1
|
Luo Y, Liang G, Zhang Q, Luo B. The role of cGAS-STING signaling pathway in colorectal cancer immunotherapy: Mechanism and progress. Int Immunopharmacol 2024; 143:113447. [PMID: 39515043 DOI: 10.1016/j.intimp.2024.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract, it is known as the "silent killer", which poses a serious threat to the lives of patients. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway responds to DNA by sensing, which plays an important role in anti-infection, autoimmune diseases and anti-tumor immunity. Recent studies have found that the activation of cGAS-STING pathway in CRC can induce the expression and secretion of type I interferon (IFN-I) and a variety of inflammatory factors, further activate anti-tumor CD8+ T cells, exert anti-tumor immune response, and inhibit the progression of CRC. Therefore, targeting the cGAS-STING pathway and developing drugs that can regulate the cGAS-STING pathway are of great significance for improving the therapeutic effect and prognosis of CRC patients. In this review, we introduce the cGAS-STING signaling pathway and the regulatory role of this signaling pathway in CRC immune microenvironment. In addition, we discussed the research progress of cGAS-STING pathway in CRC immunotherapy and the clinical research status of STING agonists developed against this pathway, emphasizing the clinical potential of CRC immunotherapy based on the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Yan Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| | - Gai Liang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Qu Zhang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Bo Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| |
Collapse
|
2
|
Imana ZN, Tseng JC, Yang JX, Liu YL, Lin PY, Huang MH, Chen L, Luo Y, Wang CC, Yu GY, Chuang TH. Cooperative tumor inhibition by CpG-oligodeoxynucleotide and cyclic dinucleotide in head and neck cancer involves T helper cytokine and macrophage phenotype reprogramming. Biomed Pharmacother 2024; 181:117692. [PMID: 39561589 DOI: 10.1016/j.biopha.2024.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Head and neck cancer ranks as the sixth most common cancer worldwide, highlighting the critical need for the development of new therapies to enhance treatment efficacy. The activation of innate immune receptors given their potent immune stimulatory properties aid in the eradication of cancer cells. In this study, we investigated the immune mechanism and anti-tumor function of a Toll-like receptor 9 (TLR9) agonist, CpG-oligodeoxynucleotide-2722 (CpG-2722), in combination with cyclic dinucleotides, which are agonists of stimulator of interferon genes (STING). Our results revealed that CpG-2722 stimulation increased the expression of Th1 pro-inflammatory cytokines. Stimulation by STING agonists exhibited lower expression of Th1 cytokines but higher expression of Th2 cytokines compared to CpG-2722. However, the combination of these two agonists significantly enhanced Th1 cytokines while reducing Th2 cytokines. Moreover, in vivo experiment showed that both CpG-2722 and 2'3'-c-di-AMP suppressed head and neck tumor growth, with their combination proving more effective than the use of these agonists alone. The combined treatment cooperatively promoted the production of Th1 cytokines and type I interferons, while suppressing Th2 cytokines in the tumors as observed in vitro. Additionally, it led to the accumulation of M1 macrophages, dendritic cells, and T cells, shaping a favorable tumor microenvironment for T cell-mediated tumor killing. The anti-tumor activity of the CpG-2722 and 2'3'-c-di-AMP combination depends on the macrophage presence but does not directly activate M1 macrophage polarization, instead working through a reprogrammed cytokine profile. Furthermore, this combination shows a cooperative anti-tumor activity with anti-PD-1 in treating head and neck tumors. Overall, these findings highlight a Th response and macrophage phenotype reprograming involved functional mechanism underlying the cooperative activity of the combination of TLR9 and STING agonists in the immunotherapy of head and neck cancer.
Collapse
Affiliation(s)
- Zaida Nur Imana
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Yen Lin
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| | - Tsung-Hsien Chuang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
3
|
Li HX, Gong YW, Yan PJ, Xu Y, Qin G, Wen WP, Teng FY. Revolutionizing head and neck squamous cell carcinoma treatment with nanomedicine in the era of immunotherapy. Front Immunol 2024; 15:1453753. [PMID: 39676875 PMCID: PMC11638222 DOI: 10.3389/fimmu.2024.1453753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor globally. Despite advancements in treatment methods, the overall survival rate remains low due to limitations such as poor targeting and low bioavailability, which result in the limited efficacy of traditional drug therapies. Nanomedicine is considered to be a promising strategy in tumor therapy, offering the potential for maximal anti-tumor effects. Nanocarriers can overcome biological barriers, enhance drug delivery efficiency to targeted sites, and minimize damage to normal tissues. Currently, various nano-carriers for drug delivery have been developed to construct new nanomedicine. This review aims to provide an overview of the current status of HNSCC treatment and the necessity of nanomedicine in improving treatment outcomes. Moreover, it delves into the research progress of nanomedicine in HNSCC treatment, with a focus on enhancing radiation sensitivity, improving the efficacy of tumor immunotherapy, effectively delivering chemotherapy drugs, and utilizing small molecule inhibitors. Finally, this article discussed the challenges and prospects of applying nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yu-Wen Gong
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei-Ping Wen
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Huang S, Xie K, Li X, Xu X, Chen P. The role of the STING inflammatory pathway in hepatic damage in psoriasis with type 2 diabetes mellitus. Arch Med Sci 2024; 20:1426-1441. [PMID: 39649265 PMCID: PMC11623156 DOI: 10.5114/aoms/183672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction Studies have suggested a potential association between patients who have both psoriasis and diabetes and liver damage. However, the exact nature of this link has not yet been fully established. The objective of the current study was to examine the potential exacerbation of liver damage due to the coexistence of psoriasis and type 2 diabetes mellitus (T2DM) and to explore the impact of interferon gene stimulating factor (STING) on related damage. Material and methods Four patient groups were recruited: normal individuals, individuals with diabetes, those with psoriasis, and those with both diabetes and psoriasis. Relevant indicators were collected to facilitate the investigation. Furthermore, a mouse model of psoriasis combined with T2DM was established. The expression levels of STING and inflammatory factors downstream of the pathway were detected in both the skin and liver tissues of the model mice. Results Based on our findings, patients with both psoriasis and T2DM exhibit abnormal liver function and increased STING expression in the skin (p < 0.05). In the in vivo experiments, liver tissues from model mice exhibited significantly elevated expression of STING and its downstream inflammatory factors, including NF-κB p65, interferon-β, interleukin (IL)-17A, and IL-23 (p < 0.05). The STING inhibitor-treated group displayed reduced skin damage and improved liver histopathology (p < 0.05). Conclusions The findings of the current study indicate that the STING inflammatory pathway is upregulated in the liver tissues of individuals with psoriasis and T2DM.
Collapse
Affiliation(s)
- Shulin Huang
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Kun Xie
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Xiaohong Li
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Xiangjin Xu
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| | - Pin Chen
- 900 Hospital of Joint Logistic Support Force, Fuzong Clinical Medical College of Fujian Medical University, China
| |
Collapse
|
5
|
Liao X, Cao Y, Zhong W, Zheng D, Jin L, Yao Y, Yang C. A Multifunctional Nanoparticle Dual Loading with Chlorin e6 and STING Agonist for Combinatorial Therapy of Melanoma. ACS APPLIED BIO MATERIALS 2024; 7:6768-6779. [PMID: 39289781 DOI: 10.1021/acsabm.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that is effective in killing primary tumors with minimal surgical trauma, but its usage in metastatic lesions of melanoma is restricted by spatial limitations. Recently, stimulator of interferon genes (STING) agoinst-mediated innate immunity can activate the STING pathway and further promote dendritic cell (DC) maturation, tumor-specific cytotoxic T lymphocyte, and natural killer cell infiltration and has emerged as a promising approach for cancer therapy. Herein, the authors intriduce facile nanoparticles named HTCS, which can co-deliver STING agonist (2'3'-cGAMP) and a mitochondrial targeting modified photosensitizer (TPP-PEI-Ce6). While HTCS were intravenously injected to mice, they were endocytosed into tumor cells through hyaluronic acid-mediated active targeting. Thereafter, TPP-PEI-Ce6 was delivered to mitochondria to generate a large variety of reactive oxygen species and killed tumor cells effectively. Then the tumor cell debris further gave rise to immunogenic cell death, which played a role in immunosuppression. Furthermore, 2'3'-cGAMP contained in cell debris activated the STING pathway to promote the release of inflammatory cytokines and the maturation of DCs. As a consequence, the HTCS could achieve photodynamic multiple immunotherapy for melanoma. This work demonstrates multifunctional nanoparticles that efficiently inhibit tumors by PDT and reversing their immunosuppression to realize a versatile therapeutic strategy.
Collapse
Affiliation(s)
- Xukun Liao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yong Cao
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Wen Zhong
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dan Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Lin Jin
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengli Yang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
6
|
Aybar-Torres AA, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common Sting1 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. eLife 2024; 13:RP96790. [PMID: 39291958 PMCID: PMC11410371 DOI: 10.7554/elife.96790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra a Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ann T Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of FloridaGainesvilleUnited States
| | - Andrew j Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| |
Collapse
|
7
|
Lu R, Qu Y, Wang Z, He Z, Xu S, Cheng P, Lv Z, You H, Guo F, Chen A, Zhang J, Liang S. TBK1 pharmacological inhibition mitigates osteoarthritis through attenuating inflammation and cellular senescence in chondrocytes. J Orthop Translat 2024; 47:207-222. [PMID: 39040492 PMCID: PMC11260960 DOI: 10.1016/j.jot.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 06/02/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives TANK-binding kinase 1 (TBK1) is pivotal in autoimmune and inflammatory diseases, yet its role in osteoarthritis (OA) remains elusive. This study sought to elucidate the effect of the TBK1 inhibitor BX795 on OA and to delineate the underlying mechanism by which it mitigates OA. Methods Interleukin-1 Beta (IL-1β) was utilized to simulate inflammatory responses and extracellular matrix degradation in vitro. In vivo, OA was induced in 8-week-old mice through destabilization of the medial meniscus surgery. The impact of BX795 on OA was evaluated using histological analysis, X-ray, micro-CT, and the von Frey test. Additionally, Western blot, RT-qPCR, and immunofluorescence assays were conducted to investigate the underlying mechanisms of BX795. Results Phosphorylated TBK1 (P-TBK1) levels were found to be elevated in OA knee cartilage of both human and mice. Furthermore, intra-articular injection of BX795 ameliorated cartilage degeneration and alleviated OA-associated pain. BX795 also counteracted the suppression of anabolic processes and the augmentation of catabolic activity, inflammation, and senescence observed in the OA mice. In vitro studies revealed that BX795 reduced P-TBK1 levels and reversed the effects of anabolism inhibition, catabolism promotion, and senescence induction triggered by IL-1β. Mechanistically, BX795 inhibited the IL-1β-induced activation of the cGAS-STING and TLR3-TRIF signaling pathways in chondrocytes. Conclusions Pharmacological inhibition of TBK1 with BX795 protects articular cartilage by inhibiting the activation of the cGAS-STING and TLR3-TRIF signaling pathways. This action attenuates inflammatory responses and cellular senescence, positioning BX795 as a promising therapeutic candidate for OA treatment. The translational potential of this article This study furnishes experimental evidence and offers a potential mechanistic explanation supporting the efficacy of BX795 as a promising candidate for OA treatment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430030, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengtao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaming Zhang
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
8
|
Aybar-Torres A, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common TMEM173 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561109. [PMID: 37886547 PMCID: PMC10602033 DOI: 10.1101/2023.10.05.561109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The significance of STING (encoded by the TMEM173 gene) in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human TMEM173 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using STING knock-in mice expressing common human TMEM173 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING-mediated cell death ex vivo, establishing a critical role of STING residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING research and STING-targeting immunotherapy should consider TMEM173 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ann T. Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Amir M. Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, U.S.A
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
9
|
Li Z, Li L, Cai S, Xu X, Zhang X, Du K, Wei B, Wang X, Zhao X, Han W. The STING-mediated antiviral effect of fucoidan from Durvillaea antarctica. Carbohydr Polym 2024; 331:121899. [PMID: 38388047 DOI: 10.1016/j.carbpol.2024.121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Fucoidans have attracted increasing attention due to their minimal toxicity and various biological activities, such as antioxidant, anti-inflammatory, anti-tumor and immunomodulatory effects. In this study, the antiviral effect and mechanism of fucoidan (FU) derived from Durvillaea antarctica were explored in vitro. The results demonstrated that FU effectively inhibited the infection of both RNA virus (VSV) and DNA virus (HSV-1). The potential antiviral mechanism of FU is to trigger the production of type I IFN (IFN-I) and IFN-stimulated genes dependent on the cytoplasmic DNA adaptor STING (stimulator of interferon genes), and to enhance innate immune response via activating the STING-TBK1-IRF3 pathway. FU possesses the potential to be an antiviral and immunomodulatory agent in the future.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Li
- School of Pharmacy, Hainan university, Haikou 570228, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xue Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kaixin Du
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Wenwei Han
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| |
Collapse
|
10
|
Li Z, Zhang Q, Li Z, Ren L, Pan D, Gong Q, Gu Z, Cai H, Luo K. Branched glycopolymer prodrug-derived nanoassembly combined with a STING agonist activates an immuno-supportive status to boost anti-PD-L1 antibody therapy. Acta Pharm Sin B 2024; 14:2194-2209. [PMID: 38799622 PMCID: PMC11121173 DOI: 10.1016/j.apsb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite the great potential of anti-PD-L1 antibodies for immunotherapy, their low response rate due to an immunosuppressive tumor microenvironment has hampered their application. To address this issue, we constructed a cell membrane-coated nanosystem (mB4S) to reverse an immunosuppressive microenvironment to an immuno-supportive one for strengthening the anti-tumor effect. In this system, Epirubicin (EPI) as an immunogenic cell death (ICD) inducer was coupled to a branched glycopolymer via hydrazone bonds and diABZI as a stimulator of interferon genes (STING) agonist was encapsulated into mB4S. After internalization of mB4S, EPI was acidic-responsively released to induce ICD, which was characterized by an increased level of calreticulin (CRT) exposure and enhanced ATP secretion. Meanwhile, diABZI effectively activated the STING pathway. Treatment with mB4S in combination with an anti-PD-L1 antibody elicited potent immune responses by increasing the ratio of matured dendritic cells (DCs) and CD8+ T cells, promoting cytokines secretion, up-regulating M1-like tumor-associated macrophages (TAMs) and down-regulating immunosuppressive myeloid-derived suppressor cells (MDSCs). Therefore, this nanosystem for co-delivery of an ICD inducer and a STING agonist achieved promotion of DCs maturation and CD8+ T cells infiltration, creating an immuno-supportive microenvironment, thus potentiating the therapy effect of the anti-PD-L1 antibody in both 4T1 breast and CT26 colon tumor mice.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Qianfeng Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
11
|
Li J, Canham SM, Wu H, Henault M, Chen L, Liu G, Chen Y, Yu G, Miller HR, Hornak V, Brittain SM, Michaud GA, Tutter A, Broom W, Digan ME, McWhirter SM, Sivick KE, Pham HT, Chen CH, Tria GS, McKenna JM, Schirle M, Mao X, Nicholson TB, Wang Y, Jenkins JL, Jain RK, Tallarico JA, Patel SJ, Zheng L, Ross NT, Cho CY, Zhang X, Bai XC, Feng Y. Activation of human STING by a molecular glue-like compound. Nat Chem Biol 2024; 20:365-372. [PMID: 37828400 PMCID: PMC10907298 DOI: 10.1038/s41589-023-01434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.
Collapse
Affiliation(s)
- Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Hua Wu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Martin Henault
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lihao Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guoxun Liu
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yu Chen
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Gary Yu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Howard R Miller
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Viktor Hornak
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | - Antonin Tutter
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Wendy Broom
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Helen T Pham
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - George S Tria
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Xiaohong Mao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Sejal J Patel
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lianxing Zheng
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Nathan T Ross
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Charles Y Cho
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yan Feng
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
12
|
Han J, Wang Z, Han F, Peng B, Du J, Zhang C. Microtubule disruption synergizes with STING signaling to show potent and broad-spectrum antiviral activity. PLoS Pathog 2024; 20:e1012048. [PMID: 38408104 PMCID: PMC10919859 DOI: 10.1371/journal.ppat.1012048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The activation of stimulator of interferon genes (STING) signaling induces the production of type I interferons (IFNs), which play critical roles in protective innate immunity for the host to defend against viral infections. Therefore, achieving sustained or enhanced STING activation could become an antiviral immune strategy with potential broad-spectrum activities. Here, we discovered that various clinically used microtubule-destabilizing agents (MDAs) for the treatment of cancer showed a synergistic effect with the activation of STING signaling in innate immune response. The combination of a STING agonist cGAMP and a microtubule depolymerizer MMAE boosted the activation of STING innate immune response and showed broad-spectrum antiviral activity against multiple families of viruses. Mechanistically, MMAE not only disrupted the microtubule network, but also switched the cGAMP-mediated STING trafficking pattern and changed the distribution of Golgi apparatus and STING puncta. The combination of cGAMP and MMAE promoted the oligomerization of STING and downstream signaling cascades. Importantly, the cGAMP plus MMAE treatment increased STING-mediated production of IFNs and other antiviral cytokines to inhibit viral propagation in vitro and in vivo. This study revealed a novel role of the microtubule destabilizer in antiviral immune responses and provides a previously unexploited strategy based on STING-induced innate antiviral immunity.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhimeng Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Peng
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Du
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology, Tsinghua University Beijing, China
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
13
|
Xie Z, Yang Y, Ma D, Xi Z. Design, synthesis, and cell-based in vitro assay of deoxyinosine-mixed SATE-dCDN prodrugs that activate all common STING variants. Org Biomol Chem 2024; 22:606-620. [PMID: 38131469 DOI: 10.1039/d3ob01838e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Developing therapeutic strategies to modulate the activity of all prevalent variants (wild-type, HAQ, R232H, AQ, and R293Q) of the stimulator of interferon genes (STING) is still of great interest to treating immune-related diseases. Herein, we synthesized six novel deoxyinosine-mixed deoxyribose cyclic dinucleotide prodrugs (SATE-dCDN) including a combination of hypoxanthine and other bases (A, U, C, T, and G) for a cell-based in vitro assay. The HPLC assay indicated that deoxyinosine-mixed SATE (S-acylthioalkyl ester)-dCDN prodrugs retained high serum stability. The IRF3-responsive luciferase assay in THP1-Lucia cells showed that the activity of the prodrugs with purine bases (SATE-3',3'-c-di-dIMP, SATE-3',3'-c-di-dIdAMP, and SATE-3',3'-c-di-dIdGMP) was higher than that of the prodrugs with pyrimidine bases (SATE-3',3'-c-di-dIdUMP, SATE-3',3'-c-di-dIdTMP, and SATE-3',3'-c-di-dIdCMP), among which prodrug 14a (SATE-3',3'-c-di-dIdAMP) with hypoxanthine and adenine bases exhibited the highest activity with an EC50 value of 0.046 μM. The IRF3 responsive dual-luciferase reporter assay in HEK293T cells transfected with plasmids expressing different STING variants further showed that prodrug 14a could activate all five most common hSTING variants, including the refractory hSTINGR232H and hSTINGQ variants. Furthermore, prodrug 14a also induced the production of the highest levels of mRNA of IFN-β, CXCL10, IL-6 and TNF-α through STING-dependent IRF and NF-κB signaling pathways in THP-1 cells. These results suggested that the combination of deoxyinosine with a SATE-dCDN prodrug could modulate the broad-spectrum activity of all common STING variants.
Collapse
Affiliation(s)
- Zhiqiang Xie
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuchen Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Dejun Ma
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
- National Pesticide Engineering Research Centre, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
14
|
Crimini E, Boscolo Bielo L, Berton Giachetti PPM, Pellizzari G, Antonarelli G, Taurelli Salimbeni B, Repetto M, Belli C, Curigliano G. Beyond PD(L)-1 Blockade in Microsatellite-Instable Cancers: Current Landscape of Immune Co-Inhibitory Receptor Targeting. Cancers (Basel) 2024; 16:281. [PMID: 38254772 PMCID: PMC10813411 DOI: 10.3390/cancers16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
High microsatellite instability (MSI-H) derives from genomic hypermutability due to deficient mismatch repair function. Colorectal (CRC) and endometrial cancers (EC) are the tumor types that more often present MSI-H. Anti-PD(L)-1 antibodies have been demonstrated to be agnostically effective in patients with MSI-H cancer, but 50-60% of them do not respond to single-agent treatment, highlighting the necessity of expanding their treatment opportunities. Ipilimumab (anti-CTLA4) is the only immune checkpoint inhibitor (ICI) non-targeting PD(L)-1 that has been approved so far by the FDA for MSI-H cancer, namely, CRC in combination with nivolumab. Anti-TIM3 antibody LY3321367 showed interesting clinical activity in combination with anti-PDL-1 antibody in patients with MSI-H cancer not previously treated with anti-PD(L)-1. In contrast, no clinical evidence is available for anti-LAG3, anti-TIGIT, anti-BTLA, anti-ICOS and anti-IDO1 antibodies in MSI-H cancers, but clinical trials are ongoing. Other immunotherapeutic strategies under study for MSI-H cancers include vaccines, systemic immunomodulators, STING agonists, PKM2 activators, T-cell immunotherapy, LAIR-1 immunosuppression reversal, IL5 superagonists, oncolytic viruses and IL12 partial agonists. In conclusion, several combination therapies of ICIs and novel strategies are emerging and may revolutionize the treatment paradigm of MSI-H patients in the future. A huge effort will be necessary to find reliable immune biomarkers to personalize therapeutical decisions.
Collapse
Affiliation(s)
- Edoardo Crimini
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luca Boscolo Bielo
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Pier Paolo Maria Berton Giachetti
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gloria Pellizzari
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carmen Belli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
15
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
16
|
Jeon MJ, Lee H, Jo S, Kang M, Jeong JH, Jeong SH, Lee JY, Song GY, Choo H, Lee S, Kim H. Discovery of novel amidobenzimidazole derivatives as orally available small molecule modulators of stimulator of interferon genes for cancer immunotherapy. Eur J Med Chem 2023; 261:115834. [PMID: 37862818 DOI: 10.1016/j.ejmech.2023.115834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Stimulator of interferon genes (STING) agonists show promise as immunomodulatory agents for cancer therapy. In this study, we report the discovery of a novel orally available STING agonist, SAP-04, that exhibits potent immunomodulatory effects for cancer therapy. By optimizing the amidobenzimidazole core with various pyridine-based heterocyclic substituents, we identified a monomeric variant that displayed more efficient STING agonistic activity than the corresponding dimer. SAP-04 efficiently induced cytokine secretion related to innate immunity by directly binding of the compound to the STING protein, followed by sequential signal transduction for the STING signaling pathway and type I interferon (IFN) responses. Further pharmacological validation in vitro and in vivo demonstrated the potential utility of SAP-04 as an immunomodulatory agent for cancer therapy in vivo. The in vivo anticancer effect was observed in a 4T1 breast tumor syngeneic mouse model through oral administration of the compound. Our findings suggest a possible strategy for developing synthetically accessible monomeric variants as orally available STING agonists.
Collapse
Affiliation(s)
- Min Jae Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyelim Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongman Jo
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Miso Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Hyun Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - So Hyeon Jeong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Joo-Youn Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyu Yong Song
- Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunah Choo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sanghee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
17
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
18
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
19
|
Kuttruff CA, Fleck M, Carotta S, Arnhof H, Bretschneider T, Dahmann G, Gremel G, Grube A, Handschuh S, Heimann A, Hofmann MH, Impagnatiello MA, Nar H, Rast G, Schaaf O, Schmidt E, Oost T. Discovery of BI 7446: A Potent Cyclic Dinucleotide STING Agonist with Broad-Spectrum Variant Activity for the Treatment of Cancer. J Med Chem 2023; 66:9376-9400. [PMID: 37450324 DOI: 10.1021/acs.jmedchem.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Activating the stimulator of interferon genes (STING) pathway with STING agonists is an attractive immune oncology concept to treat patients with tumors that are refractory to single-agent anti-PD-1 therapy. For best clinical translatability and broad application to cancer patients, STING agonists with potent cellular activation of all STING variants are desired. Novel cyclic dinucleotide (CDN)-based selective STING agonists were designed and synthesized comprising noncanonical nucleobase, ribose, and phosphorothioate moieties. This strategy led to the discovery of 2',3'-CDN 13 (BI 7446), which features unprecedented potency and activates all five STING variants in cellular assays. ADME profiling revealed that CDN 13 has attractive drug-like properties for development as an intratumoral agent. Injection of low doses of CDN 13 into tumors in mice induced long-lasting, tumor-specific immune-mediated tumor rejection. Based on its compelling preclinical profile, BI 7446 has been advanced to clinical trials (monotherapy and in combination with anti-PD-1 antibody).
Collapse
Affiliation(s)
| | - Martin Fleck
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | | | | | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Georg Dahmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | | | - Achim Grube
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Sandra Handschuh
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Annekatrin Heimann
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | | | | | - Herbert Nar
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Georg Rast
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Otmar Schaaf
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | - Esther Schmidt
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Thorsten Oost
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| |
Collapse
|
20
|
Qi Y, Wu Z, Chen D, Zhu L, Yang Y. A role of STING signaling in obesity-induced lung inflammation. Int J Obes (Lond) 2023; 47:325-334. [PMID: 36782056 PMCID: PMC9924210 DOI: 10.1038/s41366-023-01272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND It is established that pulmonary disorders are comorbid with metabolic disorders such as obesity. Previous studies show that the stimulator of interferon genes (STING) signaling plays crucial roles in obesity-induced chronic inflammation via TANK-binding kinase 1 (TBK1) pathways. However, it remains unknown whether and how the STING signaling is implicated in the inflammatory processes in the lung in obesity. METHODS Human lung tissues were obtained from obese patients (n = 3) and controls (n = 3). Mice were fed with the high-fat diet or regular control diet to establish the diet-induced obese (DIO) and lean mice, and were treated with C-176 (a specific STING inhibitor) or vehicle respectively. The lung macrophages were exposed to palmitic acid (PA) in vitro. The levels of STING singaling and metabolic inflammation factors were detected and anlyzed. RESULTS We find that STING+/CD68+ macrophages are increased in lung tissues in patients with obesity. Our data also show that the expressions of STING and the levels of proinflammatory cytokines are increased both in lung tissues and bronchoalveolar lavage fluid (BALF) in obesity compared to controls, and inhibition of the STING blunted the obesity-induced lung inflammation. Mechanistically, our data demonstrate that the STING signaling pathway is involved in the PA-induced inflammation through the STING-TBK1-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) pathways in the lung macrophages. CONCLUSIONS Our results collectively suggest that the STING signaling contributes to obesity-associated inflammation by stimulating proinflammatory processes in lung macrophages, one that may serve as a therapeutic target in ameliorating obesity-related lung dysfunctions.
Collapse
Affiliation(s)
- Yong Qi
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Zhuhua Wu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Dan Chen
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Li Zhu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yunlei Yang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
Gao Z, Gao Z, Zhang H, Hou S, Zhou Y, Liu X. Targeting STING: From antiviral immunity to treat osteoporosis. Front Immunol 2023; 13:1095577. [PMID: 36741390 PMCID: PMC9891206 DOI: 10.3389/fimmu.2022.1095577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-β signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongguo Gao
- Department of Medical Laboratory Technology, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Zhang
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shoubo Hou
- Department of General Practice, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| |
Collapse
|
23
|
Jiao J, Jiang Y, Qian Y, Liu G, Xu M, Wang F, Sun X, Gao Y, Su L, Shi Y, Kong X. Expression of STING Is Increased in Monocyte-Derived Macrophages and Contributes to Liver Inflammation in Hepatic Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1745-1762. [PMID: 36174680 DOI: 10.1016/j.ajpath.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Ischemia/reperfusion (I/R) injury, aggravated by innate immune cell-mediated inflammatory response, is a major problem in liver transplantation. Stimulator of interferon gene (STING) is a crucial regulatory signaling molecule in the DNA-sensing pathway, and its activation can produce strong innate immunity. However, the STING-mediated innate immune pathway in hepatic I/R injury has not been fully elucidated. In this study, we first examined the STING expression changes in the liver tissues of mice after hepatic I/R injury by using quantitative polymerase chain reaction and Western blot assays. We then investigated the role of STING in I/R injury by using a murine hepatic I/R model. STING up-regulation in mouse liver tissues in response to I/R injury and STING deficiency in myeloid cells was found to significantly ameliorate I/R-induced liver injury and inflammatory responses. STING inhibitors were also able to ameliorate hepatic I/R injury. Mechanically, STING may have a protective effect on hepatic I/R injury by the inhibition of hypoxia-inducible factor-1 alpha and enhancement of phosphorylated AMP-activated protein kinase to reduce macrophage activation. These findings show the potential regulatory effects of STING in hepatic I/R and suggest a new method for clinical protection of hepatic I/R injury.
Collapse
Affiliation(s)
- Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yiya Jiang
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Guanjie Liu
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Min Xu
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Li Su
- School of Translational Medicine, Shanghai University, Shanghai, China
| | - Yanjun Shi
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| |
Collapse
|
24
|
Shen A, Chen M, Chen Q, Liu Z, Zhang A. Recent advances in the development of STING inhibitors: an updated patent review. Expert Opin Ther Pat 2022; 32:1131-1143. [PMID: 36332188 DOI: 10.1080/13543776.2022.2144220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION STING is at the center of the cGAS-STING signaling and acts as the hub of the innate immune system. Hyper-activation of STING has been observed in various severe autoimmune diseases, such as AGS, SLE, and many other diseases including neurological and metabolic disorders. Therefore, STING has been considered as a promising target. In recent years, several STING inhibitors have been claimed in patents. AREAS COVERED Small-molecule STING inhibitors reported in patents (disclosed before May 2022 through the public database at https://worldwide.espacenet.com) were summarized in this review and the available structure-activity relationships (SARs) and molecular mechanisms of action were presented. EXPERT OPINION Compared with STING agonists, the development of STING inhibitors is still in its infancy and no candidates have entered clinical investigation stage. Fortunately, patent applications are appearing at an increasing rate and a few of them have been validated in vivo, thus providing valuable insights for further structural optimization. More efforts are urgently needed since it is not clear yet that inhibitors targeting STING can solely exert sufficient therapeutic effects on autoimmune diseases, and the toxicity profile of such inhibitors is unknown as well. Therefore, it is extremely important to identify a selective and efficacious STING inhibitor for clinical evaluation to provide proof-of-concept for this approach.
Collapse
Affiliation(s)
- Ancheng Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjie Chen
- Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxuan Chen
- Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ao Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol 2022; 13:961805. [PMID: 36304470 PMCID: PMC9592930 DOI: 10.3389/fimmu.2022.961805] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint therapy via PD-1 antibodies has shown exciting clinical value and robust therapeutic potential in clinical practice. It can significantly improve progression-free survival and overall survival. Following surgery, radiotherapy, chemotherapy, and targeted therapy, cancer treatment has now entered the age of immunotherapy. Although cancer immunotherapy has shown remarkable efficacy, it also suffers from limitations such as irAEs, cytokine storm, low response rate, etc. In this review, we discuss the basic classification, research progress, and limitations of cancer immunotherapy. Besides, by combining cancer immunotherapy resistance mechanism with analysis of combination therapy, we give our insights into the development of new anticancer immunotherapy strategies.
Collapse
Affiliation(s)
- Chenglong Liu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Daizhou Zhang
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Nanodelivery of cGAS-STING activators for tumor immunotherapy. Trends Pharmacol Sci 2022; 43:957-972. [PMID: 36089410 DOI: 10.1016/j.tips.2022.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has great potential to promote antitumor immunity. Development of activators for the cGAS-STING pathway (cGAS-STING activators) has profoundly revolutionized tumor immunotherapy. However, successful clinical application of cGAS-STING activators is contingent on having appropriate systems to achieve safe, effective, and specific delivery. There is an increasing emphasis on the design and application of nano drug delivery systems (NDDS) that can facilitate the delivery potential of cGAS-STING activators. In this review, we discuss barriers for translational development of cGAS-STING activators (DNA damaging drugs and STING agonists) and recent advances of NDDS for these agents in tumor immunotherapy.
Collapse
|
27
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
28
|
STING Agonists/Antagonists: Their Potential as Therapeutics and Future Developments. Cells 2022; 11:cells11071159. [PMID: 35406723 PMCID: PMC8998017 DOI: 10.3390/cells11071159] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
The cGAS STING pathway has received much attention in recent years, and it has been recognized as an important component of the innate immune response. Since the discovery of STING and that of cGAS, many observations based on preclinical models suggest that the faulty regulation of this pathway is involved in many type I IFN autoinflammatory disorders. Evidence has been accumulating that cGAS/STING might play an important role in pathologies beyond classical immune diseases, as in, for example, cardiac failure. Human genetic mutations that result in the activation of STING or that affect the activity of cGAS have been demonstrated as the drivers of rare interferonopathies affecting young children and young adults. Nevertheless, no data is available in the clinics demonstrating the therapeutic benefit in modulating the cGAS/STING pathway. This is due to the lack of STING/cGAS-specific low molecular weight modulators that would be qualified for clinical exploration. The early hopes to learn from STING agonists, which have reached the clinics in recent years for selected oncology indications, have not yet materialized since the initial trials are progressing very slowly. In addition, transforming STING agonists into potent selective antagonists has turned out to be more challenging than expected. Nevertheless, there has been progress in identifying novel low molecular weight compounds, in some cases with unexpected mode of action, that might soon move to clinical trials. This study gives an overview of some of the potential indications that might profit from modulation of the cGAS/STING pathway and a short overview of the efforts in identifying STING modulators (agonists and antagonists) suitable for clinical research and describing their potential as a "drug".
Collapse
|
29
|
Xiaohong L, Zhenting Z, Yunjie Y, Wei C, Xiangjin X, Kun X, Xin L, Lu L, Jun L, Pin C. Activation of the STING-IRF3 pathway involved in psoriasis with diabetes mellitus. J Cell Mol Med 2022; 26:2139-2151. [PMID: 35174638 PMCID: PMC8995451 DOI: 10.1111/jcmm.17236] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022] Open
Abstract
Psoriasis and type 2 diabetes mellitus (T2DM) share similar inflammatory pathways in their pathogenesis. The stimulator of interferon genes (STING)‐interferon regulatory factor 3 (IRF3) pathway has recently been shown to play an important role in immune and metabolic diseases. In this study, we investigated the activation of the STING‐IRF3 pathway in human immortalized keratinocytes (HaCaT) cells treated with palmitic acid (PA) and imiquimod (IMQ). Additionally, we detected the STING‐IRF3 pathway in diabetic mice with imiquimod (IMQ)‐induced psoriasis and assessed the potential of STING inhibitor C‐176. Furthermore, skin samples from patients with psoriasis and diabetes were collected for immunohistochemical analysis. The results indicated that the STING‐IRF3 pathway was activated in HaCaT cells. Moreover, the STING pathway was also found to be induced in the skin tissue of diabetic mice with psoriasis; the inflammatory responses were ameliorated by treatment with C‐176. In the skin tissue samples of patients with psoriasis and diabetes, immunohistochemistry showed that the expression levels of STING and phosphorylated IRF3 were also significantly increased. Thus, we conclude that the STING‐IRF3 pathway is involved in the inflammatory response in the manifestation of psoriasis with T2DM. Inhibition of the activation of the STING pathway can ameliorate the development of psoriasis in diabetes and could be targeted for the development of therapeutic agents for these conditions.
Collapse
Affiliation(s)
- Li Xiaohong
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhang Zhenting
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yu Yunjie
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Cai Wei
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xu Xiangjin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Endocrinology, 900th Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xie Kun
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lin Xin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lin Lu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lu Jun
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Chen Pin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Endocrinology, 900th Hospital of the Joint Logistics Team, Fuzhou, China
| |
Collapse
|
30
|
Basu S, Middya S, Banerjee M, Ghosh R, Pryde DC, Yadav DB, Shrivastava R, Surya A. The discovery of potent small molecule cyclic urea activators of STING. Eur J Med Chem 2022; 229:114087. [PMID: 34998056 DOI: 10.1016/j.ejmech.2021.114087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 01/08/2023]
Abstract
STING mediates innate immune responses that are triggered by the presence of cytosolic DNA. Activation of STING to boost antigen recognition is a therapeutic modality that is currently being tested in cancer patients using nucleic-acid based macrocyclic STING ligands. We describe here the discovery of 3,4-dihydroquinazolin-2(1H)-one based 6,6-bicyclic heterocyclic agonists of human STING that activate all known human variants of STING with high potency.
Collapse
Affiliation(s)
- Sourav Basu
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Monali Banerjee
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - David C Pryde
- Curadev Pharma Ltd., Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent, CT13 9ND, UK
| | - Dharmendra B Yadav
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Ritesh Shrivastava
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Arjun Surya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India.
| |
Collapse
|
31
|
Zhang K, Wang S, Gou H, Zhang J, Li C. Crosstalk Between Autophagy and the cGAS-STING Signaling Pathway in Type I Interferon Production. Front Cell Dev Biol 2021; 9:748485. [PMID: 34926445 PMCID: PMC8678597 DOI: 10.3389/fcell.2021.748485] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is the front-line defense against infectious microorganisms, including viruses and bacteria. Type I interferons are pleiotropic cytokines that perform antiviral, antiproliferative, and immunomodulatory functions in cells. The cGAS–STING pathway, comprising the main DNA sensor cyclic guanosine monophosphate/adenosine monophosphate synthase (cGAS) and stimulator of IFN genes (STING), is a major pathway that mediates immune reactions and is involved in the strong induction of type I IFN production, which can fight against microbial infections. Autophagy is an evolutionarily conserved degradation process that is required to maintain host health and facilitate capture and elimination of invading pathogens by the immune system. Mounting evidence indicates that autophagy plays an important role in cGAS–STING signaling pathway-mediated type I IFN production. This review briefly summarizes the research progress on how autophagy regulates the cGAS–STING pathway, regulating type I IFN production, with a particular focus on the crosstalk between autophagy and cGAS–STING signaling during infection by pathogenic microorganisms.
Collapse
Affiliation(s)
- Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
32
|
Van Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev 2021; 179:114020. [PMID: 34756942 DOI: 10.1016/j.addr.2021.114020] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Adjuvant is an essential component in subunit vaccines. Many agonists of pathogen recognition receptors have been developed as potent adjuvants to optimize the immunogenicity and efficacy of vaccines. Recently discovered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has attracted much attention as it is a key mediator for modulating immune responses. Vaccines adjuvanted with STING agonists are found to mediate a robust immune defense against infections and cancer. In this review, we first discuss the mechanisms of STING agonists in the context of vaccination. Next, we present recent progress in novel STING agonist discovery and the delivery strategies. We next highlight recent work in optimizing the efficacy while minimizing toxicity of STING agonist-assisted subunit vaccines for protection against infectious diseases or treatment of cancer. Finally, we share our perspectives of current issues and future directions in further developing STING agonists for adjuvanting subunit vaccines.
Collapse
Affiliation(s)
- Simon Van Herck
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Bing Feng
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
34
|
Wang L, You HM, Meng HW, Pan XY, Chen X, Bi YH, Zhang YF, Li JJ, Yin NN, Zhang ZW, Huang C, Li J. STING-mediated inflammation contributes to Gao binge ethanol feeding model. J Cell Physiol 2021; 237:1471-1485. [PMID: 34698390 PMCID: PMC9298121 DOI: 10.1002/jcp.30606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Alcohol metabolism causes hepatocytes to release damage‐associated molecular patterns (DAMPs). This includes mitochondrial DNA (mtDNA), which is generated and released from damaged hepatocytes and contributes to liver injury by producing proinflammatory cytokines. STING is a pattern recognition receptor of DAMPs known to control the induction of innate immunity in various pathological processes. However, the expression profile and functions of STING in the Gao binge ethanol model remain poorly understood. We demonstrated that STING is upregulated in the Gao binge ethanol model. STING functions as an mtDNA sensor in the Kupffer cells of the liver and induces STING‐signaling pathway‐dependent inflammation and further aggravates hepatocyte apoptosis in the Gao binge ethanol model. This study provides novel insights into predicting disease progression and developing targeted therapies for alcoholic liver injury.
Collapse
Affiliation(s)
- Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hong-Wu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xue-Yin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yi-Hui Bi
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na-Na Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zheng-Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Zhou Q, Wang Y, Li X, Lu N, Ge Z. Polymersome Nanoreactor‐Mediated Combination Chemodynamic‐Immunotherapy via ROS Production and Enhanced STING Activation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Nannan Lu
- Department of Oncology The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei Anhui 230001 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
36
|
Désage AL, Karpathiou G, Peoc’h M, Froudarakis ME. The Immune Microenvironment of Malignant Pleural Mesothelioma: A Literature Review. Cancers (Basel) 2021; 13:3205. [PMID: 34206956 PMCID: PMC8269097 DOI: 10.3390/cancers13133205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumour with a poor prognosis, associated with asbestos exposure. Nowadays, treatment is based on chemotherapy with a median overall survival of less than two years. This review highlights the main characteristics of the immune microenvironment in MPM with special emphasis on recent biological advances. The MPM microenvironment is highly infiltrated by tumour-associated macrophages, mainly M2-macrophages. In line with infiltration by M2-macrophages, which contribute to immune suppression, other effectors of innate immune response are deficient in MPM, such as dendritic cells or natural killer cells. On the other hand, tumour infiltrating lymphocytes (TILs) are also found in MPM, but CD4+ and CD8+ TILs might have decreased cytotoxic effects through T-regulators and high expression of immune checkpoints. Taken together, the immune microenvironment is particularly heterogeneous and can be considered as mainly immunotolerant or immunosuppressive. Therefore, identifying molecular vulnerabilities is particularly relevant to the improvement of patient outcomes and the assessment of promising treatment approaches.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Georgia Karpathiou
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Michel Peoc’h
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Marios E. Froudarakis
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
37
|
Li C, Feng L, Luo WW, Lei CQ, Li M, Shu HB. The RNA-binding protein LUC7L2 mediates MITA/STING intron retention to negatively regulate innate antiviral response. Cell Discov 2021; 7:46. [PMID: 34155193 PMCID: PMC8217528 DOI: 10.1038/s41421-021-00277-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
MITA (also known as STING) is an ER-located adaptor protein, which mediates DNA-triggered innate immune response and is critically involved in autoimmune diseases and tumorigenesis. MITA is regulated by post-translational modifications, but how post-transcriptional mechanisms are involved in the regulation of MITA is still largely unknown. Here, we identified the RNA-binding protein LUC7L2 as a negative regulator of DNA virus-triggered innate immune response. LUC7L2-deficient mice exhibited resistance to lethal herpes simplex virus 1 (HSV-1) infection and reduced HSV-1 loads in the brain. Mechanistically, LUC7L2 directly bound to intron 3 of MITA precursor messenger RNA, inhibited its splicing and promoted its nonsense-mediated decay, leading to its downregulation at protein level. LUC7L2-deficient cells had markedly increased MITA level, leading to heightened innate antiviral response. Finally, LUC7L2 was induced following HSV-1 infection. Our findings reveal a feedback negative post-transcriptional regulatory mechanism for regulation of MITA-mediated innate immune response to viral and aberrant cellular DNA.
Collapse
Affiliation(s)
- Chen Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu Feng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, Wuhan, China
| | - Cao-Qi Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Zhou Q, Zhou Y, Li T, Ge Z. Nanoparticle-Mediated STING Agonist Delivery for Enhanced Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100133. [PMID: 34117839 DOI: 10.1002/mabi.202100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Stimulator of interferon genes (STING) are located in the endoplasmic reticulum of cells, which have been demonstrated to show considerable potentials to achieve efficient antitumor immunity by inducing various pro-inflammatory cytokines and chemokines, such as type I interferons. A variety of STING agonists have been prepared for STING activation, and many of them have been promoted to preclinical trials or clinical applications for the immunotherapy of cancers. However, the intrinsic disadvantages of the small molecule STING agonists can limit the in vivo application and final therapeutic efficacy due to low bioavailability of targeting tissues. Moreover, a cascade of physiological barriers for in vivo STING activation also limit the accumulation of STING agonists in targeting tissues. Drug delivery systems play an important role to improve the STING activation efficiency. In recent years, a variety of nanoparticle-mediated STING agonist delivery systems have been engineered and exploited to address the challenges related to the in vivo STING activation, including liposomes, polymeric micelles, polymersomes, and so on. In this review article, the progresses concerning STING agonists and related delivery systems in recent years will be summarized and discussed.
Collapse
Affiliation(s)
- Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Taiyuan Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
39
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|