1
|
Lee CH, Chang MH, Koh YH, Pack SP, Seo M, Cha H, Lee JH. Mechanistic insight into airborne particulate matter PM10 as an environmental hazard for hemorrhagic stroke: Evidence from in vitro and in vivo studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136319. [PMID: 39488980 DOI: 10.1016/j.jhazmat.2024.136319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Airborne particulate matter less than 10 µm in diameter (PM10) is recognized as a significant environmental risk factor for hemorrhagic stroke (HS), as evidenced by epidemiological studies that link PM10 with the heightened cerebrovascular mortality related to HS. Nonetheless, the molecular mechanisms underlying this association remain unknown. Cerebral aneurysm (CA), an etiological factor of HS, is characterized by a bulge resulting from the abnormal loss of the muscular layer of a cerebral artery, comprising brain vascular endothelial cell (BVEC) and vascular smooth muscle cell (VSMC). BVEC exhibiting an inflammatory phenotype is critical for VSMC death within the cerebrovasculature. Here, we elucidate a molecular mechanism by which PM10 augments necroptotic death of VSMC as a consequence of intercellular effects arising from FasL inflammatory cytokine, which is derived from BVEC. Notably, BVEC exposed to PM10 upregulates FasL through ATM-NF-κB signaling, in response to oxidative DNA damage. This genotoxic stress is attributed to pro-oxidant action of aluminum, the prevalent element in PM10. Furthermore, respiratory exposure to PM10 in mice precipitates early onset of CA development through necroptotic VSMC death in cerebral artery, by activating FasL expression in BVEC. In conclusion, this study provides molecular evidence establishing a direct association between PM10 pollution and an elevated risk of stroke, particularly HS.
Collapse
Affiliation(s)
- Chae Hwan Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Pil Pack
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Minseok Seo
- Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Department of Computer and Information Science, Korea University, Sejong, Republic of Korea
| | - Hanvit Cha
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea.
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea; BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea; Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea; Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
2
|
Aydın GZ, Özkan B. Evaluation of low-and middle-income countries according to cardiovascular disease risk factors by using pythagorean fuzzy AHP and TOPSIS methods. BMC Med Inform Decis Mak 2024; 24:363. [PMID: 39609774 PMCID: PMC11605925 DOI: 10.1186/s12911-024-02769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Cardiovascular disease risk factors play a crucial role in determining individuals' future health status and significantly affect health. This paper aimed to address cardiovascular disease risk factors in low- and middle-income countries using multi-criteria decision-making methods. METHODS In line with this objective, 22 evaluation criteria were identified. Due to the unequal importance levels of the criteria, the interval-valued Pythagorean Fuzzy AHP (PF-AHP) method was employed for weighting. The TOPSIS method was utilized to rank the countries. RESULTS The application of interval-valued PF-AHP revealed that metabolic, behavioral, and economic factors are more important in contributing to disease risk. Among adults, tobacco use prevalence was identified as the most significant risk factor. According to the TOPSIS method, Lebanon, Jordan, Solomon Islands, Serbia, and Bulgaria ranked highest, while Timor Leste, Benin, Ghana, Niger, and Ethiopia ranked lowest. CONCLUSIONS Identifying disease risk factors and preventing or reducing risks are crucial in combating cardiovascular diseases. Therefore, it is recommended that countries ranking higher take remedial actions to reduce disease risk.
Collapse
Affiliation(s)
- Gizem Zevde Aydın
- Department of Healthcare Management, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Türkiye.
| | - Barış Özkan
- Department of Industrial Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Türkiye
| |
Collapse
|
3
|
Chou X, Fang M, Shen Y, Jiang C, Miao L, Yang L, Wu Z, Yao X, Ma K, Qiao K, Lin Z. Ambient PMs pollution, blood pressure, potential mediation by short-chain fatty acids: A prospective panel study of young adults in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117316. [PMID: 39520747 DOI: 10.1016/j.ecoenv.2024.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The concurrent effects of particulate matter (PM) on both blood pressure (BP) and short-chain fatty acids (SCFAs) are insufficiently explored, with limited research on the potential mediating roles of SCFAs. METHODS In this prospective panel study with 4 follow-ups, we recruited 40 college students in Hefei, China, to assess the impacts of short-term exposure to PM (aerodynamic diameter ≤10 μm (PM10), ≤2.5 μm (PM2.5), and ≤1 μm (PM1)) on BP and SCFAs, along with potential mechanisms. Real-time PM data, urinary SCFAs levels, and BP indicators were systematically collected. Linear mixed-effects models assessed the relationships between PM, SCFAs, and BP. Mediation analyses explored SCFAs' mediating role in the PM-BP association. RESULTS PM exposure was positively linked to BP and negatively associated with SCFAs. For a 10 μg/m3 rise in PM10 at lag 0-72 h, there were notable reductions of 0.0019 % (95 %CI: -0.0028, -0.0010) in Acetic acid, 0.0262 % (-0.0369, -0.0155) in Propionic acid, and 0.0702 % (-0.1025, -0.0378) in Butyric acid. Systolic BP, diastolic BP, and mean arterial pressure (MAP) increased by 2.60 mmHg (0.96, 4.25), 2.24 mmHg (1.18, 3.31), and 2.36 mmHg (1.20, 3.53), respectively, per 10-μg/m3 rise in PM1 at lag 0-24 h. Decreased SCFAs levels explained significant portions (24.69-31.80 %) of the elevated MAP due to PM10. Stronger associations were found in females and individuals with abnormal BMI. CONCLUSIONS Our study shows that PM exposure decreases urinary SCFAs levels, which partially mediate the impact of PM on elevated BP. These findings enhance our comprehension of the pathways linking PM exposure to BP changes.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Miao Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Cunzhong Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zexi Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiangyu Yao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Kun Qiao
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
5
|
Shirangi A, Lin T, Yun G, Williamson GJ, Franklin P, Jian L, Reid CM, Xiao J. Impact of elevated fine particulate matter (PM 2.5 ) during landscape fire events on cardiorespiratory hospital admissions in Perth, Western Australia. J Epidemiol Community Health 2024; 78:705-712. [PMID: 39013602 DOI: 10.1136/jech-2024-222072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Australia has experienced extreme fire weather in recent years. Information on the impact of fine particulate matter (PM 2.5 ) from landscape fires (LFs) on cardiorespiratory hospital admissions is limited. METHODS We conducted a population-based time series study to assess associations between modelled daily elevated PM 2.5 at a 1.5×1.5 km resolution using a modified empirical PM 2.5 exposure model during LFs and hospital admissions for all-cause and cause-specific respiratory and cardiovascular diseases for the study period (2015-2017) in Perth, Western Australia. Multivariate Poisson regressions were used to estimate cumulative risk ratios (RR) with lag effects of 0-3 days, adjusted for sociodemographic factors, weather and time. RESULTS All-cause hospital admissions and overall cardiovascular admissions increased significantly across each elevated PM 2.5 concentration on most lag days, with the strongest associations of 3% and 7%, respectively, at the high level of ≥12.60 µg/m3 on lag 1 day. For asthma hospitalisation, there was an excess relative risk of up to 16% (RR 1.16, 95% CI 1.00 to 1.35) with same-day exposure for all people, up to 93% on a lag of 1 day in children and up to 52% on a lag of 3 days in low sociodemographic groups. We also observed an increase of up to 12% (RR 1.12, 95% CI 1.02 to 1.24) for arrhythmias on the same exposure day and with over 154% extra risks for angina and 12% for heart failure in disadvantaged groups. CONCLUSIONS Exposure to elevated PM 2.5 concentrations during LFs was associated with increased risks of all-cause hospital admissions, total cardiovascular conditions, asthma and arrhythmias.
Collapse
Affiliation(s)
- Adeleh Shirangi
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
- School of Humanities, Arts, and Social Sciences, Murdoch University, Murdoch, WA, Australia
| | - Ting Lin
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Grace Yun
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Grant J Williamson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter Franklin
- School of Population Health, University of Western Australia, Crawley, WA, Australia
| | - Le Jian
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Christopher M Reid
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jianguo Xiao
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| |
Collapse
|
6
|
Liu W, Song J, Yu L, Lai X, Shi D, Fan L, Wang H, Yang Y, Liang R, Wan S, Zhang Y, Wang B. Exposure to ambient air pollutants during circadian syndrome and subsequent cardiovascular disease and its subtypes and death: A trajectory analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173777. [PMID: 38844213 DOI: 10.1016/j.scitotenv.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND The association between exposure to air pollutants and cardiovascular disease (CVD) trajectory in individuals with circadian syndrome remains inconclusive. METHODS The individual exposure levels of air pollutants, including particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm (PM2.5), PM with aerodynamic diameter ≤ 10 μm (PM10), PM2.5 absorbance, PM with aerodynamic diameter between 2.5 μm and 10 μm, nitrogen dioxide (NO2), nitrogen oxides (NOx), and air pollution score (overall air pollutants exposure), were estimated for 48,850 participants with circadian syndrome from the UK Biobank. Multistate regression models were employed to estimate associations between exposure to air pollutants and trajectories from circadian syndrome to CVD/CVD subtypes (including coronary heart disease [CHD], atrial fibrillation [AF], heart failure [HF], and stroke) and death. Mediation roles of CVD/CVD subtypes in the associations between air pollutants and death were evaluated. RESULTS After a mean follow-up time over 12 years, 12,570 cases of CVD occurred, including 8192 CHD, 1693 AF, 1085 HF, and 1600 stroke cases. In multistate model, per-interquartile range increment in PM2.5 (hazard ratio: 1.08; 95 % confidence interval: 1.06, 1.10), PM10 (1.04; 1.01, 1.06), PM2.5 absorbance (1.04; 1.02, 1.06), NO2 (1.07; 1.03, 1.11), NOx (1.08; 1.04, 1.12), or air pollution score (1.06; 1.03, 1.08) was associated with trajectory from circadian syndrome to CVD. Significant associations between the above-mentioned air pollutants and trajectories from circadian syndrome and CVD to death were observed. CVD, particularly CHD, significantly mediated the associations of PM2.5, NO2, NOx, and air pollution score with death. CONCLUSIONS Long-term exposure to air pollutants during circadian syndrome was associated with subsequent CVD and death. CHD emerged as the most prominent CVD subtype in CVD progression driven by exposure to air pollutants during circadian syndrome. Our study highlights the importance of controlling air pollutants exposure and preventing CHD in people with circadian syndrome.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Zhu G, Wen Y, Liang J, Wang T. Effect modification of diet and vitamins on the association between air pollution particles of different diameters and hypertension: A 12-year longitudinal cohort study in densely populated areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172222. [PMID: 38588735 DOI: 10.1016/j.scitotenv.2024.172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Particulate matter (PM) is identified as one of the exacerbating and triggering factors for hypertension. Diet intake and the consumption of vitamins may potentially moderate the impact of PM on hypertension. METHODS A 12-year longitudinal cohort study was conducted on a population in densely populated areas of China. Residual balancing with weighted methods was employed to control for time-varying and no time-varying confounding factors. Stratified Cox proportional hazards models were conducted to examine the moderating effects of diet and vitamins on the risk of hypertension with PM. RESULTS There was a significant positive association between long-term exposure to different diameter PM and the risk of developing hypertension. The hazard ratios (HRs) for hypertension were 1.0200 (95 % CIs: 1.0147, 1.0253) for PM1, 1.0120 (95 % CIs: 1.0085, 1.0155) for PM2.5, and 1.0074 (95 % CIs, 1.0056, 1.0092) for PM10. The diet and vitamins moderated these associations, the intake of healthy foods and vitamins exhibited a significant positive moderating effect on the relationship between PM exposure and hypertension risk. Among all participants, the high intake of fruit (PM1 (HRs: 1.0102, 95 % CIs: 1.0024, 1.0179), PM2.5 (HRs: 1.0060, 95 % CIs: 1.0011, 1.0109), and PM10 (HRs: 1.0044, 95 % CIs: 1.0018, 1.0070)) and vitamin E (PM1 (HRs: 1.0143, 95 % CIs: 1.0063, 1.0223), PM2.5 (HRs:1.0179, 95 % CIs: 1.0003, 1.0166), and PM10 (HRs: 1.0042, 95 % CIs: 1.0008, 1.0075)) with lower risk of hypertension than the overall level and low intake of related foods and vitamins, exhibited a strong positive moderating effect on the relationship between PM and hypertension. Similar trends were observed for the intake of fish, root food, whole grains, eggs, fungus food, vitamin B2, B3. However, Na, meat, sugary and alcoholic exhibited opposite trends. The moderating effect of vitamin E intake was stronger than vitamin B and C. CONCLUSIONS Diet and vitamins intake may moderate the association between PM exposure and the risk of hypertension in adults.
Collapse
Affiliation(s)
- Guiming Zhu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Yanchao Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Jie Liang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
8
|
Chaturvedi D, Attia Hussein Mahmoud H, Isaac A, Atla RH, Shakeel JN, Heredia M, Marepalli NR, Shukla PS, Gardezi M, Zeeshan M, Ashraf T. Understanding the Cardiovascular Fallout of E-cigarettes: A Comprehensive Review of the Literature. Cureus 2024; 16:e63489. [PMID: 39081430 PMCID: PMC11287103 DOI: 10.7759/cureus.63489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
E-cigarettes (ECs) deliver chemicals, including nicotine. They can cause respiratory distress, addiction, cardiovascular effects, and death. More research is needed, especially regarding their impact on the cardiovascular system (CVS) and during pregnancy. Our article aims to fill this gap by summarizing studies elaborating upon the current impact of ECs and the components thereof on the CVS. Acute respiratory distress outbreaks, nicotine addiction, CVS effects, and deaths have been occasionally reported within this cohort, although these events are not uncommon with neighboring age groups. Randomized control trials implying ECs have some contribution toward quitting smoking have been studied. To regulate EC distribution, the Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC) have created key checkpoints. Additionally, taxation, pricing, age restriction, and media campaigns could be modulated to significantly reduce illicit sales. Education to the users, distributors, and regulators about this product can also play an aiding role in promoting responsible EC use. Another strategy about licensing could be employed, which could incentivize genuine resellers. The effects on CVS and child-bearing by ECs are grim, which calls for strict regulation, awareness, and avoidance by the teetotaler public. They may help individuals stop smoking but not without harming themselves. Strict regulations are necessary to prevent non-judicious use of these devices.
Collapse
Affiliation(s)
- Devansh Chaturvedi
- Medicine, Dr Chaturvedi Cancer Hospital and Research Institute, Gorakhpur, IND
- Internal Medicine, King George's Medical University, Lucknow, IND
| | | | - Ashley Isaac
- General Medicine, Isra University Hospital, Hyderabad, PAK
| | - Ragha Harshitha Atla
- Internal Medicine and Obstetrics, Bicol Christian College of Medicine, Ago Medical Center, Legazpi City, PHL
| | | | - Maria Heredia
- Cardiology, Ministry of Public Health of Ecuador, Quito, ECU
| | | | - Pranav S Shukla
- Medicine, Grant Medical College and Sir JJ group of Hospitals, Mumbai, IND
| | - Maira Gardezi
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
| | | | | |
Collapse
|
9
|
Hong J, Park C, Kim K, Jeon J, Son J, Chang H, Park CR, Kim HS. Experimental analysis of PM 2.5 reduction characteristics between Korean red pine (Pinus densiflora) and sawtooth oak (Quercus acutissima) saplings under different densities and arrangement structures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123699. [PMID: 38460588 DOI: 10.1016/j.envpol.2024.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
As global air pollution, particularly fine particulate matter (PM2.5), has become a major environmental problem, various PM2.5 mitigation technologies including green infrastructure have received significant attention. However, owing to spatial constraints on urban greening, there is a lack of management plans for urban forests to efficiently mitigate PM2.5. In this study, we assessed the PM2.5 reduction capabilities of Pinus densiflora (Korean red pine) and Quercus acutissima (sawtooth oak) by measuring the changes of PM2.5 concentrations using an experimental chamber system. In addition, the PM2.5 reduction efficiency in 90 min (PMRE90) and the amount of PM2.5 reduction per leaf area (PMRLA) were compared based on arrangement structures and density levels. The results showed that the PM2.5 reduction by plants was significantly greater than that of the control experiment without any plants, and an additional reduction effect of approximately 1.38 times was induced by a 1.5 m s-1 air flow. The PMRE90 of Korean red pine was the highest at medium density. In contrast, the PMRE90 of sawtooth oak was the highest at high density. The PMRLA of both species was highest at low densities. The different responses of the species to total reduction were well explained by total leaf area (TLA). The PMRE90 of both species was positively correlated with TLA. The PMRLA of sawtooth oak was approximately 2.3 times greater than that of Korean red pine. However, there were no significant differences in both PMRE90 and PMRLA between the arrangement structures. Our findings reveal the potential mechanisms of vegetation in reducing PM2.5 according to arrangement structure and density. This highlights the importance of efficiently using urban green spaces with spatial constraints on PM2.5 mitigation in the future.
Collapse
Affiliation(s)
- Jeonghyun Hong
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanoh Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyeon Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jounga Son
- Urban Forests Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hanna Chang
- Urban Forests Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Chan-Ryul Park
- Urban Forests Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Christodoulou A, Bezantakos S, Bourtsoukidis E, Stavroulas I, Pikridas M, Oikonomou K, Iakovides M, Hassan SK, Boraiy M, El-Nazer M, Wheida A, Abdelwahab M, Sarda-Estève R, Rigler M, Biskos G, Afif C, Borbon A, Vrekoussis M, Mihalopoulos N, Sauvage S, Sciare J. Submicron aerosol pollution in Greater Cairo (Egypt): A new type of urban haze? ENVIRONMENT INTERNATIONAL 2024; 186:108610. [PMID: 38626495 DOI: 10.1016/j.envint.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/24/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
Greater Cairo, the largest megacity of the Middle East North Africa (MENA) region, is currently suffering from major aerosol pollution, posing a significant threat to public health. However, the main sources of pollution remain insufficiently characterized due to limited atmospheric observations. To bridge this knowledge gap, we conducted a continuous 2-month field study during the winter of 2019-2020 at an urban background site, documenting for the first time the chemical and physical properties of submicron (PM1) aerosols. Crustal material from both desert dust and road traffic dust resuspension contributed as much as 24 % of the total PM1 mass (rising to 66 % during desert dust events), a figure not commonly observed in urban environments. Our observations showed significant decreases in black carbon concentrations and ammonium sulfate compared to data from 15 years ago, indicating an important reduction in both local and regional emissions as a result of effective mitigation measures. The diurnal variability of carbonaceous aerosols was attributed to emissions emanating from local traffic at rush hours and nighttime open biomass burning. Surprisingly, semi-volatile ammonium chloride (NH4Cl) originating from local open biomass and waste burning was found to be the main chemical species in PM1 over Cairo. Its nighttime formation contributed to aerosol water uptake during morning hours, thereby playing a major role in the build-up of urban haze. While our results confirm the persistence of a significant dust reservoir over Cairo, they also unveil an additional source of highly hygroscopic (semi-volatile) inorganic salts, leading to a unique type of urban haze. This haze, with dominant contributors present in both submicron (primarily as NH4Cl) and supermicron (largely as dust) modes, underscores the potential implications of heterogeneous chemical transformation of air pollutants in urban environments.
Collapse
Affiliation(s)
- Aliki Christodoulou
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus; IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, 59000 Lille, France.
| | - Spyros Bezantakos
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | | | - Iasonas Stavroulas
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Michael Pikridas
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | - Konstantina Oikonomou
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | - Minas Iakovides
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National, Research Centre, El Behooth Str., Giza 12622 Dokki, Egypt
| | - Mohamed Boraiy
- Physics and Mathematical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Mostafa El-Nazer
- Theoretical Physics Department, Physics Institute, National Research Centre, El Behooth Str., Giza 12622 Dokki, Egypt
| | - Ali Wheida
- Theoretical Physics Department, Physics Institute, National Research Centre, El Behooth Str., Giza 12622 Dokki, Egypt
| | - Magdy Abdelwahab
- Astronomy and Meteorology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Roland Sarda-Estève
- Laboratoire Des Sciences Du Climat Et de l'Environnement (LSCE), CNRS-CEA-UVSQ, Gif-sur-Yvette, France
| | - Martin Rigler
- Research and Development Department, Aerosol D.o.o., Ljubjana, Slovenia
| | - Giorgos Biskos
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | - Charbel Afif
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus; Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Science, Saint Joseph University, Beirut, Lebanon
| | - Agnes Borbon
- Laboratoire de Météorologie Physique, UMR6016, Université Clermont Auvergne, OPGC, CNRS, 63000 Clermont-Ferrand, France
| | - Mihalis Vrekoussis
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus; University of Bremen, Institute of Environmental Physics and Remote Sensing (IUP), Germany; Center of Marine Environmental Sciences (MARUM), University of Bremen, Germany
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Stéphane Sauvage
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, 59000 Lille, France
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| |
Collapse
|
11
|
Liu S, Lv Y, Zhang Y, Suo H, Wang F, Gao S. Global trends and burden of stroke attributable to particulate matter pollution from 1990 to 2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116205. [PMID: 38503105 DOI: 10.1016/j.ecoenv.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To investigate the association between particulate matter and the incidence, disability, and mortality of stroke, we reported the burden of stroke attributable to particulate matter (PM2.5) pollution, including ambient particulate matter pollution (APMP) and household air pollution from solid fuels (HAP), from 1990 to 2019. METHODS We retrieved the detailed data on the burden of stroke attributable to PM2.5 from the Global Burden of Disease (GBD) 2019. The number of disability-adjusted life-years (DALYs) and deaths, age-standardized death rates (ASMR), and age-standardized disability-adjusted life-years rates (ASDR) attributable to PM2.5 were estimated by age, sex, geographical location, socio-demographic index (SDI), and stroke subtypes (ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage). The estimated annual percentage change (EAPC) was calculated to assess the trends in ASDR and ASMR during the period 1990-2019. RESULTS Regarding stroke subtypes, the proportion of ischemic stroke burden is increasing, while intracerebral hemorrhage carries the heaviest burden. Both APMP and HAP contributed the most to stroke-related deaths and DALYs of stroke among the elderly populations and males. The highest ASDR and ASMR of stroke attributable to APMP were in the middle SDI regions, especially in East Asia. For HAP, the highest ASDR and ASMR were in the low SDI regions, mainly in Oceania. From 1990-2019, in terms of the EAPC results, APMP caused an increased burden of stroke, whereas the impact of HAP significantly fell. The most pronounced increase in ASDR and ASMR for strokes attributed to APMP were in the low-middle SDI and low SDI regions, particularly among the 25-35 age group. CONCLUSIONS Stroke attributed to PM2.5 is a global health problem, and the patterns and trends were heterogeneous across APMP and HAP. Targeted interventions should be formulated for APMP and HAP.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Yanming Lv
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Ya Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Huimin Suo
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Shuying Gao
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China.
| |
Collapse
|
12
|
Irfan H. Air pollution and cardiovascular health in South Asia: A comprehensive review. Curr Probl Cardiol 2024; 49:102199. [PMID: 37977414 DOI: 10.1016/j.cpcardiol.2023.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Air pollution is a pressing environmental health concern, with a growing impact on developing nations, particularly in South Asia. Extensive research has linked air pollution to various diseases, including cardiovascular diseases (CVDs). In South Asia, air pollution is a critical issue, with a high concentration of the world's most polluted cities and widespread exposure to particulate matter (PM2.5) exceeding World Health Organization (WHO) guidelines. WHO reports that outdoor and indoor air pollution together claim 7 million lives annually. Fine particulate matter (PM2.5) and ground-level ozone are prominent culprits. South Asia, with 60 % of its population exposed to hazardous pollution levels, is home to 37 of the world's 40 most polluted cities. PM2.5 concentrations in South Asia often exceed WHO guidelines by up to 20 times. Air pollution in this region, driven by factors such as crop stubble burning, is a leading cause of CVD. Studies in the region have revealed a significant correlation between PM2.5 levels and CVDs, with fine particles originating from sources like industrial emissions and traffic playing a central role in cardiovascular health deterioration. Exposure to PM2.5 leads to oxidative stress, inflammation, and hypercoagulability, increasing the risk of conditions such as ischemic heart disease and stroke. In South Asia, the burden of CVDs associated with air pollution is substantial, with millions of premature deaths attributed to outdoor and indoor air pollution. To mitigate this crisis, a multifaceted approach is essential, encompassing public awareness, air quality regulation, cleaner energy sources, and measures to reduce crop stubble burning. Additionally, further research is crucial to understanding the complex relationship between air pollution and CVDs in South Asia, as it offers avenues for prevention and control, potentially saving lives and improving public health in the region.
Collapse
Affiliation(s)
- Hamza Irfan
- Department of Cardiology, Sheikh Zayed Medical Complex, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, G855+XRM Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Pakistan.
| |
Collapse
|
13
|
Guo LH, Lin LZ, Zhou Y, Jalaludin B, Morawska L, Dharmage SC, Knibbs LD, Huang GF, Chen DH, Ma H, Gao M, Heinrich J, Zhou P, Gui ZH, Chu C, Liu RQ, Dong GH. Global, regional, and national burden of ischemic heart disease attributable to ambient PM 2.5 from 1990 to 2019: An analysis for the global burden of disease study 2019. ENVIRONMENTAL RESEARCH 2024; 241:117635. [PMID: 37972813 DOI: 10.1016/j.envres.2023.117635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Information on the spatio-temporal patterns of the burden of ischemic heart disease (IHD) caused by ambient ambient fine particulate matter (PM2.5) in the global level is needed to prioritize the control of ambient air pollution and prevent the burden of IHD. The Global Burden of Disease Study (GBD) 2019 provides data on IHD attributable to ambient PM2.5. The IHD burden and mortality attributable to ambient PM2.5 were analyzed by year, age, gender, socio-demographic index (SDI) level, geographical region and country. Estimated annual percentage change (EAPC) was calculated to estimate the temporal trends of age-standardized mortality rate (ASMR) and age-standardized disability-adjusted life years rate (ASDR) from 1990 to 2019. Globally, the ASMR and ASDR for ambient PM2.5-related IHD tended to level off generally, with EAPC of -0.03 (95% CI: -0.06, 0.12) and 0.3 (95% CI: 0.22, 0.37), respectively. In the past 30 years, there were obvious differences in the trend of burden change among different regions. A highest increased burden was estimated in low-middle SDI region (EAPC of ASMR: 3.73 [95% CI: 3.56, 3.9], EAPC of ASDR: 3.83 [95% CI: 3.64, 4.02]). In contrast, the burden in high SDI region (EAPC of ASMR: -4.48 [95% CI: -4.6, -4.35], EAPC of ASDR: -3.98 [95% CI: -4.12, -3.85]) has declined most significantly. Moreover, this burden was higher among men and older populations. EAPCs of the ASMR (R = -0.776, p < 0.001) and ASDR (R = -0.781, p < 0.001) of this burden had significant negative correlations with the countries' SDI level. In summary, although trends in the global burden of IHD attributable to ambient PM2.5 are stabilizing, but this burden has shifted from high SDI countries to middle and low SDI countries, especially among men and elderly populations. To reduce this burden, the air pollution management prevention need to be further strengthened, especially among males, older populations, and middle and low SDI countries.
Collapse
Affiliation(s)
- Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW, 2037, Australia; Ingham Institute for Applied Medial Research, Liverpool, NSW, 2170, Australia; School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, 3052, Australia.
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Guo-Feng Huang
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China.
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China.
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong, China.
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, 80336, Germany.
| | - Peien Zhou
- Department of Public Health & Primary Care, University of Cambridge, Cambridge, CB2 1TN, UK.
| | - Zhao-Huan Gui
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Shrivastav A, Swetanshu, Singh P. The Impact of Environmental Toxins on Cardiovascular Diseases. Curr Probl Cardiol 2024; 49:102120. [PMID: 37805022 DOI: 10.1016/j.cpcardiol.2023.102120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Environmental toxins pose significant risks to human health and are considered major contributors to chronic diseases, particularly cardiovascular diseases (CVDs). Numerous studies have highlighted the detrimental impact of environmental toxicity on cardiovascular health. The primary sources of environmental toxins include pollutants containing particulate matter and organic substances, such as sulfate, nitrates, ammonium, elemental carbon, crystal elements, arsenic (As), mercury (Hg), cadmium (Cd), and Bisphenol A (BPA). Epidemiological research has closely monitored the link between environmental toxins and CVDs. Notably, aerosols and particulate matter, including PM10 and PM2.5, prevalent in ambient air pollution, have been implicated in various CVDs like ischemic heart disease, myocardial infarction, and dysrhythmia. Additionally, heavy metals such as lead and pesticides from environmental toxins are known to contribute to CVDs, even at low levels of exposure over extended periods. Mercury exposure, even at low concentrations, can adversely affect multiple organs, including the heart, kidneys, nervous system, and immune system. With Pb2+ ions exhibiting Ca2+-like properties, lead disrupts various pathways and can lead to cardiac and vascular lesions and functional impairments when blood lead concentrations exceed 100 µg% in adults and 60 µg% in children. Furthermore, cadmium exposure is higher in smokers, primarily due to tobacco use, and is associated with peripheral artery disease. Arsenic toxicity is well-documented, particularly its cardiotoxic effects, which can result in fatal and irreversible myocardial damage. Bisphenol A (BPA) has also been found in urine samples, underscoring its presence as an environmental toxin impacting human health.
Collapse
Affiliation(s)
- Abhishek Shrivastav
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| | - Swetanshu
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India; Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pratichi Singh
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
15
|
Khan F, Chen Y, Hartwell HJ, Yan J, Lin YH, Freedman A, Zhang Z, Zhang Y, Lambe AT, Turpin BJ, Gold A, Ault AP, Szmigielski R, Fry RC, Surratt JD. Heterogeneous Oxidation Products of Fine Particulate Isoprene Epoxydiol-Derived Methyltetrol Sulfates Increase Oxidative Stress and Inflammatory Gene Responses in Human Lung Cells. Chem Res Toxicol 2023; 36:1814-1825. [PMID: 37906555 DOI: 10.1021/acs.chemrestox.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).
Collapse
Affiliation(s)
- Faria Khan
- Institute of Physical Chemistry,Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jin Yan
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Anastasia Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Atmospheric Sciences, Texas A&M University, College Station Texas 77843, United States
| | - Andrew T Lambe
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rafal Szmigielski
- Institute of Physical Chemistry,Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Liang X, Liang L, Fan Y. Two-sample mendelian randomization analysis investigates ambient fine particulate matter's impact on cardiovascular disease development. Sci Rep 2023; 13:20129. [PMID: 37978283 PMCID: PMC10656567 DOI: 10.1038/s41598-023-46816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
PM2.5, a key component of air pollution, significantly threatens public health. Cardiovascular disease is increasingly associated with air pollution, necessitating more research. This study used a meticulous two-sample Mendelian randomization (MR) approach to investigate the potential causal link between elevated PM2.5 levels and 25 types of cardiovascular diseases. Data sourced from the UK Biobank, focusing on individuals of European ancestry, underwent primary analysis using Inverse Variance Weighting. Additional methods such as MR-Egger, weighted median, Simple mode, and Weighted mode provided support. Sensitivity analyses assessed instrument variable heterogeneity, pleiotropy, and potential weak instrument variables. The study revealed a causal link between PM2.5 exposure and higher diagnoses of Atherosclerotic heart disease (primary or secondary, OR [95% CI] 1.0307 [1.0103-1.0516], p-value = 0.003 and OR [95% CI] 1.0179 [1.0028-1.0333], p-value = 0.0202) and Angina pectoris (primary or secondary, OR [95% CI] 1.0303 [1.0160-1.0449], p-value = 3.04e-05 and OR [95% CI] 1.0339 [1.0081-1.0603], p-value = 0.0096). Additionally, PM2.5 exposure increased the likelihood of diagnoses like Other forms of chronic ischaemic heart disease (secondary, OR [95% CI] 1.0193 [1.0042-1.0346], p-value = 0.0121), Essential hypertension (secondary, OR [95% CI] 1.0567 [1.0142-1.1010], p-value = 0.0085), Palpitations (OR [95% CI] 1.0163 [1.0071-1.0257], p-value = 5e-04), and Stroke (OR [95% CI] 1.0208 [1.0020-1.0401], p-value = 0.0301). Rigorous sensitivity analyses confirmed these significant findings' robustness and validity. Our study revealed the causal effect between higher PM2.5 concentrations and increased cardiovascular disease risks. This evidence is vital for policymakers and healthcare providers, urging targeted interventions to reduce PM2.5 levels.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lianjing Liang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
17
|
Heo J, Lee J, Yoon M, Park D. Removal of Particulate Matter by a Non-Powered Brush Filter Using Electrostatic Forces. TOXICS 2023; 11:891. [PMID: 37999543 PMCID: PMC10674759 DOI: 10.3390/toxics11110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
In urban areas, a major source of harmful particulate matter is generated by vehicles. In particular, bus stops, where people often stay for public transportation, generate high concentrations of particulate matter compared to the general atmosphere. In this study, a non-powered type brush filter that generates electrostatic force without using a separate power source was developed to manage the concentration of particulate matter exposed at bus stops, and the removal performance of particulate matter was evaluated. The dust collection performance of the non-motorized brush filter varied by material, with particle removal efficiencies of 82.1 ± 3.4, 76.1 ± 4.7, and 73.7 ± 4.5% for horse hair, nylon, and stainless steel, respectively. In conditions without the fan running to see the effect of airflow, the particle removal efficiency was relatively low at 58.2 ± 8.4, 53.6 ± 9.2, and 58.0 ± 7.3%. Then, to check the dust collection performance according to the density, the number of brushes was increased to densify the density, and the horse hair, nylon, and stainless steel brush filters showed a maximum dust collection performance of 89.6 ± 2.2, 88.3 ± 3.2, and 82.1 ± 3.8%, respectively. To determine the replacement cycle of the non-powered brush filter, the particulate removal performance was initially 88.0 ± 3.2% when five horse hair brushes were used. Over time, particulate matter tended to gradually decrease, but after a period of time, particulate matter tended to increase again. The purpose of this study is to evaluate the particulate matter removal performance using a brush filter that generates electrostatic force without a separate power source. This study's brush filter is expected to solve the maintenance problems caused by the purchase and frequent replacement of expensive HEPA filters that occur with existing abatement devices, and the ozone problems caused by abatement devices that use high voltages.
Collapse
Affiliation(s)
- Jaeseok Heo
- Environment Research Institute, Ajou University, Suwon City 16499, Republic of Korea;
| | - Jooyeon Lee
- Department of Transportation Environmental Research, Korea Railroad Research Institute, Uiwang City 16105, Republic of Korea;
| | - Minyoung Yoon
- Environmental Engineering, Inha University, Incheon City 22212, Republic of Korea;
| | - Duckshin Park
- Department of Transportation Environmental Research, Korea Railroad Research Institute, Uiwang City 16105, Republic of Korea;
| |
Collapse
|
18
|
Lee WJ, Oh S, Park JE, Hwang J, Eom H. Scalable, solvent-free transparent film-based air filter with high particulate matter 2.5 filtration efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165197. [PMID: 37391139 PMCID: PMC10300200 DOI: 10.1016/j.scitotenv.2023.165197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Over the course of the COVID-19 pandemic, people have realized the importance of wearing a mask. However, conventional nanofiber-based face masks impede communication between people because of their opacity. Moreover, it remains challenging to achieve both high filtration performance and transparency through fibrous mask filters without using harmful solvents. Herein, scalable transparent film-based filters with high transparency and collection efficiency are fabricated in a facile manner by means of corona discharging and punch stamping. Both methods improve the surface potential of the film while the punch stamping procedure generates micropores in the film, which enhances the electrostatic force between the film and particulate matter (PM), thereby improving the collection efficiency of the film. Moreover, the suggested fabrication method involves no nanofibers and harmful solvents, which mitigates the generation of microplastics and potential risks for the human body. The film-based filter provides a high PM2.5 collection efficiency of 99.9 % while maintaining a transparency of 52 % at the wavelength of 550 nm. This enables people to distinguish the facial expressions of a person wearing a mask composed of the proposed film-based filter. Moreover, the results of durability experiments indicate that the developed film-based filter is anti-fouling, liquid-resistant, microplastic-free and foldability.
Collapse
Affiliation(s)
- Woo Jin Lee
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea; Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seungtae Oh
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Jong-Eun Park
- Department of Mechanical Engineering, The State University of New York Korea, Incheon 21985, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyeonjin Eom
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea.
| |
Collapse
|
19
|
Aghaei-Zarch SM, Nia AHS, Nouri M, Mousavinasab F, Najafi S, Bagheri-Mohammadi S, Aghaei-Zarch F, Toolabi A, Rasoulzadeh H, Ghanavi J, Moghadam MN, Talebi M. The impact of particulate matters on apoptosis in various organs: Mechanistic and therapeutic perspectives. Biomed Pharmacother 2023; 165:115054. [PMID: 37379642 DOI: 10.1016/j.biopha.2023.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Nouri
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Mousavinasab
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
20
|
Choi ES, Lee JS, Hwang Y, Lee KS, Ahn KH. Association between early preterm birth and maternal exposure to fine particular matter (PM10): A nation-wide population-based cohort study using machine learning. PLoS One 2023; 18:e0289486. [PMID: 37549180 PMCID: PMC10406328 DOI: 10.1371/journal.pone.0289486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Although preterm birth (PTB), a birth before 34 weeks of gestation accounts for only less than 3% of total births, it is a critical cause of various perinatal morbidity and mortality. Several studies have been conducted on the association between maternal exposure to PM and PTB, but the results were inconsistent. Moreover, no study has analyzed the risk of PM on PTB among women with cardiovascular diseases, even though those were thought to be highly susceptible to PM considering the cardiovascular effect of PM. Therefore, we aimed to evaluate the effect of PM10 on early PTB according to the period of exposure, using machine learning with data from Korea National Health Insurance Service (KNHI) claims. Furthermore, we conducted subgroup analysis to compare the risk of PM on early PTB among pregnant women with cardiovascular diseases and those without. A total of 149,643 primiparous singleton women aged 25 to 40 years who delivered babies in 2017 were included. Random forest feature importance and SHAP (Shapley additive explanations) value were used to identify the effect of PM10 on early PTB in comparison with other well-known contributing factors of PTB. AUC and accuracy of PTB prediction model using random forest were 0.9988 and 0.9984, respectively. Maternal exposure to PM10 was one of the major predictors of early PTB. PM10 concentration of 5 to 7 months before delivery, the first and early second trimester of pregnancy, ranked high in feature importance. SHAP value showed that higher PM10 concentrations before 5 to 7 months before delivery were associated with an increased risk of early PTB. The probability of early PTB was increased by 7.73%, 10.58%, or 11.11% if a variable PM10 concentration of 5, 6, or 7 months before delivery was included to the prediction model. Furthermore, women with cardiovascular diseases were more susceptible to PM10 concentration in terms of risk for early PTB than those without cardiovascular diseases. Maternal exposure to PM10 has a strong association with early PTB. In addition, in the context of PTB, pregnant women with cardiovascular diseases are a high-risk group of PM10 and the first and early second trimester is a high-risk period of PM10.
Collapse
Affiliation(s)
- Eun-Saem Choi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Jue Seong Lee
- Department of Pediatrics, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Yujin Hwang
- Department of Pediatrics, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
- AI Center, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Kwang-Sig Lee
- AI Center, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Ki Hoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
21
|
Lee Y, Lee S, Lee W. Occupational and Environmental Noise Exposure and Extra-Auditory Effects on Humans: A Systematic Literature Review. GEOHEALTH 2023; 7:e2023GH000805. [PMID: 37303697 PMCID: PMC10248481 DOI: 10.1029/2023gh000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 06/13/2023]
Abstract
Noise is a common harmful factor in our work and the environment. Most studies have investigated the auditory effects of noise exposure; however, few studies have focused on the extra-auditory effects of exposure to occupational or environmental noise. This study aimed to systematically review published studies on the extra-auditory effects of noise exposure. We reviewed literature from PubMed and Google Scholar databases up to July 2022, using the Patient, Intervention, Comparison, and Outcome criteria and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify studies that reported extra-auditory effects of occupational or environmental noise exposure. Studies were evaluated utilizing validated reporting tools (CONSORT, STROBE) appropriate to study design. A total of 263 articles were identified, of which 36 were finally selected and reviewed. Upon conducting a review of the articles, exposure to noise can elicit a variety of extra-auditory effects on humans. These effects include circulatory effects linked to higher risk of cardiovascular disease and decreased endothelial function, nervous system effects correlated with sleep disturbance, cognitive impairment, and mental health problems, immunological and endocrinal effects connected to increased physiological stress response and metabolic disorders, oncological and respiratory effects associated with an elevated risk of acoustic neuroma and respiratory disorders, gastrointestinal effects linked to an increased risk of gastric or duodenal ulcer, and obstetric effects connected to the risk of preterm birth. Our review suggests that there are numerous extra-auditory effects of noise exposure on human, and further investigations are needed to fully understand these effects.
Collapse
Affiliation(s)
- Yongho Lee
- Department of Occupational and Environmental MedicineGil Medical CenterIncheonRepublic of Korea
| | - Seunghyun Lee
- Department of Occupational and Environmental MedicineGachon University College of MedicineIncheonRepublic of Korea
| | - Wanhyung Lee
- Department of Occupational and Environmental MedicineGil Medical CenterIncheonRepublic of Korea
- Department of Occupational and Environmental MedicineGachon University College of MedicineIncheonRepublic of Korea
| |
Collapse
|
22
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
23
|
Bao H, Li B, You Q, Dun X, Zhang Z, Liang Y, Li Y, Jiang Q, Zhang R, Chen R, Chen W, Zheng Y, Li D, Cui L. Exposure to real-ambient particulate matter induced vascular hypertrophy through activation of PDGFRβ. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130985. [PMID: 36801716 DOI: 10.1016/j.jhazmat.2023.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vascular toxicity induced by particulate matter (PM) exposure exacerbates the onset and development of cardiovascular diseases; however, its detailed mechanism remains unclear. Platelet-derived growth factor receptor β (PDGFRβ) acts as a mitogen for vascular smooth muscle cells (VSMCs) and is therefore essential for normal vasoformation. However, the potential effects of PDGFRβ on VSMCs in PM-induced vascular toxicity have not yet been elucidated. METHODS To reveal the potential roles of PDGFRβ signalling in vascular toxicity, individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models and PDGFRβ overexpression mouse models were established in vivo, along with in vitro VSMCs models. RESULTS Vascular hypertrophy was observed following PM-induced PDGFRβ activation in C57/B6 mice, and the regulation of hypertrophy-related genes led to vascular wall thickening. Enhanced PDGFRβ expression in VSMCs aggravated PM-induced smooth muscle hypertrophy, which was attenuated by inhibiting the PDGFRβ and janus kinase 2 /signal transducer and activator of transcription 3 (JAK2/STAT3) pathways. CONCLUSION Our study identified the PDGFRβ gene as a potential biomarker of PM-induced vascular toxicity. PDGFRβ induced hypertrophic effects through the activation of the JAK2/STAT3 pathway, which may be a biological target for the vascular toxic effects caused by PM exposure.
Collapse
Affiliation(s)
- Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing You
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Zhang Y, Liu Y, Li S, Xu R, Yu P, Ramos C, Ebrahimifakhar A, Guo Y. Efficiency of portable air purification on public buses: A pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121696. [PMID: 37088254 DOI: 10.1016/j.envpol.2023.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
High concentrations of fine particulate matter (PM2.5) have been frequently reported in public transit systems and can cause adverse health effect. The portable air purifier is an inexpensive solution that could potentially clean in-cabin PM2.5. This study aims to find the PM2.5 removal efficiency of portable air purifiers in a public transit bus. In various scenarios, after artificially preloading the in-cabin PM2.5 concentration to 400 μg/m3, the concentrations were measured every 10 s, with and without the intervention of air purifiers. In a test bus with a volume of approximately 62.5 m3, three portable air purifiers were capable of reducing the average concentration of PM2.5 by 42-74%, from 400 μg/m3, to levels below 15 μg/m3, the acceptable short-term exposure concentration recommended by WHO. When high concentrations of outdoor PM2.5 entered the bus, purifiers maintained a relatively low level of in-cabin PM2.5. Air purifiers were more effective in reducing in-cabin PM2.5 than traditional air filtration and ventilation methods (air conditioning system filtration and door opening) in public transit buses. The deployed air purifiers reduced the concentration of particulate matter inside the bus, which may reduce the health risk of PM2.5 exposure and the spreading of airborne infections in public transit, thus, implying the potential to enhance passengers' and drivers' health.
Collapse
Affiliation(s)
- Yuxi Zhang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yanming Liu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | | | | | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia.
| |
Collapse
|
25
|
Yan Z, Li S, Chen R, Xie H, Wu M, Nan N, Xing Q, Yun Y, Qin G, Sang N. Effects of differential regional PM 2.5 induced hepatic steatosis and underlying mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121220. [PMID: 36746292 DOI: 10.1016/j.envpol.2023.121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence suggests that exposure to PM2.5 is associated with a high risk of nonalcoholic fatty liver disease (NAFLD). NAFLD is typically characterised by hepatic steatosis. However, the underlying mechanisms and critical components of PM2.5-induced hepatic steatosis remain to be elucidated. In this study, ten-month-old C57BL/6 female mice were exposed to PM2.5 from four cities in China (Taiyuan, Beijing, Hangzhou, and Guangzhou) via oropharyngeal aspiration every other day for four weeks. After the exposure period, hepatic lipid accumulation was evaluated by biochemical and histopathological analyses. The expression levels of genes related to lipid metabolism and metabolomic profiles were assessed in the mouse liver. The association between biomarkers of hepatic steatosis (hepatic Oil Red O staining area and serum and liver triglyceride contents) and typical components of PM2.5 was identified using Pearson correlation analysis. Oil Red O staining and biochemical results indicated that PM2.5 from four cities significantly induced hepatic lipid accumulation. The most severe hepatic steatosis was observed after Guangzhou PM2.5 exposure. Moreover, Guangzhou PM2.5-induced the most significant changes in gene expression associated with lipid metabolism, including increased hepatic fatty acid uptake and lipid droplet formation and decreased fatty acid synthesis and lipoprotein secretion. Contemporaneously, exposure to Guangzhou PM2.5 significantly perturbed hepatic lipid metabolism. According to metabolomic analysis, disturbed hepatic lipid metabolism was primarily concentrated in linoleic acid, α-linoleic acid, and arachidonic acid metabolism. Finally, correlation analysis revealed that copper (Cu) and other inorganic components, as well as the majority of polycyclic aromatic hydrocarbons (PAHs), were related to changes in biomarkers of hepatic steatosis. These findings showed that PM2.5 exposure caused hepatic steatosis in aged mice, which could be related to the critical chemical components of PM2.5. This study provides critical information regarding the components of PM2.5, which cause hepatic steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Shuyue Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China
| | - Haohan Xie
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China
| | - Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China; School of Public Health, Shanxi Medical University, Shanxi, 030001, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| |
Collapse
|
26
|
Zhu Z, Sun S, Jiang T, Zhang L, Chen M, Chen S. A double-edged sword of platelet-derived extracellular vesicles in tissues, injury or repair: The current research overview. Tissue Cell 2023; 82:102066. [PMID: 36924675 DOI: 10.1016/j.tice.2023.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Extracellular vesicles (EVs) are vesicular bodies with a double-layered membrane structure that are detached from the cell membrane or secreted by the cells. EVs secreted by platelets account for the main part in the blood circulation, which account for about 30% or even more. Many types of cells are regulated by PEVs, including endothelial cells, leukocytes, smooth muscle cells, etc. Nevertheless, despite the growing interest in the study of extracellular vesicles, there are still only a few studies on the role of PEVs. Therefore, this overview mainly focuses on one method of isolation and the functions of PEVs in tissues found so far, including promoting tissue repair and mediating tissue damage, which can be used for researchers to continue to explore the role of PEVs in other fields.
Collapse
Affiliation(s)
- Zepeng Zhu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Tiancheng Jiang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
27
|
Trickey KS, Chen Z, Sanghavi P. Hospitalisations for cardiovascular and respiratory disease among older adults living near unconventional natural gas development: a difference-in-differences analysis. Lancet Planet Health 2023; 7:e187-e196. [PMID: 36889860 DOI: 10.1016/s2542-5196(23)00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND During 2008-15, the Marcellus shale region of the US state of Pennsylvania experienced a boom in unconventional natural gas development (UNGD) or "fracking". However, despite much public debate, little is known about the effects of UNGD on population health in local communities. Among other mechanisms, air pollution from UNGD might affect individuals living nearby through cardiovascular or respiratory disease, and older adults could be particularly susceptible. METHODS To study the health impacts of Pennsylvania's fracking boom, we exploited the ban on UNGD in neighbouring New York state. Using 2002-15 Medicare claims, we conducted difference-in-differences analyses over multiple timepoints to estimate the risk of living near UNGD for hospitalisation with acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and bronchiectasis, heart failure, ischaemic heart disease, and stroke among older adults (aged ≥65 years). FINDINGS Pennsylvania ZIP codes that started UNGD in 2008-10 were associated with more hospitalisations for cardiovascular diseases in 2012-15 than would be expected in the absence of UNGD. Specifically, in 2015, we estimated an additional 11·8, 21·6, and 20·4 hospitalisations for AMI, heart failure, and ischaemic heart disease, respectively, per 1000 Medicare beneficiaries. Hospitalisations increased even as UNGD growth slowed. Results were robust in sensitivity analyses. INTERPRETATION Older adults living near UNGD could be at high risk of poor cardiovascular outcomes. Mitigation policies for existing UNGD might be needed to address current and future health risks. Future consideration of UNGD should prioritise local population health. FUNDING University of Chicago and Argonne National Laboratories.
Collapse
Affiliation(s)
- Kevin S Trickey
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Zihan Chen
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Prachi Sanghavi
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Xing Q, Wu M, Xue Z, Nan N, Yan Z, Li S, Yun Y, Qin G, Sang N. Biochemical evidence of PM 2.5 critical components for inducing myocardial fibrosis in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159258. [PMID: 36216045 DOI: 10.1016/j.scitotenv.2022.159258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
PM2.5 constituents are tightly linked to the initiation of many cardiovascular diseases (CVDs). Little is known, however, about the events which critical components of PM2.5 can induce the initiating events in CVDs. C57BL/6 female mice were exposed to PM2.5 (3 mg/kg b.w.) from four different cities (Taiyuan, Beijing, Hangzhou, and Guangzhou) by oropharyngeal aspiration every other day. PM2.5 from Taiyuan increased the diastolic function of the hearts and induced myocardial fibrosis with increased areas of interstitial fibrosis through the NOX4/TGF-β1/Smad 3/Col1a1 pathways. Pb, Cr, Mn, Zn, and most of the polycyclic aromatic hydrocarbons (PAHs) were positively associated with the related indicators of cardiac diastolic function and myocardial fibrosis by using Pearson correlation (R2 = 0.9085-0.9897). To determine the critical components in PM2.5 that can induce the occurrence of myocardial fibrosis, BEAS-2b cells were treated with one or more of five candidate components with/without Guangzhou PM2.5, and then the conditioned medium of BEAS-2b was used to culture AC16 cells. The results showed that Zn + Pb + Mn + BaP with PM2.5 from Guangzhou exposure significantly increased reactive oxygen species production of BEAS-2b cells and induced a dramatic increase of myocardial fiber-related gene expression (Col1a1 and TGF-β) in AC16 cells. It indicated that the different mass concentrations of Zn, Pb, Mn, and ΣPAHs in PM2.5 might be the critical factors that modulated myocardial fibrosis induction by targeted. Our study provided a novel avenue for further elucidation of molecular mechanisms of PM2.5 components-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; School of Public Health, Shanxi Medical University, Shanxi 030001, PR China
| | - Zhen Xue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shuyue Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
29
|
Gu Y, Xu H, Feng R, Cheng Y, Han B, Ho KF, Wang Z, He Y, Qu L, Ho SSH, Sun J, Shen Z, Cao J. Associations of personal exposure to domestic heating and cooking fuel emissions and epidemiological effects on rural residents in the Fenwei Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159217. [PMID: 36206913 DOI: 10.1016/j.scitotenv.2022.159217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Solid fuel combustion for domestic heating in northern China in the wintertime is of great environmental and health concern. This study assesses personal exposure to particulate matter with different aerodynamic diameters and multiple gaseous pollutants from 123 rural residents in Yuncheng, the Fenwei Plain. The subjects are divided into groups based on the unique energy source applied, including biomass, coal, and electricity/no heating activities. The health effects of the exposures are expressed with four urinary biomarkers. The personal exposure levels to three different aerodynamic particle sizes (i.e., PM10, PM2.5, and PM1) of the electricity/no heating group are 5.1 % -12 % lower than those of the coal group. In addition, the exposure levels are 25 %-40 % lower for carbon monoxide (CO) and 10.8 %-20.3 % lower for ozone (O3) in the electricity/no heating group than the other two fuel groups. C-reactive protein (CRP) in the urine of the participants in biomass and coal groups is significantly higher than that in the electricity/no heating group, consistent with the observations on other biomarkers. Increases in 8-hydroxy-2 deoxyguanosine (8-OHdG), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) are observed for the exposures to higher concentrations of air pollutants. For instance, PMs and nitrogen dioxide (NO2) show significant impacts on positive correlations with 8-OHdG and IL-8, while O3 positively correlates with CRP. PM1 exhibits higher effects on the biomarkers than the gaseous pollutants, especially on VEGF and IL-8. The study indicates that excessive use of traditional domestic solid fuels could pose severe health effects on rural residents. The promotion of using clean energy is urgently needed in the rural areas of northern China.
Collapse
Affiliation(s)
- Yunxuan Gu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Rong Feng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin Fai Ho
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Zexuan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yansu He
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
30
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
31
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
32
|
Dehghani S, Vali M, Jafarian A, Oskoei V, Maleki Z, Hoseini M. Ecological study of ambient air pollution exposure and mortality of cardiovascular diseases in elderly. Sci Rep 2022; 12:21295. [PMID: 36494401 PMCID: PMC9734746 DOI: 10.1038/s41598-022-24653-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
As an independent risk factor, ambient air pollution can assume a considerable part in mortality and worsening of cardiovascular disease. We sought to investigate the association between long-term exposure to ambient air pollution and cardiovascular disease mortality and their risk factors in Iranian's elderly population. This inquiry was conducted ecologically utilizing recorded data on cardiovascular disease mortality from 1990 to 2019 for males and females aged 50 years or more from the Global Burden of Disease dataset. Data was interned into Joinpoint software 4.9.0.0 to present Annual Percent Change (APC), Average Annual Percent Change (AAPC), and its confidence intervals. The relationship between recorded data on ambient air pollution and cardiovascular disease' mortality, the prevalence of high systolic blood pressure, high LDL cholesterol levels, high body mass index, and diabetes mellitus type2 was investigated using the Spearman correlation test in R 3.5.0 software. Our finding demonstrated that cardiovascular diseases in elderly males and females in Iran had a general decreasing trend (AAPC = -0.77% and -0.65%, respectively). The results showed a positive correlation between exposure to ambient ozone pollution (p ≤ 0.001, r = 0.94) ambient particulate and air pollution (p < 0.001, r = 0.99) and mortality of cardiovascular disease. Also, ambient air pollution was positively correlated with high systolic blood pressure (p < 0.001, r = 0.98), high LDL cholesterol levels (p < 0.001, r = 0.97), high body mass index (p < 0.001, r = 0.91), diabetes mellitus type2 (p < 0.001, r = 0.77). Evidence from this study indicated that ambient air pollution, directly and indirectly, affects cardiovascular disease mortality in two ways by increasing the prevalence of some traditional cardiovascular disease risk factors. Evidence-based clinical and public health methodologies are necessary to decrease the burden of death and disability associated with cardiovascular disease.
Collapse
Affiliation(s)
- Samaneh Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohebat Vali
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Jafarian
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Maleki
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Department of Environmental Health Engineering, School of Public Health, Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Razi Blvd, Kuye-Zahra Ave, Shiraz, 1417653861, Iran.
| |
Collapse
|
33
|
Lim S, Kim SW, Kim IK, Song BW, Lee S. Organ-on-a-chip: Its use in cardiovascular research. Clin Hemorheol Microcirc 2022; 83:315-339. [DOI: 10.3233/ch-221428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.
Collapse
Affiliation(s)
- Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| |
Collapse
|
34
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
35
|
Exploring the Link Between the Serum/Blood Levels of Heavy Metals (Pb, As, Cd, and Cu) and 2 Novel Biomarkers of Cardiovascular Stress (Growth Differentiation Factor 15 and Soluble Suppression of Tumorigenicity 2) in Copper Smelter Workers. J Occup Environ Med 2022; 64:976-984. [PMID: 35902369 DOI: 10.1097/jom.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Studying the association between the occupational exposure to Pb, As, Cd, and Cu with the serum levels of 2 novel biomarkers of cardiovascular stress; growth differentiation factor 15 and soluble suppression of tumorigenicity 2, in some Egyptian Cu smelter workers. METHODS Forty-one exposed workers and 41 administrative controls were clinically evaluated. Serum/blood levels of heavy metals and biomarkers were measured for both groups. RESULTS The smelter workers showed significantly elevated levels of heavy metals and biomarkers compared with controls. The elevated serum levels of both biomarkers were significantly and positively correlated with each other, the levels of heavy metals, and the duration of employment of the exposed workers. CONCLUSIONS There was a significant association between the levels of heavy metals and both biomarkers among the smelter workers. Further prospective studies should be performed.
Collapse
|
36
|
Fazlzadeh M, Hassanvand MS, Nabizadeh R, Shamsipour M, Salarifar M, Naddafi K. Effect of portable air purifier on indoor air quality: reduced exposure to particulate matter and health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:638. [PMID: 35925421 DOI: 10.1007/s10661-022-10255-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
We sought to investigate the impact of air purifiers in the removal of particular matter (PM)10, PM2.5, PM1, and particle number concentration (PNC) in the indoor air of dormitories located at Iran's largest medical university, Tehran University of Medical Sciences. Twelve rooms were selected and randomly assigned to two rooms: sham air purifier system deployed room (SR) and true air purifier system deployed room (TR). All study samples were drawn simultaneously from assigned rooms using portable GRIMM dust monitors for 24 h. The PM monitors of air were positioned in the middle of each room next to the air purifier at the height of the breathing zone (1.5 m in height). The mean PM10, PM2.5, PM1, and PNC removal efficiency in rooms with and without a smoker were measured to be 40.7 vs 83.8%, 31.2 vs 78.4%, 29.9 vs 72.3%, and 44.3 vs 75.6%, respectively. The results showed that smoking is an important influencing factor on the indoor air quality; smoking lowered the removal efficiency of PM10, PM2.5, PM1, and PNC by 43%, 47%, 43%, and 31%, respectively. An air purifier could decline the PM10 and PM2.5 even lower than the WHO 24-h guideline level in non-smoker rooms. This study revealed that using household air purifiers in rooms with smokers and non-smokers significantly reduces the non-carcinogenic risks of exposure to PM10 and PM2.5.
Collapse
Affiliation(s)
- Mehdi Fazlzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Salarifar
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Basith S, Manavalan B, Shin TH, Park CB, Lee WS, Kim J, Lee G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. NANOMATERIALS 2022; 12:nano12152656. [PMID: 35957086 PMCID: PMC9370264 DOI: 10.3390/nano12152656] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/26/2022]
Abstract
Air pollution exerts several deleterious effects on the cardiovascular system, with cardiovascular disease (CVD) accounting for 80% of all premature deaths caused by air pollution. Short-term exposure to particulate matter 2.5 (PM2.5) leads to acute CVD-associated deaths and nonfatal events, whereas long-term exposure increases CVD-associated risk of death and reduces longevity. Here, we summarize published data illustrating how PM2.5 may impact the cardiovascular system to provide information on the mechanisms by which it may contribute to CVDs. We provide an overview of PM2.5, its associated health risks, global statistics, mechanistic underpinnings related to mitochondria, and hazardous biological effects. We elaborate on the association between PM2.5 exposure and CVD development and examine preventive PM2.5 exposure measures and future strategies for combating PM2.5-related adverse health effects. The insights gained can provide critical guidelines for preventing pollution-related CVDs through governmental, societal, and personal measures, thereby benefitting humanity and slowing climate change.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Wang-Soo Lee
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Chung-Ang University, Seoul 06973, Korea;
| | - Jaetaek Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, College of Medicine, Chung-Ang University, Seoul 06973, Korea
- Correspondence: (J.K.); (G.L.)
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (J.K.); (G.L.)
| |
Collapse
|
38
|
Caldeira D, Franco F, Bravo Baptista S, Cabral S, Cachulo MDC, Dores H, Peixeiro A, Rodrigues R, Santos M, Timóteo AT, Vasconcelos J, Gonçalves L. Air pollution and cardiovascular diseases: A position paper. Rev Port Cardiol 2022; 41:709-717. [DOI: 10.1016/j.repc.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 10/17/2022] Open
|
39
|
Zhou S, Cong L, Liu J, Zhang Z. Consistency between deposition of particulate matter and its removal by rainfall from leaf surfaces in plant canopies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113679. [PMID: 35640352 DOI: 10.1016/j.ecoenv.2022.113679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The leaf surfaces of plants are important organs for retaining particulate matter (PM). They can be renewed via washout processes (e.g., rainfall), thereby restoring the ability to retain new PM. Most of the current studies have focused on the mechanisms of rainfall characteristics on the renewal of PM on plant leaf surfaces and interspecific differences, while the effects of different leaf heights on PM renewal within the same plant canopy have been less studied. In addition, the dynamics of PM during rainfall, especially the water-soluble ions (WSII) component, are often neglected. This research used Salix matsudana, a tree species with a significant natural height difference between the upper and lower leaves of its canopy, as its study object. Using artificially simulated rainfall, the rainfall intensity was quantified as low, medium, and high (i.e., 30 mm/h, 45 mm/h, and 60 mm/h), and the rainfall process was divided into three sub-stages: pre (0-20 min), mid (20-40 min), and post (40-60 min). The experimental setup was divided into upper (2 m) and lower leaves (1 m) according to the height of the canopy. The concentration and distribution of water-insoluble PM (WIPM) were obtained using the elution weighing method, whereas WSII were obtained using ion chromatography. The dynamics of WIPM and WSII during the removal of PM from the leaf surface by rainfall were studied at different canopy heights, and the results showed that the composition and proportions of WIPM and WSII varied at different stages of the rainfall process and that the concentrations of WIPM and WSII removed from the upper leaves differed slightly from those of the lower leaves. In particular, the concentrations of WIPM and WSII removed from the lower leaves were greater than those from the upper leaves at high rainfall intensity (60 mm/h), showing consistency between rainfall removal of PM from the leaf surface at different heights within the plant canopy and deposition of PM, while at low (30 mm/h) and medium (45 mm/h) rainfall intensities the performance was slightly different.
Collapse
Affiliation(s)
- Shijun Zhou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| | - Ling Cong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| | - Jiakai Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| | - Zhenming Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China.
| |
Collapse
|
40
|
Adeyemi A, Molnar P, Boman J, Wichmann J. Particulate Matter (PM 2.5) Characterization, Air Quality Level and Origin of Air Masses in an Urban Background in Pretoria. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:77-94. [PMID: 35680664 DOI: 10.1007/s00244-022-00937-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Several sources have been identified as contributing to the concentration of ambient fine particulate matter, which has been associated to a variety of health issues. The chemical characteristics and sources of trace elements in PM2.5, as well as the air quality index, were investigated in this study. Twenty four-hour fine aerosol particles were collected in an urban area in Pretoria, South Africa, from April 2017 to April 2018. Eighteen trace elements were determined using an XEPOS 5 energy-dispersive X-ray fluorescence (EDXRF) spectrometer, while black and organic carbon were estimated using an optical transmissometer from the samples collected. The HYPLIT model (version 4.9) was used to estimate air mass trajectories. Health risk was calculated by comparing it to the World Health Organization's air quality index (AQI). The overall mean PM2.5 concentration of the collected sample equals 21 µg/m3. Majority of PM2.5 exceedances were reported during mid-autumn and winter seasons, as compared to daily WHO guidelines and South African standards. S had the highest concentrations, greater than 1 µg/m3. Ni, Se, Br and Sb showed they were extremely enriched, (EF > 10) and suggestive of anthropogenic or non crustal origin The 24-h PM, soot, BC and OC were significantly different by the geographical origin of air masses (p < 0.05). The AQI showed that 70% of the samples showed levels above the AQI range of good and healthy air. The findings include details on the concentration, composition, and potential sources of fine PM2.5, which is essential for policy formulation and mitigation strategies in South Africa's fight against air pollution.
Collapse
Affiliation(s)
- Adewale Adeyemi
- School of Health Systems and Public Health, University of Pretoria, 31 Bophelo Road 00 01, Pretoria, South Africa.
- Department of Environmental Modeling and Biometrics, Forestry Research Institute of Nigeria, Ibadan, Nigeria.
| | - Peter Molnar
- Occupational and Environmental Medicine, Sahlgrenska University Hospital & University of Gothenburg, Medicinaregatan 16A, 40530, Gothenburg, Sweden
| | - Johan Boman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janine Wichmann
- School of Health Systems and Public Health, University of Pretoria, 31 Bophelo Road 00 01, Pretoria, South Africa
| |
Collapse
|
41
|
PM<sub>2.5</sub> Air Pollution and Cardiovascular Disease-Associated Disability among Middle-Aged and Older Adults. Glob Heart 2022; 17:41. [PMID: 35837365 PMCID: PMC9205374 DOI: 10.5334/gh.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Increasing evidence regards the role of ambient particles on morbidity and mortality caused by cardiovascular diseases (CVDs). However, there was no evidence about the association between ambient particles and CVD-associated disability. This study used large national representative data to investigate the relationship between long-term exposure to an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) and CVD-associated disability among Chinese adults aged 45 years old and above and estimated the burden of CVD-associated disability attributed to PM2.5. Methods: Using data from the Second National Sample Survey on Disability, this study used a combination of self-reports or family members’ reports and on-site medical diagnosis by experienced specialists to ascertain CVD-associated disability in 852,742 adults aged 45 years old and above. Logistic regression models and spline regression models were used to examine the association between PM2.5 long-term exposure and CVD-associated disability, and the population attributable risk was calculated to assess the burden of CVD-associated disability contributed to PM2.5. Results: Every increase of 10 μg/m3 in PM2.5 was associated with an 8% (OR = 1.08, 95% CI: 1.05, 1.10) increase the odds of CVD-associated disability. Stratified analyses by demographic factors suggested that this association was robust. There were 1.05 (0.74,1.35) million -3.53 (3.29,3.75) million CVD-associated disabilities attributed to high PM2.5 concentration exposure (≥35 µg/m3) among middle-aged and older adults in 2006. A reduction in PM2.5 concentrations to 35 µg/m3 corresponded to a decrease of 13.59% (9.55%, 17.46%)–23.98% (17.17%, 30.25%) in CVD-associated disability by age group, respectively, and this magnitude increased in areas with a high prevalence of CVD-related disability. Conclusions: This study suggests that reducing PM2.5 concentrations may contribute to preventing CVD-associated disability and decreasing air pollution-related medical expenditures and rehabilitation fees.
Collapse
|
42
|
Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, Hizaddin HF. Towards Integrated Air Pollution Monitoring and Health Impact Assessment Using Federated Learning: A Systematic Review. Front Public Health 2022; 10:851553. [PMID: 35664109 PMCID: PMC9160600 DOI: 10.3389/fpubh.2022.851553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
Collapse
Affiliation(s)
- En Xin Neo
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center of Image and Signal Processing (CISIP), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Istajib Mokhtar
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Mokhzaini Azizan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanee Farzana Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Ecological Transition in the Field of Brake Pad Manufacturing: An Overview of the Potential Green Constituents. SUSTAINABILITY 2022. [DOI: 10.3390/su14052508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nowadays, the drive for green products has undergone a rapid increase following the global ecoawareness and the severe regulations aimed at preventing the environment from further damage. The use of ecosafe constituents in materials for harsh applications, such as brake pad systems, can be a possible solution for reducing health hazards arising from particle release during braking. Based on this, the present study provides a bibliographic review of green alternative constituents for friction material formulation, focusing the attention on their influence on the tribological properties of the final composites. The traditional materials still used in commercial brake pads are shortly described, with the aim to provide an overview of the current situation. In the final part of the review, following the trend of circular economy, works dealing with the use of waste as an ingredient of friction materials are also reported. The whole literature screening points out that much work is still required to obtain completely green friction materials. Indeed, few works dealing with the phenolic resin replacement, proposing inorganic ecosafe materials such as geopolymers, are present. On the contrary, the use of natural fibers is widely investigated: palm kernel, flax, agave and aloe can be identified as promising constituents based on the literature results and the generated patents.
Collapse
|
44
|
Tumolo MR, Panico A, De Donno A, Mincarone P, Leo CG, Guarino R, Bagordo F, Serio F, Idolo A, Grassi T, Sabina S. The expression of microRNAs and exposure to environmental contaminants related to human health: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:332-354. [PMID: 32393046 DOI: 10.1080/09603123.2020.1757043] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental contaminants exposure may lead to detrimental changes to the microRNAs (miRNAs) expression resulting in several health effects. miRNAs, small non-coding RNAs that regulate gene expression, have multiple transcript targets and thereby regulate several signalling molecules. Even a minor alteration in the abundance of one miRNA can have deep effects on global gene expression. Altered patterns of miRNAs can be responsible for changes linked to various health outcomes, suggesting that specific miRNAs are activated in pathophysiological processes. In this review, we provide an overview of studies investigating the impact of air pollution, organic chemicals, and heavy metals on miRNA expression and the potential biologic effects on humans.Abbreviations: AHRR, aryl-hydrocarbon receptor repressor; AHR, aryl-hydrocarbon receptor; As, arsenic; BCL2, B-cell lymphoma 2; BCL2L11, B-cell lymphoma 2 like 11; BCL6, B-cell lymphoma 6; BPA, bisphenol A; CVD, cardiovascular diseases; CD40, cluster of differentiation 40; CCND1, Cyclin D1; CDKN1A, cyclin-dependent kinase inhibitor 1A; Cr, chromium; CTBP1, C-terminal binding protein 1; CXCL12, C-X-C motif chemokine ligand 12; DAZAP1, deleted in azoospermia associated protein 1; DEP, diesel exhaust particles; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; EVs, extracellular vesicles; FAK, focal adhesion kinase; FAS, fas cell surface death receptor; FOXO, forkhead box O; HbA1c, glycated hemoglobin; Hg, mercury; HLA-A, human leukocyte antigen A; HMGB, high-mobility group protein B; IFNAR2, interferon alpha receptor subunit 2; IL-6, interleukin-6; IRAK1, interleukin 1 receptor associated kinase 1; JAK/STAT, janus kinase/signal transducers and activators of transcription; MAPK, mitogen-activated protein kinase; miRNAs, microRNAs; MVs, microvesicles; NCDs, noncommunicable diseases; NFAT, nuclear factor of activated T cells; NFkB, nuclear factor kappa B; NRF2, nuclear factor, erythroid-derived 2; NRG3, neuregulin 3; O3, ozone; OP, organophosphorus pesticides; PAHs, polycyclic aromatic hydrocarbons; Pb, lead; PCBs, polychlorinated biphenyls; PDCD4, programmed cell death 4; PDGFB, platelet derived growth factor subunit beta; PDGFR, platelet-derived growth factor receptor; PI3K/Akt, phosphoinositide-3-kinase/protein kinase B; PKA, protein kinase A; PM, particulate matter; PRKCQ, protein kinase C theta; PTEN, phosphatase and tensin homolog; SORT1, sortilin 1; TGFβ, transforming growth factor-β; TLR, toll-like receptor; TNF, tumor necrosis factors; TRAF1, tumor necrosis factors-receptor associated factors 1; TRAP, traffic-related air pollution; TREM1, triggering receptor expressed on myeloid cells 1; TRIAP1, TP53 regulated inhibitor of apoptosis 1; VCAM-1, vascular cell adhesion molecule 1; VEGFA, vascular endothelial growth factor A; XRCC2, X-ray repair cross complementing 2; YBX2, Y-box-binding protein 2; ZEB1, zinc finger E-box-binding homeobox 1; ZEB2, zinc finger E-box-binding homeobox 2; 8-OH-dG, 8-hydroxy-guanine.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Pierpaolo Mincarone
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Carlo Giacomo Leo
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Saverio Sabina
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| |
Collapse
|
45
|
Mai X, Zhou H, Li Y, Huang X, Yang T. Associations between ambient fine particulate (PM 2.5) exposure and cardiovascular disease: findings from the China Health and Retirement Longitudinal Study (CHARLS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13114-13121. [PMID: 34570321 DOI: 10.1007/s11356-021-16541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The evidence regarding the association between long-term fine particulate (PM2.5) exposure and cardiovascular disease (CVD) in developing countries is limited. This study investigated the association between long-term exposure to PM2.5 and the prevalence of CVD among middle-aged and older adults. A total of 13,484 adults ≥ 45 years of age were surveyed in China, and logistic regression models were used to examine the association between PM2.5 and the prevalence of CVD. Furthermore, stratified analyses were conducted to explore potential effect modifiers. In addition, the burden of CVD attributable to PM2.5 was estimated. The analyses revealed that PM2.5 was associated with CVD, with an adjusted odds ratio (OR) of 1.18 (95% confidence interval [CI]: 1.12, 1.26) for each 10 μg/m3 increment in ambient PM2.5. Stratified analyses found that the elderly may be a vulnerable population. It was further estimated that approximately 20.27% (95% CI: 11.86%, 29.96%) of CVD cases could be attributable to PM2.5. This nationwide study confirmed that long-term exposure to PM2.5 was associated with an increased prevalence of CVD in China.
Collapse
Affiliation(s)
- Xiaowei Mai
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China
| | - Houfeng Zhou
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China
| | - Yangyang Li
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China
| | - Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tao Yang
- Department of Emergency, Panyu Central Hospital, No. 8, Fuyu East Road, Panyu District, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
46
|
Abrams LR, Myrskylä M, Mehta NK. The growing rural-urban divide in US life expectancy: contribution of cardiovascular disease and other major causes of death. Int J Epidemiol 2022; 50:1970-1978. [PMID: 34999859 PMCID: PMC8743112 DOI: 10.1093/ije/dyab158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The US rural disadvantage in life expectancy (LE) relative to urban areas has grown over time. We measured the contribution of cardiovascular disease (CVD), drug-overdose deaths (DODs) and other major causes of death to LE trends in rural and urban counties and the rural-urban LE gap. METHODS Counterfactual life tables and cause-of-death decompositions were constructed using data on all US deaths in 1999-2019 (N = 51 998 560) from the Centers for Disease Control and Prevention. RESULTS During 1999-2009, rural and urban counties experienced robust LE gains, but urban LE increased by 1.19 years more in women and 0.86 years more in men compared with rural LE. During 2010-2019, rural counties experienced absolute declines in LE (women -0.20, men -0.30 years), whereas urban counties experienced modest increases (women 0.55, men 0.29 years). Counterfactual analysis showed that slowed CVD-mortality declines, particularly in ages 65+ years, were the main reason why rural LE stopped increasing after 2010. However, slow progress in CVD-mortality influenced LE trends more in urban areas. If CVD-mortality had continued to decline at its pre-2010 pace, the rural-urban LE gap would have grown even more post 2010. DODs and other causes of death also contributed to the LE trends and differences in each period, but their impact in comparison to that of CVD was relatively small. CONCLUSIONS Rural disadvantage in LE continues to grow, but at a slower pace than pre 2010. This slowdown is more attributable to adverse trends in CVD and DOD mortality in urban areas than improvements in rural areas.
Collapse
Affiliation(s)
- Leah R Abrams
- Harvard Center for Population and Development Studies, Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Mikko Myrskylä
- Max Planck Institute for Demographic Research, Rostock, Germany
- Center for Social Data Science, University of Helsinki, Finland
| | - Neil K Mehta
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
47
|
Saini D, Mishra N, Lataye DH. Variation of ambient air pollutants concentration over Lucknow city, trajectories and dispersion analysis using HYSPLIT4.0. SĀDHANĀ 2022; 47:231. [PMCID: PMC9645751 DOI: 10.1007/s12046-022-02001-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/19/2024]
Abstract
The present study deals with the analysis of daily average concentrations of respirable suspended particulate matter (RSPM- PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) at seven monitoring stations namely, Hazratganj, Talkatora, Mahanagar, Aliganj, Sarai Mali Khan, Gomtinagar, and Ansal TC in Lucknow city from 2016 to 2020. The analysis shows that the annual average concentration of RSPM varies from 148.74 to 323.05 µg/m3, SO2 varies from 7.11 to 8.94 µg/m3 and NO2 from 23.52 to 31.86 µg/m3 at all the locations. From the analysis of seasonal variation, it is found that the minimum concentration of RSPM found to be 81.59 µg/m3 in monsoon and maximum concentration was found to be 447.47 µg/m3 in post-monsoon. However, the seasonal variation of SO2 was found in the range of 5.55 to 10.94 µg/m3 and NO2 in the range of 20.23 to 38.40 µg/m3, which are below the prescribed standards. The pollution level decreased to some extent due to the COVID-19 lockdown in the year 2020 but not below the prescribed standard for RSPM. The levels of PM10 in Lucknow are not reducing despite the government of India banning industries and adopting other safeguards within the city. The Trajectory and Dispersion study using the HYSPLIT4.0 model shows insufficient local pollution control, and pollutants are carried from adjacent locations due to the wind blowing from north-west direction to keep daily pollution levels over the standards prescribed by Central Pollution Control Board (i.e., 100 µg/m3). The peak concentration of RSPM is recorded to be 323.05 µg/m3 for the year 2017 at the Hazratganj monitoring station. Over the study region, wavelet analysis of monthly averaged values of PM10 data sets at all seven stations revealed that the presence of semi-annual and annual periodicity. The findings reveal that controlling of particulate matter pollution in the city is a significant concern and has an alarming situation as compared to SO2 and NO2 pollutants.
Collapse
Affiliation(s)
- Divyanshu Saini
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010 Maharashtra India
| | - Namrata Mishra
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010 Maharashtra India
| | - Dilip H Lataye
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010 Maharashtra India
| |
Collapse
|
48
|
Khadka A, Canning D. Understanding the Pathways from Prenatal and Post-Birth PM 2.5 Exposure to Infant Death: An Observational Analysis Using US Vital Records (2011-2013). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:258. [PMID: 35010519 PMCID: PMC8751133 DOI: 10.3390/ijerph19010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We studied the relationship of prenatal and post-birth exposure to particulate matter < 2.5 μm in diameter (PM2.5) with infant mortality for all births between 2011 and 2013 in the conterminous United States. Prenatal exposure was defined separately for each trimester, post-birth exposure was defined in the 12 months following the prenatal period, and infant mortality was defined as death in the first year of life. For the analysis, we merged over 10 million cohort-linked live birth-infant death records with daily, county-level PM2.5 concentration data and then fit a Structural Equation Model controlling for several individual- and county-level confounders. We estimated direct paths from the two exposures to infant death as well as indirect paths from the prenatal exposure to the outcome through preterm birth and low birth weight. Prenatal PM2.5 exposure was positively associated with infant death across all trimesters, although the relationship was strongest in the third trimester. The direct pathway from the prenatal exposure to the outcome accounted for most of this association. Estimates for the post-birth PM2.5-infant death relationship were less precise. The results from our study add to a growing literature that provides evidence in favor of the potential harmful effects on human health of low levels of air pollution.
Collapse
Affiliation(s)
- Aayush Khadka
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - David Canning
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| |
Collapse
|
49
|
Ren JY, Yin BW, Li X, Zhu SQ, Deng JL, Sun YT, Zhang ZA, Guo ZH, Pei HT, Zhang F, Li RQ, Chen FG, Ma YX. Sesamin attenuates PM 2.5-induced cardiovascular injury by inhibiting ferroptosis in rats. Food Funct 2021; 12:12671-12682. [PMID: 34825691 DOI: 10.1039/d1fo02913d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: This study aimed to elucidate the pharmacological effects of sesamin (Ses) and its mechanism of action towards PM2.5-induced cardiovascular injuries. Method: Forty Sprague Dawley (SD) rats were randomly divided into five groups: a saline control group; a PM2.5 exposure group; and low-, middle-, and high-dose Ses pretreatment groups. The SD rats were pretreated with different concentrations of Ses for 21 days. Afterward, the rats were exposed to ambient PM2.5 by intratracheal instillation every other day for a total of three times. The levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6), and indicators related to oxidative responses, such as total superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), were measured in the blood and heart. The expression of ferroptosis-related proteins in heart tissues was determined via western blot and immunohistochemistry. Results: Ses pretreatment substantially ameliorated cardiovascular injuries in rats as evidenced by the decrease in the pathological score and collagen area. The decreased levels of SOD, GSH, and GSH-Px in the heart and serum were inhibited by Ses. In addition, Ses not only notably increased the activity of antioxidant enzymes but also reduced the levels of MDA, CK, LDH, CK-MB, IL-6, TNF-α, IL-1β, and IL-6. Furthermore, Ses pretreatment upregulated the expression levels of GPX4, SLC7A11, TFRC, and FPN1 and inhibited the expression levels of FTH1 and FTL. Conclusion: Ses pretreatment could ameliorate PM2.5-induced cardiovascular injuries perhaps by inhibiting ferroptosis. Therefore, Ses pretreatment may be a novel strategy for the prevention and treatment of PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Bo-Wen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Qi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jin-Liang Deng
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi-Ting Sun
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen-Ao Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Hao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huan-Ting Pei
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui-Qiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Feng-Ge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050017, China
| | - Yu-Xia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
50
|
Zhao T, Qi W, Yang P, Yang L, Shi Y, Zhou L, Ye L. Mechanisms of cardiovascular toxicity induced by PM 2.5: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65033-65051. [PMID: 34617228 DOI: 10.1007/s11356-021-16735-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies have shown that exposure to particulate matter with a diameter ≤ 2.5 μm (PM2.5) could affect the onset and development of cardiovascular diseases. To explore the underlying mechanisms, the studies conducted in vitro investigations using different cell lines. In this review, we examined recently published reports cited by PubMed or Web of Science on the topic of cardiovascular toxicity induced by PM2.5 that carried the term in vitro. Here, we summarized the suggested mechanisms of PM2.5 leading to adverse effects and cardiovascular toxicity including oxidative stress; the increase of vascular endothelial permeability; the injury of vasomotor function and vascular reparative capacity in vascular endothelial cell lines; macrophage polarization and apoptosis in macrophage cell lines; and hypermethylation and apoptosis in the AC16 cell line and the related signaling pathways, which provided a new research direction of cardiovascular toxicity of PM2.5.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| |
Collapse
|