1
|
Svoboda R, Machotová J. How Depolymerization-Based Plasticization Affects the Process of Cold Crystallization in Poly(P-Dioxanone). Macromol Rapid Commun 2024; 45:e2400369. [PMID: 38923170 DOI: 10.1002/marc.202400369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The self-plasticization, i.e., the increase in the polymer chains' mobility by including its monomer, has a major impact on a polymer's structural, thermal, and mechanical properties. In this study, differential scanning calorimetry (DSC), optical and Raman microscopies, thermo-mechanical analysis (TMA), size exclusion chromatography equipped with a multi-angle light scattering detector (SEC-MALS), and X-ray diffraction analysis (XRD) are used to investigate the effect of thermally induced self-plasticization of poly-(p-dioxanone), PDX, on the crystal growths from the amorphous and molten states. Significant changes in the crystallization behavior and mechanical properties of PDX are found only for samples self-plasticized at the depolymerization temperature (Td) above 150 °C. The intense self-plasticization leads to the decrease of the crystallization temperature, increase of the crystal growth rapidity, disappearance of the distinct α→α' polymorphic transition, reduction of the overall melting temperature, and segregation of the redundant monomer. Although the morphology of the crystalline phase has a major impact on the mechanical properties of PDX, the self-plasticization itself does not seem to result in any major changes in the magnitude, localization, or morphology of formed crystallites (these are primarily driven by the temperature of crystal growth). The manifestation of the variable activation energy concept is discussed for the present crystallization data.
Collapse
Affiliation(s)
- Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic
| | - Jana Machotová
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic
| |
Collapse
|
2
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
3
|
Goonoo N, Gimié F, Ait-Arsa I, Ziman M, Adeyemi SA, Ubanako P, Ngema LM, Choonara YE, Bhaw-Luximon A. Electrospun nanofibrous scaffolds as a platform to reduce melanoma tumour growth, recurrence, and promote post-resection wound repair. BIOMATERIALS ADVANCES 2024; 161:213870. [PMID: 38701686 DOI: 10.1016/j.bioadv.2024.213870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024]
Abstract
Wound healing following skin tumour surgery still remains a major challenge. To address this issue, polysaccharide-loaded nanofibrous mats have been engineered as skin patches on the wound site to improve wound healing while simultaneously eliminating residual cancer cells which may cause cancer relapse. The marine derived polysaccharides kappa-carrageenan (KCG) and fucoidan (FUC) were blended with polydioxanone (PDX) nanofibers due to their inherent anti-cancer activity conferred by the sulphate groups as well as their immunomodulatory properties which can reduce inflammation resulting in accelerated wound healing. KCG and FUC were released sustainably from the blend nanofibers via the Korsmeyer-Peppas kinetics. MTT assays, live/dead staining and SEM images demonstrated the toxicity of KCG and FUC towards skin cancer MP 41 cells. In addition, MP 41 cells showed reduced metastatic potential when grown on KCG or FUC containing mats. Both KCG and FUC were non- cytotoxic to healthy L 929 fibroblast cells. In vivo studies on healthy Wistar rats confirmed the non-toxicity of the nanofibrous patches as well as their improved and scarless wound healing potential. In vivo studies on tumour xenograft model further showed a reduction of 7.15 % in tumour volume in only 4 days following application of the transdermal patch.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - Fanny Gimié
- Animalerie, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile De La Réunion, France
| | - Imade Ait-Arsa
- Animalerie, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, Ile De La Réunion, France
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Samson A Adeyemi
- WITS Advanced Drug Delivery Platform, University of Witswatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- WITS Advanced Drug Delivery Platform, University of Witswatersrand, Johannesburg, South Africa
| | - Lindokuhle M Ngema
- WITS Advanced Drug Delivery Platform, University of Witswatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- WITS Advanced Drug Delivery Platform, University of Witswatersrand, Johannesburg, South Africa
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
4
|
Furuno K, Suzuki K, Sakai S. Transduction and Genome Editing of the Heart with Adeno-Associated Viral Vectors Loaded onto Electrospun Polydioxanone Nonwoven Fabrics. Biomolecules 2024; 14:506. [PMID: 38672522 PMCID: PMC11047894 DOI: 10.3390/biom14040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we introduce electrospun polydioxanone (PDO) nonwoven fabrics as a platform for the delivery of adeno-associated virus (AAV) vectors for transduction and genome editing by adhering them to organ surfaces, including the heart. AAV vectors were loaded onto the PDO fabrics by soaking the fabrics in a solution containing AAV vectors. In vitro, the amount of AAV vectors loaded onto the fabrics could be adjusted by changing their concentration in the solution, and the number of cells expressing the green fluorescent protein (GFP) encoded by the AAV vectors increased in correlation with the increasing amount of loaded AAV vectors. In vivo, both transduction and genome editing resulted in the observation of GFP expression around AAV vector-loaded PDO fabrics attached to the surfaces of mouse hearts, indicating effective transduction and expression at the target site. These results demonstrate the great potential of electrospun PDO nonwoven fabrics carrying therapeutic AAV vectors for gene therapy.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan;
| | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan;
- Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan;
| |
Collapse
|
5
|
Wang H, Huddleston S, Yang J, Ameer GA. Enabling Proregenerative Medical Devices via Citrate-Based Biomaterials: Transitioning from Inert to Regenerative Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306326. [PMID: 38043945 DOI: 10.1002/adma.202306326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Regenerative medicine aims to restore tissue and organ function without the use of prosthetics and permanent implants. However, achieving this goal has been elusive, and the field remains mostly an academic discipline with few products widely used in clinical practice. From a materials science perspective, barriers include the lack of proregenerative biomaterials, a complex regulatory process to demonstrate safety and efficacy, and user adoption challenges. Although biomaterials, particularly biodegradable polymers, can play a major role in regenerative medicine, their suboptimal mechanical and degradation properties often limit their use, and they do not support inherent biological processes that facilitate tissue regeneration. As of 2020, nine synthetic biodegradable polymers used in medical devices are cleared or approved for use in the United States of America. Despite the limitations in the design, production, and marketing of these devices, this small number of biodegradable polymers has dominated the resorbable medical device market for the past 50 years. This perspective will review the history and applications of biodegradable polymers used in medical devices, highlight the need and requirements for regenerative biomaterials, and discuss the path behind the recent successful introduction of citrate-based biomaterials for manufacturing innovative medical products aimed at improving the outcome of musculoskeletal surgeries.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Samantha Huddleston
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jian Yang
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
6
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
7
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Dong X, Yang Y, Bao Z, Midgley AC, Li F, Dai S, Yang Z, Wang J, Liu L, Li W, Zheng Y, Liu S, Liu Y, Yu W, Liu J, Fan M, Zhu M, Shen Z, Xiaosong G, Kong D. Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models. Bioact Mater 2023; 30:98-115. [PMID: 37560200 PMCID: PMC10406865 DOI: 10.1016/j.bioactmat.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
Peripheral nerve injuries may result in severe long-gap interruptions that are challenging to repair. Autografting is the gold standard surgical approach for repairing long-gap nerve injuries but can result in prominent donor-site complications. Instead, imitating the native neural microarchitecture using synthetic conduits is expected to offer an alternative strategy for improving nerve regeneration. Here, we designed nerve conduits composed of high-resolution anisotropic microfiber grid-cordes with randomly organized nanofiber sheaths to interrogate the positive effects of these biomimetic structures on peripheral nerve regeneration. Anisotropic microfiber-grids demonstrated the capacity to directionally guide Schwann cells and neurites. Nanofiber sheaths conveyed adequate elasticity and permeability, whilst exhibiting a barrier function against the infiltration of fibroblasts. We then used the composite nerve conduits bridge 30-mm long sciatic nerve defects in canine models. At 12 months post-implant, the morphometric and histological recovery, gait recovery, electrophysiological function, and degree of muscle atrophy were assessed. The newly regenerated nerve tissue that formed within the composite nerve conduits showed restored neurological functions that were superior compared to sheaths-only scaffolds and Neurolac nerve conduit controls. Our findings demonstrate the feasibility of using synthetic biophysical cues to effectively bridge long-gap peripheral nerve injuries and indicates the promising clinical application prospects of biomimetic composite nerve conduits.
Collapse
Affiliation(s)
- Xianhao Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yueyue Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zheheng Bao
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Adam C. Midgley
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Feiyi Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Shuxin Dai
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jin Wang
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Wenlei Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yayuan Zheng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Siyang Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yang Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Weijian Yu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jun Liu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Meng Fan
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Gu Xiaosong
- Jiangsu Key Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| |
Collapse
|
9
|
Fuenteslópez CV, McKitrick A, Corvi J, Ginebra MP, Hakimi O. Biomaterials text mining: A hands-on comparative study of methods on polydioxanone biocompatibility. N Biotechnol 2023; 77:161-175. [PMID: 37673372 DOI: 10.1016/j.nbt.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Scientific information extraction is fundamental for research and innovation, but is currently mostly a manual, time-consuming process. Text Mining tools (TMTs) enable automated, accurate and quick information extraction from text, but there is little precedent of their use in the biomaterials field. Here, we compare the ability of various TMTs to extract useful information from biomaterials abstracts. Focusing on the biocompatibility of polydioxanone, a biodegradable polymer for which there are relatively few scientific publications, we tested several tools ranging from machine learning approaches and statistical text analysis to MeSH indexing and domain-specific semantic tools for Named Entity Recognition. We also evaluated their output alongside a manual review of systematic reviews and meta-analyses. The findings show that TMTs can be highly efficient and powerful for mapping biomaterials texts and rapidly yield up-to-date information. Here, TMTs enable one to identify dominating themes, see the evolution of specific terms and topics, and learn about key medical applications in biomaterials literature over the years. The analysis also shows that ambiguity around biomaterials nomenclature is a significant challenge in mining biomedical literature that is yet to be tackled. This research showcases the potential value of using Natural Language Processing and domain-specific tools to extract and organize biomaterials data.
Collapse
Affiliation(s)
- Carla V Fuenteslópez
- Institute of Biomedical Engineering, Botnar Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK.
| | - Austin McKitrick
- Institute of Social Research, University of Michigan, MI 48104, USA
| | - Javier Corvi
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Maria-Pau Ginebra
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - Osnat Hakimi
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain; Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08019, Spain; Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona 08017, Spain.
| |
Collapse
|
10
|
Sjöberg I, Law E, Södersten F, Höglund OV, Wattle O. A preliminary investigation of the subcutaneous tissue reaction to a 3D printed polydioxanone device in horses. Acta Vet Scand 2023; 65:48. [PMID: 37986118 PMCID: PMC10659009 DOI: 10.1186/s13028-023-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND A 3D printed self-locking device made of polydioxanone (PDO) was developed to facilitate a standardized ligation technique. The subcutaneous tissue reaction to the device was evaluated after implantation in ten horses of mixed age, sex and breed and compared to loops of poly(lactic-co-glycolic acid) (PLGA). In two of the horses, the implants were removed before closing the skin. The appearance of the implants and surrounding tissue was followed over time using ultrasonography. Implants were removed after 10 and 27 (± 1) days for histologic examination. RESULTS On macroscopic inspection at day 10, the PDO-device was fragmented and the surrounding tissue was oedematous. On ultrasonographic examination, the device was seen as a hyperechoic structure with strong acoustic shadowing that could be detected 4 months post-implantation, but not at 7 months. Histology revealed a transient granulomatous inflammation, i.e., a foreign body reaction, which surrounded both PDO and PLGA implants. The type and intensity of the inflammation varied between individuals and tissue category. CONCLUSIONS The 3D printed PDO-device caused a transient inflammatory reaction in the subcutaneous tissue and complete resorption occurred between 4 and 7 months. Considering the intended use as a ligation device the early fragmentation warrants further adjustments of both material and the 3D printing process before the device can be used in a clinical setting.
Collapse
Affiliation(s)
- Ida Sjöberg
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala, S-750 07, Sweden.
| | - Ellen Law
- Diagnostic Imaging Clinic, University Animal Hospital, SLU, Uppsala, Sweden
| | - Fredrik Södersten
- Department of Biomedical Sciences and Veterinary Public Health, Faculty of Veterinary Medicine and Animal Science, SLU, Uppsala, Sweden
| | - Odd Viking Höglund
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala, S-750 07, Sweden
| | - Ove Wattle
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala, S-750 07, Sweden
| |
Collapse
|
11
|
Shiroud Heidari B, Lopez EM, Chen P, Ruan R, Vahabli E, Davachi SM, Granero-Moltó F, De-Juan-Pardo EM, Zheng M, Doyle B. Silane-modified hydroxyapatite nanoparticles incorporated into polydioxanone/poly(lactide- co-caprolactone) creates a novel toughened nanocomposite with improved material properties and in vivo inflammatory responses. Mater Today Bio 2023; 22:100778. [PMID: 37664796 PMCID: PMC10474235 DOI: 10.1016/j.mtbio.2023.100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
The interface tissue between bone and soft tissues, such as tendon and ligament (TL), is highly prone to injury. Although different biomaterials have been developed for TL regeneration, few address the challenges of the TL-bone interface. Here, we aim to develop novel hybrid nanocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL), and hydroxyapatite (HA) nanoparticles suitable for TL-bone interface repair. Nanocomposites, containing 3-10% of both unmodified and chemically modified hydroxyapatite (mHA) with a silane coupling agent. We then explored biocompatibility through in vitro and in vivo studies using a subcutaneous mouse model. Through different characterisation tests, we found that mHA increases tensile properties, creates rougher surfaces, and reduces crystallinity and hydrophilicity. Morphological observations indicate that mHA nanoparticles are attracted by PDO rather than LCL phase, resulting in a higher degradation rate for mHA group. We found that adding the 5% of nanoparticles gives a balance between the properties. In vitro experiments show that osteoblasts' activities are more affected by increasing the nanoparticle content compared with fibroblasts. Animal studies indicate that both HA and mHA nanoparticles (10%) can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. In summary, this work highlights the potential of PDO/LCL/HA nanocomposites as an excellent biomaterial for TL-bone interface tissue engineering applications.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Emma Muinos Lopez
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Peilin Chen
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- School of Medicine, Monash University, VIC, Melbourne, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Ebrahim Vahabli
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, USA
| | - Froilán Granero-Moltó
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Elena M. De-Juan-Pardo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Barry Doyle
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Lee JG, Raj RR, Day NB, Shields CW. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. ACS NANO 2023; 17:14196-14204. [PMID: 37494584 PMCID: PMC10928690 DOI: 10.1021/acsnano.3c03723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | | | | | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| |
Collapse
|
13
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
14
|
Fonseca Tavares WL, Diniz Viana AC, Lucas Ferreira MV, da Costa Ferreira G, da Costa Ferreira I, Alves de Mesquita R, Amaral RR. Guided tissue regeneration in class IV external cervical resorption: A case report. J Endod 2023:S0099-2399(23)00284-4. [PMID: 37245653 DOI: 10.1016/j.joen.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
External cervical resorption (ECR) is a type of dental resorption that originates from the loss of the cementum's protective layer. The direct exposure of dentin to the periodontal ligament may lead to the invasion of clastic cells through an entry point on the external root surface into the dentinal tissue, causing resorption. Depending on the extension of ECR, different treatments are proposed. Although the literature presents distinct materials and methods for restoring ECR areas, an existing gap is related to care in the treatment of the supporting periodontal tissue. Guided tissue regeneration/guided bone regeneration (GTR/GBR) includes the stimulation of bone formation in bone defects using different types of membranes (resorbable and non-resorbable), regardless of its association with bone substitutes or grafts. Despite the benefits of guided bone regeneration, the application of this method in cases of ECR is still under-explored in the literature. Thus, the present case report uses GTR with xenogenic material and polydioxanone (PDO) membrane in a case of class IV ECR. The success of the present case is related to the correct diagnosis and treatment plan. Complete debridement of resorption areas and restoration with biodentine were effective in tooth repair. GTR contributed to the stabilization of supporting periodontal tissues. The association of the xenogeneic bone graft with the PDO membrane proved to be a viable option for restoring the health of the periodontium.
Collapse
Affiliation(s)
- Warley Luciano Fonseca Tavares
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Ana Cecília Diniz Viana
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Gabriela da Costa Ferreira
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella da Costa Ferreira
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Alves de Mesquita
- Department of Clinic, Pathology and Surgery, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Rodrigues Amaral
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Australia
| |
Collapse
|
15
|
Miele D, Nomicisio C, Musitelli G, Boselli C, Icaro Cornaglia A, Sànchez-Espejo R, Vigani B, Viseras C, Rossi S, Sandri G. Design and development of polydioxanone scaffolds for skin tissue engineering manufactured via green process. Int J Pharm 2023; 634:122669. [PMID: 36736969 DOI: 10.1016/j.ijpharm.2023.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Fiber spinning technologies attracted a great interest since the beginning of the last century. Among these, electrospinning is a widely diffuse technique; however, it presents some drawbacks such as low fiber yield, high energy demand and the use of organic solvents. On the contrary, centrifugal spinning is a more sustainable method and allows to obtain fiber using centrifugal force and melted materials. The aim of the present work was the design and the development of polydioxanone (PDO) microfibers intended for tissue engineering, using centrifugal spinning. PDO, a bioresorbable polymer currently used for sutures, was selected as low melting polyester and DES (deep eutectic solvents), either choline chloride/citric acid (ChCl/CA) or betaine/citric acid (Bet/CA) 1:1 M ratio, were used to improve PDO spinnability. Physical mixtures of DES and PDO were prepared using different weight ratios. These were then poured into the spinneret and melted at 140 °C for 5 min. After the complete melting, the blends were spun for 1 min at 700 rpm. The fibers were characterized for physico chemical properties (morphology; dimensions; chemical structure; thermal behavior; mechanical properties). Moreover, the preclinical investigation was performed in vitro (biocompatibility, adhesion and proliferation of fibroblasts) and in vivo (murine burn/excisional model to assess safety and efficacy). The multidisciplinary approach allowed to obtain an extensive characterization to develop PDO based microfibers as medical device for implant to treat full thickness skin wounds.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Musitelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy
| | - Rita Sànchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada 18071, Spain
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Novel hybrid biocomposites for tendon grafts: The addition of silk to polydioxanone and poly(lactide-co-caprolactone) enhances material properties, in vitro and in vivo biocompatibility. Bioact Mater 2023; 25:291-306. [PMID: 36844365 PMCID: PMC9945711 DOI: 10.1016/j.bioactmat.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Biopolymers play a critical role as scaffolds used in tendon and ligament (TL) regeneration. Although advanced biopolymer materials have been proposed with optimised mechanical properties, biocompatibility, degradation, and processability, it is still challenging to find the right balance between these properties. Here, we aim to develop novel hybrid biocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL) and silk to produce high-performance grafts suitable for TL tissue repair. Biocomposites containing 1-15% of silk were studied through a range of characterisation techniques. We then explored biocompatibility through in vitro and in vivo studies using a mouse model. We found that adding up to 5% silk increases the tensile properties, degradation rate and miscibility between PDO and LCL phases without agglomeration of silk inside the composites. Furthermore, addition of silk increases surface roughness and hydrophilicity. In vitro experiments show that the silk improved attachment of tendon-derived stem cells and proliferation over 72 h, while in vivo studies indicate that the silk can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. Finally, we selected a promising biocomposite and created a prototype TL graft based on extruded fibres. We found that the tensile properties of both individual fibres and braided grafts could be suitable for anterior cruciate ligament (ACL) repair applications.
Collapse
|
17
|
Polydioxanone Membrane Compared with Collagen Membrane for Bone Regeneration. Polymers (Basel) 2023; 15:polym15040868. [PMID: 36850154 PMCID: PMC9963858 DOI: 10.3390/polym15040868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Guided bone regeneration (GBR) is an approach that induces osteopromotion through the regenerative membranes. These barriers exhibit bioactive behavior and mechanical function. Polydioxanone is a synthetic option, already used in medicine and dentistry, with good results in bone regeneration. This study aimed to evaluate bone repair in critical defects in rat calvaria using a polydioxanone membrane (Plenum® Guide) compared with a commercially available collagen-based membrane (Bio-Gide®). The bone defects were filled with Plenum® Osshp, a synthetic bone graft, hydroxyapatite:β-tricalcium phosphate, 70:30%, Group PG (Plenum® Guide + Plenum® Osshp), and Group BG (Geistlich Bio-Gide® + Plenum® Osshp). The specimens were submitted to immunohistochemical (RUNX2 and OPN), gene expression (RUNX2, IBSP, and VEGF), histometric, and microtomography analyses after 07, 15, 30, and 60 days postoperative. PG group showed greater immunolabeling area for RUNX2 and OPN, higher gene expression of VEGF (3.15 ± 0.85), and IBSP (24.9 ± 0.59). However, there was no statistical difference between groups in the histometric analysis regarding the percentage of connective tissue PG (0.83 ± 0.45), BG (0.70 ± 0.34), neoformed bone PG (0.60 ± 0.4), BG (0.65 ± 0.51), and remaining biomaterial PG (0.84 ± 0.31), BG (0.91 ± 0.33). In addition, there was no statistical difference between groups by micro-CT analysis. The absorbable-synthetic membrane, Plenum® Guide, is an effective membrane for guided bone regeneration.
Collapse
|
18
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
19
|
The Injection Molding of Biodegradable Polydioxanone-A Study of the Dependence of the Structural and Mechanical Properties on Thermal Processing Conditions. Polymers (Basel) 2022; 14:polym14245528. [PMID: 36559895 PMCID: PMC9781196 DOI: 10.3390/polym14245528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Recent years have observed a significant increase in the use of degradable materials in medicine due to their minimal impact on the patient and broad range of applicability. The biodegradable polymer Polydioxanone (PDO) provides a good example of the use of such one polymer that can represent the aforementioned medical materials in the field of medicine, due to its high level of biocompatibility and interesting mechanical properties. PDO is used to produce absorbable medical devices such as sutures and stents, and is also suitable for the fabrication of certain orthopedic implants. Polydioxanone can be processed using the injection molding method due to its thermoplastic nature; this method allows for the precise and easily-controllable production of medical materials without the need for toxic additives. A number of small commercial polymer implants have recently been introduced onto the market based on this processing method. It is important to note that, to date, no relevant information on the molding of PDO is available either for the scientific or the general public, and no study has been published that describes the potential of the injection molding of PDO. Hence, we present our research on the basic technological and material parameters that allow for the processing of PDO using the laboratory microinjection molding method. In addition to determining the basic parameters of the process, the research also focused on the study of the structural and mechanical properties of samples based on the thermal conditions during processing. A technological frame work was successfully determined for the processing of PDO via the microinjection molding approach that allows for the production of samples with the required homogeneity, shape stability and surface quality in a laboratory scale. The research revealed that PDO is a polymer with a major share of crystalline phases, and that it is sensitive to the annealing temperature profile in the mold, which has the potential to impact the final crystalline structure, the fracture morphology and the mechanical properties.
Collapse
|
20
|
Alkaissy R, Richard M, Morris H, Snelling S, Pinchbeck H, Carr A, Mouthuy PA. Manufacture of Soft-Hard Implants from Electrospun Filaments Embedded in 3D Printed Structures. Macromol Biosci 2022; 22:e2200156. [PMID: 36048528 DOI: 10.1002/mabi.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Rotator cuff tendon tears are common injuries of the musculoskeletal system that often require surgical repair. However, re-tearing following repair is a significant clinical problem, with a failure rate of up to 40%, notably at the transition from bone to tendon. The development of biphasic materials consisting of soft and hard components, which can mimic this interface, is therefore promising. Here, a simple manufacturing approach is proposed that combines electrospun filaments and 3D printing to achieve scaffolds made of a soft polydioxanone cuff embedded in a porous polycaprolactone block. The insertion area of the cuff is based on the supraspinatus tendon footprint and the size of the cuff is scaled up from 9 to 270 electrospun filaments to reach a clinically relevant strength of 227N on average. The biological evaluation shows that the biphasic scaffold components are noncytotoxic, and that tendon and bone cells can be grown on the cuff and block, respectively. Overall, these results indicate that combining electrospinning and 3D printing is a feasible and promising approach to create soft-to-hard biphasic scaffolds that can improve the outcomes of rotator cuff repair.
Collapse
Affiliation(s)
- Rand Alkaissy
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael Richard
- 3D LifePrints UK Ltd, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7LD, United Kingdom
| | - Hayley Morris
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Snelling
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Henry Pinchbeck
- 3D LifePrints UK Ltd, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7LD, United Kingdom
| | - Andrew Carr
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Pierre-Alexis Mouthuy
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Zhang Z, Xiong Y, Hu J, Guo X, Xu X, Chen J, Wang Y, Chen Y. A Finite Element Investigation on Material and Design Parameters of Ventricular Septal Defect Occluder Devices. J Funct Biomater 2022; 13:jfb13040182. [PMID: 36278651 PMCID: PMC9590015 DOI: 10.3390/jfb13040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Objective: Ventricular septal defects (VSDs) are the most common form of congenital heart defects. The incidence of VSD accounts for 40% of all congenital heart defects (CHDs). With the development of interventional therapy technology, transcatheter VSD closure was introduced as an alternative to open heart surgery. Clinical trials of VSD occluders have yielded promising results, and with the development of new material technologies, biodegradable materials have been introduced into the application of occluders. At present, the research on the mechanical properties of occluders is focused on experimental and clinical trials, and numerical simulation is still a considerable challenge due to the braided nature of the VSD occluder. Finite element analysis (FEA) has proven to be a valid and efficient method to virtually investigate and optimize the mechanical behavior of minimally invasive devices. The objective of this study is to explore the axial resistive performance through experimental and computational testing, and to present the systematic evaluation of the effect of various material and braid parameters by FEA. Methods: In this study, an experimental test was used to investigate the axial resistive force (ARF) of VSD Nitinol occluders under axial displacement loading (ADL), then the corresponding numerical simulation was developed and compared with the experimental results to verify the effectiveness. Based on the above validation, numerical simulations of VSD occluders with different materials (polydioxanone (PDO) and Nitinol with different austenite moduli) and braid parameters (wire density, wire diameter, and angle between left and right discs) provided a clear presentation of mechanical behaviors that included the maximal axial resistive force (MARF), maximal axial displacement (MAD) and initial axial stiffness (IAS), the stress distribution and the maximum principal strain distribution of the device under ADL. Results: The results showed that: (1) In the experimental testing, the axial resistive force (ARF) of the tested occluder, caused by axial displacement loading (ADL), was recorded and it increased linearly from 0 to 4.91 N before reducing. Subsequent computational testing showed that a similar performance in the ARF was experienced, albeit that the peak value of ARF was smaller. (2) The investigated design parameters of wire density, wire diameter and the angle between the left and right discs demonstrated an effective improvement (7.59%, 9.48%, 1.28%, respectively, for MARF, and 1.28%, 1.80%, 3.07%, respectively, for IAS) for the mechanical performance for Nitinol occluders. (3) The most influencing factor was the material; the performance rose by 30% as the Nitinol austenite modulus (EA) increased by 10,000 MPa. The performance of Nitinol was better than that of PDO for certain wire diameters, and the performance improved more obviously (1.80% for Nitinol and 0.64% for PDO in IAS, 9.48% for Nitinol and 2.00% for PDO in MARF) with the increase in wire diameter. (4) For all of the models, the maximum stresses under ADL were distributed at the edge of the disc on the loaded side of the occluders. Conclusions: The experimental testing presented in the study showed that the mechanical performance of the Nitinol occluder and the MARF prove that it has sufficient ability to resist falling out from its intended placement. This study also represents the first experimentally validated computational model of braided occluders, and provides a perception of the influence of geometrical and material parameters in these systems. The results could further provide meaningful suggestions for the design of biodegradable VSD closure devices and to realize a series of applications for biodegradable materials in VSD.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610000, China
| | - Yan Xiong
- School of Mechanical Engineering, Sichuan University, Chengdu 610000, China
- Correspondence: (Y.X.); (Y.W.)
| | - Jinpeng Hu
- Shanghai Shape Memory Alloy Co., Ltd., Shanghai 200000, China
| | - Xuying Guo
- Shanghai Shape Memory Alloy Co., Ltd., Shanghai 200000, China
| | - Xianchun Xu
- Shanghai Shape Memory Alloy Co., Ltd., Shanghai 200000, China
| | - Juan Chen
- Shanghai Shape Memory Alloy Co., Ltd., Shanghai 200000, China
| | - Yunbing Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610000, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yu Chen
- Department of Applied Mechanics, Sichuan University, Chengdu 610000, China
| |
Collapse
|
22
|
Fukushima K, Ota Y, Kato T. Polydioxanone Derivative Bearing Methoxy Groups towards Bio‐Functional Degradable Polymers Exhibiting Hydration‐Driven Biocompatibility. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Japan Science and Technology Agency (JST), PRESTO Honcho, Kawaguchi Saitama 332‐0012 Japan
| | - Yuki Ota
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Research Initiative for Supra‐Materials Shinshu University Wakasato Nagano 380‐8553 Japan
| |
Collapse
|
23
|
Kang HJ, Song YS. Effects of humidity and temperature on hydrolytic degradation of polydioxanone. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ha Jeong Kang
- Department of Fiber Convergence Material Engineering Dankook University Yongin‐si Gyeonggi Do Republic of Korea
| | - Young Seok Song
- Department of Fiber Convergence Material Engineering Dankook University Yongin‐si Gyeonggi Do Republic of Korea
| |
Collapse
|
24
|
Xu L, Liu Y, Zhou W, Yu D. Electrospun Medical Sutures for Wound Healing: A Review. Polymers (Basel) 2022; 14:1637. [PMID: 35566807 PMCID: PMC9105379 DOI: 10.3390/polym14091637] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
With the increasing demand for wound healing around the world, the level of medical equipment is also increasing, but sutures are still the preferred medical equipment for medical personnel to solve wound closures. Compared with the traditional sutures, the nanofiber sutures produced by combining the preparation technology of drug-eluting sutures have greatly improved both mechanical properties and biological properties. Electrospinning technology has attracted more attention as one of the most convenient and simple methods for preparing functional nanofibers and the related sutures. This review firstly discusses the structural classification of sutures and the performance analysis affecting the manufacture and use of sutures, followed by the discussion and classification of electrospinning technology, and then summarizes the relevant research on absorbable and non-absorbable sutures. Finally, several common polymers and biologically active substances used in creating sutures are concluded, the related applications of sutures are discussed, and the future prospects of electrospinning sutures are suggested.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
25
|
Kim JM, Kyung H, Song YS. Analysis of poly(dioxanone) foam prepared using salt leaching method. J Appl Polym Sci 2022. [DOI: 10.1002/app.52331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jung Min Kim
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| | - Haksu Kyung
- Department of Ophthalmology National Medical Center Seoul Korea
| | - Young Seok Song
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| |
Collapse
|
26
|
Shape-Memory Materials via Electrospinning: A Review. Polymers (Basel) 2022; 14:polym14050995. [PMID: 35267818 PMCID: PMC8914658 DOI: 10.3390/polym14050995] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.
Collapse
|
27
|
Song G, Zhao HQ, Liu Q, Fan Z. A review on biodegradable biliary stents: materials and future trends. Bioact Mater 2022; 17:488-495. [PMID: 35415292 PMCID: PMC8968460 DOI: 10.1016/j.bioactmat.2022.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Biliary stricture is defined as the reduction and narrowing of the bile duct lumen, which can be caused by many factors such as cancer and inflammation. Biliary stent placement can effectively alleviate benign and malignant biliary strictures. However, the commonly used plastic or metallic biliary stents are far from ideal and do not satisfy all clinical requirements,although several types of biodegradable biliary stents have been developed and used clinically. In this review, we summarized current development status of biodegradable stents with the emphasis on the stent materials. We also presented the future development trends based on the published literature. Summary of current development status of bioresorbable biliary stents with the emphasis on the stent materials. The future development trends based on the published literature. The advantages of bioresorbable biliary stents compared with metallic and plastic biliary stents.
Collapse
|
28
|
Early Clinical Outcomes of Polydioxanone Mesh for Prepectoral Prosthetic Breast Reconstruction. Plast Reconstr Surg Glob Open 2022; 10:e4082. [PMID: 35186635 PMCID: PMC8849407 DOI: 10.1097/gox.0000000000004082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
Many biologic matrices and synthetic meshes are available as adjuncts for prosthetic and autologous breast reconstructions to help control implant position and to reinforce abdominal flap donor sites. Absorbable synthetic meshes may have advantages over biologic matrices and permanent meshes, such as lower cost and better long-term biocompatibility. We present a prospective case series of patients undergoing two-stage, prepectoral breast reconstruction with polydioxanone (PDO) mesh.
Collapse
|
29
|
Modulation of stem cell response using biodegradable polyester films with different stiffness. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Loskot J, Jezbera D, Bezrouk A, Doležal R, Andrýs R, Francová V, Miškář D, Myslivcová Fučíková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. MATERIALS 2021; 14:ma14185462. [PMID: 34576686 PMCID: PMC8467320 DOI: 10.3390/ma14185462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Polydioxanone (PPDX), as an FDA approved polymer in tissue engineering, is an important component of some promising medical devices, e.g., biodegradable stents. The hydrolytic degradation of polydioxanone stents plays a key role in the safety and efficacy of treatment. A new fast and convenient method to quantitatively evaluate the hydrolytic degradation of PPDX stent material was developed. PPDX esophageal stents were degraded in phosphate-buffered saline for 24 weeks. For the first time, the changes in Raman spectra during PPDX biodegradation have been investigated here. The level of PPDX hydrolytic degradation was determined from the Raman spectra by calculating the area under the 1732 cm-1 peak shoulder. Raman spectroscopy, unlike Fourier transform infrared (FT-IR) spectroscopy, is also sensitive enough to monitor the decrease in the dye content in the stents during the degradation. Observation by a scanning electron microscope showed gradually growing cracks, eventually leading to the stent disintegration. The material crystallinity was increasing during the first 16 weeks, suggesting preferential degradation of the amorphous phase. Our results show a new easy and reliable way to evaluate the progression of PPDX hydrolytic degradation. The proposed approach can be useful for further studies on the behavior of PPDX materials, and for clinical practice.
Collapse
Affiliation(s)
- Jan Loskot
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Daniel Jezbera
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- Correspondence:
| | - Rafael Doležal
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (R.D.); (R.A.)
| | - Rudolf Andrýs
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (R.D.); (R.A.)
| | - Vendula Francová
- ELLA-CS, s.r.o., Milady Horákové 504/45, 500 06 Hradec Králové, Czech Republic;
| | - Dominik Miškář
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Alena Myslivcová Fučíková
- Department of Biology, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
31
|
Lin C, Liu L, Liu Y, Leng J. Recent developments in next-generation occlusion devices. Acta Biomater 2021; 128:100-119. [PMID: 33964482 DOI: 10.1016/j.actbio.2021.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Transcatheter closure has been widely accepted as a highly effective way to treat abnormal blood flows and/or embolization of thrombus in the heart. It allows the closure of four types of congenital heart defects (CHDs) and stroke-associated left atrial appendage (LAA). The four types of CHDs include atrial septal defect (ASD), patent foramen ovale (PFO), patent ductus arteriosus (PDA), and ventricular septal defect (VSD). Advancements in the materials and configurations of occlusion devices have spurred the transition from open-heart surgery with high complexity and morbidity, or lifelong medication with a high risk of bleeding, to minimally invasive deployment. A variety of occlusion devices have been developed over the past few decades, particularly novel ones represented by biodegradable and 3D-printed occlusion devices, which are considered as next-generation alternatives to conventional Nitinol-based occlusion devices due to biodegradability, customization, and improved biocompatibility. The aim here is to comprehensively review the next-generation occlusion devices in terms of materials, configurations, manufacturing methods, deployment strategies, and (if available) experimental results or clinical data. The current challenges and the direction of future work are also proposed. STATEMENT OF SIGNIFICANCE: Implantation of occlusion devices has become a widely accepted and highly effective treatment for occluding abnormal blood/thrombus flow within the heart. Due to the serious complications such as erosion and displacement of conventional Nitinol-based occluders, next-generation occluders with reduced risk of complications and improved biocompatibility has emerged. Here, we comprehensively review the next-generation occluders developed for atrial septal defect (ASD), patent foramen ovale (PFO), patent ductus arteriosus (PDA), ventricular septal defect (VSD), and left atrial appendage (LAA), with special emphasis on biodegradable occluders. Besides, intelligent materials (e.g., automatically deployable shape memory polymers) and rapid customized manufacturing methods (3D/4D printing) for the fabrication of occluders are also introduced. Lastly, the directions of future work are highlighted.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin 150080, People's Republic of China.
| |
Collapse
|
32
|
Adhikari KR, Stanishevskaya I, Caracciolo PC, Abraham GA, Thomas V. Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules 2021; 26:3847. [PMID: 34202602 PMCID: PMC8270292 DOI: 10.3390/molecules26133847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we report the electrospinning and mechano-morphological characterizations of scaffolds based on blends of a novel poly(ester urethane urea) (PHH) and poly(dioxanone) (PDO). At the optimized electrospinning conditions, PHH, PDO and blend PHH/PDO in Hexafluroisopropanol (HFIP) solution yielded bead-free non-woven random nanofibers with high porosity and diameter in the range of hundreds of nanometers. The structural, morphological, and biomechanical properties were investigated using Differential Scanning Calorimetry, Scanning Electron Microscopy, Atomic Force Microscopy, and tensile tests. The blended scaffold showed an elastic modulus (~5 MPa) with a combination of the ultimate tensile strength (2 ± 0.5 MPa), and maximum elongation (150% ± 44%) in hydrated conditions, which are comparable to the materials currently being used for soft tissue applications such as skin, native arteries, and cardiac muscles applications. This demonstrates the feasibility of an electrospun PHH/PDO blend for cardiac patches or vascular graft applications that mimic the nanoscale structure and mechanical properties of native tissue.
Collapse
Affiliation(s)
- Kiran R. Adhikari
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Vinoy Thomas
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Hakemi P, Ghadi A, Mahjoub S, Zabihi E, Tashakkorian H. Ratio Design of Docetaxel/Quercetin Co-Loading-to-Nanocarrier: Synthesis of PCL–PEG–PCL Copolymer, Study of Drug Release Kinetic and Growth Inhibition of Human Breast Cancer (MCF-7) Cell Line. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221030174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Saska S, Pilatti L, Silva ESDS, Nagasawa MA, Câmara D, Lizier N, Finger E, Dyszkiewicz Konwińska M, Kempisty B, Tunchel S, Blay A, Shibli JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers (Basel) 2021; 13:polym13111685. [PMID: 34064251 PMCID: PMC8196877 DOI: 10.3390/polym13111685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Resorbable synthetic and natural polymer-based membranes have been extensively studied for guided tissue regeneration. Alloplastic biomaterials are often used for tissue regeneration due to their lower immunoreactivity when compared with allogeneic and xenogeneic materials. Plenum® Guide is a synthetic membrane material based on polydioxanone (PDO), whose surface morphology closely mimics the extracellular matrix. In this study, Plenum® Guide was compared with collagen membranes as a barrier material for bone-tissue regeneration in terms of acute and subchronic systemic toxicity. Moreover, characterizations such as morphology, thermal analysis (Tm = 107.35 °C and crystallinity degree = 52.86 ± 2.97 %, final product), swelling (thickness: 0.25 mm ≅ 436% and 0.5 mm ≅ 425% within 24 h), and mechanical tests (E = 30.1 ± 6.25 MPa; σ = 3.92 ± 0.28 MPa; ε = 287.96 ± 34.68%, final product) were performed. The in vivo results revealed that the PDO membranes induced a slightly higher quantity of newly formed bone tissue than the control group (score: treated group = 15, control group = 13) without detectable systemic toxicity (clinical signs and evaluation of the membranes after necropsy did not result in differences between groups, i.e., non-reaction -> tissue-reaction index = 1.3), showing that these synthetic membranes have the essential characteristics for an effective tissue regeneration. Human adipose-derived stem cells (hASCs) were seeded on PDO membranes; results demonstrated efficient cell migration, adhesion, spread, and proliferation, such that there was a slightly better hASC osteogenic differentiation on PDO than on collagen membranes. Hence, Plenum® Guide membranes are a safe and efficient alternative for resorbable membranes for tissue regeneration.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| | - Livia Pilatti
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Edvaldo Santos de Sousa Silva
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Magda Aline Nagasawa
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Diana Câmara
- Nicell—Pesquisa e Desenvolvimento Ltd.a, 2721 Av. Indianápolis, São Paulo 04063-005, Brazil;
| | - Nelson Lizier
- CCB—Centro de Criogenia Brasil, 1861 Av. Indianápolis, São Paulo 04063-003, Brazil;
| | - Eduardo Finger
- Hospital Israelita Albert Einstein, 627 Av. Albert Einstein, São Paulo 05652-900, Brazil;
| | | | - Bartosz Kempisty
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - Samy Tunchel
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| |
Collapse
|
35
|
Heidari BS, Chen P, Ruan R, Davachi SM, Al-Salami H, De Juan Pardo E, Zheng M, Doyle B. A novel biocompatible polymeric blend for applications requiring high toughness and tailored degradation rate. J Mater Chem B 2021; 9:2532-2546. [PMID: 33660730 DOI: 10.1039/d0tb02971h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Finding the right balance in mechanical properties and degradation rate of biodegradable materials for biomedical applications is challenging, not only at the time of implantation but also during biodegradation. For instance, high elongation at break and toughness with a mid-term degradation rate are required for tendon scaffold or suture application, which cannot be found in each alpha polyester individually. Here, we hypothesise that blending semi-crystalline poly(p-dioxanone) (PDO) and poly(lactide-co-caprolactone) (LCL) in a specific composition will enhance the toughness while also enabling tailored degradation times. Hence, blends of PDO and LCL (PDO/LCL) were prepared in varying concentrations and formed into films by solvent casting. We thoroughly characterised the chemical, thermal, morphological, and mechanical properties of the new blends before and during hydrolytic degradation. Cellular performance was determined by seeding mouse fibroblasts onto the samples and culturing for 72 hours, before using proliferation assays and confocal imaging. We found that an increase in LCL content causes a decrease in hydrolytic degradation rate, as indicated by induced crystallinity, surface and bulk erosions, and tensile properties. Interestingly, the noncytotoxic blend containing 30% PDO and 70% LCL (PDO3LCL7) resulted in small PDO droplets uniformly dispersed within the LCL matrix and demonstrated a tailored degradation rate and toughening behaviour with a notable strain-hardening effect reaching 320% elongation at break; over 3 times the elongation of neat LCL. In summary, this work highlights the potential of PDO3LCL7 as a biomaterial for biomedical applications like tendon tissue engineering or high-performance absorbable sutures.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Heene S, Thoms S, Kalies S, Wegner N, Peppermüller P, Born N, Walther F, Scheper T, Blume CA. Vascular Network Formation on Macroporous Polydioxanone Scaffolds. Tissue Eng Part A 2021; 27:1239-1249. [PMID: 33397206 DOI: 10.1089/ten.tea.2020.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, microvascular network structures for tissue engineering were generated on newly developed macroporous polydioxanone (PDO) scaffolds. PDO represents a polymer biodegradable within months and offers optimal material properties such as elasticity and nontoxic degradation products. PDO scaffolds prepared by porogen leaching and cryo-dried to achieve pore sizes of 326 ± 149.67 μm remained stable with equivalent values for Young's modulus after 4 weeks. Scaffolds were coated with fibrin for optimal cell adherence. To exclude interindividual differences, autologous fibrin was prepared out of human plasma-derived fibrinogen and proved a comparable quality to nonautologous commercially available fibrinogen. Fibrin-coated scaffolds were seeded with recombinant human umbilical vein endothelial cells expressing GFP (GFP-HUVECs) in coculture with adipose tissue-derived mesenchymal stem cells (AD-hMSCs) to form vascular networks. The growth factor content in culture media was optimized according its effect on network formation, quantified and assessed by AngioTool®. A ratio of 2:3 GFP-HUVECs/AD-hMSCs in medium enriched with 20 ng/mL vascular endothelial growth factor, basic fibroblast growth factor, and hydrocortisone was found to be optimal. Network structures appeared after 2 days of cultivation and stabilized until day 7. The resulting networks were lumenized that could be verified by dextran staining. This new approach might be suitable for microvascular tissue patches as a useful template to be used in diverse vascularized tissue constructs.
Collapse
Affiliation(s)
- Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Stefanie Thoms
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Nils Wegner
- Department of Materials Test Engineering, Technical University Dortmund, Dortmund, Germany
| | - Pia Peppermüller
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Frank Walther
- Department of Materials Test Engineering, Technical University Dortmund, Dortmund, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Cornelia A Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
37
|
Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate. Acta Biomater 2021; 121:303-315. [PMID: 33227488 DOI: 10.1016/j.actbio.2020.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
Abstract
Although it has been repeatedly indicated the importance to develop implantable devices and cell culture substrates with tissue-specific rigidity, current commercially available products, in particular cell culture substrates, have rigidity values well above most tissues in the body. Herein, six resorbable polyester films were fabricated using compression moulding with a thermal presser into films with tailored stiffness by appropriately selecting the ratio of their building up monomers (e.g. lactide, glycolide, trimethylene carbonate, dioxanone, ε-caprolactone). Typical NMR and FTIR spectra were obtained, suggesting that the fabrication process did not have a negative effect on the conformation of the polymers. Surface roughness analysis revealed no apparent differences between the films as a function of polymer composition. Subject to polymer composition, polymeric films were obtained with glass transition temperatures from -52 °C to 61 °C; contact angles in water from 81 ° to 94 °; storage modulus from 108 MPa to 2,756 MPa and loss modulus from 8 MPa to 507 MPa (both in wet state, at 1 Hz frequency and at 37 °C); ultimate tensile strength from 8 MPa to 62 MPa, toughness from 23 MJ/m3 to 287 MJ/m3, strain at break from 3 % to 278 %, macro-scale Young's modulus from 110 MPa to 2,184 MPa (all in wet state); and nano-scale Young's modulus from 6 kPa to 15,019 kPa (in wet state). With respect to in vitro degradation in phosphate buffered saline at 37 °C, some polymeric films [e.g. poly(glycolide-lactide) 30 / 70] started degrading from day 7 (shortest timepoint assessed), whilst others [e.g. poly(glycolide-co-ε-caprolactone) 10 / 90] were more resilient to degradation up to day 21 (longest timepoint assessed). In vitro biological analysis using human dermal fibroblasts and a human monocyte cell line (THP-1) showed the potential of the polymeric films to support cell growth and controlled immune response. Evidently, the selected polymers exhibited properties suitable for a range of clinical indications.
Collapse
|
38
|
Wong V. The Science of Absorbable Poly(L-Lactide-Co-ε-Caprolactone) Threads for Soft Tissue Repositioning of the Face: An Evidence-Based Evaluation of Their Physical Properties and Clinical Application. Clin Cosmet Investig Dermatol 2021; 14:45-54. [PMID: 33469333 PMCID: PMC7812524 DOI: 10.2147/ccid.s274160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
The use of bioabsorbable threads has become a common minimally invasive technique for the nonsurgical lifting of sagged facial tissues. It entails the passage of barbed threads that form a support structure under the skin of the face and neck to mechanically reposition sagging tissue. Poly(L-lactide-co-ε-caprolactone) has long been used as absorbable sutures and as such has a well-demonstrated efficacy and safety profile. This biomaterial also has a well-defined biocompatibility and degradation profile. All studies reviewed in this paper show that thread lifting with absorbable barbed threads is an effective and well-tolerated procedure for correction of ptosis in facial and neck soft tissue and is associated with minor and reversible adverse effects. Most patients and surgeons consider the procedure satisfactory, with good to excellent results. This publication reviews the literature and clinical data supporting the degradation, absorbability, biocompatibility, safety, and effectiveness of these threads when used for tissue repositioning and facial rejuvenation procedures.
Collapse
|
39
|
Johnson AR, Forster SP, White D, Terife G, Lowinger M, Teller RS, Barrett SE. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 2021; 18:577-593. [PMID: 33275066 DOI: 10.1080/17425247.2021.1856072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.Areas covered: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.Expert opinion: In the future, long-acting implants will be important clinical tools for prophylaxis and treatment of global health challenges, especially for infectious diseases, to reduce the cost and difficulty of treating chronic indications, and to prolong local delivery in difficult to administer parts of the body. These products will help improve patient safety, adherence, and comfort.
Collapse
Affiliation(s)
- Ashley R Johnson
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Graciela Terife
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Michael Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Stephanie E Barrett
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
40
|
Madub K, Goonoo N, Gimié F, Ait Arsa I, Schönherr H, Bhaw-Luximon A. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr Polym 2021; 251:117025. [DOI: 10.1016/j.carbpol.2020.117025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/23/2023]
|
41
|
Hendricks R, Hofmann E, Peres J, Prince S, Hille J, Davies NH, Bezuidenhout D. Tendon-like tether formation for tongue-base advancement in an ovine model using a novel implant device intended for the surgical management of obstructive sleep apnoea. J Biomed Mater Res B Appl Biomater 2020; 109:1005-1016. [PMID: 33283474 DOI: 10.1002/jbm.b.34765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/05/2022]
Abstract
Obstructive sleep apnoea (OSA) is a serious debilitating condition with significant morbidity and mortality affecting almost one billion adults globally. The current gold standard in the non-surgical management of airway collapse is continuous positive airway pressure (CPAP). However, non-compliance leads to a high abandon rate (27-46%). While there are multiple sites of airway obstruction during sleep, the tongue base is recognized as the key player in the pathogenesis of OSA. Poor outcomes of current tongue suspension devices are due to fracture, slippage or migration of devices. Three tongue tethering device groups, namely a polydioxanone/polyurethane combination (PDO + PU) treatment group, a PDO analytical control group, and a polypropylene (PP) descriptive control group, were implanted into 22 sheep (75-85 kg) in a two-phased study. After implant times of 8, 16, and 32 weeks, sheep were serially euthanized to allow for explantation of their tongues and chins. The PDO + PU devices remodeled during the 32-week implant period into a hybrid biological tendon-like tether through the process of gradual degradation of the PDO and collagen deposition as shown by electrophoresis, histology and mechanical testing. The control PDO device degraded completely after 32 weeks and the PP devices remained intact. The hybrid biological tendon-like tether exhibited a break-strength of 60 N, thus exceeding the maximum force to overcome upper airway collapse.
Collapse
Affiliation(s)
- Rushdi Hendricks
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Elena Hofmann
- Department of Orthodontics, University of Bonn, Bonn, Germany
| | - Jade Peres
- Division of Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jos Hille
- Department of Oral & Maxillofacial Pathology, University of the Western Cape and NHLS Tygerberg Laboratories, Cape Town, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Rykowska I, Nowak I, Nowak R. Drug-Eluting Stents and Balloons-Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020; 25:E4624. [PMID: 33050663 PMCID: PMC7594099 DOI: 10.3390/molecules25204624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Controlled drug delivery is a matter of interest to numerous scientists from various domains, as well as an essential issue for society as a whole. In the treatment of many diseases, it is crucial to control the dosing of a drug for a long time and thus maintain its optimal concentration in the tissue. Heart diseases are particularly important in this aspect. One such disease is an obstructive arterial disease affecting millions of people around the world. In recent years, stents and balloon catheters have reached a significant position in the treatment of this condition. Balloon catheters are also successfully used to manage tear ducts, paranasal sinuses, or salivary glands disorders. Modern technology is continually striving to improve the results of previous generations of stents and balloon catheters by refining their design, structure, and constituent materials. These advances result in the development of both successive models of drug-eluting stents (DES) and drug-eluting balloons (DEB). This paper presents milestones in the development of DES and DEB, which are a significant option in the treatment of coronary artery diseases. This report reviews the works related to achievements in construction designs and materials, as well as preparation technologies, of DES and DEB. Special attention was paid to the polymeric biodegradable materials used in the production of the above-mentioned devices. Information was also collected on the various methods of producing drug release coatings and their effectiveness in releasing the active substance.
Collapse
Affiliation(s)
- I. Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - I. Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - R. Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
43
|
Abasian P, Ghanavati S, Rahebi S, Nouri Khorasani S, Khalili S. Polymeric nanocarriers in targeted drug delivery systems: A review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Payam Abasian
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Sonya Ghanavati
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University St. Petersburg Russian Federation
| | - Saeed Rahebi
- Department of Renewable Energies University of Tehran Tehran Iran
| | | | - Shahla Khalili
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| |
Collapse
|
44
|
Wekwejt M, Michalska-Sionkowska M, Bartmański M, Nadolska M, Łukowicz K, Pałubicka A, Osyczka AM, Zieliński A. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111286. [PMID: 32919647 DOI: 10.1016/j.msec.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023]
Abstract
Acrylic bone cements (BC) are wildly used in medicine. Despite favorable mechanical properties, processability and inject capability, BC lack bioactivity. To overcome this, we investigated the effects of selected biodegradable additives to create a partially-degradable BC and also we evaluated its combination with nanosilver (AgNp). We hypothesized that using above strategies it would be possible to obtain bioactive BC. The Cemex was used as the base material, modified at 2.5, 5 or 10 wt% with either cellulose, chitosan, magnesium, polydioxanone or tricalcium-phosphate. The resulted modified BC was examined for surface morphology, wettability, porosity, mechanical and nanomechanical properties and cytocompatibility. The composite BC doped with AgNp was also examined for its release and antibacterial properties. The results showed that it is possible to create modified cement and all studied modifiers increased its porosity. Applying the additives slightly decreased BC wettability and mechanical properties, but the positive effect of the additives was observed in nanomechanical research. The relatively poor cytocompatibility of modified BC was attributed to the unreacted monomer release, except for polydioxanone modification which increased cells viability. Furthermore, all additives facilitated AgNp release and increased BC antibacterial effectiveness. Our present studies suggest the optimal content of biodegradable component for BC is 5 wt%. At this content, an improvement in BC porosity is achieved without significant deterioration of BC physical and mechanical properties. Polydioxanone and cellulose seem to be the most promising additives that improve porosity and antibacterial properties of antibiotic or nanosilver-loaded BC. Partially-degradable BC may be a good strategy to improve their antibacterial effectiveness, but some caution is still required regarding their cytocompatibility. STATEMENT OF SIGNIFICANCE: The lack of bone cement bioactivity is the main limitation of its effectiveness in medicine. To overcome this, we have created composite cements with partially-degradable properties. We also modified these cements with nanosilver to provide antibacterial properties. We examined five various additives at three different contents to modify a selected bone cement. Our results broaden the knowledge about potential modifiers and properties of composite cements. We selected the optimal content and the most promising additives, and showed that the combination of these additives with nanosilver would increase cements` antibacterial effectiveness. Such modified cements may be a new solution for medical applications.
Collapse
Affiliation(s)
- M Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland.
| | - M Michalska-Sionkowska
- Faculty of Biological and Veterinary Sciences, Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - M Bartmański
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland
| | - M Nadolska
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - K Łukowicz
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Pałubicka
- Department of Surgical Oncologic, Medical University of Gdańsk, Gdańsk, Poland; Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Kościerzyna, Poland
| | - A M Osyczka
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
45
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
Sousa MGC, Maximiano MR, Costa RA, Rezende TMB, Franco OL. Nanofibers as drug-delivery systems for infection control in dentistry. Expert Opin Drug Deliv 2020; 17:919-930. [PMID: 32401065 DOI: 10.1080/17425247.2020.1762564] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Due to the complexity of different oral infections, new anti-infective nanotechnological approaches have been emerging for dentistry in recent years. These strategies may contribute to antimicrobial molecules delivery, tissue regeneration, and oral health maintenance by acting in a more specific site and not being cytotoxic. In this context, nanofibers appear as versatile structures and might act both in the release of antimicrobial molecules and as a scaffold for new tissue formation. AREAS COVERED This review addresses the application of different nanofibers as new strategies for the delivery of antimicrobial molecules for dentistry. Here, we present the main polymers used to construct nanofibers, methods of production and mainly their antimicrobial activity against microorganisms commonly responsible for the usual dental infections. These biomaterials may be associated to restorative materials, prostheses, and mucoadhesive structures. Besides, nanofibers can be used for endodontic or periodontal therapy, or even on implant surfaces. EXPERT OPINION A wide variety of studies report the potential application of anti-infective nanofibers in the oral cavity. Although there are still several barriers between in vitro and in vivo studies, these new formulations appear as promising new therapies for dentistry.
Collapse
Affiliation(s)
- Maurício G C Sousa
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Mariana R Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane A Costa
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Taia M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília , Brasília, Brazil.,Curso de Odontologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília , Brasília, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica dom Bosco , Mato Grosso do Sul, Brazil
| |
Collapse
|
47
|
Miranda CS, Ribeiro ARM, Homem NC, Felgueiras HP. Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics (Basel) 2020; 9:E174. [PMID: 32290536 PMCID: PMC7235791 DOI: 10.3390/antibiotics9040174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 11/24/2022] Open
Abstract
Nowadays, tissue engineering is described as an interdisciplinary field that combines engineering principles and life sciences to generate implantable devices to repair, restore and/or improve functions of injured tissues. Such devices are designed to induce the interaction and integration of tissue and cells within the implantable matrices and are manufactured to meet the appropriate physical, mechanical and physiological local demands. Biodegradable constructs based on polymeric fibers are desirable for tissue engineering due to their large surface area, interconnectivity, open pore structure, and controlled mechanical strength. Additionally, biodegradable constructs are also very sought-out for biomolecule delivery systems with a target-directed action. In the present review, we explore the properties of some of the most common biodegradable polymers used in tissue engineering applications and biomolecule delivery systems and highlight their most important uses.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (C.S.M.); (A.R.M.R.); (N.C.H.)
| |
Collapse
|
48
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020; 59:4869-4872. [PMID: 31912947 PMCID: PMC7079103 DOI: 10.1002/anie.201914877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Flavoprotein oxidases can catalyze oxidations of alcohols and amines by merely using molecular oxygen as the oxidant, making this class of enzymes appealing for biocatalysis. The FAD-containing (FAD=flavin adenine dinucleotide) alcohol oxidase from P. chrysosporium facilitated double and triple oxidations for a range of aliphatic diols. Interestingly, depending on the diol substrate, these reactions result in formation of either lactones or hydroxy acids. For example, diethylene glycol could be selectively and fully converted into 2-(2-hydroxyethoxy)acetic acid. Such a facile cofactor-independent biocatalytic route towards hydroxy acids opens up new avenues for the preparation of polyester building blocks.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| |
Collapse
|
49
|
Martin C, Trajkovic M, Fraaije MW. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 Groningen The Netherlands
| |
Collapse
|
50
|
Fathi P, Capron G, Tripathi I, Misra S, Ostadhossein F, Selmic L, Rowitz B, Pan D. Computed tomography-guided additive manufacturing of Personalized Absorbable Gastrointestinal Stents for intestinal fistulae and perforations. Biomaterials 2019; 228:119542. [PMID: 31678842 DOI: 10.1016/j.biomaterials.2019.119542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Small bowel perforations and obstructions are relatively frequent surgical emergencies, are potentially life-threatening, and have multiple etiologies. In general, treatment requires urgent surgical repair or resection and at times can lead to further complications. Stents may be used to help with healing intestinal perforations but use is limited as currently available stents are non-absorbable, are manufactured in a narrow size range, and/or are limited to usage in locations that are accessible for endoscopic removal post-healing. The use of 3D-printed bioresorbable polymeric stents will provide patients with a stent that can prevent leakage, is tailored specifically to their geometry, and will be usable within the small bowel, which is not amenable to endoscopic stent placement. This work focused on the rapid manufacturing of gastrointestinal stents composed of a polycaprolactone-polydioxanone (PCL-PDO) composite. Dynamic Mechanical Analysis (DMA) tests were conducted to separately analyze the effects of composition, the filament formation process, and physiological temperature on the PCL-PDO material properties. The proposed stent design was then modeled using computer-aided design, and Finite Element Analysis (FEA) was used to simulate the effects of physiologically relevant forces on stent integrity. The presence of hydrolysable ester bonds was confirmed using FT-IR spectroscopy. In vitro studies were used to evaluate the biocompatibility of the polymer composite. Further analyses were conducted through stent placement in ex vivo pig intestines. PCL-PDO stents were then 3D-printed and placed in vivo in a pig model.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, United States
| | | | - Indu Tripathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, United States
| | - Santosh Misra
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, United States
| | - Fatemeh Ostadhossein
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, United States
| | - Laura Selmic
- College of Veterinary Medicine, University of Illinois, Urbana, Champaign, IL, United States
| | - Blair Rowitz
- Carle Foundation Hospital, Urbana, IL, United States; Carle Illinois College of Medicine, University of Illinois, Urbana, Champaign, IL, United States
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, United States; Carle Illinois College of Medicine, University of Illinois, Urbana, Champaign, IL, United States.
| |
Collapse
|