1
|
Vieu S, Hugon H, Boucher S, Bercker C, Bruyas J, Fusellier M. Assessing Pubic Symphysis Evolution in Guinea Pigs (Cavia procellus): Insights From Computer Tomography on Primiparous and Non-Breeding Females. Vet Med Sci 2024; 10:e70076. [PMID: 39436159 PMCID: PMC11494921 DOI: 10.1002/vms3.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
In guinea pigs (Cavia porcellus), dystocia is a common occurrence. Several factors have been identified in the literature, including the ossification of the pubic symphysis following failure to breed before 9-12 months of age. The objective of this study was to investigate the ossification of pubic symphysis and its evolution during growth in two groups of females. The first group consisted of non-breeding females, while the second group comprised females introduced to breeding at 4-6 months of age. Twelve pairs of sows were selected for comparison, with one non-breeding and one breeding sow in each pair. Symphysis width and tissue density were assessed using micro-computed tomography. Measurements included the distance between the acetabula, width and bone density of the pubic symphysis. Serial computed tomography scans were performed on each sow over several months, both before and after parturition. The results revealed a significantly higher symphysis width in females that had bred. In addition, symphysis ossification was absent in both breeding and non-breeding sows, contrary to previous descriptions of this species. Therefore, dystocia in guinea pigs may not be attributable to ossification of the pubic symphysis.
Collapse
Affiliation(s)
- Sabrina Vieu
- Service des Nouveaux Animaux de Compagnie, Oniris, CHUVNantesFrance
- Oniris, INRAE, BIOEPARNantesFrance
| | - Héloïse Hugon
- Service de Reproduction, Oniris, CHUVNantesFrance
- Service Transversal d'Imagerie Médicale, Oniris, CHUVNantesFrance
| | | | - Clément Bercker
- Service des Nouveaux Animaux de Compagnie, Oniris, CHUVNantesFrance
| | | | - Marion Fusellier
- Service Transversal d'Imagerie Médicale, Oniris, CHUVNantesFrance
- Oniris, Nantes Université, Inserm, RMeSNantesFrance
| |
Collapse
|
2
|
Li L, Cheng K, Zhong J, Zheng S, Zhao C, Wen Y, Li S, Ren C. Protocol for high-resolution 3D visualization of insect regenerating legs through micro-computed tomography. STAR Protoc 2024; 5:103342. [PMID: 39331499 PMCID: PMC11467664 DOI: 10.1016/j.xpro.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Appendage regeneration occurs within the opaque exoskeleton in arthropods, making it challenging to visualize the regenerative processes dynamically. In this protocol, we present a strategy to scan and capture the high-resolution details of microstructural tissues at certain regeneration points through micro-computed tomography (micro-CT). We describe steps for tissue preparation, fixation, critical point drying, micro-CT scanning, and 3D visualization. This approach promises significant utility in the field of regeneration, particularly in studies involving arthropods such as insects and crustaceans. For complete details on the use and execution of this protocol, please refer to Ren et al.1.
Collapse
Affiliation(s)
- Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiru Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shaojuan Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chenjing Zhao
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
3
|
Wu Y, Feng Y, Yang J, Ran Y, Shu Z, Cen X, Li W. Anatomical and Micro-CT measurement analysis of ocular volume and intraocular volume in adult Bama Miniature pigs, New Zealand rabbits, and Sprague-Dawley rats. PLoS One 2024; 19:e0310830. [PMID: 39302918 DOI: 10.1371/journal.pone.0310830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
AIM Utilizing a combination of micro-computed tomography (micro-CT) and anatomical techniques for the volumetric assessment of the eyeball and its constituents in Bama Miniature Pigs, New Zealand rabbits, and Sprague-Dawley(SD) rats. METHOD Six Bama Miniature pigs, New Zealand rabbits, and SD rats were enrolled in the study. Micro-CT and gross volumetric estimation of ocular volume were employed to acquire data on ocular volume, anterior chamber volume, lens volume, and vitreous cavity volume for each eye. RESULTS The eyeball volume of pigs ranges from approximately 5.36 ± 0.27 to 5.55 ± 0.28 ml, the lens volume from approximately 0.33 ± 0.02 to 0.37 ± 0.06 ml, the anterior chamber volume from approximately 0.19 ± 0.05 to 0.28 ± 0.04 ml, and the vitreous volume is approximately 3.20 ± 0.18 ml. For rabbits, the eye volume, lens volume, anterior chamber volume, and vitreous volume range from approximately 3.02 ± 0.24 to 3.04 ± 0.24 ml, 0.41 ± 0.02 to 0.44 ± 0.02 ml, 0.23 ± 0.04 to 0.26 ± 0.05 ml, and 1.54 ± 0.14 ml, respectively. In SD rats, the volumes are 0.14 ± 0.02 to 0.15 ± 0.01 ml for the eyeball, 0.03 ± 0.00 to 0.03 ± 0.00 ml for the lens, 0.01 ± 0.00 to 0.01 ± 0.01 ml for the anterior chamber, and 0.04 ± 0.01 ml for the vitreous volume. CONCLUSION The integration of micro-CT and gross volumetric estimation of ocular volume proves effective in determining the eyeball volume in Bama Miniature Pigs, New Zealand rabbits, and SD rats. Understanding the volume distinctions within the eyeballs and their components among these experimental animals can lay the groundwork for ophthalmology-related drug research.
Collapse
Affiliation(s)
- Yajun Wu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier eye hospital, Shanghai, China
- Shanghai Aier eye institute, Shanghai, China
| | - Yuliang Feng
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier eye hospital, Shanghai, China
- Shanghai Aier eye institute, Shanghai, China
| | - Jiasong Yang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier eye hospital, Shanghai, China
- Shanghai Aier eye institute, Shanghai, China
| | - Yuwen Ran
- Changsha Aier eye hospital, Changsha, Hunan, China
| | - Zongtao Shu
- WestChina-Frontier PharmaTech Co.,Ltd., Chengdu, Sichuan, China
| | - Xiaobo Cen
- WestChina-Frontier PharmaTech Co.,Ltd., Chengdu, Sichuan, China
| | - Wensheng Li
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier eye hospital, Shanghai, China
- Shanghai Aier eye institute, Shanghai, China
| |
Collapse
|
4
|
Allphin AJ, Nadkarni R, Clark DP, Gil CJ, Tomov ML, Serpooshan V, Badea CT. Turn-table micro-CT scanner for dynamic perfusion imaging in mice: design, implementation, and evaluation. Phys Med Biol 2024; 69:10.1088/1361-6560/ad6edd. [PMID: 39137802 PMCID: PMC11444210 DOI: 10.1088/1361-6560/ad6edd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.This study introduces a novel desktop micro-CT scanner designed for dynamic perfusion imaging in mice, aimed at enhancing preclinical imaging capabilities with high resolution and low radiation doses.Approach.The micro-CT system features a custom-built rotating table capable of both circular and helical scans, enabled by a small-bore slip ring for continuous rotation. Images were reconstructed with a temporal resolution of 3.125 s and an isotropic voxel size of 65µm, with potential for higher resolution scanning. The system's static performance was validated using standard quality assurance phantoms. Dynamic performance was assessed with a custom 3D-bioprinted tissue-mimetic phantom simulating single-compartment vascular flow. Flow measurements ranged from 1.51to 9 ml min-1, with perfusion metrics such as time-to-peak, mean transit time, and blood flow index calculated.In vivoexperiments involved mice with different genetic risk factors for Alzheimer's and cardiovascular diseases to showcase the system's capabilities for perfusion imaging.Main Results.The static performance validation confirmed that the system meets standard quality metrics, such as spatial resolution and uniformity. The dynamic evaluation with the 3D-bioprinted phantom demonstrated linearity in hemodynamic flow measurements and effective quantification of perfusion metrics.In vivoexperiments highlighted the system's potential to capture detailed perfusion maps of the brain, lungs, and kidneys. The observed differences in perfusion characteristics between genotypic mice illustrated the system's capability to detect physiological variations, though the small sample size precludes definitive conclusions.Significance.The turn-table micro-CT system represents a significant advancement in preclinical imaging, providing high-resolution, low-dose dynamic imaging for a range of biological and medical research applications. Future work will focus on improving temporal resolution, expanding spectral capabilities, and integrating deep learning techniques for enhanced image reconstruction and analysis.
Collapse
Affiliation(s)
- A. J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - R. Nadkarni
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - D. P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - C. J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - M. L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - C. T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Alenezi HA, Hemmings KE, Kandavelu P, Koch-Paszkowski J, Bailey MA. Comparative Analysis of Micro-Computed Tomography and 3D Micro-Ultrasound for Measurement of the Mouse Aorta. J Imaging 2024; 10:145. [PMID: 38921622 PMCID: PMC11204474 DOI: 10.3390/jimaging10060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Aortic aneurysms, life-threatening and often undetected until they cause sudden death, occur when the aorta dilates beyond 1.5 times its normal size. This study used ultrasound scans and micro-computed tomography to monitor and measure aortic volume in preclinical settings, comparing it to the well-established measurement using ultrasound scans. The reproducibility of measurements was also examined for intra- and inter-observer variability, with both modalities used on 8-week-old C57BL6 mice. For inter-observer variability, the μCT (micro-computed tomography) measurements for the thoracic, abdominal, and whole aorta between observers were highly consistent, showing a strong positive correlation (R2 = 0.80, 0.80, 0.95, respectively) and no significant variability (p-value: 0.03, 0.03, 0.004, respectively). The intra-observer variability for thoracic, abdominal, and whole aorta scans demonstrated a significant positive correlation (R2 = 0.99, 0.96, 0.87, respectively) and low variability (p-values = 0.0004, 0.002, 0.01, respectively). The comparison between μCT and USS (ultrasound) in the suprarenal and infrarenal aorta showed no significant difference (p-value = 0.20 and 0.21, respectively). μCT provided significantly higher aortic volume measurements compared to USS. The reproducibility of USS and μCT measurements was consistent, showing minimal variance among observers. These findings suggest that μCT is a reliable alternative for comprehensive aortic phenotyping, consistent with clinical findings in human data.
Collapse
Affiliation(s)
- Hajar A. Alenezi
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK (M.A.B.)
| | | | | | | | | |
Collapse
|
6
|
Ditton DM, Marchus CR, Bozeman AL, Martes AC, Brumley MR, Schiele NR. Visualization of rat tendon in three dimensions using micro-Computed Tomography. MethodsX 2024; 12:102565. [PMID: 38292310 PMCID: PMC10825692 DOI: 10.1016/j.mex.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micro-computed tomography (CT) is an X-ray-based imaging modality that produces three-dimensional (3D), high-resolution images of whole-mount tissues, but is typically limited to dense tissues, such as bone. The X-rays readily pass-through tendons, rendering them transparent. Contrast-enhancing chemical stains have been explored, but their use to improve contrast in different tendon types and across developmental stages for micro-CT imaging has not been systematically evaluated. Therefore, we investigated how phosphotungstic acid (PTA) staining and tissue hydration impacts tendon contrast for micro-CT imaging. We showed that PTA staining increased X-ray absorption of tendon to enhance tissue contrast and obtain 3D micro-CT images of immature (postnatal day 21) and sexually mature (postnatal day 50) rat tendons within the tail and hindlimb. Further, we demonstrated that tissue hydration state following PTA staining significantly impacts soft tissue contrast. Using this method, we also found that tail tendon fascicles appear to cross between fascicle bundles. Ultimately, contrast-enhanced 3D micro-CT imaging will lead to better understanding of tendon structure, and relationships between the bone and soft tissues.•Simple tissue fixation and staining technique enhances soft tissue contrast for tendon visualization using micro-CT.•3D tendon visualization in situ advances understanding of musculoskeletal tissue structure and organization.
Collapse
Affiliation(s)
- Destinee M. Ditton
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Colin R. Marchus
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Aimee L. Bozeman
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Alleyna C. Martes
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Michele R. Brumley
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Nathan R. Schiele
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
7
|
Gülle S, Çelik A, Birlik M, Yılmaz O. Skin and lung fibrosis induced by bleomycin in mice: a systematic review. Reumatismo 2024; 76. [PMID: 38523580 DOI: 10.4081/reumatismo.2024.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/02/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE Scleroderma, or systemic sclerosis (SSc), is a chronic autoimmune connective disease with an unknown etiology and poorly understood pathogenesis. The striking array of autoimmune, vascular, and fibrotic changes that develop in almost all patients makes SSc unique among connective tissue diseases. Although no animal model developed for SSc to date fully represents all features of human disease, some animal models that demonstrate features of SSc may help to better understand the pathogenesis of the disease and to develop new therapeutic options. In this review, we aimed to evaluate skin fibrosis and lung involvement in a bleomycin (BLM)-induced mouse model and to evaluate the differences between studies. METHODS A systematic literature review (PRISMA guideline) on PubMed and EMBASE (until May 2023, without limits) was performed. A primary literature search was conducted using the PubMed and EMBASE databases for all articles published from 1990 to May 2023. Review articles, human studies, and non-dermatological studies were excluded. Of the 38 non-duplicated studies, 20 articles were included. RESULTS Among inducible animal models, the BLM-induced SSc is still the most widely used. In recent years, the measurement of tissue thickness between the epidermal-dermal junction and the dermal-adipose tissue junction (dermal layer) has become more widely accepted. CONCLUSIONS In animal studies, it is important to simultaneously evaluate lung tissues in addition to skin fibrosis induced in mice by subcutaneous BLM application, following the 3R (replacement, reduction, and refinement) principle to avoid cruelty to animals.
Collapse
Affiliation(s)
- S Gülle
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir; Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| | - A Çelik
- Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| | - M Birlik
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir.
| | - O Yılmaz
- Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| |
Collapse
|
8
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Akgun RO, Orhan IO, Ekim O, Bumin A. Magnetic resonance imaging, computed tomography, and gross anatomy of forelimb joints in New Zealand rabbit (Oryctolagus cuniculus L.). Anat Histol Embryol 2023; 52:762-769. [PMID: 37254602 DOI: 10.1111/ahe.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023]
Abstract
The present study aimed to define the anatomical structures by comparing the transversal computed tomography (CT) and magnetic resonance (MR) images of the forelimb joints of the rabbits with the cross-sectional plastinated images. A total of 14 (seven females, seven males) one-year-old adult New Zealand rabbits were used in the study. After the CT and MR imaging procedures were completed, the forelimbs were removed from the body. The forelimbs were plastinated using the silicone plastination method and sectioned transversal. Cross-sectional plastinates were evaluated and correlated anatomically with conjugate CT and MR images. Joint and surrounding anatomical structures were defined in sections. Cross-sectional plastinated samples were highly correlated with CT and MR images in terms of bone and soft tissue, respectively. It is thought that the anatomical and radiological data obtained from the forelimb joints of rabbits will provide a basis for scientists who are involved in both experimental surgical interventions and clinical anatomy education.
Collapse
Affiliation(s)
- Remzi Orkun Akgun
- Department of Basic Sciences, Faculty of Dentistry, Cankiri Karatekin University, Cankiri, Turkey
| | - Ismail Onder Orhan
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Ali Bumin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Clark DP, Badea CT. MCR toolkit: A GPU-based toolkit for multi-channel reconstruction of preclinical and clinical x-ray CT data. Med Phys 2023; 50:4775-4796. [PMID: 37285215 PMCID: PMC10756497 DOI: 10.1002/mp.16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The advancement of x-ray CT into the domains of photon counting spectral imaging and dynamic cardiac and perfusion imaging has created many new challenges and opportunities for clinicians and researchers. To address challenges such as dose constraints and scanning times while capitalizing on opportunities such as multi-contrast imaging and low-dose coronary angiography, these multi-channel imaging applications require a new generation of CT reconstruction tools. These new tools should exploit the relationships between imaging channels during reconstruction to set new image quality standards while serving as a platform for direct translation between the preclinical and clinical domains. PURPOSE We outline and demonstrate a new Multi-Channel Reconstruction (MCR) Toolkit for GPU-based analytical and iterative reconstruction of preclinical and clinical multi-energy and dynamic x-ray CT data. To promote open science, open-source distribution of the Toolkit will coincide with the release of this publication (GPL v3; gitlab.oit.duke.edu/dpc18/mcr-toolkit-public). METHODS The MCR Toolkit source code is implemented in C/C++ and NVIDIA's CUDA GPU programming interface, with scripting support from MATLAB and Python. The Toolkit implements matched, separable footprint CT reconstruction operators for projection and backprojection in two geometries: planar, cone-beam CT (CBCT) and 3rd generation, cylindrical multi-detector row CT (MDCT). Analytical reconstruction is performed using filtered backprojection (FBP) for circular CBCT, weighted FBP (WFBP) for helical CBCT, and cone-parallel projection rebinning followed by WFBP for MDCT. Arbitrary combinations of energy and temporal channels are iteratively reconstructed under a generalized multi-channel signal model for joint reconstruction. We solve this generalized model algebraically using the split Bregman optimization method and the BiCGSTAB(l) linear solver interchangeably for both CBCT and MDCT data. Rank-sparse kernel regression (RSKR) and patch-based singular value thresholding (pSVT) are used to regularize the energy and time dimensions, respectively. Under a Gaussian noise model, regularization parameters are estimated automatically from the input data, dramatically reducing algorithm complexity for end users. Multi-GPU parallelization of the reconstruction operators is supported to manage reconstruction times. RESULTS Denoising with RSKR and pSVT and post-reconstruction material decomposition are illustrated with preclinical and clinical cardiac photon-counting (PC)CT data. A digital MOBY mouse phantom with cardiac motion is used to illustrate single energy (SE), multi-energy (ME), time resolved (TR), and combined multi-energy and time-resolved (METR) helical, CBCT reconstruction. A fixed set of projection data is used across all reconstruction cases to demonstrate the Toolkit's robustness to increasing data dimensionality. Identical reconstruction code is applied to in vivo cardiac PCCT data acquired in a mouse model of atherosclerosis (METR). Clinical cardiac CT reconstruction is illustrated using the XCAT phantom and the DukeSim CT simulator, while dual-source, dual-energy CT reconstruction is illustrated for data acquired with a Siemens Flash scanner. Benchmarking results with NVIDIA RTX 8000 GPU hardware demonstrate 61%-99% efficiency in scaling computation from one to four GPUs for these reconstruction problems. CONCLUSIONS The MCR Toolkit provides a robust solution for temporal and spectral x-ray CT reconstruction problems and was built from the ground up to facilitate translation of CT research and development between preclinical and clinical applications.
Collapse
Affiliation(s)
- Darin P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, North Carolina, USA
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Papazoglou AS, Karagiannidis E, Liatsos A, Bompoti A, Moysidis DV, Arvanitidis C, Tsolaki F, Tsagkaropoulos S, Theocharis S, Tagarakis G, Michaelson JS, Herrmann MD. Volumetric Tissue Imaging of Surgical Tissue Specimens Using Micro-Computed Tomography: An Emerging Digital Pathology Modality for Nondestructive, Slide-Free Microscopy-Clinical Applications of Digital Pathology in 3 Dimensions. Am J Clin Pathol 2023; 159:242-254. [PMID: 36478204 DOI: 10.1093/ajcp/aqac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Micro-computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mapping review is to provide a comprehensive overview of the available literature on clinical applications of micro-CT tissue imaging and to assess its relevance and readiness for pathology practice. METHODS A computerized literature search was performed in the PubMed, Scopus, Web of Science, and CENTRAL databases. To gain insight into regulatory and financial considerations for performing and examining micro-CT imaging procedures in a clinical setting, additional searches were performed in medical device databases. RESULTS Our search identified 141 scientific articles published between 2000 and 2021 that described clinical applications of micro-CT tissue imaging. The number of relevant publications is progressively increasing, with the specialties of pulmonology, cardiology, otolaryngology, and oncology being most commonly concerned. The included studies were mostly performed in pathology departments. Current micro-CT devices have already been cleared for clinical use, and a Current Procedural Terminology (CPT) code exists for reimbursement of micro-CT imaging procedures. CONCLUSIONS Micro-CT tissue imaging enables accurate volumetric measurements and evaluations of entire surgical specimens at microscopic resolution across a wide range of clinical applications.
Collapse
Affiliation(s)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Liatsos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana Bompoti
- Diagnostic Imaging, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece.,LifeWatch ERIC, Sector II-II, Seville, Spain
| | - Fani Tsolaki
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, National and Kapoditrian University of Athens, Athens, Greece
| | - Georgios Tagarakis
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Carneiro ALE, Spin-Neto R, Zambrana NRM, Zambrana JRM, de Andrade Salgado DMR, Costa C. Quantitative and qualitative comparisons of pulp cavity volumes produced by cone beam computed tomography and micro-computed tomography through semiautomatic segmentation: An ex vivo investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 135:433-443. [PMID: 36396589 DOI: 10.1016/j.oooo.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of this study was to measure the volume and visually assess 3-dimensional (3D) virtual models of pulp cavities obtained through semiautomatic segmentation on images from 6 cone beam computed tomography (CBCT) units compared with the reference standard of micro-CT. STUDY DESIGN Fifteen mandibular premolar teeth were scanned with 6 CBCT units: Prexion 3D Elite, i-CAT Next Generation, NewTom 5G, Cranex 3D, 3Shape X1, and Orthophos SL 3D, using the smallest available field of view and highest resolution settings. Pulp cavity volumes were quantitatively assessed by 2 calibrated examiners. The volumes from each CBCT unit were compared with micro-CT. Qualitative assessment of the 3D reconstructions was also performed. Repeated-measures analysis of variance and the Friedman test compared the CBCT reconstructions to micro-CT. Intra- and interexaminer agreements were calculated with the intraclass correlation coefficient and kappa statistic. RESULTS The CBCT-based volumes were all significantly larger than micro-CT (P ≤ .0061). Prexion, X1, and Orthophos provided the segmentations that most closely resembled the reference standard. Intra- and interexaminer agreements ranged from good to excellent for quantitative measurements. Interexaminer agreement for qualitative evaluation was substantial. CONCLUSIONS Semiautomatic segmentation of CBCT images is a feasible method to produce virtual 3D models of the pulp cavity. Prexion, X1, and Orthophos were the CBCT units that resulted in 3D reconstructions most similar to the reference standard.
Collapse
Affiliation(s)
- Ana Luiza Esteves Carneiro
- Postgraduate Student, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| | - Rubens Spin-Neto
- Professor, Department of Dentistry and Oral Health-Section for Oral Radiology, Aarhus University, Aarhus, Denmark
| | - Nataly Rabelo Mina Zambrana
- Postgraduate Student, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jéssica Rabelo Mina Zambrana
- Postgraduate Student, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudio Costa
- Professor, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Zaw Thin M, Moore C, Snoeks T, Kalber T, Downward J, Behrens A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nat Protoc 2023; 18:990-1015. [PMID: 36494493 DOI: 10.1038/s41596-022-00769-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features. For each animal, image acquisition takes 4-8 min, and data analysis typically requires 10-30 min. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK. .,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), University College London, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK. .,Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK.,Cancer Research UK Convergence Science Centre, Imperial College London, London, UK
| |
Collapse
|
14
|
Redente EF, Kopf KW, Bahadur AN, Robichaud A, Lundblad LK, McDonald LT. Application-specific approaches to MicroCT for evaluation of mouse models of pulmonary disease. PLoS One 2023; 18:e0281452. [PMID: 36757935 PMCID: PMC9910664 DOI: 10.1371/journal.pone.0281452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The advent of micro-computed tomography (microCT) has provided significant advancement in our ability to generate clinically relevant assessments of lung health and disease in small animal models. As microCT use to generate outcomes analysis in pulmonary preclinical models has increased there have been substantial improvements in image quality and resolution, and data analysis software. However, there are limited published methods for standardized imaging and automated analysis available for investigators. Manual quantitative analysis of microCT images is complicated by the presence of inflammation and parenchymal disease. To improve the efficiency and limit user-associated bias, we have developed an automated pulmonary air and tissue segmentation (PATS) task list to segment lung air volume and lung tissue volume for quantitative analysis. We demonstrate the effective use of the PATS task list using four distinct methods for imaging, 1) in vivo respiration controlled scanning using a flexiVent, 2) longitudinal breath-gated in vivo scanning in resolving and non-resolving pulmonary disease initiated by lipopolysaccharide-, bleomycin-, and silica-exposure, 3) post-mortem imaging, and 4) ex vivo high-resolution scanning. The accuracy of the PATS task list was compared to manual segmentation. The use of these imaging techniques and automated quantification methodology across multiple models of lung injury and fibrosis demonstrates the broad applicability and adaptability of microCT to various lung diseases and small animal models and presents a significant advance in efficiency and standardization of preclinical microCT imaging and analysis for the field of pulmonary research.
Collapse
Affiliation(s)
- Elizabeth F. Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| | - Katrina W. Kopf
- Department of Academic Affairs, National Jewish Health, Denver, Colorado, United States of America
| | - Ali N. Bahadur
- Bruker BioSpin Corporation, Billerica, Massachusetts, United States of America
| | | | | | - Lindsay T. McDonald
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| |
Collapse
|
15
|
Zhang Y, Fang Y, Abbaraju V, Bhattacharya S, Anker JN, Wang G, Li C. Oxygenation imaging in deep tissue with X-Ray luminescence computed tomography (XLCT). PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12468:124680I. [PMID: 38957374 PMCID: PMC11218916 DOI: 10.1117/12.2654446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Oxygenation concentration of tissue is an important factor in culturing stem cells and in studying the therapy response of cancer cells. The hypoxia bone marrow is the site to harbor cancer cells. Thus, direct high-resolution measurements of molecular 𝑂2 would provide powerful means of monitoring cultured stem cells and therapied cancer cells. We proposed an imaging approach to measure oxygenation concentration in deep tissues, based on the XLCT, with combined strengths of high chemical sensitivity and high spatial resolution. We have developed different biosensing films for oxygenation measurements and tested these films with X-ray luminescent experiments. We have also performed phantom experiments with multiple targets to validate the XLCT imaging system with measurements at two channels.
Collapse
Affiliation(s)
- Yibing Zhang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Yile Fang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Vigjna Abbaraju
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
- Department of Bioengineering, Center for Optical Materials Science and Engineering Technology (COMSET), and Institute of Environment Toxicology (CU-ENTOX), Clemson University, Clemson, SC 29634, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
16
|
Borges JS, Costa VC, Irie MS, de Rezende Barbosa GL, Spin-Neto R, Soares PBF. Definition of the Region of Interest for the Assessment of Alveolar Bone Repair Using Micro-computed Tomography. J Digit Imaging 2023; 36:356-364. [PMID: 36070014 PMCID: PMC9984626 DOI: 10.1007/s10278-022-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
The objective of this study was to evaluate the influence of the extraction socket (distal or lingual root) and the type of region of interest (ROI) definition (manual or predefined) on the assessment of alveolar repair following tooth extraction using micro-computed tomography (micro-CT). The software package used for scanning, reconstruction, reorientation, and analysis of images (NRecon®, DataViewer®, CT-Analyzer®) was acquired through Bruker < https://www.bruker.com > . The sample comprised the micro-CT volumes of seven Wistar rat mandibles, in which the right first molar was extracted. The reconstructed images were analyzed using the extraction sockets, i.e., the distal and intermediate lingual root and the method of ROI definition: manual (MA), central round (CR), and peripheral round (PR). The bone volume fraction (BV/TV) values obtained were analyzed by two-way ANOVA with Tukey's post hoc test (α = 5%). The distal extraction socket resulted in significantly lower BV/TV values than the intermediate lingual socket for MA (P = 0.001), CR (P < 0.001), and PR (P < 0.001). Regarding the ROI, when evaluating the distal extraction socket, the BV/TV was significantly higher (P < 0.001) for MA than for CR and PR, with a lower BV/TV for CR. However, no significant difference was observed for MA (P = 0.855), CR (P = 0.769), or PR (P = 0.453) in the intermediate lingual extraction socket. The bone neoformation outcome (BV/TV) for alveolar bone repair after tooth extraction is significantly influenced by the ROI and the extraction socket. Using the predefined method with a standardized ROI in the central region of the distal extraction socket resulted in the assessment of bone volume, demonstrating the most critical region of the bone neoformation process.
Collapse
Affiliation(s)
- Juliana Simeão Borges
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vitor Cardoso Costa
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Milena Suemi Irie
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | | | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Health, Aarhus University, Aarhus, Denmark
| | - Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
17
|
Kim T, Lee WS, Jeon M, Kim H, Eom M, Jung S, Im HJ, Ye SJ. Dual imaging modality of fluorescence and transmission X-rays for gold nanoparticle-injected living mice. Med Phys 2023; 50:529-539. [PMID: 36367111 DOI: 10.1002/mp.16070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND X-ray fluorescence (XRF) imaging for metal nanoparticles (MNPs) is a promising molecular imaging modality that can determine dynamic biodistributions of MNPs. However, it has the limitation that it only provides functional information. PURPOSE In this study, we aim to show the feasibility of acquiring functional and anatomic information on the same platform by demonstrating a dual imaging modality of pinhole XRF and computed tomography (CT) for gold nanoparticle (GNP)-injected living mice. METHODS By installing a transmission CT detector in an existing pinhole XRF imaging system using a two-dimensional (2D) cadmium zinc telluride (CZT) gamma camera, XRF and CT images were acquired on the same platform. Due to the optimal X-ray spectra for XRF and CT image acquisition being different, XRF and CT imaging were performed by 140 and 50 kV X-rays, respectively. An amount of 40 mg GNPs (1.9 nm in diameter) suspended in 0.20 ml of phosphate-buffered saline were injected into the three BALB/c mice via a tail vein. Then, the kidney and tumor slices of mice were scanned at specific time points within 60 min to acquire time-lapse in vivo biodistributions of GNPs. XRF images were directly acquired without image reconstruction using a pinhole collimator and a 2D CZT gamma camera. Subsequently, CT images were acquired by performing CT scans. In order to confirm the validity of the functional information provided by the XRF image, the CT image was fused with the XRF image. After the XRF and CT scan, the mice were euthanized, and major organs (kidneys, tumor, liver, and spleen) were extracted. The ex vivo GNP concentrations of the extracted organs were measured by inductively coupled plasma mass spectrometry (ICP-MS) and L-shell XRF detection system using a silicon drift detector, then compared with the in vivo GNP concentrations measured by the pinhole XRF imaging system. RESULTS Time-lapse XRF images were directly acquired without rotation and translation of imaging objects within an acquisition time of 2 min per slice. Due to the short image acquisition time, the time-lapse in vivo biodistribution of GNPs was acquired in the organs of the mice. CT images were fused with the XRF images and successfully confirmed the validity of the XRF images. The difference in ex vivo GNP concentrations measured by the L-shell XRF detection system and ICP-MS was 0.0005-0.02% by the weight of gold (wt%). Notably, the in vivo and ex vivo GNP concentrations in the kidneys of three mice were comparable with a difference of 0.01-0.08 wt%. CONCLUSIONS A dual imaging modality of pinhole XRF and CT imaging system and L-shell XRF detection system were successfully developed. The developed systems are a promising modality for in vivo imaging and ex vivo quantification for preclinical studies using MNPs. In addition, we discussed further improvements for the routine preclinical applications of the systems.
Collapse
Affiliation(s)
- Taeyun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Woo Seung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyejin Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Mingi Eom
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Seongmoon Jung
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Research Institute for Convergence Science, Seoul National University, Seoul, South Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Research Institute for Convergence Science, Seoul National University, Seoul, South Korea.,Advanced Institute of Convergence Technology, Seoul National University, Suwon, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
18
|
Perdreau E, Jalal Z, Walton RD, Sigler M, Cochet H, Naulin J, Quesson B, Bernus O, Thambo JB. Assessment of Nit-Occlud atrial septal defect occluder device healing process using micro-computed tomography imaging. PLoS One 2023; 18:e0284471. [PMID: 37093832 PMCID: PMC10124873 DOI: 10.1371/journal.pone.0284471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/01/2023] [Indexed: 04/25/2023] Open
Abstract
After percutaneous implantation of a cardiac occluder, a complex healing process leads to the device coverage within several months. An incomplete device coverage increases the risk of device related complications such as thrombosis or endocarditis. We aimed to assess the device coverage process of atrial septal defect (ASD) occluders in a chronic sheep model using micro-computed tomography (micro-CT). After percutaneous creation of an ASD, 8 ewes were implanted with a 16-mm Nit-Occlud ASD-R occluder (PFM medical, Cologne, Germany) and were followed for 1 month (N = 3) and 3 months (N = 5). After heart explant, the device coverage was assessed using micro-CT (resolution of 41.7 μm) and was compared to histological analysis. The micro-CT image reconstruction was performed in 2D and 3D allowing measurement of the coverage thickness and surface for each device. Macroscopic assessment of devices showed that the coverage was complete for the left-side disk in all cases. Yet incomplete coverage of the right-side disk was observed in 5 of the 8 cases. 2D and 3D micro-CT analysis allowed an accurate evaluation of device coverage of each disk and was overall well correlated to histology sections. Surface calculation from micro-CT images of the 8 cases showed that the median surface of coverage was 93±8% for the left-side disk and 55±31% for the right-side disk. The assessment of tissue reactions, including endothelialisation, after implantation of an ASD occluder can rely on in vitro micro-CT analysis. The translation to clinical practice is challenging but the potential for individual follow-up is shown, to avoid thrombotic or infective complications.
Collapse
Affiliation(s)
- Elodie Perdreau
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Zakaria Jalal
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Congenital and Pediatric Cardiology Unit, Bordeaux University Hospital, Pessac, France
| | - Richard D Walton
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Matthias Sigler
- Pediatric Cardiology and Intensive Care Medicine, Georg-August University Hospital, Göttingen, Germany
| | - Hubert Cochet
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Cardiothoracic Pole, Bordeaux University Hospital, Pessac, France
| | - Jérôme Naulin
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Olivier Bernus
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jean-Benoît Thambo
- Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France
- U1045, Centre de recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
- U1045, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Congenital and Pediatric Cardiology Unit, Bordeaux University Hospital, Pessac, France
| |
Collapse
|
19
|
van der Have O, Mead TJ, Westöö C, Peruzzi N, Mutgan AC, Norvik C, Bech M, Struglics A, Hoetzenecker K, Brunnström H, Westergren‐Thorsson G, Kwapiszewska G, Apte SS, Tran‐Lundmark K. Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension. Pulm Circ 2023; 13:e12200. [PMID: 36824691 PMCID: PMC9941846 DOI: 10.1002/pul2.12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of extracellular matrix occurs in all stages of pulmonary angiopathy associated with pulmonary arterial hypertension (PAH). In systemic arteries, dysregulation and accumulation of the large chondroitin-sulfate proteoglycan aggrecan is associated with swelling and disruption of vessel wall homeostasis. Whether aggrecan is present in pulmonary arteries, and its potential roles in PAH, has not been thoroughly investigated. Here, lung tissue from 11 patients with idiopathic PAH was imaged using synchrotron radiation phase-contrast microcomputed tomography (TOMCAT beamline, Swiss Light Source). Immunohistochemistry for aggrecan core protein in subsequently sectioned lung tissue demonstrated accumulation in PAH compared with failed donor lung controls. RNAscope in situ hybridization indicated ACAN expression in vascular endothelium and smooth muscle cells. Based on qualitative histological analysis, aggrecan localizes to cellular, rather than fibrotic or collagenous, lesions. Interestingly, ADAMTS15, a potential aggrecanase, was upregulated in pulmonary arteries in PAH. Aligning traditional histological analysis with three-dimensional renderings of pulmonary arteries from synchrotron imaging identified aggrecan in lumen-reducing lesions containing loose, cell-rich connective tissue, at sites of intrapulmonary bronchopulmonary shunting, and at sites of presumed elevated pulmonary blood pressure. Our findings suggest that ACAN expression may be an early response to injury in pulmonary angiopathy and supports recent work showing that dysregulation of aggrecan turnover is a hallmark of arterial adaptations to altered hemodynamics. Whether cause or effect, aggrecan and aggrecanase regulation in PAH are potential therapeutic targets.
Collapse
Affiliation(s)
- Oscar van der Have
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Timothy J. Mead
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Christian Westöö
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - Ayse C. Mutgan
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
| | - Christian Norvik
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of MedicineLund UniversityLundSweden
| | | | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Faculty of MedicineLund UniversityLundSweden
- Department of Genetics and PathologyDivision of Laboratory MedicineLundSweden
| | - Gunilla Westergren‐Thorsson
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
- Institute for Lung HealthJustus Liebig UniversityGiessenGermany
| | - Suneel S. Apte
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Karin Tran‐Lundmark
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| |
Collapse
|
20
|
Shi Y, Li J, Li K, Zhang X, Chang P, Huang Z, Liu Y, Wang Y, Zhan Y, Cao X, Zhu S. Detector-trigger-based cardiac multiphase micro-CT imaging for small animals. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:1047-1066. [PMID: 37483057 DOI: 10.3233/xst-230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Micro-computed tomography is important in cardiac imaging for preclinical small animal models, but motion artifacts may appear due to the rapid heart rates. To avoid influence of motion artifacts, the prospective ECG gating schemes based on an X-ray source trigger have been investigated. However, due to the lack of pulsed X-ray exposure modes, high-resolution micro-focus X-ray sources do not support source triggering in most cases. OBJECTIVE To develop a fast-cardiac multiphase acquisition strategy using prospective ECG gating for micro-focus X-ray tubes with a continuous emission mode. METHODS The proposed detector-trigger-based prospective ECG gating acquisition scheme (DTB-PG) triggers the X-ray detector at the R peak of ECG, and then collects multiple phase projections of the heart in one ECG cycle by sequence acquisition. Cardiac multiphase images are reconstructed after performing the same acquisition in all views. The feasibility of this strategy was verified in multiphase imaging experiments of a phantom with 150 ms motion period and a mouse heart on a micro-focus micro-CT system with continuous emission mode. RESULTS Using a high frame-rate CMOS detector, DTB-PG discriminates the positions of the motion phantom well in 10 different phases and enables to distinguish the changes in the cardiac volume of the mouse in different phases. The acquisition rate of DTB-PG is much faster than other prospective gating schemes as demonstrated by theoretical analysis. CONCLUSIONS DTB-PG combines the advantages of prospective ECG gating strategies and X-ray detector-trigger mode to suppress motion artifacts, achieve ultra-fast acquisition rates, and relax hardware limitations.
Collapse
Affiliation(s)
- Yu Shi
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Juntao Li
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xuexue Zhang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Peng Chang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Zujian Huang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Yanyun Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Yihan Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xu Cao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| | - Shouping Zhu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Santos R, Bürgi M, Mateos JM, Luciani A, Loffing J. Too bright for 2 dimensions: recent progress in advanced 3-dimensional microscopy of the kidney. Kidney Int 2022; 102:1238-1246. [PMID: 35963448 DOI: 10.1016/j.kint.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 01/12/2023]
Abstract
The kidney is a structurally and functionally complex organ responsible for the control of water, ion, and other solute homeostasis. Moreover, the kidneys excrete metabolic waste products and produce hormones, such as renin and erythropoietin. The functional unit of the kidney is the nephron, which is composed by a serial arrangement of a filter unit called the renal corpuscle and several tubular segments that modulate the filtered fluid by reabsorption and secretion. Within each kidney, thousands of nephrons are closely intermingled and surrounded by an intricate network of blood vessels and various interstitial cell types, including fibroblasts and immune cells. This complex tissue architecture is essential for proper kidney function. In fact, kidney disease is often reflected or even caused by a derangement of the histologic structures. Frequently, kidney histology is studied using microscopic analysis of 2-dimensional tissue sections, which, however, misses important 3-dimensional spatial information. Reconstruction of serial sections tries to overcome this limitation, but is technically challenging, time-consuming, and often inherently linked to sectioning artifacts. In recent years, advances in tissue preparation (e.g., optical clearing) and new light- and electron-microscopic methods have provided novel avenues for 3-dimensional kidney imaging. Combined with novel machine-learning algorithms, these approaches offer unprecedented options for large-scale and automated analysis of kidney structure and function. This review provides a brief overview of these emerging imaging technologies and presents key examples of how these approaches are already used to study the normal and the diseased kidney.
Collapse
Affiliation(s)
- Rui Santos
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Max Bürgi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - José María Mateos
- Centre for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Centre of Competence in Research "Kidney.CH," University of Zurich, Zurich, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; National Centre of Competence in Research "Kidney.CH," University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
High-resolution micro-CT for 3D infarct characterization and segmentation in mice stroke models. Sci Rep 2022; 12:17471. [PMID: 36261475 PMCID: PMC9582034 DOI: 10.1038/s41598-022-21494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies.
Collapse
|
23
|
Li M, Beaumont N, Ma C, Rojas J, Vu T, Harlacher M, O'Connell G, Gessner RC, Kilian H, Kasatkina L, Chen Y, Huang Q, Shen X, Lovell JF, Verkhusha VV, Czernuszewicz T, Yao J. Three-Dimensional Deep-Tissue Functional and Molecular Imaging by Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT). IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2704-2714. [PMID: 35442884 PMCID: PMC9563100 DOI: 10.1109/tmi.2022.3168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x -ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and acoustic angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound. PAUSAT can perform three imaging modes simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of tissue vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are co-registered, with high spatial resolutions at large depths. Using PAUSAT, we performed proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting breast tumor expressing genetically-encoded photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.
Collapse
|
24
|
Wehrse E, Klein L, Rotkopf LT, Stiller W, Finke M, Echner G, Glowa C, Heinze S, Ziener CH, Schlemmer HP, Kachelrieß M, Sawall S. Ultrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man. Z Med Phys 2022:S0939-3889(22)00066-6. [PMID: 35868888 DOI: 10.1016/j.zemedi.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022]
Abstract
X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
Collapse
Affiliation(s)
- E Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - L Klein
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - W Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - M Finke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - G Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - C Glowa
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - S Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - C H Ziener
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H-P Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kachelrieß
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Sawall
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Sharma S, Kalidindi T, Joshi S, Digwal CS, Panchal P, Burnazi E, Lee SG, Pillarsetty N, Chiosis G. Synthesis of 124I-labeled epichaperome probes and assessment in visualizing pathologic protein-protein interaction networks in tumor bearing mice. STAR Protoc 2022; 3:101318. [PMID: 35496791 PMCID: PMC9046997 DOI: 10.1016/j.xpro.2022.101318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epichaperomes are disease-associated pathologic scaffolds composed of tightly bound chaperones and co-chaperones. They provide opportunities for precision medicine where aberrant protein-protein interaction networks, rather than a single protein, are detected and targeted. This protocol describes the synthesis and characterization of two 124I-labeled epichaperome probes, [124I]-PU-H71 and [124I]-PU-AD, both which have translated to clinical studies. It shows specific steps in the use of these reagents to image and quantify epichaperome-positivity in tumor bearing mice through positron emission tomography. For complete details on the use and execution of this protocol, please refer to Bolaender et al. (2021), Inda et al. (2020), and Pillarsetty et al. (2019).
Collapse
Affiliation(s)
- Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chander S. Digwal
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Palak Panchal
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eva Burnazi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sang Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
26
|
Munck S, Cawthorne C, Escamilla‐Ayala A, Kerstens A, Gabarre S, Wesencraft K, Battistella E, Craig R, Reynaud EG, Swoger J, McConnell G. Challenges and advances in optical 3D mesoscale imaging. J Microsc 2022; 286:201-219. [PMID: 35460574 PMCID: PMC9325079 DOI: 10.1111/jmi.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | - Abril Escamilla‐Ayala
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Axelle Kerstens
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | - Sergio Gabarre
- VIB‐KU Leuven Center for Brain & Disease ResearchLight Microscopy Expertise Unit & VIB BioImaging CoreLeuvenBelgium
- KU Leuven Department of NeurosciencesLeuven Brain InstituteLeuvenBelgium
| | | | | | - Rebecca Craig
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinBelfieldIreland
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) BarcelonaBarcelonaSpain
| | - Gail McConnell
- Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
| |
Collapse
|
27
|
Rapic S, Samuel T, Lindsay PE, Ansell S, Weersink RA, DaCosta RS. Assessing the Accuracy of Bioluminescence Image-Guided Stereotactic Body Radiation Therapy of Orthotopic Pancreatic Tumors Using a Small Animal Irradiator. Radiat Res 2022; 197:626-637. [PMID: 35192719 DOI: 10.1667/rade-21-00161.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Stereotactic body radiation therapy (SBRT) has shown promising results in the treatment of pancreatic cancer and other solid tumors. However, wide adoption of SBRT remains limited largely due to uncertainty about the treatment's optimal fractionation schedules to elicit maximal tumor response while limiting the dose to adjacent structures. A small animal irradiator in combination with a clinically relevant oncological animal model could address these questions. Accurate delivery of X rays to animal tumors may be hampered by suboptimal image-guided targeting of the X-ray beam in vivo. Integration of bioluminescence imaging (BLI) into small animal irradiators in addition to standard cone-beam computed tomography (CBCT) imaging improves target identification and high-precision therapy delivery to deep tumors with poor soft tissue contrast, such as pancreatic tumors. Using bioluminescent BxPC3 pancreatic adenocarcinoma human cells grown orthotopically in mice, we examined the performance of a small animal irradiator equipped with both CBCT and BLI in delivering targeted, hypo-fractionated, multi-beam SBRT. Its targeting accuracy was compared with magnetic resonance imaging (MRI)-guided targeting based on co-registration between CBCT and corresponding sequential magnetic resonance scans, which offer greater soft tissue contrast compared with CT alone. Evaluation of our platform's BLI-guided targeting accuracy was performed by quantifying in vivo changes in bioluminescence signal after treatment as well as staining of ex vivo tissues with γH2AX, Ki67, TUNEL, CD31 and CD11b to assess SBRT treatment effects. Using our platform, we found that BLI-guided SBRT enabled more accurate delivery of X rays to the tumor resulting in greater cancer cell DNA damage and proliferation inhibition compared with MRI-guided SBRT. Furthermore, BLI-guided SBRT allowed higher animal throughput and was more cost effective to use in the preclinical setting than MRI-guided SBRT. Taken together, our preclinical platform could be employed in translational research of SBRT of pancreatic cancer.
Collapse
Affiliation(s)
- Sara Rapic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Timothy Samuel
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Patricia E Lindsay
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Steve Ansell
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Robert A Weersink
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto
| | - Ralph S DaCosta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Thies M, Wagner F, Huang Y, Gu M, Kling L, Pechmann S, Aust O, Grüneboom A, Schett G, Christiansen S, Maier A. Calibration by differentiation - Self-supervised calibration for X-ray microscopy using a differentiable cone-beam reconstruction operator. J Microsc 2022; 287:81-92. [PMID: 35638174 DOI: 10.1111/jmi.13125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
High-resolution X-ray microscopy (XRM) is gaining interest for biological investigations of extremely small-scale structures. XRM imaging of bones in living mice could provide new insights into the emergence and treatment of osteoporosis by observing osteocyte lacunae, which are holes in the bone of few micrometers in size. Imaging living animals at that resolution, however, is extremely challenging and requires very sophisticated data processing converting the raw XRM detector output into reconstructed images. This paper presents an open-source, differentiable reconstruction pipeline for XRM data which analytically computes the final image from the raw measurements. In contrast to most proprietary reconstruction software, it offers the user full control over each processing step and, additionally, makes the entire pipeline deep learning compatible by ensuring differentiability. This allows fitting trainable modules both before and after the actual reconstruction step in a purely data-driven way using the gradient-based optimizers of common deep learning frameworks. The value of such differentiability is demonstrated by calibrating the parameters of a simple cupping correction module operating on the raw projection images using only a self-supervisory quality metric based on the reconstructed volume and no further calibration measurements. The retrospective calibration directly improves image quality as it avoids cupping artifacts and decreases the difference in gray values between outer and inner bone by 68% to 94%. Furthermore, it makes the reconstruction process entirely independent of the XRM manufacturer and paves the way to explore modern deep learning reconstruction methods for arbitrary XRM and, potentially, other flat-panel CT systems. This exemplifies how differentiable reconstruction can be leveraged in the context of XRM and, hence, is an important step toward the goal of reducing the resolution limit of in-vivo bone imaging to the single micrometer domain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mareike Thies
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Wagner
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yixing Huang
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mingxuan Gu
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lasse Kling
- Institute for Nanotechnology and Correlative Microscopy e.V. INAM, Forchheim, Germany
| | - Sabrina Pechmann
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Forchheim, Germany
| | - Oliver Aust
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy e.V. INAM, Forchheim, Germany.,Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Forchheim, Germany.,Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Richter B, Zafarnia S, Gremse F, Kießling F, Scheuerlein H, Settmacher U, Dahmen U. Corrosion Cast and 3D Reconstruction of the Murine Biliary Tree After Biliary Obstruction: Quantitative Assessment and Comparison With 2D Histology. J Clin Exp Hepatol 2022; 12:755-766. [PMID: 35677523 PMCID: PMC9168744 DOI: 10.1016/j.jceh.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obstructive cholestasis can lead to significant alterations of the biliary tree depending on the extent and duration of the biliary occlusion. Current experimental studies reported about advanced techniques for corrosion cast and 3D reconstruction (3D-reco) visualizing delicate microvascular structures in animals. We compared these two different techniques for visualization and quantitative assessment of the obstructed murine biliary tree with classical 2D histology. Methods Male mice (n = 36) were allocated to 3 different experiments. In experiments 1 and 2, we injected two different media (Microfil© for 3D-reco, MV; Batson's No.17 for corrosion cast, CC) into the extrahepatic bile duct. In experiment 3 we sampled liver tissue for 2D histology (HE, BrdU). Time points of interest were days 1, 3, 5, 7, 14, and 28 after biliary occlusion. We used different types of software for quantification of the different samples: IMALYTICS Preclinical for 3D scans (MV); NDP.view2 for the digital photography of CC; HistoKat software for 2D histology. Results We achieved samples in 75% of the animals suitable for evaluation (MV and CC, each with 9/12). Contrasting of terminal bile ducts (4th order of branches) was achieved with either technique. MV permitted a fast 3D-reco of the hierarchy of the biliary tree, including the 3rd and 4th order of branches in almost all samples (8/9 and 6/9). CC enabled focused evaluation of the hierarchy of the biliary tree, including the 4th to 5th order of branches in almost all samples (9/9 and 8/9). In addition, we detected dense meshes of the smallest bile ducts in almost all CC samples (8/9). MV and CC allowed a quantitative assessment of anatomical details of the 3rd and 4th order branches of almost every sample. The 2D histology identified different kinetics and areas of proliferation of hepatocytes and cholangiocytes. Complementary usage of 3D-reco, corrosion casting and 2D histology matched dense meshes of small bile ducts with areas of intensive proliferative activity of cholangiocytes as periportal proliferative areas of 4th and 5th order branches (∼terminal bile ducts and bile ductules) matched with its morphological information the matching assessment of areas with increased proliferative activity (BrdU) and a partial quantification of the characteristics of the 4th order branches of the biliary tree. Conclusion The 3D-reco and corrosion casting of the murine biliary tree are feasible and provide a straightforward, robust, and reliable (and more economical) procedure for the visualization and quantitative assessment of architectural alterations, in comparative usage with the 2D histology.
Collapse
Key Words
- 2D IHC, two-dimensional immunohistochemistry
- 3D reconstruction
- 3D-reco, three-dimensional reconstruction
- BD, bile duct
- BT, extrahepatic and intrahepatic biliary tree
- BrdU, Bromodeoxyuridine
- CC, Corrosion Cast using Batson No.17
- CoH, Canals of Hering
- DHC, Ductus hepatocholedochus, main extrahepatic bile duct
- HE, Haematoxylin-Eosin
- MV, Microfil®-MV
- POD, postoperative day
- biliary occlusion
- biliary tree
- corrosion cast
- ehBD, extrahepatic bile duct
- ihBD, intrahepatic bile duct
- microfil
- periportal segments
- tBDT, bile duct ligation (using three sutures) with transection of the ligated extrahepatic bile duct between the middle and proximal sutures
- μCT, micro Computer Tomography (micro-CT)
Collapse
Affiliation(s)
- Beate Richter
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, University Hospital Jena, Drackendorfer Strasse 1, 07747, Jena, Germany
- Department of General, Visceral and Vascular Surgery, University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Sarah Zafarnia
- Institute for Experimental Molecular Imaging, RWTH University Hospital Aachen, Templergraben 55, 52056, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH University Hospital Aachen, Templergraben 55, 52056, Aachen, Germany
| | - Fabian Kießling
- Institute for Experimental Molecular Imaging, RWTH University Hospital Aachen, Templergraben 55, 52056, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Str. 2, 28359 Bremen, Germany
| | - Hubert Scheuerlein
- Clinic for General, Visceral and Pediatric Surgery, St. Vincenz Hospital Paderborn, Teaching Hospital of the University of Göttingen, Am Busdorf 2, 33098 Paderborn, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, University Hospital Jena, Drackendorfer Strasse 1, 07747, Jena, Germany
- Department of General, Visceral and Vascular Surgery, University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
30
|
Liao S, Meng H, Zhao J, Lin W, Liu X, Tian Z, Lan L, Yang H, Zou Y, Xu Y, Gao X, Lu S, Peng J. Injectable adipose-derived stem cells-embedded alginate-gelatin microspheres prepared by electrospray for cartilage tissue regeneration. J Orthop Translat 2022; 33:174-185. [PMID: 35495963 PMCID: PMC9018217 DOI: 10.1016/j.jot.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To prepare adipose-derived stem cells (ADSCs)-embedded alginate-gelatinemicrospheres (Alg-Gel-ADSCs MSs) by electrospray and evaluate their feasibility for cartilage tissue engineering. To observe the efficacy of Alg-Gel-ADSCs MSs in repairing articular cartilage defects in SD rats. Methods ADSCs were isolated and characterized by performing induced differentiation and flow cytometry assays. Alginate-gelatine microspheres with different gelatine concentrations were manufactured by electrospraying, and the appropriate alginate-gelatine concentration and ratio were determined by evaluating microsphere formation. Alg-Gel-ADSCs MSs were compared with Alg-ADSCs MSs through the induction of chondrogenic differentiation and culture. Their feasibility for cartilage tissue engineering was analysed by performing Live/Dead staining, cell proliferation analysis, toluidine blue staining and a glycosaminoglycan (GAG) content analysis. Alg-Gel-ADSCs MSs were implanted in the cartilage defects of SD rats, and the cartilage repair effect was evaluated at different time points. The evaluation included gross observations and histological evaluations, fluorescence imaging tracking, immunohistochemical staining, microcomputed tomography (micro-CT) and a CatWalk evaluation. Results The isolated ADSCs showed multidirectional differentiation and were used for cartilage tissue engineering. Using 1.5 w:v% alginate and 0.5 w:v% gelatine (Type B), we successfully prepared nearly spherical microspheres. Compared with alginate microspheres, alginate gel increased the viability of ADSCs and promoted the proliferation and chondrogenesis of ADSCs. In our experiments on knee cartilage defects in SD rats in vivo, the Alg-Gel-ADSCs MSs showed superior cartilage repair in cell resides, histology evaluation, micro-CT imaging and gait analysis. Conclusions Microspheres composed of 1.5 w:v% alginate-0.5 w:v% gelatine increase the viability of ADSCs and supported their proliferation and deposition of cartilage matrix components. ADSCs embedded in 1.5 w:v% alginate-0.5 w:v% gelatine microspheres show superior repair efficacy and prospective applications in cartilage tissue repair. The translational potential of this article In this study, injectable adipose-derived stem cells-embedded alginate-gelatin microspheres (Alg-Gel-ADSCs MSs) were prepared by the electrospray . Compared with the traditional alginate microspheres, its support ability for ADSCs is better and shows a better repair effect. This study provides a promising strategy for cartilage tissue regeneration.
Collapse
|
31
|
Muller FM, Vanhove C, Vandeghinste B, Vandenberghe S. Performance evaluation of a micro-CT system for laboratory animal imaging with iterative reconstruction capabilities. Med Phys 2022; 49:3121-3133. [PMID: 35170057 DOI: 10.1002/mp.15538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In recent years, there has been a rapid proliferation in micro-computed tomography (micro-CT) systems becoming more available for routine preclinical research, with applications in many areas including bone, lung, cancer and cardiac imaging. Micro-CT provides the means to non-invasively acquire detailed anatomical information, but high-resolution imaging comes at the cost of longer scan times and higher doses, which is not desirable given the potential risks related to x-ray radiation. To achieve dose reduction and higher throughputs without compromising image quality (noise management), fewer projections can be acquired. This is where iterative reconstruction methods can have the potential to reduce noise since these algorithms can better handle sparse projection data, compared to filtered backprojection PURPOSE: We evaluate the performance characteristics of a compact benchtop micro-CT scanner that provides iterative reconstruction capabilities with GPU-based acceleration. More specifically, we thereby investigate the potential benefit of iterative reconstruction methods for dose reduction. METHODS Based on a series of phantom experiments, the benchtop micro-CT system was characterized in terms of image uniformity, noise, low contrast detectability, linearity and spatial resolution. Whole-body images of a plasticized ex vivo mouse phantom were also acquired. Different acquisition protocols (general-purpose versus high-resolution, including low dose scans) and different reconstruction strategies (analytic versus iterative algorithms: FDK, ISRA, ISRA-TV) were compared. RESULTS Signal uniformity was maintained across the radial and axial field-of-view (no cupping effect) with an average difference in Hounsfield units (HU) between peripheral and central regions below 50. For low contrast detectability, regions with at least ∆HU of 40 to surrounding material could be discriminated (for rods of 2.5 mm diameter). A high linear correlation (R2 = 0.997) was found between measured CT values and iodine concentrations (0-40 mg/ml). Modulation transfer function (MTF) calculations on a wire phantom evaluated a resolution of 10.2 lp/mm at 10% MTF that was consistent with the 8.3% MTF measured on the 50 μm bars (10 lp/mm) of a bar-pattern phantom. Noteworthy changes in signal-to-noise and contrast-to-noise values were found for different acquisition and reconstruction protocols. Our results further showed the potential of iterative reconstruction methods to deliver images with less noise and artefacts. CONCLUSIONS In summary, the micro-CT system for laboratory animal imaging that was evaluated in the present work was shown to provide a good combination of performance characteristics between image uniformity, low contrast detectability and resolution in short scan times. With the iterative reconstruction capabilities of this micro-CT system in mind (ISRA and ISRA-TV), the adoption of such algorithms by GPU-based acceleration enables the integration of noise reduction methods which here demonstrated potential for high quality imaging at reduced doses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florence M Muller
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | - Christian Vanhove
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | | | - Stefaan Vandenberghe
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
32
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
33
|
Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, Bai H, Liu X, Chen Q, Li L, Yang H. Recent Development in X-Ray Imaging Technology: Future and Challenges. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9892152. [PMID: 35028585 PMCID: PMC8724686 DOI: 10.34133/2021/9892152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022]
Abstract
X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.
Collapse
Affiliation(s)
- Xiangyu Ou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xianning Xu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lili Xie
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaofeng Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
34
|
Ito T, Furuya M, Sasai K. The Establishment of an Optimal Protocol for Contrast-Enhanced Micro-Computed Tomography in the Cloudy Catshark Scyliorhinus torazame. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:264-276. [PMID: 34363233 DOI: 10.1002/aah.10143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to determine the optimal imaging protocol for contrast-enhanced computed tomography (CECT) using micro-CT (μ-CT) for the posterior cardinal vein (PCV), dorsal aorta (DA), hepatic portal vein (HPV), kidney, liver, cephalic arteries (CAs), and gills of Cloudy Catsharks Scyliorhinus torazame. Additionally, we examined the availability of CECT screening for the coelomic organs. Different doses of iopamidol (100, 300, 500, and 700 mg iodine [mgI]/kg) were administered intravenously for 20 s in six sharks. The CT scans from the pectoral girdle to the pelvic girdle were performed at 0-600 s after administration. Contrast-enhanced CT imaging of the CAs, gills, and coelomic organs was examined. Assessment of the signal enhancement value revealed that the PCV was easily visualized with all contrast doses at 25 s. The CAs, gills, and DA were visible at a slightly higher dose (CAs and gills: 200 mgI/kg at 40 s; DA: 300 mgI/kg at 50 s). The HPV was obvious at a dose of at least 500 mgI/kg after a 150-s delay. The parenchyma of the kidney had a contrast effect at 300 mgI/kg, 150 s after the contrast effect of the renal portal system disappeared. The liver, which stores a lot of lipids, had poor overall contrast enhancement that was optimized at the highest dose of 700 mgI/kg. Contrast-enhanced CT screening at 700 mgI/kg and 150 s is likely to obtain the optimal imaging of the reproductive organs, such as the ovary, oviducal gland, uterus, and testis. The present findings can be applied not only to clinical practice but also to academic research and education on elasmobranchs in aquariums.
Collapse
Affiliation(s)
- Takaomi Ito
- Osaka Aquarium Kaiyukan, 1-1-10 Kaigandori, Minato-ku, Osaka, 5520022, Japan
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Orai Kita, Izumisano, Osaka, 5988531, Japan
| | - Kazumi Sasai
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Orai Kita, Izumisano, Osaka, 5988531, Japan
| |
Collapse
|
35
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
36
|
Shoghi KI, Badea CT, Blocker SJ, Chenevert TL, Laforest R, Lewis MT, Luker GD, Manning HC, Marcus DS, Mowery YM, Pickup S, Richmond A, Ross BD, Vilgelm AE, Yankeelov TE, Zhou R. Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine. ACTA ACUST UNITED AC 2021; 6:273-287. [PMID: 32879897 PMCID: PMC7442091 DOI: 10.18383/j.tom.2020.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The National Institutes of Health’s (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine.
Collapse
Affiliation(s)
- Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - Stephanie J Blocker
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | | | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Michael T Lewis
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes-Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, Durham, NC
| | - Stephen Pickup
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN
| | - Brian D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Thomas E Yankeelov
- Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Oden Institute for Computational Engineering and Sciences, Austin, TX; and.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Rong Zhou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
37
|
Clark D, Badea C. Advances in micro-CT imaging of small animals. Phys Med 2021; 88:175-192. [PMID: 34284331 PMCID: PMC8447222 DOI: 10.1016/j.ejmp.2021.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research. METHODS Based on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field. RESULTS Representative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT. CONCLUSIONS All of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.
Collapse
Affiliation(s)
- D.P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| | - C.T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
38
|
Luo Y. On challenges in clinical assessment of hip fracture risk using image-based biomechanical modelling: a critical review. J Bone Miner Metab 2021; 39:523-533. [PMID: 33423096 DOI: 10.1007/s00774-020-01198-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hip fracture is a common health risk among elderly people, due to the prevalence of osteoporosis and accidental fall in the population. Accurate assessment of fracture risk is a crucial step for clinicians to consider patient-by-patient optimal treatments for effective prevention of fractures. Image-based biomechanical modeling has shown promising progress in assessment of fracture risk, and there is still a great possibility for improvement. The purpose of this paper is to identify key issues that need be addressed to improve image-based biomechanical modeling. MATERIALS AND METHODS We critically examined issues in consideration and determination of the four biomechanical variables, i.e., risk of fall, fall-induced impact force, bone geometry and bone material quality, which are essential for prediction of hip fracture risk. We closely inspected: limitations introduced by assumptions that are adopted in existing models; deficiencies in methods for construction of biomechanical models, especially for determination of bone material properties from bone images; problems caused by separate use of the variables in clinical study of hip fracture risk; availability of clinical information that are required for validation of biomechanical models. RESULTS AND CONCLUSIONS A number of critical issues and gaps were identified. Strategies for effectively addressing the issues were discussed.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
- Department of Biomedical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
39
|
Lupariello F, Genova T, Mussano F, Di Vella G, Botta G. Micro-CT processing's effects on microscopic appearance of human fetal cardiac samples. Leg Med (Tokyo) 2021; 53:101934. [PMID: 34225094 DOI: 10.1016/j.legalmed.2021.101934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Higher resolution than common computed tomography has been reached through Micro-Computed Tomography (micro-CT) on small samples. Emerging forensic applications of micro-CT are the study of fetal/infant organs and whole fetuses, and their two/three-dimension reconstruction; it allows: to facilitate pathologists' role in the identification of causes of fetal stillbirth and of infant death; to create digital two and/or three-dimension representations of fetal/infant organs and whole fetuses which can be easily discussed in civil and/or penal courts. Micro-CT reconstructs cardiac anatomy of animal and human sample. There are no studies that are specifically aimed to evaluate possible effects of micro-CT processing on cardiac microscopic evaluation. This study analyzed microscopic effects of micro-CT processing on human-fetal-hearts. After processing with Lugol-solution or Microfil-MV-122-injection in coronary branches, fetal hearts underwent micro-CT scan. Then, hearts were microscopically analyzed using hematoxylin/eosin, trichrome, immunohistochemistry (IHC) for actin-protein, and IHC for desmin-intermediate-filament stains. In all cases staining was present in all fields. In all slides, disarranged myocardial proteins with increase of inter filaments and inter cellular spaces was reported. This manuscript allowed to observe post micro-CT appropriate staining and antigenic reactivity, and to identify cytoarchitecture modifications that could compromise slides' microscopic evaluation. It also highlighted a possible role of micro-CT determining this cytoarchitecture phenomenon.
Collapse
Affiliation(s)
- Francesco Lupariello
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche - Sezione di Medicina Legale - "Università degli Studi di Torino", corso Galileo Galilei 22, 10126 Torino, Italy.
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123 Turin, Italy; CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126 Turin, Italy
| | - Federico Mussano
- CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126 Turin, Italy
| | - Giancarlo Di Vella
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche - Sezione di Medicina Legale - "Università degli Studi di Torino", corso Galileo Galilei 22, 10126 Torino, Italy
| | - Giovanni Botta
- A.O.U. Città della Salute e della Scienza - Anatomia Patologica U, Sezione Materno-Fetale-Pediatrica, corso Bramante 88, 10126 Torino, Italy
| |
Collapse
|
40
|
Chen Y, Chen B, Yu T, Yin L, Sun M, He W, Ma C. Photoacoustic Mouse Brain Imaging Using an Optical Fabry-Pérot Interferometric Ultrasound Sensor. Front Neurosci 2021; 15:672788. [PMID: 34079437 PMCID: PMC8165253 DOI: 10.3389/fnins.2021.672788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Photoacoustic (PA, or optoacoustic, OA) mesoscopy is a powerful tool for mouse cerebral imaging, which offers high resolution three-dimensional (3D) images with optical absorption contrast inside the optically turbid brain. The image quality of a PA mesoscope relies on the ultrasonic transducer which detects the PA signals. An all-optical ultrasound sensor based on a Fabry-Pérot (FP) polymer cavity has the following advantages: broadband frequency response, wide angular coverage and small footprint. Here, we present 3D PA mesoscope for mouse brain imaging using such an optical sensor. A heating laser was used to stabilize the sensor's cavity length during the imaging process. To acquire data for a 3D angiogram of the mouse brain, the sensor was mounted on a translation stage and raster scanned. 3D images of the mouse brain vasculature were reconstructed which showed cerebrovascular structure up to a depth of 8 mm with high quality. Imaging segmentation and dual wavelength imaging were performed to demonstrate the potential of the system in preclinical brain research.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Buhua Chen
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Yin
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingjian Sun
- School of Information Science and Engineering, Harbin Institute of Technology, Weihai, China
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Beijing, China
- Beijing Innovation Center for Future Chip, Beijing, China
| |
Collapse
|
41
|
Sex-dependent effects of forced exercise in the body composition of adolescent rats. Sci Rep 2021; 11:10154. [PMID: 33980961 PMCID: PMC8115159 DOI: 10.1038/s41598-021-89584-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Determining the body composition during adolescence can predict diseases such as obesity, diabetes, and metabolic syndromes later in life; and physical activity became an effective way to restore changes in body composition. However, current available literature assessing the body composition before, during and after adolescence in female and male rodents by in vivo techniques is scarce. Thus, by using computerized tomography, we aimed to define the baseline of the weight and body composition during the adolescence and young adulthood of female and male Sprague-Dawley rats (on P30, P60 and P90) under standard diet. Then, we determined the effect of 18 days of forced exercise on the body weight and composition during the early adolescence (P27-45). The highest percentual increments in weight, body volume and relative adipose contents occurred during the female and male adolescence. Forced running during the early adolescence decreased weight, body volume and relative adipose delta and increment values in males only. The adolescence of rats is a period of drastic body composition changes, where exercise interventions have sex-dependent effects. These results support a model that could open new research windows in the field of adolescent obesity.
Collapse
|
42
|
Palladino A, Pizzoleo C, Mavaro I, Lucini C, D'Angelo L, de Girolamo P, Attanasio C. A combined morphometric approach to feature mouse kidney vasculature. Ann Anat 2021; 237:151727. [PMID: 33798690 DOI: 10.1016/j.aanat.2021.151727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Physiological kidney function is closely related to the state of the vascular network. Disorders, such as capillary rarefaction, predispose to chronic kidney disease (CKD). In this context, deepening of the methodologies for studying the renal vascular network can be of basic importance. To meet this need, numerous animal models and, in parallel, several methods have been developed. In this work we propose a protocol to accurately feature kidney vasculature in mouse, however, the same protocol is suitable to be applied also to other animal models. The approach is multiparametric and mainly based on micro-computed tomography (μCT) technique. Micro-ct allows to study in detail the vascular network of any organ by exploiting the possibility to perfuse the sample with a contrast agent. The proposed protocol provides a fast and reliable method to extract quantitative information from the μCT scan by using only the basic functions of the software supplied by the scanner without any additional analysis. Through iterative cropping of the scanned ROI and calculation of a sample-specific threshold we calculated that the average volume of a female BALB/c kidney of eighth weeks is 147.8 mm3 (5.4%). We also pointed out that the average volume of the vascular network is 4.9% (0.3%). In parallel we performed traditional histological and immunofluorescence techniques to integrate the information gained via μCT and to frame them in the tissue context. Vessel count on histological sections showed a different density in the different regions of the organ parenchyma, in detail, vessel density in the cortex was 19.03 ± 2.51 vessels/ROI while in the medulla it was 10.6 ± 1.7 vessels/ROI and 5.4 ± 1.3 vessels/ROI in the outer and inner medulla, respectively. We then studied vessel distribution in the renal parenchyma which showed that the 55% of vascular component is included in the cortex, the 30% in the outer medulla and the 15% in the inner medulla. Collectively, we propose an integrated approach that can be particularly useful in the preclinical setting to characterize the vasculature of any organ accurately and rapidly.
Collapse
Affiliation(s)
- Antonio Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Carmela Pizzoleo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy.
| |
Collapse
|
43
|
Chavez MB, Chu EY, Kram V, de Castro LF, Somerman MJ, Foster BL. Guidelines for Micro-Computed Tomography Analysis of Rodent Dentoalveolar Tissues. JBMR Plus 2021; 5:e10474. [PMID: 33778330 PMCID: PMC7990153 DOI: 10.1002/jbm4.10474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Micro–computed tomography (μCT) has become essential for analysis of mineralized as well as nonmineralized tissues and is therefore widely applicable in the life sciences. However, lack of standardized approaches and protocols for scanning, analyzing, and reporting data often makes it difficult to understand exactly how analyses were performed, how to interpret results, and if findings can be broadly compared with other models and studies. This problem is compounded in analysis of the dentoalveolar complex by the presence of four distinct mineralized tissues: enamel, dentin, cementum, and alveolar bone. Furthermore, these hard tissues interface with adjacent soft tissues, the dental pulp and periodontal ligament (PDL), making for a complex organ. Drawing on others' and our own experience analyzing rodent dentoalveolar tissues by μCT, we introduce techniques to successfully analyze dentoalveolar tissues with similar or disparate compositions, densities, and morphological characteristics. Our goal is to provide practical guidelines for μCT analysis of rodent dentoalveolar tissues, including approaches to optimize scan parameters (filters, voltage, voxel size, and integration time), reproducibly orient samples, define regions and volumes of interest, segment and subdivide tissues, interpret findings, and report methods and results. We include illustrative examples of analyses performed on genetically engineered mouse models with phenotypes in enamel, dentin, cementum, and alveolar bone. The recommendations are designed to increase transparency and reproducibility, promote best practices, and provide a basic framework to apply μCT analysis to the dentoalveolar complex that can also be extrapolated to a variety of other tissues of the body. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael B Chavez
- Division of Biosciences, College of Dentistry The Ohio State University Columbus OH USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Institutes of Health (NIH) Bethesda MD USA
| | - Vardit Kram
- National Institute of Dental and Craniofacial Research (NIDCR)National Institutes of Health (NIH) Bethesda MD USA
| | - Luis F de Castro
- National Institute of Dental and Craniofacial Research (NIDCR)National Institutes of Health (NIH) Bethesda MD USA
| | - Martha J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Institutes of Health (NIH) Bethesda MD USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry The Ohio State University Columbus OH USA
| |
Collapse
|
44
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
45
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
46
|
Wun MK, Davies S, Spielman D, Lee R, Hayward D, Malik R. Gross, microscopic, radiologic, echocardiographic and haematological findings in rats experimentally infected with Angiostrongylus cantonensis. Parasitology 2021; 148:159-166. [PMID: 32741388 PMCID: PMC11010191 DOI: 10.1017/s0031182020001420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/07/2022]
Abstract
Although the gross and microscopic pathology in rats infected with Angiostrongylus cantonensis has been well described, corresponding changes detected using diagnostic imaging modalities have not been reported. This work describes the cardiopulmonary changes in mature Wistar rats chronically infected with moderate burdens of A. cantonensis using radiology, computed tomography (CT), CT angiography, echocardiography, necropsy and histological examinations. Haematology and coagulation studies were also performed. Thoracic radiography, CT and CT angiography showed moderately severe alveolar pulmonary patterns mainly affecting caudal portions of the caudal lung lobes and associated dilatation of the caudal lobar pulmonary arteries. Presumptive worm profiles could be detected using echocardiography, with worms seen in the right ventricular outflow tract or straddling either the pulmonary and/or the tricuspid valves. Extensive, multifocal, coalescing dark areas and multiple pale foci affecting the caudal lung lobes were observed at necropsy. Histologically, these were composed of numerous large, confluent granulomas and fibrotic nodules. Adult worms were found predominantly in the mid- to distal pulmonary arteries. An inflammatory leukogram, hyperproteinaemia and hyperfibrinogenaemia were found in most rats. These findings provide a comparative model for A. cantonensis in its accidental hosts, such as humans and dogs. In addition, the pathological and imaging changes are comparable to those seen in dogs infected with Angiostrongylus vasorum, suggesting rats infected with A. cantonensis could be a model for dogs with A. vasorum infection.
Collapse
Affiliation(s)
- Matthew K. Wun
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW2006, Australia
| | - Sarah Davies
- Veterinary Imaging Associates, 52–56 Atchison St, St Leonards, NSW2065, Australia
| | - Derek Spielman
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW2006, Australia
| | - Rogan Lee
- Centre for Infectious Diseases & Microbiology Laboratory Services, ICPMR, Westmead Hospital, NSW2145, Australia
| | - Doug Hayward
- Vetnostics, 60 Waterloo Road, Macquarie Park, NSW2113, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Camperdown, NSW2006, Australia
- School of Veterinary and Animal Science, Charles Sturt University, Wagga Wagga, NSW2678, Australia
| |
Collapse
|
47
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
48
|
Gsell W, Molinos C, Correcher C, Belderbos S, Wouters J, Junge S, Heidenreich M, Velde GV, Rezaei A, Nuyts J, Cawthorne C, Cleeren F, Nannan L, Deroose CM, Himmelreich U, Gonzalez AJ. Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Phys Med Biol 2020; 65:245016. [PMID: 32590380 DOI: 10.1088/1361-6560/aba08c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 × 50 × 10 mm3) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 ± 4.78 without and -0.96 ± 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.
Collapse
Affiliation(s)
- Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, Zhang T, Gao Y, Chen T, Chen Y, Yao X, Watanabe Y, Tian M, Zhang H. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging 2020; 48:1736-1758. [PMID: 33210241 DOI: 10.1007/s00259-020-05107-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Systematic imaging can be broadly defined as the systematic identification and characterization of biological processes at multiple scales and levels. In contrast to "classical" diagnostic imaging, systematic imaging emphasizes on detecting the overall abnormalities including molecular, functional, and structural alterations occurring during disease course in a systematic manner, rather than just one aspect in a partial manner. Concomitant efforts including improvement of imaging instruments, development of novel imaging agents, and advancement of artificial intelligence are warranted for achievement of systematic imaging. It is undeniable that scientists and radiologists will play a predominant role in directing this burgeoning field. This article introduces several recent developments in imaging modalities and nanoparticles-based imaging agents, and discusses how systematic imaging can be achieved. In the near future, systematic imaging which combines multiple imaging modalities with multimodal imaging agents will pave a new avenue for comprehensive characterization of diseases, successful achievement of image-guided therapy, precise evaluation of therapeutic effects, and rapid development of novel pharmaceuticals, with the final goal of improving human health-related outcomes.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Min Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Tingting Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ting Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yao Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xin Yao
- Department of Gastroenterology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Mei Tian
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.
| |
Collapse
|
50
|
Massimi L, Meganck JA, Towns R, Olivo A, Endrizzi M. Evaluation of a compact multicontrast and multiresolution X-ray phase contrast edge illumination system for small animal imaging. Med Phys 2020; 48:376-386. [PMID: 33107980 DOI: 10.1002/mp.14553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023] Open
Abstract
PURPOSE In this work the performance of a compact multiresolution and multicontrast x-ray phase system based on edge illumination is investigated. It has been designed for small animal imaging and with a limited footprint for ease of deployment in laboratories. METHODS The presented edge illumination system is based on a compact microfocus tungsten x-ray source combined with a flat panel detector. The source has a maximum output of 10 W when the minimum spot size of about 15 μm is used. The system has an overall length of 70 cm. A new double sample mask design, obtained by arranging both skipped and nonskipped configurations on the same structure, provides dual resolution capability. To test the system, we carried out computed tomography (CT) scans of a plastic phantom with different source settings using both single-image and multi-image acquisition schemes at different spatial resolutions. In addition, CT scans of an ex-vivo mouse specimen were acquired at the best identified working conditions to demonstrate the application of the presented system to small animal imaging. RESULTS We found this system delivers good image quality, allowing for an efficient material separation and improving detail visibility in small animals thanks to the higher signal-to-noise ratio (SNR) of phase contrast with respect to conventional attenuation contrast. The system offers high versatility in terms of spatial resolution thanks to the double sample mask design integrated into a single scanner. The availability of both multi- and single-image acquisition schemes coupled with their dedicated retrieval algorithms, allows different working modes which can be selected based on user preference. Multi-image acquisition provides quantitative separation of the real and imaginary part of the refractive index, however, it requires a long scanning time. On the other hand, the single image approach delivers the best material separation and image quality at all the investigated source settings with a shorter scanning time but at the cost of quantitativeness. Finally, we also observed that the single image approach combined with a high-power x-ray source may result in a fast acquisition protocol compatible with in-vivo imaging.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jeffrey A Meganck
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.,Research and Development, Life Sciences Technology, PerkinElmer, Hopkinton, MA, USA
| | - Rebecca Towns
- Biological Services, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|