zn > Mn, of which Cr, Pb, Cd and Ni were at medium and above PER levels. Both adults and children in the study area suffered from varying degrees of non-carcinogenic and carcinogenic risks. The total hazard index (THI) values of children (7.31) and adults (1.03) were all > 1, and the total carcinogenic risk index (TCRI) of children (9.44E-04) and adults (5.75E-04) were also > 10-4. In particular, the hazardous quotient (HQ) of Cr and Pb for children under the oral intake route were 4.91 and 1.17, respectively, caused serious non-carcinogenic risk. And the carcinogenic risk index (CRI) values of the PTEs in adults and children under the three exposure routes were Cr > Ni > > As > Pb > > Cd. Among them, the CRI values of Cr and Ni in children and adults by oral intake were both greater than 10-4, showing a strong carcinogenic risk. The results will provide scientific basis for environmental protection and population health protection in this area.
Collapse
Affiliation(s)
- Lu Gan
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China
- College of Art, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jiangping Wang
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Mengyun Xie
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Bokai Yang
- College of Art, Minnan Normal University, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
15
|
Chelator Iminodisuccinic Acid Regulates Reactive Oxygen Species Accumulation and Improves Maize (Zea mays L.) Seed Germination under Pb Stress. PLANTS 2022; 11:plants11192487. [PMID: 36235352 PMCID: PMC9573693 DOI: 10.3390/plants11192487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
To explore the effects of iminodisuccinic acid (a chelating agent) on maize (Zea mays L.) seed germination under lead (Pb) stress, we comparatively analyzed the effects of applying different concentrations of iminodisuccinic acid (0, 5, 20, and 100 mmol·dm−3) and combined an addition of exogenous substances regulating reactive oxygen species production on maize seed germination, seedling growth, H2O2 content, NADPH oxidase activity, and antioxidant enzyme activities under Pb-stressed and Pb-free conditions. Iminodisuccinic acid (100 mmol·dm−3) significantly delayed seed germination under normal germination conditions and alleviated the inhibitory effects of Pb stress (20 mmol·dm−3) on seed germination. Under normal conditions (without Pb stress), the iminodisuccinic acid-induced inhibition of seed germination was enhanced by treatment with dimethylthiourea (a specific scavenger of reactive oxygen species) or diphenyleneiodonium chloride (a specific inhibitor of NADPH oxidase), but diminished by treatment with H2O2, CaCl2, diethyldithiocarbamic acid (a specific inhibitor of superoxide dismutase), or aminotriazole (a specific inhibitor of catalase). Under Pb stress, iminodisuccinic acid partially eliminated the excessive H2O2 accumulation, improved superoxide dismutase and catalase activity, and weakened the high NADPH oxidase activity. In addition, Ca2+ chelation may be essential for maintaining the reactive oxygen species’ balance and improving seed germination and seedling growth by iminodisuccinic acid supplementation in maize under Pb stress. The proposed iminodisuccinic acid supplementation-based method improved maize seed germination in Pb-polluted soil.
Collapse
|
16
|
Yang H, Diao H, Zhang Y, Xia S. Treatment and novel resource-utilization methods for shale gas oil based drill cuttings - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115462. [PMID: 35751264 DOI: 10.1016/j.jenvman.2022.115462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The oil exploration and production (E&P) industry has made outstanding contributions to gross domestic product (GDP) growth in many countries. In recent years, the gap between energy supply and demand has widened, and, simultaneously, demand for clean energy has gradually increased. As an emerging clean energy source, shale gas has received extensive attention. However, the environmental problems caused by oil and gas extraction and production should not be underestimated. Oil-based drill cuttings (OBDC) are typical hazardous solid wastes produced during oil/gas exploration and production processes. In addition, oil-based drill cuttings ash (OBDCA) is the main product of treated OBDC and should be further utilized to avoid pollution and waste of resources. This review describes relevant policies and regulations for the OBDC. The main treatment methods for OBDC have been systematically summarized. Compared to the standard method for resource utilization of OBDCA, a novel approach was proposed to utilize OBDCA as an environment-friendly functional material for environmental remediation. The future development prospects for OBDC were envisioned to achieve sustainable development goals.
Collapse
Affiliation(s)
- Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Hongli Diao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
17
|
Okoro EE, Ochonma C, Sanni SE, M O, Igwilo KC, Olawole OC. Risk assessment of human exposure to radionuclides and heavy metals in oil-based mud samples used for drilling operation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:972-983. [PMID: 32866077 DOI: 10.1080/09603123.2020.1811843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigates heavy metals and naturally occurring radionuclide materials (NORM) possible presence and pollution rates in oil-based drilling fluids system used to drill an oil and gas well. It also estimates the health risks of the drilling crew due to their exposure to these substances. Measurements from Atomic Absorption Spectrometry (AAS) revealed that, the concentrations of the metals present in the drilling mud samples varied significantly and decreased in the order of Zn > Al > Ni > Pb > Cr > Cu > As > Hg > Cd. Generally, amongst all the heavy metals considered, mud sample C had the highest heavy metal concentration when compared to samples A and B, respectively. When compared with the recommended maximum allowable limits, Cd and Ni were found to be higher than the International Reference Standard by factors of Cd (3 mg/kg) and Ni (50 mg/kg). The cancer risk obtained from this present study are 1.1 × 10-3 and 7.7 × 10-3 for the drilling crew, which is slightly above the acceptable risk range considered by the environmental and regulatory agencies. The concentrations of radioactive substances as obtained from analysis, show that K-40 is the dominant radionuclide in the samples with the highest value slightly twice the standard reference value. The concentrations of Ra-226 and Th-232 activity in the mud samples were found to be lower when compared with the International Reference Level. Also, the X-ray diffraction analysis helped to identify 16 very important/useful minerals in the three mud samples under consideration. The higher elemental concentrations of potassium and aluminum silicate found in sample C can be credited to the elevated heavy metal-content found in the mud samples. Significantly, these exposure risks found in this present study indicate that the potential health risks due to radiological activities may not pose short - but long-term risks to the drillers.
Collapse
Affiliation(s)
- Emmanuel E Okoro
- Petroleum Engineering Department, Covenant University, Ota, Nigeria
| | | | - Samuel E Sanni
- Chemical Engineering Department, Covenant University, Ota, Nigeria
| | - Omeje M
- Physics Department, Covenant University, Ota, Nigeria
| | - Kevin C Igwilo
- Petroleum Engineering Department, Federal University of Technology, Owerri, Nigeria
| | | |
Collapse
|
18
|
Xie B, Qin J, Sun H, Wang S, Li X. Release characteristics of polycyclic aromatic hydrocarbons (PAHs) leaching from oil-based drilling cuttings. CHEMOSPHERE 2022; 291:132711. [PMID: 34715097 DOI: 10.1016/j.chemosphere.2021.132711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Drilling cuttings, the primary byproduct from the exploration and mining of shale gas, are potentially hazardous wastes that are associated with the serious depletion of land resources and environmental safety problems. In this work, the distribution of polycyclic aromatic hydrocarbons (PAHs) in oil-based residues of shale gas drilling cuttings was studied. Furthermore, a column leaching test was carried out to investigate the leaching behaviour of PAHs. The results showed that (1) the concentrations of 4-ring PAHs were highest among the PAH concentrations detected from the oil-based residues, and the concentration of PAHs decreased with increasing particle size of the residues. (2) The PAH concentration in leachates from all the tested residues differed during the leaching process, and the cumulative amount of each leached PAH accounted for 1.50-3.20% of the total PAHs. (3) The first-order diffusion model (FRDM) was the most applicable model for describing the leaching characteristics of the PAHs, and the leaching rate was initially controlled by surface wash-off and then by diffusion.
Collapse
Affiliation(s)
- Bingxin Xie
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| | - Jihong Qin
- Department of Environmental Engineering, Chengdu University, Chengdu, 610106, China.
| | - Hui Sun
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| | - Shu Wang
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| | - Xin Li
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| |
Collapse
|
19
|
Liu T, Tian L, Yang L, Yan D, Huang Q, Lu G, Liu Z, Huang Z. Emissions of BTEXs, NMHC, PAHs, and PCDD/Fs from Co-processing of Oil-based Drilling Cuttings in Brick Kilns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114170. [PMID: 34864419 DOI: 10.1016/j.jenvman.2021.114170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Oil-based drilling cuttings (OBDC) produced from shale gas development is a hazardous waste that have high calorific values and should be disposed of properly. Burning bricks with OBDC is a promising co-disposal method; however, organic pollutants emitted during this process have not received sufficient attention. In this study, the composition and combustion characteristics of OBDC were determined, and the emissions of typical organic pollutants when burning bricks with the addition of OBDC were investigated; these included benzene series compounds (BTEXs), non-methane total hydrocarbons (NMHC), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The results showed that OBDC comprised large amounts of alkanes and aromatic hydrocarbons, and combusted mainly in the temperature range of 145-450 °C with an ignition temperature of 145 °C. The co-processing 10% OBDC increased the concentrations of toluene, NMHC, and PAHs in the flue gases by ∼1000%, ∼500%, and 200%, respectively, compared to the control experiment; however, their emission concentrations were within the limits set by the Integrated emission standards of air pollutants of Chongqing. It is worth noting that 26.443 ng/Nm3 PCDD/Fs with a total toxicity of 0.709 ng I-TEQ/Nm3 was generated from the co-processing 10% OBDC, which was ascribed to the high content of chlorine and aromatic hydrocarbons in the OBDC-promoted PCDD/Fs formed during the burning and cooling processes. Though PCDD/Fs in flue gas exceeded the 0.5 ng I-TEQ/Nm3 limit prescribed in the Pollution control standard for hazardous wastes incineration of China, the realistic emission of PCDD/Fs is expected to meet with this emission limit after desulfurization treatment as PCDD/Fs can be absorbed by gypsum. It is recommended that a lower amount of OBDC is added to reduce PCDD/F formation at the source and to take more efficient air pollution control system in order to reach a stricter emission limit of 0.1 ng I-TEQ/Nm3 in EU and USA. Cycling flue gas may also be an effective method to reduce other organic pollutants. Under these conditions, co-processing OBDC in brick kilns can be achieved without serious environmental pollution, making it a potential method for disposal and utilization.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lifeng Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technology Institution Physical and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liuyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guilan Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zewei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zechun Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
20
|
Yang H, Cai J, Sun J, Zhou Z, Zhang Y, Xia S. Treatment of oil-based drilling cuttings using the demulsification separation-Fenton oxidation method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64307-64321. [PMID: 34304353 DOI: 10.1007/s11356-021-15509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In this study, demulsification separation-Fenton oxidation technology was employed as a combined technology to treat total petroleum hydrocarbons (TPH) in oil-based drill cuttings (OBDC). Batch experiments were carried out to optimize the technology parameter. Under the optimal condition, 70% and 51% TPH removal rate was obtained for demulsification technology and Fenton oxidation technology, respectively. Eighty-five percent of TPH removal rate was obtained using combination technology of demulsification separation and Fenton oxidation. Multiple characterizations were used to analyze the physical and chemical properties of treated OBDC. The result of XRD pattern indicated the combination technology had no obvious effect for structure phase of OBDC. The results of FTIR, GC-MS, TG-DTG and SEM were used to characterize the treated OBDC. This paper provides an efficient and feasible combined technology for OBDC treatment, which expands a new strategy for the removal of TPH from solid waste.
Collapse
Affiliation(s)
- Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Untreatedwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Jiaxi Cai
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianfa Sun
- China Petroleum & Chemical Corporation Jianghan Oilfield Branch No. 1 Gas Production Plant, Chongqing, 400000, China
| | - Zejun Zhou
- Chongqing Fuling Shale Gas Environmental Protection R&D and Technical Service Center, Chongqing, 422802, China
| | - Yi Zhang
- State Key Laboratory of Untreatedwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
21
|
Xie B, Qin J, Sun H, Wang S, Li X. Leaching behavior of polycyclic aromatic hydrocarbons (PAHs) from oil-based residues of shale gas drill cuttings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117773. [PMID: 34351283 DOI: 10.1016/j.envpol.2021.117773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Cuttings are the main solid residues which are generated from drilling operations. Due to the presence of heavy and radioactive elements, the environment risk posed by cuttings has attracted increasing attention. In this work, a short-term static immersion experiment was carried out to investigate the leaching of polycyclic aromatic hydrocarbons (PAHs) from oil-based residues of shale gas drilling cuttings. Furthermore, the effects of some relevant environmental factors controlling the leaching behavior were evaluated, including the different particle sizes, pH, extraction time, solid-to-liquid (S/L) ratio and dissolved organic matter (DOM) concentration. The results showed that (1) the concentrations of leached PAHs gradually increased with prolonged leaching time, but the cumulative amount of PAHs released during leaching was less than 3% of the total. (2) The Elovich, parabolic diffusion and power function models were found to fit the experimental data better than the first-order kinetic equation, indicating that the leaching of PAHs was controlled by the coupling of diffusion and chemical reactions at the source surface. (3) Different environmental factors had different impacts on the leaching of PAHs: the shaking time and presence of DOM increased leachability, the particle size and S/L ratio decreased leachability, and the pH did not affect the leachability of PAHs. Therefore, PAHs leaching was a complex process, and it is of scientific and environmental interest to conduct the leaching tests under the simulated environmental conditions.
Collapse
Affiliation(s)
- Bingxin Xie
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| | - Jihong Qin
- Department of Environmental Engineering, Chengdu University, Chengdu, 610106, China.
| | - Hui Sun
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| | - Shu Wang
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| | - Xin Li
- Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, 610065, China.
| |
Collapse
|
22
|
Xiong D, Wang C. Risk assessment of human exposure to heavy metals, polycyclic aromatic hydrocarbons, and radionuclides in oil-based drilling cutting residues used for roadbed materials in Chongqing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48171-48183. [PMID: 33899146 DOI: 10.1007/s11356-021-13871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Oil-based drilling cutting residues (OBDCRs) contain many kinds of carcinogenic contaminants, such as heavy metal elements, polycyclic aromatic hydrocarbons (PAHs), and natural radioactive materials (NORMs), which are great risks for the environment and human health. This study investigated the chemical composition, the radioactive strength, the heavy metal contents, and the org matter contents in OBDCRs and estimated the health risks due to exposure to heavy metals, PAHs, and radionuclides in OBDCRs used for roadbed materials. From the measurements, it was found that the content values of benzopyrene (a), diphenylanthracene (a, h), and petroleum hydrocarbons exceeded the standard limit. The content values of Cu, Zn, As, and Ni were higher than 50% of the standard limit. If OBDCRs were directly used to make roadbed materials, the total carcinogenic risk values (CRn) of As, benzoanthracene (a), benzopyrene (a), and dibenzoanthracene (a, h) were all higher than 10-6. The average absorbed dose rate was higher than 80 nGy/h. There were greater risks of carcinogenic environment and potential harms to human health. To reduce the health risks, it is necessary to consider the strategy of the utilization of OBDCRs, the working time, and the service life of the recycled OBDCRs and establish a legal standard and liability for the utilization of OBDCRs as solid waste resources.
Collapse
Affiliation(s)
- Deming Xiong
- Chongqing Environmental Protection Center for Shale Gas Technology & Development, Fuling, Chongqing, 408000, China
| | - Chaoqiang Wang
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
23
|
Howladar MF, Hossain MN, Anju KA, Das D. Ecological and health risk assessment of trace metals in water collected from Haripur gas blowout area of Bangladesh. Sci Rep 2021; 11:15573. [PMID: 34341388 PMCID: PMC8329277 DOI: 10.1038/s41598-021-94830-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
The study aims to assess the trace metals and physicochemical properties of water in the adjacent to the Sylhet gas blowout area. Trace metals were analyzed using atomic absorption spectrophotometer, whereas physicochemical parameters were evaluated in-situ state using portable instruments and also in the laboratory. Trace metals Pb, Cd, and Ni were found in the water samples higher than the acceptable limit by WHO standards, whereas the concentration of Cu and Zn were within acceptable limit, respectively. The correlation coefficient matrix and factor loading analysis spectacle that the interrelationship among the physicochemical parameters, trace elements, as well as other ions are moderate to strongly corellated which reflecting the homogeneous source of origin. According to contamination factor, Nemerow multi-factor index, pollution load index, and also, potential ecological risk index, the water of the region is quite polluted in case of Pb, Cd, and Ni but unpolluted for Cu and Zn. The water quality index indicates that treatment of water is required before using it for domestic purposes. The health quotient and hazard index results are less than standard value 1 suggesting that there is no noncarcinogenic risk in the area. The carcinogenic analysis shows that the lifetime incremental cancer risk mean value of Cd and Ni are fairly insignificant and Pb is more significant for children to cause health problem. The ILCR value of Cd and Ni are insignificant whereas Pb is significant to pose health risk for adults. Physicochemical parameters revealed that the water was slightly acidic and soft in nature implying to avoid the water from this area for drinking purposes. At the end, it can be concluded that this study will be useful for the residence as well as the policymaker to take the protective surveillance measures around the areas.
Collapse
Affiliation(s)
- M Farhad Howladar
- Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Md Numan Hossain
- Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Khaleda Akter Anju
- Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Debjani Das
- Department of Geography and Environment, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
24
|
Xu X, Hua J, Zhang H, Zhao Z, Wang Y, Zhang D, Zhang J, Chen X. Environmental Risk Assessment of Recycled Products of Spent Coppery Etchant in Jiangsu Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157881. [PMID: 34360174 PMCID: PMC8345568 DOI: 10.3390/ijerph18157881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/07/2022]
Abstract
With the vigorous development of the 5G industry, the characteristic hazardous waste, spent coppery etchant, was also produced in large quantities. In recent years, there are many companies that have begun to collect spent coppery etchant for the purpose of producing recycled products, such as copper sulfate, copper oxide, basic copper chloride, and copper powder, which often contain large amounts of heavy metals. However, due to the lack of relevant standards and applicable regulatory measures, some of the recycled products flow to the feed processing industry and even to the food processing industry. This study investigated the pollution status of heavy metals in recycled products of spent coppery etchant and evaluated the impact of recycled products exposure on human health. The results showed that the content of Zn was the highest, which was 21 times higher than the corresponding standard limit. Human health risk assessment indicated that the hazard quotients of As account for 87.5% of the entire HI value, while the average carcinogenic risk values of As for copper sulfate, copper oxide, basic copper chloride, and copper powder are 1.09 × 10−5, 3.19 × 10−5, 1.29 × 10−5, 7.94 × 10−6, respectively. Meanwhile, suggestions on the supervision of recycled products and the concentration limits of heavy metals in recycled products were put forward.
Collapse
|
25
|
Zhao Y, Yang H, Sun J, Zhang Y, Xia S. Activation of Peroxymonosulfate Using Secondary Pyrolysis Oil-Based Drilling Cuttings Ash for Pollutant Removal. ACS OMEGA 2021; 6:16446-16454. [PMID: 34235316 PMCID: PMC8246478 DOI: 10.1021/acsomega.1c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, the utilization of secondary pyrolysis oil-based drilling cuttings ash (OBDCA-sp) to activate peroxymonosulfate (PMS) for pollutant removal was investigated. The chemical and physical properties of OBDCA-sp were explicitly analyzed via multiple characterization. The activation efficiency of OBDCA-sp for PMS was tested using humic acid (HA) as the target pollutant. 92% of HA and 52% of total organic carbon in solution could be removed using OBDCA-sp-activated PMS under optimal conditions: OBDCA-sp dosage at 4 g/L, PMS concentration at 4 mmol/L, HA concentration at 10 mg/L, and pH value at 7. After four cycles, 84% removal rate of HA could still be achieved using OBDCA-sp to activate PMS. The main catalysis elements for PMS activation in OBDCA were postulated to be Fe(III), Co(III), and Mn(III), based on X-ray photoelectron spectroscopy and X-ray diffraction results. The results of the quenching experiment indicated that SO4 •-, •OH, and 1O2 were the main reactive oxygen species (ROS) and that 1O2 was the dominant ROS in the HA removal process. Radical trapping experiments indicated the presence of SO4 •-, •OH, and 1O2 in the reaction system. This study presented a novel utilization path of OBDCA in the field of environmental remediation.
Collapse
Affiliation(s)
- Yuqing Zhao
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- College
of Ecology and Environment, Hubei Vocational
College of Ecological Engineering, Wuhan 430200, P. R. China
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Hang Yang
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianfa Sun
- China
Petroleum & Chemical Corporation Jianghan Oilfield, Branch No. 1 Gas Production Plant, Chongqing 400000, China
| | - Yi Zhang
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Shibin Xia
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
26
|
Hu G, Liu H, Chen C, Hou H, Li J, Hewage K, Sadiq R. Low-temperature thermal desorption and secure landfill for oil-based drill cuttings management: Pollution control, human health risk, and probabilistic cost assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124570. [PMID: 33223322 DOI: 10.1016/j.jhazmat.2020.124570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Oil-based drill cuttings (OBDCs) were managed in two scenarios including low-temperature thermal desorption (LTTD) and secure landfill through a case study. The removal of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in OBDCs by LTTD under different conditions was investigated. Probabilistic human health risk assessment was performed to quantify the health risk posed to waste management workers under the two scenarios, while the associated costs were also analyzed. The results show that LTTD at 300 °C for >20 min could remove 96.27% of PAHs in OBDCs but its removal effect on heavy metals was not significant. It was found that cancer risks posed by PAHs in both securely landfilled and LTTD-treated OBDCs were not significant (<1e-06); however, significant cancer risks (7.95e-05-9.45e-05) were identified for exposure to toxic heavy metals. Increased health risk was observed as a result of exposure to LTTD treatment residues compared to securely landfilled OBDCs. Inhalation of chromium(VI) and oral ingestion of arsenic in OBDCs were critical exposure routes. Both cancer and non-cancer risks in the secure landfill scenario were negligible. The cost analysis results suggest that LTTD combined with stabilization/solidification could be more economically attractive than secure landfill for the handling of OBDCs.
Collapse
Affiliation(s)
- Guangji Hu
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 Canada.
| | - Huan Liu
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 Canada.
| | - Chang Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430074, China.
| | - Jianbing Li
- Environmental Engineering Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 Canada.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 Canada.
| |
Collapse
|
27
|
Li J, Lin F, Li K, Zheng F, Yan B, Che L, Tian W, Chen G, Yoshikawa K. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124706. [PMID: 33418275 DOI: 10.1016/j.jhazmat.2020.124706] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
This review systematically reports the pyrolysis of oily sludge (OS) from petroleum industry in regards to its dual features of the energy recovery potential and the environmental risks. The petroleum hydrocarbons are the nonbiodegradable fractions in OS that possess hazardous properties, i.e. ignitability and toxicity. Besides, complicated hazardous elements (i.e. N, S and Cl) and heavy metals inherently existing in OS further aggravate the environmental risks. However, the high oil content and heating value of OS contribute to its huge energy resource potential. Considering the energy demand and the environmental pressure, the ultimate purposes of the OS management are to enhance the oil recovery efficiency to minimize the oil content as well as to stabilize the hazardous elements and heavy metals into the solid residue. Among various OS management technologies, pyrolysis is the most suitable approach to reach both targets. In this review paper, the pyrolysis principle, the kinetics and the product distribution in three-phases are discussed firstly. Then the effects of operating parameters of the pyrolysis process on the quality and the application potential of the three-phase products, as well as the hazardous element distribution are discussed. To further solve the dominant concerns, such as the oil content in the solid residue, the pyrolytic oil quality and the migration of hazardous elements and heavy metals, the potentials of the catalytic pyrolysis and the co-pyrolysis with additives are also summarized. Also, the typical pyrolysis reactors are then presented. From the perspective of the energy efficiency and the non-hazardous disposal, the integrated technology combining the pyrolysis and the combustion for the OS management is recommended. Finally, the remaining challenges of OS pyrolysis encountered in the research and the industrial application are discussed and the related outlooks are itemized.
Collapse
Affiliation(s)
- Jiantao Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China.
| | - Kai Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Fa Zheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou 313000, PR China
| | - Wangyang Tian
- Zhejiang Eco Environmental Technology Co. LTD, Huzhou 313000, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Kunio Yoshikawa
- Zhejiang Eco Environmental Technology Co. LTD, Huzhou 313000, PR China
| |
Collapse
|
28
|
Chen S, Zhang Q, Andrews-Speed P, Mclellan B. Quantitative assessment of the environmental risks of geothermal energy: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111287. [PMID: 32877889 DOI: 10.1016/j.jenvman.2020.111287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Over recent decades, the use of geothermal energy for heating supply and power generation has increased significantly across the world, owing to its low carbon emissions. However, a series of emerging environmental risks from geothermal energy development and operation have been drawing increasing attention from governments and the publics. In this context, the present study provides an overview of methods for quantitatively assessing the environmental risks of geothermal energy. These include seismic hazards, human health, ecological damage and economic loss. The constraints on constructing assessment frameworks are also discussed. Furthermore, a preliminary concept for an integrated framework is proposed to assess environmental risks of geothermal energy comprehensively from multiple perspectives. To enhance the accuracy and reliability of the proposed framework, a data-sharing platform needs to be built to develop multi-disciplinary modeling further.
Collapse
Affiliation(s)
- Siyuan Chen
- School of Economics and Management, China University of Petroleum-Beijing, Changping, Beijing, 102249, China; Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, 102249, China; Energy Studies Institute, National University of Singapore, 119620, Singapore
| | - Qi Zhang
- School of Economics and Management, China University of Petroleum-Beijing, Changping, Beijing, 102249, China; Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, 102249, China.
| | | | | |
Collapse
|
29
|
Lai H, Lv S, Lai Z, Liu L, Lu Z. Utilization of oil-based mud drilling cuttings wastes from shale gas extraction for cement clinker production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33075-33084. [PMID: 32529615 DOI: 10.1007/s11356-020-09541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
A large amount of oil-based mud drilling cuttings (OBMDC) are generated during shale gas extraction, which adversely affects the environment. In order to realize the resource utilization of waste, the object of this paper is to study the feasibility of OBMDC to produce cement clinker. The results showed that at relatively low calcination temperature, adding a certain amount of OBMDC can produce cement clinker successfully and reduce fuel consumption. The compressive strength, hydration performance, and physical characteristics of clinker with 0, 3, 6, and 9% OBMDC were investigated by chemical analysis methods, X-ray diffraction, isothermal calorimetry, mercury intrusion, and energy dispersive spectroscopy. The results showed that the formulated cement has good hydration performance and the compressive strength also meets relevant standards. The heavy metal ions leaching test showed that the preparation of cement clinker by a low amount of OBMDC could effectively reduce the toxicity of OBMDC. In general, the preparation of cement clinker by OBMDC can realize the resource utilization of waste, effectively reduce its toxicity, and play a positive role in environmental protection.
Collapse
Affiliation(s)
- Hang Lai
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shuzhen Lv
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhenyu Lai
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Zhenyu Lai, No. 59, Qinglong Avenue Middle Section, Fucheng District, Mianyang City, 621010, Sichuan Province, China.
| | - Laibao Liu
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhongyuan Lu
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Zhenyu Lai, No. 59, Qinglong Avenue Middle Section, Fucheng District, Mianyang City, 621010, Sichuan Province, China
| |
Collapse
|
30
|
Jiang G, Yu J, Jiang H, Xu B, Tang P, Zhao L, Li H, Xiang Q, Hu J. Physicochemical characteristics of oil-based cuttings from pretreatment in shale gas well sites. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1041-1049. [PMID: 32427053 DOI: 10.1080/10934529.2020.1767451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Understanding the physicochemical characteristics of oil-based cuttings (OBCs) is an important foundation for subsequent treatment and management. The macro- and microscopic properties of white oil-based cuttings (WOBCs) and diesel-based cuttings (DBCs) after the different pretreatment steps have been assessed using scanning electron microscopy. The organic and inorganic compositions of OBCs have been analyzed using X-ray diffraction, Fourier-transform infrared spectrometry, and gas chromatography-mass spectrometry. Inorganic matter (SiO2, BaSO4, and CaCO3), alkanes, aromatic compounds, and water were the main components of OBCs. The organic content (26.14%) and alkane content of the WOBCs were higher than that of the DBCs, whereas for the inorganic content (70.87%), the reverse was true. The macro- and micromorphologies of OBCs were quite different because their oil and water contents were different. The oil contents of OBCs decreased in the order A1 (14.64%) > A3 (12.67%) > A2 (11.06%) and B1 (9.19%) > B3 (8.94%) > B2 (4.66%); the water contents decreased in the order A1 (2.99%) > A3 (2.19%) > A2 (1.09%) and B1 (2.30%) > B3 (1.87%) > B2 (1.09%). Moreover, a skid-mounted treatment technology for OBCs was proposed. The results can be a scientific guidance for the treatment and management of OBCs.
Collapse
Affiliation(s)
- Guobin Jiang
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
- Postdoctoral Research Station, Southwest Jiaotong University, Chengdu, China
| | - Jinlei Yu
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| | - Huashan Jiang
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| | - Bo Xu
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| | - Pan Tang
- Sichuan Changning Natural Gas Development Co., Ltd, Chengdu, China
| | - Liang Zhao
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| | - Hui Li
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| | - Qigui Xiang
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| | - Jinyan Hu
- Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu, China
- Sichuan Key Laboratory of Evaluation and Exploitation of Shale Gas, Chengdu, China
| |
Collapse
|
31
|
Okoro EE, Okolie AG, Sanni SE, Omeje M. Toxicology of Heavy Metals to Subsurface Lithofacies and Drillers during Drilling of Hydrocarbon Wells. Sci Rep 2020; 10:6152. [PMID: 32273541 PMCID: PMC7145872 DOI: 10.1038/s41598-020-63107-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
This study investigates the toxicological effects of heavy metals on lithofacies of the subsurface in a drilled hydrocarbon well as well as, to the drilling crew and people in an environment. The pollution levels of selected heavy metals were considered alongside their ecological effects during dry and wet seasons. The health hazard potential of human exposures to the metals, were estimated in terms of intensity and time using the USEPA recommended model. The heavy metal concentration for each layer decreased across the lithofacies as follows; Layer 5> Layer 4> Layer 3> Layer 2> Layer 1. The average concentrations of the heavy metals present in the samples obtained from the formation zone, varied significantly and decreased in the order of Al> Zn> Ni> Pb> Cr> Cu> Cd> As> Hg. The highest concentration of Al, Cu, and Zn in this present study were within the maximum allowable limits whereas, those of As, Cd, Hg and Ni were all above their maximum allowable limits. Among the transition metals analysed, the maximum mean daily dose of Pb (9.18 × 10-6 mg/kg/d) and Cr (1.42 × 10-6 mg/kg/d) were confirmed susceptible to human carcinogens and environmental toxins. The estimated hazard quotient shows that the dermal pathway is the most likely route via which the drilling crew and people in the environment can get contaminated. The cancer risk values for the Pb (7.72 × 10-4), Cd (1.35 × 10-1), Ni (9.97 × 10-3), As (1.50 × 10-1) and Cr (3.16 × 10-3) are all above the acceptable values. The cancer risk contribution for each metal was in the order of As> Cd> Ni> Cr> Pb. Layer 5 had the maximum Geo-accumulation index for the heavy metals considered. This higher Geo-accumulation index noted at the depth in Layer 5 may be attributed to the effect of water basin with turbidity currents, deltas, and shallow marine sediment deposits with storm impacted conditions. Also, the pollution from lead (Pb) in the dry season was maximum with an Igeo value> 5 for all the lithofacies considered because of the low background concentration of the metal. During the wet season, the heavy metal pollution rate was moderate for Zn whereas, it was extremely polluted with respect to Pb. The ecological risk potential of Pb shows that the associated ecological risks range from 536 - 664 in the wet season (i.e. extremely strong) and 2810 - 3480 in dry season (extremely strong). The high level of Pb pollution found in the area at such shallow depth may be due to the sedimentary folds possibly caused by the full spectrum of metamorphic rocks and primary flow structures at shallow depths. This was used to identify the environmental sensitivities of the heavy metals during the dry and wet seasons.
Collapse
Affiliation(s)
- Emmanuel E Okoro
- Petroleum Engineering Department, Covenant University, Ota, Nigeria.
| | | | - Samuel E Sanni
- Chemical Engineering Departement, Covenant University, Ota, Nigeria
| | - Maxwell Omeje
- Physics Departement, Covenant University, Ota, Nigeria
| |
Collapse
|
32
|
Chen Z, Zheng Z, Li D, Chen H, Xu Y. Continuous supercritical water oxidation treatment of oil-based drill cuttings using municipal sewage sludge as diluent. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121225. [PMID: 31585285 DOI: 10.1016/j.jhazmat.2019.121225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Oil-based drill cuttings (OBDC) is a characteristic hazardous waste that is generated in oil and gas exploration. In this study, two typical OBDCs from shale gas fields were treated in a continuous supercritical water oxidation (SCWO) for the first time. Because both heat value and ash content (AC) in the OBDCs were well beyond the capacity of continuous operation, municipal sewage sludge (MSS) was innovatively adapted as the diluent. A mixed sludge with OBDC addition levels of 10%, 20%, and 30% was tested using a novel SCWO reactor. Mean residence times of reactants in different reaction zones were specifically calculated. Results indicated the organic carbon removal efficiency could reach up to 98.44%. Eight detected heavy metals were found to be almost completely removed into solid products, and the concentrations in liquid products were all below the discharge limits. It was also found that the SCWO reactor exhibited good anti-plugging and anti-corrosion performance. The AC in the feedstock was up to 28.58%. To the best of our knowledge, this has, hitherto, not been achieved in a continuous SCWO operation. This study provides a new approach for harmlessly and completely degrading OBDC, and is also helpful for the industrialization of SCWO technology.
Collapse
Affiliation(s)
- Zhong Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhijian Zheng
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Dongyuan Li
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Hongzhen Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yuanjian Xu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Okoro EE, Ochonma C, Omeje M, Sanni SE, Emetere ME, Orodu KB, Igwilo KC. Radiological and toxicity risk exposures of oil based mud: health implication on drilling crew in Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5387-5397. [PMID: 31848949 DOI: 10.1007/s11356-019-07222-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Naturally occurring radioactive materials (NORMs) and the presence of toxic metals in drilling fluids/their additives have raised research interests in recent times owing to the risks associated with the exposure times for drillers of petroleum wells. In this study, two drilling fluids A and B were formulated, while two other Mud Samples C and D were obtained from drilled shale and shale-sand formation zones. All four fluids were collected and analyzed for the presence of radioactive and heavy metals. Lead (Pb), mercury (Hg), cadmium Cd), zinc (Zn), chromium (Cr), aluminum (Al), arsenic (As), nickel (Ni), and copper (Cu) were detected in the mud samples. The heavy metal contents of the mud samples are in the following decreasing order of magnitude Hg > Pb > Cd > Cr. In Samples A-D, Hg, Pb, Cr, and Cd were found to have significant concentrations, and the concentrations of these metals increased in the mud samples after they were used for drilling. The concentration of Hg was above the permissible limit. Also, the concentrations of Pb, Cu, As, and Al found in Mud Samples A and B can cause skin irritations over long-term exposures, while Cd, Hg, Zn, and Ni present in the samples were within levels that can cause lung infections or immune breakdown when ingested over long periods. The quantities of Cd, Hg, and Cu detected in Mud Samples C and D can cause skin irritations over long-term exposures, while those of As, Zn, Ni, and Al were seen to have the potential to cause dermal infections/diseases. Based on the results obtained, the cancer risk for the drilling crew lies within 1.1 × 10-3 - 7.7 × 10-3 HQ. The highest dose rate, radium release, and external hazard index were obtained for Mud Sample C whose radium equivalent was judged to be far below the critical safe limit for the drillers. The radium equivalent activity for the two field mud samples (C and D) were estimated to be 27.467 and 22.978 Bq kg-1, respectively, which is the maximum activity obtained for the analyzed samples. The maximum radium equivalent activity for Mud Sample C was estimated as 27.48 Bq kg-1 with a corresponding external hazard index of 0.7. Based on the analysis, there is a significant correlation between the concentration of heavy metals and the radionuclides found in the mud samples.
Collapse
Affiliation(s)
| | | | - Maxwell Omeje
- Physics Department, Covenant University, Ota, Nigeria
| | - Samuel E Sanni
- Chemical Engineering Department, Covenant University, Ota, Nigeria
| | | | - Kale B Orodu
- Petroleum Engineering Department, Covenant University, Ota, Nigeria
| | - Kevin C Igwilo
- Petroleum Engineering Department, Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
34
|
Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK. Mercury in natural gas streams: A review of materials and processes for abatement and remediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121036. [PMID: 31473516 DOI: 10.1016/j.jhazmat.2019.121036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The role of natural gas in mitigating greenhouse gas emissions and advancing renewable energy resource integration is undoubtedly critical. With the progress of hydrocarbons exploration and production, the target zones become deeper and the possibility of mercury contamination increases. This impacts on the industry from health and safety risks, due to corrosion and contamination of equipment, to catalyst poisoning and toxicity through emissions to the environment. Especially mercury embrittlement, being a significant problem in LNG plants using aluminum cryogenic heat exchangers, has led to catastrophic plant incidents worldwide. The aim of this review is to critically discuss the conventional and alternative materials as well as the processes employed for mercury removal during gas processing. Moreover, comments on studies examining the geological occurrence of mercury species are included, the latest developments regarding the detection, sampling and measurement are presented and updated information with respect to mercury speciation and solubility is displayed. Clean up and passivation techniques as well as disposal methods for mercury-containing waste are also explained. Most importantly, the environmental as well as the health and safety implications are addressed, and areas that require further research are pinpointed.
Collapse
Affiliation(s)
- Anastasios Chalkidis
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Energy, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Deshetti Jampaiah
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Patrick G Hartley
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Energy, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Ylias M Sabri
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
35
|
Liu S, Pan G, Zhang Y, Xu J, Ma R, Shen Z, Dong S. Risk assessment of soil heavy metals associated with land use variations in the riparian zones of a typical urban river gradient. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:435-444. [PMID: 31226658 DOI: 10.1016/j.ecoenv.2019.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/10/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Urbanization-induced land use changes in riparian area alter soil and water regimes in complex ways, which may also affect the migration and transformation of soil heavy metals and increase the risk of release. In this study, soil samples from the riparian zone of Beiyun River, which located in the rapidly urbanized Beijing metropolis, were collected and analyzed for heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn). Then their zoning distribution pattern along river (section 1 to section 4 from upper to low reaches) and the correlation of heavy metals between riparian soils and riverine sediments were investigated. Results showed that the average soil heavy metal concentrations of Cd, Cr, Cu and Zn in riparian zone were approximately 2.2, 1.7, 1.9 and 2.0 times higher than the background values. Sectionally, the concentrations of Cd, Ni, Pb and Zn displayed a decreasing order with section 2 > section 3 > section 4 > section 1, while the highest values of Cr and Cu were found in section 3. The concentrations of all heavy metals except Cr in artificial garden land were higher than those in other land use types, and the concentrations of Cr among five land use types were in the order of grass land > farmland > artificial garden land > forest land > forest-grass land. Generally, most of the heavy metals in the riverine sediments had higher contents than those in riparian zones, especially Cu and Zn. There was a decreasing order for the average geo-accumulation index (Igeo) of measured heavy metals in the soils of riparian zone: Zn (0.15) > Cr (0.08) > Cu (0.07) > Cd (-0.08) > As (-0.57) > Pb (-0.67) > Mn (-0.75) > Ni (-0.86), whereas they had different "high-low" orders in different land use types. The Igeo index indicated most regions of riparian zone were moderately polluted with Cd, Cr, Cu and Zn, especially in grass land and forest land. Also, Cd, Cr and Zn in riparian zone have positive relationships with the concentrations in riverine sediments. Health risk assessment showed that the contribution of ingestion HQ to HI was the highest among the three exposure pathways (ingestion, inhalation and dermal contact), and children had higher non-carcinogenic risk and carcinogenic risk index than adult. Our findings suggest that land use and soil in riparian zone should be protected and managed scientifically to control the riverine pollution and ensure human health.
Collapse
Affiliation(s)
- Shiliang Liu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Guohao Pan
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yueqiu Zhang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Jingwei Xu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Rui Ma
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhenyao Shen
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Shikui Dong
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
36
|
Yue Y, Liu Z, Liu Z, Zhang J, Lu M, Zhou J, Qian G. Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:144-152. [PMID: 30851552 DOI: 10.1016/j.jenvman.2019.02.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Municipal solid waste incineration fly ash is directly landfilled after solidification in the industry. The rapid evaluation of contaminant leaching is required before the landfill of fly ash. In order to reduce the time to evaluate the effect of solidification, a set of rapid evaluation method was developed through the determination of characteristic index, heavy metal leaching analysis, principal component analysis, and mathematical model construction. It was found that f-CaO, acid neutralizing capacity, pH and soluble calcium were negatively correlated with heavy metal leaching. The soluble chlorine was positively correlated with heavy metal leaching. The effect of each feature indicators on heavy metal leaching was evaluated using principal component analysis and mathematical analysis software R.3.4.4. Furthermore, R.3.4.4 was used to detect the optimal model and the excess probability formula by stepwise linear regression and logistic regression analysis method. By introducing the measured value of feature indicator into the excess probability formula, the rate of excess-standard of heavy metals leaching can be preliminarily determined. Based on the above ideas, a rapid detection and evaluation system could be developed according to the local leaching standards and the components of fly ash selected locally.
Collapse
Affiliation(s)
- Yang Yue
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Zeyuan Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Zhongzhe Liu
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, 53233, United States
| | - Jia Zhang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Min Lu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China.
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai, 200444, PR China
| |
Collapse
|